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0. Introduction.

In Narasimhan and Seshadri proved that every stable vector bundle
on a compact Riemann surface comes from an irreducible projective unitary
representation of the fundamental group. In other words there exists an irre-
ducible Hermitian Einstein metric on every stable vector bundle. In [2] Atiyah
and Bott observed that the moduli space of stable vector bundles is considered
as a Kidhler quotient of the space of all holomorphic structures by the gauge
group. In Donaldson gave a different proof of the theorem of Narasimhan
and Seshadri in this context. This theorem was generalized to higher dimen-
sional cases by Donaldson [7, 8] and Uhlenbeck and Yau [19].

In Hitchin extended this theory in another direction. He introduced
the notion of a Higgs bundle, which is a generalization of a holomorphic vector
bundle. He also introduced the notion of stability for Higgs bundles and
showed that there exist irreducible Hermitian Einstein metrics on stable Higgs
bundles and that stable Higgs bundles correspond to irreducible projective (not
necessary unitary) representations of the fundamental group. He also pointed
out that the moduli space of stable Higgs bundles can be viewed as a hyper-
kidhler quotient. In Simpson generalized this result to higher dimensional
cases.

It seems quite natural to generalize these results to the case when base
spaces are noncompact. In Mehta and Seshadri introduced the notion of
a parabolic vector bundle, which is a pair of a vector bundle and flags of fibers
over some points called parabolic points. They showed that every stable para-
bolic vector bundle comes from an irreducible projective unitary representations
of the fundamental group of the complement of the parabolic points. In
Biquard gave a different proof of this theorem from a gauge theoretical point
of view by choosing the appropriate Sobolev completion of the space of all
parabolic holomorphic structures.

In the case of stable parabolic Higgs bundles Simpson showed the ex-
istence of Hermitian Einstein metrics. To do this, he solved a PDE in some
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function space. However to construct the moduli space of stable parabolic
Higgs bundles, we must solve this PDE in a smaller function space.
In this paper we give the appropriate Sobolev completion of the space of
“"all parabolic Higgs structures and show the existence of Hermitian Einstein
metrics on stable parabolic Higgs bundles in this function space. Then we
construct the moduli space of stable parabolic Higgs bundles as a hyperkéhler
quotient by the gauge group.

This paper is organized as follows. In section 1 we fix our notation and
state our results. In section 2 we discussed the Sobolev completion of the space
of all parabolic Higgs structures and construct the moduli space of stable para-
bolic Higgs bundles. In section 3 we construct and study the moduli space of
irreducible Hermitian Einstein parabolic Higgs bundles. In section 4 we show
the existence of Hermitian Einstein metrics on stable parabolic Higgs bundles
so that we identify the moduli space of stable parabolic Higgs bundles and that
of irreducible Hermitian Einstein parabolic Higgs bundles.

The author would like to thank Professor Ochiai for his advice and constant
encouragement. The author is also happy to thank Dr. Nakajima and Dr.
Gocho for their valuable comments.

After completing this work, the referees informed the author that in
Nasatyr proved a construction of the parabolic Higgs bundle moduli space by
using orbifold methods. The author would like to thank the referees for it.

1. Notation and the results.

Let 3 be a compact Riemann surface with a Kdhler form w. We normalize
the volume of 33 to be 1. Let E be a smooth vector bundle on 3. We fix a
finite set of points P, ---, P, of 31, which we call parabolic points. We set
2e=2N{P, -+, P,}. Moreover at each parabolic point P; we fix a flag and an
increasing sequence of real numbers called weights:

EP,: = FIEPi ;) F2EP1: 2 e 2 FaiEPi 2 Fa,i-!-lEPi - {O})
wi® <wf < <w?,
where we assume w] —w{®<1. We define af? (1<k<r) by
ai® = wi®  if r—dim F;Ep, < kb < r—dim F;.,Ep,,

where r=rank E. We define the parabolic degree by

pardeg E = deg E+ 3} 3] af” ,

i=1 k=1

where deg E is the degree of E in the usual sense. Moreover we set
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__pardeg E
"~ rank E

We fix a Hermitian metric K on E, which is smooth and non singular on
>, but singular at P; as follows. Let U; be a neighbourhood of P;. We fix
a local coordinate z; on U,; with z;(P;)=0. Then we take a smooth frame {e*}
for E|U; such that F;Ep, is spanned by {efP(Py) | af® = wi} for 1<7<a;. Then
define K so that {e,§“/|2i|a,§i>} is a unitary frame for E|X,.

