# Hodge-Witt cohomology of complete intersections 

By Noriyuki Suwa

(Received July 13, 1990)
(Revised Feb. 17, 1992)

## 1. Statement of the theorem.

In this note, we prove the following assertions.
Theorem. Let $k$ be a perfect field of characteristic $p>0$ and $X$ a smooth complete intersection of dimension $n$ in a projective space over $k$.
(a) If $i \neq j$ and $i+j \neq n, n+1, H^{j}\left(X, W \Omega_{X}^{i}\right)=0$.
(b) If $2 i \neq n, n+1$ and $0 \leqq i \leqq n, H^{i}\left(X, W \Omega_{X}^{i}\right)=W$ and $F$ is bijective on $H^{i}\left(X, W \Omega_{X}^{i}\right)$.
(c) $H^{n-i}\left(X, W \Omega_{X}^{i}\right)$ is a Cartier module (in the sense of [5], Ch. I, Def. 2.4).
(d) If $2 i \neq n+1, H^{n-i+1}\left(X, W \Omega_{X}^{i}\right) / F^{\infty} B=0$.
(e) If $2 i=n+1, \quad H^{n-i+1}\left(X, W \Omega_{X}^{i}\right) / F^{\infty} B=W \quad$ and $\quad F$ is bijective on $H^{n-i+1}\left(X, W \Omega_{X}^{i}\right) / F^{\infty} B$.

We follow the notation of [1], [4] and [5]. In particular, $W=W(k)$ (resp. $K$ ) is the ring of Witt vectors with coefficients in $k$ (resp. the fraction field of $W)$. $H^{\cdot}(X / W)$ (resp. $\left.H^{j}\left(X, W \Omega_{X}^{i}\right)\right)$ denotes the crystalline cohomology group (resp. the Hodge-Witt cohomology group) of $X, F$ (resp. $V$ ) stands for the Frobenius morphism (resp. the Verschiebung morphism). For a commutative group $A$ and an endomorphism $m$ of $A,{ }_{m} A$ (resp. $A / m$ ) denotes Ker $[m: A \rightarrow A]$ (resp. Coker [ $m: A \rightarrow A$ ]).

## 2. Proof of the theorem.

Throughout this section, $k$ denotes a perfect field of characteristic $p>0$ and $X$ a smooth complete intersection of dimension $n$ in a projective space over $k$.

We first recall known facts on the Hodge cohomology and the crystalline cohomology of a smooth complete intersection in a projective space:
( I ) $H^{j}\left(X, \Omega_{X}^{i}\right)=0$ if $i \neq j$ and $i+j \neq n$;
(II) $H^{i}\left(X, \Omega_{X}^{i}\right)=k$ if $2 i \neq n$ and $0 \leqq i \leqq n$;

[^0](III) $H^{i}(X / W)=0$ if $i$ is odd and $i \neq n$;
(IV) $H^{i}(X / W)=W$ if $i=2 r \neq n$ and $0 \leqq i \leqq 2 n$. In this case, $H^{2 r}(X / W)_{K}$ is generated by the classes of algebraic cycles, and therefore $H^{2 r}(X / W)_{K}=$ $H^{2 r}(X / W)_{K}^{[r]}=H^{r}\left(X, W \Omega_{X}^{r}\right)_{K}$ (cf. [2], Th. 1.5, [1], Ch. VII, Remarque 1.1.11, [4], Ch. II, Cor. 3.5).

We shall prove the theorem step by step.
Step 1. (a) If $i \neq j$ and $i+j<n, H^{j}\left(X, W \Omega_{X}^{i}\right)=0$.
(b) If $0 \leqq 2 i<n, H^{i}\left(X, W \Omega_{X}^{i}\right)=W$ and $F$ is bijective on $H^{i}\left(X, W \Omega_{X}^{i}\right)$.

Proof. We shall prove the assertions by induction on $i$.
First note that the assertion (a) holds true for $i=-1$ since $W \Omega_{X}^{1}=0$ and that the assertion (b) holds true for $i=0$ (cf. [4], Ch. II, Cor. 2.17).