We shall write @’ for the space of smooth holomorphic structures on E.
For dz= @’ let dp, Rp denote the Hermitian connection on E with respect to
K induced by dp and its curvature, let d%, R% denote the induced connection
on ATE and its curvature. We fix dp,€ B such that

VL ARg, = pidure,

where /A is the contraction with the Kéahler form w. It is easy to see that
there always exists a holomorphic structure that satisfies the above condition.
We set

B = {0p=B'|dE=dE,}.
At each P; we define

B;= {g€End Ep,| g(F;Ep,)cF;Ep, for any j}

N; = {g€End Ep,| g(F;Ep,)cF;..Ep, for any j}.
We set
Q°(ParEnd E) = {g=Q°(End E)| gp,= B}

G¢ = {g=Q°(ParEnd E)|det g,=1 for any x=3X}.

Let End’E denote the vector bundle of trace free endomorphisms of E. Now
we can define the space of parabolic Higgs structures 9 as follows.

DEFINITION 1.1. We say D”=dz+0< 9 if the following conditions hold :

(1) dz= 3.

(2) @ is an End’ E valued dg-meromorphic (1, 0) form on 3} and dz-holo-
morphic on >3,.

(3) @ has a pole of at most 1st order with the residue in N, at each P,.

For D" 9 we call a pair (E, D”) a parabolic Higgs bundle. We define the
right action of ¢ on @ by

D" —> g 1eD"og for any g4 D"’€9.

Let (E, D”=0dz+8) be a parabolic Higgs bundle. Let V be a subbundle of E.
We say V is a sub Higgs bundle if D”Q°(V)c2*(V). This condition is equi-
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valent to that V is a dz-holomorphic subbundle and 8(V)cKQV, where K is the
canonical bundle of 3). Next we define the induced parabolic structure on V

VPi = FIVPi 2 F2VP1; 2 " 2 FbiVPi 2 Fbi+1VPi = {0})
X < xf < e <xD

Taking the greatest k such that Vp CF.Ep, then we define x{"=wi®. To
define F;Vp, and x® inductively, assume x{®=w{® and F;.\Vp,=Vp NF:Ep,
Then we define F;Vp,=Vp,NF:..Ep, and, taking the greatest [ such that F;Vp,
CF.Ep, we set x{P=w".

Now we can introduce the notion of stability for parabolic Higgs bundles.

DEFINITION 1.2. We say D”c9 is stable if for any sub Higgs bundle V
of (E, D),
pardeg V
rank V

We set 9% ={D”=9|D” is stable}. Since ¢¢ preserves 9, we can con-
struct the moduli space of stable parabolic Higgs bundles with fixed determinant
and parabolic structures as 9%¢/¢¢. In this paper we study this moduli space.

First we give the appropriate Sobolev completion of 8 and ©. To do this,
we use the weighted Sobolev norm | | op- See Section 2 for the precise defini-

< p

tion. Let 9%, ¢°% be the completions of 9 and ¢¢ with respect to the norms
[ llp» and | [|D12, respectively. Then we show the following.
1

PROPOSITION 1.3. (2.7). There exists p>1 such that the natural map

i:9/8° — 9%/}
s bijective.

Now we fix p>1 in [Proposition 1.3. So we can define 9%} naturally and

the quotient space 9%*7/¢¢%} is the moduli space of stable parabolic Higgs
bundles.

Let €7 be the Sobolev completion of BxQV%End°E). As in the usual
Higgs bundle case, there exists a hyperkdhler structure (g; I, J, K) on &%,
which is preserved under the action of the gauge group ¢2. There exist the
moment maps g, g, fs corresponding to I, J, K respectively. Then we have
Di=p5'OONp5'0)=&y. For D"}, p,(D")=R3p, where R} is a trace free
part of the curvature of the connection on E corresponding to D”. See Section
3.1 for detail. So we define Dyrl=N}-1p7*(0). Define ¥ I=9,z"ND"7 %,
where 9'77 % is the space of irreducible parabolic Higgs structures on E. So
we can construct the moduli space of irreducible Hermitian Einstein parabolic
Higgs bundles as 94y 7/6%, which is a hyperkédhler quotient of &% by ¢2 in the
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sense of [13]. Then we have the following.

PROPOSITION 1.4 (4.2). 94 Pc9*?.

1

Now we can identify the moduli space of stable parabolic Higgs bundles
with that of irreducible Hermitian Einstein parabolic Higgs bundles as follows.

THEOREM 1.5 (4.3). The natural map
I DHy {/9% —> 9*7/a%%
is bijective.

Since Hermitian Einstein metrics is not smooth at parabolic points, the
Sobolev completion is essential for the above bijection. The above theorem
implies that there exists a unique Hermitian Einstein metric on every stable
parabolic Higgs bundle. By studying 9} ?/¢%, we can show the following
theorem.

THEOREM 1.6 (3.9, 3.10, 3.11). The moduli space D*/G€ is a smooth hyper-
kdhler manifold, whose complex dimension is

2{(g—D(*— D)+ dime Ni},

If Q4 "=Dyur?, the Riemannian metric on the moduli space is complete.

2. Sobolev completion of the space of parabolic Higgs structures.

In [3] Biquard introduced the appropriate Sobolev completion of the space
of parabolic holomorphic structures. In this section we observe this completion
also gives suitable settings in the case of parabolic Higgs bundles.

2.1. Weighted Sobolev spaces. In this subsection we review weighted
Sobolev spaces. We set

U= {z=x++/—1y=pexpv/—10=C|p<1}.

Let L? denote the usual Sobolev space of functions on U with £ derivatives in
L?, For feC=U) we define

s dbdl L |pdxdyyve
— i+7-0
HfHWk?.J_{SUiEk dxt dyj ' p2 } .
We set ”f””’f:”f”W”,,,k_g,p’ that is,
ieie di dj 14 1/p
llfllwg——{gmék 7 kﬁdyff dxdy} )




258 H. Konno

Let W} be the completion of C*(U) by the norm | IIW]?. If we write this norm

in the coordinate (¢, ) on U\ {0}, where {=—log p, then this norm equivalent

to

i 4 d
dot 4’

Therefore this norm is essentially the same as the one treated in Lockhart and

McOwen [14]. Clearly we have the following lemma.

1lp =1, = f

Ui+jsk

pdodc}””.

LEMMA 2.1. Assume k>0. If fEWP then f/psWE,.
Biquard showed the following lemma.

LEMMA 2.2. Assume that for nonnegative integer I, I—1<k—2/p<l holds.
Then we have

Wi ={feLf1f0)=0, -, (V-1 /)(0)=0}

Moreover || ng and || HL};: are equivalent in WE.

By this lemma we have for 1<p<2
wi=1L?, Wi=LY, Wi=/{feLf|f(0)=0}.

We need the following lemma later.

LEMMA 2.3. Assume 0<e<l, 1<p<2/@2—c¢), 2/(14+¢). Then the following
holds.

) o, o EWE.

(2) p' does not belong to L3.

3) p*XC=U) is dense in L3.

4) p7 X C=(U) is dense in L3.

PrOOF. (1), (2) are clear. For (3) we fix g=L?. We can find he
C=(U), which is near to g in L?. Since p~*h=L?, we can find k=C=, which
is near to p~*h in L%. Then p°k is near to g in L% because the map from
L? to L? defined by

f—0°f

is continuous. By a similar argument we can show (4). m

2.2. Singular Hermitian connections. Recall that the Hermitian metric K
on E is singular at parabolic points. So the Hermitian connection correspond-
ing to a holomorphic structure on E is singular at parabolic points. In this
subsection we describe this singular Hermitian connection around parabolic points
and gives the definition the appropriate Sobolev norm.
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Fix a parabolic point P;. Recall that U; is a neighbourhood of P;, z; is a
holomorphic local coordinate on U; with z;(P;)=0 and {e{®}j-, is a smooth frame
of E|U;. From now on we omit the suffix 7 if there is no confusion. We set

]Z“al 0 a; 0
S = , a = :

0 |z|~*r 0 a,
Let 95 be a holomorphic structure on E|U. We write
op = 0+B with respect to {e;},

where B is an End (C”) valued (0, 1) form. Then we have

53—_—3—%—%—%5‘%5 with respect to { L }

|z|%*

Therefore we have

L ardz  dz _ B}
do = d+ 5 (Z— L)+ {SBS—(SBS))

= d+~v—1adf+{SBS—(SBS)*},

where we write z=pexpv/—16. We set

do=d++/—1adf with respect to { o }

|z|«®

Note that d# has a pole at the origin.