Assume now that:
(1) $H^{j}\left(X, W \Omega_{X}^{i-1}\right)=0$ if $j \neq i-1$ and $i-1+j<n$;
(2) $H^{i-1}\left(X, W \Omega_{X}^{i-1}\right)=W$ and $F$ is bijective on $H^{i-1}\left(X, W \Omega_{X}^{i-1}\right)$ if $0 \leqq i-1<n / 2$. The commutative diagram of pro-sheaves on $X$ with exact rows and columns

([4], Ch. I, Cor. 3.5, Cor. 3.19) defines a commutative diagram with exact rows and columns


By the hypothesis of induction, we have

$$
H^{j}\left(X, W \Omega_{X}^{i-1}\right) / F=0 \quad \text { and } \quad{ }_{F} H^{j+1}\left(X, W \Omega_{X}^{i-1}\right)=0 \quad \text { for } \quad j<n-i .
$$

Then we obtain

$$
H^{j}\left(X, W \Omega_{X}^{i-1}\right) / F=0 \quad \text { for } \quad j<n-i .
$$

By (I) and (II), we have

$$
\operatorname{dim} H^{j}\left(X, \Omega_{X}^{i}\right)= \begin{cases}0 & \text { if } j \neq i \text { and } i+j<n \\ 1 & \text { if } j=i \text { and } i+j<n\end{cases}
$$

This implies that

$$
\operatorname{dim} H^{j}\left(X, W \Omega_{X}^{i} / V\right)= \begin{cases}0 & \text { if } j \neq i \text { and } i+j<n \\ 0 \text { or } 1 & \text { if } j=i \text { and } i+j<n\end{cases}
$$

and hence

$$
\operatorname{dim} H^{j}\left(X, W \Omega_{X}^{i}\right) / V= \begin{cases}0 & \text { if } j \neq i \text { and } i+j<n \\ 0 \text { or } 1 & \text { if } j=i \text { and } i+j<n\end{cases}
$$

Since $H^{j}\left(X, W \Omega_{X}^{i}\right)$ is $V$-adically separated ([4], Ch. II, Cor. 2.5), we obtain

$$
H^{j}\left(X, W \Omega_{X}^{i}\right)=0 \quad \text { if } \quad j \neq i \quad \text { and } \quad j<n-1
$$

By (IV) we have $H^{i}\left(X, W \Omega_{X}^{i}\right)_{K}=H^{2 i}(X / W)_{K}=K$ if $2 i<n$. Then we get $H^{i}(X$, $\left.W \Omega_{X}^{i}\right) / V \neq 0$ and therefore $\operatorname{dim} H^{i}\left(X, W \Omega_{X}^{i}\right) / V=1$. It follows that $H^{i}\left(X, W \Omega_{X}^{i}\right)$ $=W$ and that $F$ is bijective on $H^{i}\left(X, W \Omega_{X}^{i}\right)$.

While proving Step 1, we have shown the following assertion.
STEP 2. $H^{n-i}\left(X, W \Omega_{X}^{i}\right)$ is $V$-torsion-free. Hence $H^{n-i}\left(X, W \Omega_{X}^{i}\right)$ is a Cartier module.

STEP 3. (a) The differential $d: H^{j}\left(X, W \Omega_{X}^{i}\right) \rightarrow H^{j}\left(X, W \Omega_{X}^{i+1}\right)$ is zero if $i+j \neq n$.
(b) $H^{j}\left(X, W \Omega_{X}^{i}\right)$ is of finite type over $W$ if $i+j>n+1$.

Proof. First note that the differential $d: H^{j}\left(X, W \Omega_{X}^{i}\right) \rightarrow H^{j}\left(X, W \Omega_{X}^{i+1}\right)$ is zero if and only if $\operatorname{dim}$ Domino $H^{j}\left(X, W \Omega_{\dot{x}}\right)^{i}=0$ (cf. [5], Ch. I, Prop. 2.18.).

By Step 1, dim Domino $H^{j}\left(X, W \Omega_{\dot{X}}\right)^{i}=0$ if $i+j<n$. Hence, by Ekedhal's duality ([3], Ch. IV, Cor. 3.5.1), dim Domino $H^{j}\left(X, W \Omega_{\dot{X}}\right)^{i}=0$, and therefore the differential $d: H^{j}\left(X, W \Omega_{X}^{i}\right) \rightarrow H^{j}\left(X, W \Omega_{X}^{i+1}\right)$ is zero, if $i+j>n$. It follows that $H^{j+1}\left(X, W \Omega_{X}^{i}\right)$ is of finite type over $W$ if $i+j>n$.