REMARK. d, is a unitary flat connection on U\{P}. Let R, be the curva-
ture of d,. Then we have

|

=
27
where 0, is Dirac’s delta function with the support at the origin.
Decompose E|U=@j., E; such that E,=span{e;|a,=w;}. Then we have
End (E|U)=E,BEy, where

—

ARO - “0150 ’

ED: _EGBEndEj, EH: @Hom(E,-, Ek)
Jj=1 J*k
For ueQ°End (E |U)) we write
U =upt+ugy

corresponding to the above decomposition. Since

dou = du+[~/—1la, u]ld@  with respect to {—e—k—} ,

|z|*k
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we have

(dow)p = d(up),

(doW)g = d(uH)“I‘[\/jIQ, ug1do .
Therefore Biquard introduced the following Sobolev norms

lullp? = llup|2+llunlw?.

where we use the Hermitian metric K on E to define this Sobolev norm. So
we have continuous maps

do: DEQ?(End (E|U)) — DE- QY End (E|U)),

where the function space DFQ°End(E|U)) is the Sobolev completion of
Q°(End (E|U)) with respect to the norm | Huf,j-

2.3. Sobolev completion of the space of parabolic Higgs structures. In
the last subsection we defined the Sobolev norms in a neighbourhood of each
parabolic point. We patch them with the usual Sobolev norms on the comple-
ment to get the Sobolev norms on 2°(End® E). Let D3Q2°End® E) denote the
Sobolev completion of Q°(End® E) with respect to the norm | | D Recall that
we have fixed 0z, € $ in Section 1. Define

BY =35, +D7Q"(End° E).
So we have the continuous map
0g: DEQYEnd* E) — D?Q%Y(End" E),

where oz $%. Biquard showed the following lemma using the theory of
Lockhart and McOwen [14].

LEMMA 2.4. If p>1 satisfies the following condition

2 . , 4
PSP S grapap et
1<p< 2 if af<af?

l+a—a®

for each parabolic point P;, then the maps
0p: D3Q°(End’ E) —> D?Q%Y(End° E) ,
0p: D?QV*(End° E) —> D?QVYEnd° E),

are Fredholm operators.
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So it is natural to define the following.

DEFINITION 2.5. We say p>1 is compatible with the parabolic structure
of E if the assumption in Lemma 2.4 holds.

We define
¢°Y = {ge DEQ%End E)|det g,=1 for any x=3}
g% = {ge6°}|g.g%=1 for any x& 3}
DY = {D"=0d3+ 0= BYXDEQ"(End° E)| 650 =0}.

By the Sobolev embedding theorem, it is easy to see that for p>1, g¢5
forms a group and that ¢°} acts on 9% from the right. We can show the
following lemma.

LEMMA 2.6. If p>1 is compatible with the parabolic structure of E, then
the following holds.

(1) B is dense in B,

(@) g€ is dense in G°%.

3) 9coi.

(4) Assume dz= B and s is a section of End* E and dzs=0 on 3.
(@) If s=D3Q°End E) then s is dg-holomorphic on > and s(P,)E B;.
(b) If s€DIQ°End E) then s is dp-holomorphic on 3, and has a pole of

at most 1st order with the residue in N; at P;.

ProoF. First we prove (1). If we write

<

sefP = X sfPes®  on Uy,
j=1

J

then we have

(%)

r a1y _©
= 3 lz| %7 % s ja(i) .
J=t 24| %5

e

|Zi|a’§i)

So by we can conclude that (1) holds. Since s(P;)eB; if and only
if siP(P))=0 for a/®><af®, (2) follows. Since s(P;)eN; if and only if s{(P)=0
for af®<ai®, (3) follows. We can prove (4) similarly. m

Since 9= P? and ¢°cG°%, we can define the map
i1 9/6¢ —> D2/G°Y .
Now we state main result of this section.

PropPOSITION 2.7. If p>1 is compatible with the parabolic structure of E,
the map 7 is bijective.



262 H. Koxno

PrOOF. First we show the injectivity of the map 7. We set
D} =op+0:. €9 (=1, 2)
D} =g teDleg for some g=g°?%.
Then we have 8p=g 'ds,°g. By (4) g is smooth on whole 3.
So g=g°.
To prove the surjectivity of the map 7, we fix D"=dz+0=9%. [Le a 2.4

and 2.6 says that
0g: DYQ°(End® E) —> D2Q*Y(End° E)

is Fredholm and that @ is dense in 8%. So by the argument of Atiyah and
Bott (Lemma 14.8) we conclude that there exists g ¢¢%} such that g 'edgzeg
€3. By 4) we have g'-D"-ge9. ®

By this proposition we can define 97 naturally. The quotient space
D°%/¢€% is the moduli space of stable parabolic Higgs bundles. From now on
we always assume that p>1 is compatible with the parabolic structure of E.