STEP 4. (a) If $i \neq j$ and $i+j>n+1, H^{j}\left(X, W \Omega_{X}^{i}\right)=0$.
(b) If $n+1<2 i \leqq 2 n, H^{i}\left(X, W \Omega_{X}^{i}\right)=W$ and $F$ is bijective on $H^{i}\left(X, W \Omega_{X}^{i}\right)$.

Proof. By Step 3, $X$ is of Hodge-Witt type in degree $r$ for $r>n+1$, that
is, $H^{j}\left(X, W \Omega_{X}^{i}\right)$ is of finite type over $W$ for each $(i, j)$ with $i+j=r>n+1$. Hence we have a decomposition of $W$-module

$$
H^{r}(X / W)=\bigoplus_{i+j=r} H^{j}\left(X, W \Omega_{X}^{i}\right)
$$

([5], Ch. IV, Th. 4.5).
Case 1. $r$ is odd.
By (III) we have $H^{r}(X / W)=0$, and therefore $H^{j}\left(X, W \Omega_{X}^{i}\right)=0$ for each $(i, j)$ with $i+j=r$.

Case 2. $r$ is even and $n+1<r \leqq 2 n$.
By (IV) we have $H^{r}(X / W)=W$, and therefore, $H^{j}\left(X, W \Omega_{X}^{i}\right)$ is torsion-free for each ( $i, j$ ) with $i+j=r$, and $\sum_{i+j=r} \operatorname{rk}_{W} H^{j}\left(X, W \Omega_{X}^{i}\right)=1$. However, by (IV) we have $H^{i}\left(X, W \Omega_{X}^{i}\right)_{K}=H^{r}(X / W)_{K}=K$ if $n / 2<i \leqq n$. Hence we obtain

$$
\mathrm{rk}_{W} H^{j}\left(X, W \Omega_{X}^{i}\right)= \begin{cases}1 & \text { if } \quad i=j=r / 2 \\ 0 & \text { if } \quad i \neq j, i+j=r\end{cases}
$$

STEP 5. (a) If $2 i \neq n+1, H^{n-i+1}\left(X, W \Omega_{X}^{i}\right) / F^{\infty} B=0$.
(b) If $2 i=n+1, H^{n-i+1}\left(X, W \Omega_{X}^{i}\right) / F^{\infty} B=W$ and $F$ is bijective on $H^{n-i+1}(X$, $\left.W \Omega_{X}^{i}\right) / F^{\infty} B$.

Proof. Consider now the commutative diagram with exact rows and columns:


Put

$$
\left[\begin{array}{l}
M^{0} \\
\downarrow d V \\
M^{1}
\end{array}\right]=\left[\begin{array}{c}
H^{n-i+1}\left(X, W \Omega_{X}^{i-1}\right) / F \\
\downarrow d V \\
H^{n-i+1}\left(X, W \Omega_{X}^{i}\right) / V
\end{array}\right]
$$

and

$$
\left[\begin{array}{l}
L^{0} \\
\downarrow d V \\
L^{1}
\end{array}\right]=\left[\begin{array}{c}
H^{n-i+1}\left(X, W \Omega_{X}^{i-1} / F\right) \\
\downarrow d V \\
H^{n-i+1}\left(X, W \Omega_{X}^{i} / V\right)
\end{array}\right]
$$

Case 1. $n \neq 2 i-1$.
By (I) we have $H^{n-i+1}\left(X, \Omega_{X}^{i}\right)=0$. This implies that $d V: L^{0} \rightarrow L^{1}$ is surjective, and therefore that $L^{1}=M^{1}=F^{\infty} B M^{1}$ ([5], Ch. I, 1.4). Then we have

$$
\left[H^{n-i+1}\left(X, W \Omega_{X}^{i}\right) / F^{\infty} B\right] / V=H^{n-i+1}\left(X, W \Omega_{X}^{i}\right) /\left(F^{\infty} B+V\right)=0 .
$$

Since $H^{n-i+1}\left(X, W \Omega_{X}^{i}\right) / F^{\infty} B$ is $V$-adically separated (loc. cit. Ch. I, Th. 2.9), we obtain

$$
\left[H^{n-i+1}\left(X, W \Omega_{X}^{i}\right) / F^{\infty} B\right] / V=0
$$

Case 2. $n=2 i-1$.
By (II) we have $\operatorname{dim} H^{i}\left(X, \Omega_{X}^{i}\right)=1$. This implies that $\operatorname{dim} M^{1} / F^{\infty} B \leqq$ $\operatorname{dim} L^{1} / F^{\infty} B=0$ or 1. Further, we have $H^{i}\left(X, W \Omega_{X}^{i}\right)_{K}=H^{2 i}(X / W)_{K}=K$ by (IV). Then we get $\left[H^{i}\left(X, W \Omega_{X}^{i}\right) / F^{\infty} B\right] / V \neq 0$ and therefore $\operatorname{dim}\left[H^{i}\left(X, W \Omega_{X}^{i}\right) / F^{\infty} B\right] / V$ $=1$. It follows that $H^{i}\left(X, W \Omega_{X}^{i}\right) / F^{\infty} B=W$ and that $F$ is bijective on $H^{i}(X$, $\left.W \Omega_{X}^{i}\right) / F^{\infty} B$.

The proof of the theorem is now completed.
Corollary. Let $X$ be a smooth complete intersection of dimension $n$ in a projective space over a perfect field $k$ of characteristic $p>0$.
(a) If $i \neq j$ and $i+j \neq n, n+1, \underline{H}^{j}\left(X, W \Omega_{X, 10 g}^{i}\right)=0$.
(b) If $2 i \neq n, n+1$ and $0 \leqq i \leqq n, \underline{H}^{i}\left(X, W \Omega_{X, 10 \mathrm{~g}}^{i}\right)=\boldsymbol{Z}_{p}$.
(c) $H^{n-i}\left(X, W \Omega_{X, 10 g}^{i}\right)$ is a free $\boldsymbol{Z}_{p}$-module and $\mathrm{rk}_{z_{p}} \underline{H}^{n-i}\left(X, W \Omega_{X, 10 \mathrm{~g}}^{i}\right)=$ $\operatorname{dim}_{K} H^{n}(X / W)_{K}^{[i]}$.
(d) If $2 i \neq n+1, \underline{H}^{n-i+1}\left(X, W \Omega_{X, 10 g}^{i}\right)=\underline{U}^{n-i+1}\left(X, W \Omega_{X, 10 g}^{i}\right)$.
(e) If $2 i=n+1, \underline{H}^{n-i+1}\left(X, W \Omega_{X, 10 g}^{i}\right) / \underline{U}^{n-i+1}\left(X, W \Omega_{X, 1 \mathrm{og}}^{i}\right)=\boldsymbol{Z}_{p}$.

Proof. By Illusie-Raynaud [5], Ch. IV, Th. 3.3, we see that
(1) $\underline{H}^{j}\left(X, W \Omega_{X,}^{i},{ }^{\circ} \mathrm{g}\right)$ is an extension of a pro-étale quasi-algebraic group $\underline{D}^{j}\left(X, W \Omega_{X, 108}^{i}\right)$ by a connected unipotent quasi-algebraic group $\underline{U}^{j}\left(X, W \Omega_{X, 10 g}^{i}\right)$;
(2) $\operatorname{dim} \underline{U}^{j}\left(X, W \Omega_{X, 10 g}^{i}\right)=\operatorname{dim}$ Domino $H^{j}\left(X, W \Omega_{\dot{X}}\right)^{i-1}$;
(3) $\underline{D}^{j}\left(X, W \Omega_{X, 10 g}^{i}\right)(\bar{k})$ is isomorphic to ${ }_{F-1}\left(\text { Heart } H^{j}\left(X_{\bar{k}}, W \Omega_{\dot{X}}\right)^{i}\right)_{s s}$.