3. Irreducible Hermitian Einstein parabolic Higgs bundles.

We set €2=32xD?Q"°(End°E). In this section we construct and study
the moduli space of irreducible Hermitian Einstein parabolic Higgs bundles as
a hyperkihler quotient of &%.

3.1. Construction of the moduli space. In this subsection we construct
the moduli space of irreducible Hermitian Einstein parabolic Higgs bundles. The
tangent space of &% at any (dp, #)=&?% is naturally isomorphic to

g2 = DYR*Y(End® E)X D?Q"*End° E).

We define a Riemannian metric g on &% by

£ 9, (0, §) = — 1) TriE—E9A V=Tl +7%)

T s Tr{@—¢% AV +g0),

4r?

for (¢, ¢), (n, $)=FY. This is well defined thanks to the Sobolev embedding
theorem. Moreover we define three complex structures I, J, K: $2—F% on
&Y by

IE, ¢) = (V—1& V=1¢), J(E ¢) = (V=1¢*, —/—1%),
K (& ¢) = (—g¢*, &%).
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It is easy to see that g is a Kidhler metric for I, J, K respectively and that
I, J, K satisfy the relation [J=—JI=K. Therefore (g; I, J, K) is a hyper-
kdhler structure on &% by definition. We define the Kéahler form w, on &% by

0§ @), (1, §) = g&, ¢), (1, P)),

for (¢, @), (y, )= F%. Similarly we define the Kéhler forms w,, w; correspond-
ing to J, K respectively. The natural right action of 6% on &% is given by

(aB’ 0) _ (g_loaBog, g‘lqﬁog) ’

for g=g?%, (05, 0)=&%. This action preserves the hyperkihler structure. We
write End?,E for the vector bundle of trace free skew endomorphisms of E.
Then there exists the moment map

i €2 —> DEQ*EndS,E)

for each action of ¢%2 on (€%, w;). Since the Lie algebra of ¢% is DYQ°End},E),
we consider D)Q%*End?, E) as a subspace of the dual space of the Lie algebra
of g2 by the natural pairing

(@, & = — ] Tr(a8),

for ac DYQ°(Endl,E), E&D5Q%End},E). This is well defined thanks to the
Sobolev embedding theorem. We can write down the moment maps explicitly.

t:@p, 0) = R5+16, 0%],  {po+~/—1ps} @5, 0) = —2350,
where Rj is the trace free part of Rz. Therefore we conclude
D} = 1" O)Np510).
For D”=03+0<=97c&X, we set
D’ = 0p+0%, D=D"+D’, Rp=D*= Rp+[0, 6*].
DEFINITION 3.1. We say D’ 92c¢&? is Hermitian Einstein if
5=0.

We set
Duei = {D”€9?|D” is Hermitian Einstein}.
So we have
Drel = Ni= x3'0).

DEFINITION 3.2. We say D”"e9% is reducible if there exist sub Higgs
bundles V, Wc(E, D”) such that E=V@W. We say irreducible otherwise.
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We set

DY = {D"=@?|D” is irreducible},
and

irrP __ Y4 i Y4
DHE 1 = Due 1ND"7 1.

Thus we can construct the moduli space of irreducible Hermitian Einstein para-
bolic Higgs bundles as 947 7/6?. This is a hyperkidhler quotient of &2 by g2
in the sense of [13].

3.2. Vanishing theorems. In principle Higgs bundles share many properties
with vector bundles. One of them is the following Kéihler identity.

LEMMA 3.3. For D" 9% we have
(1) D =—+/=I[4, D']

(2) D'* = +/—1[4, D"]

(8) D* = D7*1D’*,

Now we introduce the Laplacian for Hermitian Higgs bundles as follows.
A” = D"D"*4+-D"*D”, A = D'D'*+D'*D’', A= DD*+D*D.
Then we have

LEMMA 3.4.
1 A=A"+4A
2) A—A" = +/—1[A4, Rp].

We need the following vanishing theorem for irreducible Hermitian Einstein
parabolic Higgs bundles.

PROPOSITION 3.5. If D" Dd %, then the map

D7 : DYQ%End°E) —> DY Q' (End°E)
has a trivial kernel.