Now we can deduce the assertions from the theorem as follows.
Case 1. $i+j \neq n, n+1$.
By Step 3, the differentials $d: H^{j}\left(X, W \Omega_{X}^{i-1}\right) \rightarrow H^{j}\left(X, W \Omega_{X}^{i}\right)$ and $d: H^{j}(X$, $\left.W \Omega_{X}^{i}\right) \rightarrow H^{j}\left(X, W \Omega_{X}^{i+1}\right)$ are zero. Hence

$$
\text { Heart } H^{j}\left(X, W \Omega_{\dot{X}}\right)^{i}=H^{j}\left(X, W \Omega_{X}^{i}\right)
$$

(cf. [5], Ch. I. Prop. 2.18), and therefore

$$
\text { Heart } H^{j}\left(X, W \Omega_{\dot{X}}\right)^{i}=\left\{\begin{array}{lll}
W & \text { if } \quad i=j \\
0 & \text { if } \quad i \neq j
\end{array}\right.
$$

This implies (a) and (b).
Case 2. $i+j=n$.
By Step 3, the differential $d: H^{j}\left(X, W \Omega_{X}^{i-1}\right) \rightarrow H^{j}\left(X, W \Omega_{X}^{i}\right)$ is zero. Hence

$$
\text { Heart } H^{j}\left(X, W \Omega_{\dot{X}}\right)^{i}=V^{-\infty} Z \subset H^{j}\left(X, W \Omega_{X}^{i}\right),
$$

and therefore Heart $H^{j}\left(X, W \Omega_{\dot{X}}\right)^{i}$ is torsion-free. This implies (c).

Case 3. $i+j=n+1$.
By Step 3, the differential $d: H^{j}\left(X, W \Omega_{X}^{i}\right) \rightarrow H^{j}\left(X, W \Omega_{X}^{i+1}\right)$ is zero. Hence

$$
\text { Heart } H^{j}\left(X, W \Omega_{\dot{X}}\right)^{i}=H^{j}\left(X, W \Omega_{\dot{x}}^{i}\right) / F^{\infty} B,
$$

and therefore

$$
\text { Heart } H^{j}\left(X, W \Omega_{\dot{X}}\right)^{i}=\left\{\begin{array}{lll}
W & \text { if } & i=j \\
0 & \text { if } \quad i \neq j
\end{array}\right.
$$

This implies (d) and (e).
Remark. By Deligne (cf. [6]), general smooth complete intersections of dimension $n$ and of multidegree ( $d_{1}, \cdots, d_{m}$ ) in a projective space are ordinary. In this case, $H^{j}\left(X, W \Omega_{X}^{i}\right)$ is a free $W$-module of rank $h^{i j}(X)=\operatorname{dim}_{k} H^{j}\left(X, \Omega_{X}^{i}\right)$ and $F$ is bijective on $H^{j}\left(X, W \Omega_{X}^{i}\right)$ for each ( $i, j$ ).

Acknowledgement. The author would like to thank the Department of Mathematics and Statistics, Queen's University, in particular, Noriko Yui for their hospitality during his stay on July and August, 1988.

## References

[1] P. Berthelot, Cohomologie cristalline des schémas de caractéristique $p>0$, Lecture Notes in Math., 407, Springer, 1974.
[2]4. P. Deligne, Cohomologie des intersections complètes, SGA7, exp. XI., Lecture Notes in Math., 340, Springer, 1973, pp. 39-61.
[3] T. Ekedahl, On the multiplicative properties of the de Rham-Witt complex, Ark. Mat., 22 (1984), 185-239.
[4] L. Illusie, Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup. (4), 12 (1979), 501-661.
[5] L. Illusie and M. Raynaud, Les suites spectrales associées au complexe de de RhamWitt, Publ. Math. IHES, 57 (1983), 73-212.
[6] L. Illusie, Ordinalité des intersections complètes générales, The Grothendieck Festschrift, vol. II, Progr. Math., Birkhäuser, 1991, pp. 375-405.

Noriyuki Suwa
Department of Mathematics
Tokyo Denki University
Kanda-nishiki-cho 2-2
Chiyodaku, Tokyo 101
Japan


[^0]:    This work was partially supported by the Natural Science and Engineering Research Council of Canada (NSERC) through N. Yui's grants No. A8566 and No. A9451.