ProOOF. If D”s=0, and s€D5Q%End°E), then

0= S2<[«/:IARD, 5], Sw= SE<(A’—A”)s, S

=S D', o =|_|D'sl .
= =
Therefore D’s=0. So we have
dgs =10, s =s0, 0*s = sf*,

where D7=dp+6. If we set t=s-+s* then dzt=0, 0t=tf. So we conclude
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that the eigenvalue of ¢ is constant on >}, We assume ¢ is non trivial. Let
Ay, -+, A; be the eigenvalues of . Since Tr¢=0, we have [=2. Let E,(m=1,

, 1) be the vector bundle on 3J,, which consist of the eigenspace of ¢ with
the eigenvalue 4,. Then we have

(E, D) =(E,, D"|E)D --- B(E,, D"|E)  on 2.

We have to show that this splitting extends to whole >J. Let =z, be the
orthogonal projection of £ to E,. Then we have

ogtmn =0 on X,.
If we represent

eéi) (11)
2 a.;lle)] l a0
’L

then aff is bounded on U;, because =, is an orthogonal projection. We note
afP—af®>—1 and rewrite

7rm On Ui »

zg%6”

(1) (1)
mnef? = 312 477 afPef,

then we conclude that 7, is dz-holomorphic on whole 3.
If we note at P;

1 1 1
rank E = rank ( Z_‘,lnm) < Z_‘,lrank Tm < 21 rank E,, = rank E ,

we have at P;
rankn, =rank E,, Ep,=Imm,D - Plmm, .
If we set Epo=Im=,, then we have

(E, D")=(E,, D"|E)D - D(E,, D"|E))  on 2.

Since D”=9'""%, this is a contradiction. Therefore t=s+s*=0. By the same
argument s—s*=0. So we have s=0. ®

Next we show the following Hodge decomposition theorem for parabolic
Higgs bundles.

PROPOSITION 3.6.
Q) If D"=9%, we have

DYQYEnd°E) = D"(DiQ)GD' (DI )DH" ,

where H'={a= D2 End°E)|D”a=0, D’a=0}.
(2) Let KerD”, Ker D’ be the kernel of the map

D”, D’ : D}QYEnd°E) —> D Q2*End°E).
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Then we have
Ker D” = D"(D}QOYDH!,

Ker D’ = D'(DQ2°)PH" .

Proor. By D7(D3Q2° and D’(D3R° is closed in DYQ'(End°E).
So we can prove (1), (2) by the standard argument. =

We note that there is a following real structure of End°E.
End’E = End},E®~—1End},E .
Then we have the following proposition.
PROPOSITION 3.7. If D"€ Qi %, then the map
A: DFQ°End°E) —> D5Q°(End°E)

is an isomorphism, which preserves the real structure.

ProOF. Thanks to [Proposition 3.5 we have only to show that the map

A: DYQEnd°E) —> DYQ°(End°E)

is a Fredholm operator with index zero. However we can prove this by the
similar argument in the proof of Proposition 2.13 in [3]. =

3.3. Properties of the moduli space. In subsection 3.1 we have constructed
the moduli space of irreducible Hermitian Einstein parabolic Higgs bundles

DT Y/6% by a hyperkidhler quotient method. In this subsection we study this

moduli space.
First we introduce a manifold structure on the moduli space. We fix D”"=

o+ 0c iy . We define an elliptic complex which describes deformations of
a Hermitian Einstein parabolic Higgs bundle. We define

C* = D}Q2°(End},E), = DIRY(End°E).

Note that C° is the Lie algebra of ¢% and that C' is the tangent space of &%
at D”. Define 4°: C°—C! by

d’X =D"X for X=C°.
Note that d° is the differential of the map ¢5—9? defined by
g > gD g for g=g?%.

Define C?= D{Q*End},E) P DIQ*(End°E). For &< DVQ"YEnd°E), ¢ =
D2 °(End°E),
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(08+8)+(0+49) = Dur?
if and only if
d'¢+@)+QE+9¢) =0,

where d*, Q: C'—C? are defined by
d'é+¢) = (D'E+d)—{D'E+)t*, D"(E+9)
QE+@) = (—[¢ & 1+[9, ¢*1, [€ ¢1).

So we have defined the fundamental elliptic complex

d’ d'
0 C’ Cct C? 0.

The next lemma admits us to calculate the cohomology groups associated to
this complex.

LEMMA 3.8.

(1) Kerd°=0.

2) C'=Imd*GH'SV—1Im °PIm D’ as a vector space over R.
3) Kerd'=Imd"©H".

@) If we set W=+/—11m d°@Blm D’, then

dHW . W — C?
is an isomorphism.

PrOOF. By [Proposition 3.5 we have (1). By [Proposition 3.5 and 3.6 we
have (2). To prove (3) and (4) we write d'(§+¢)=(d1(E+¢). di§+¢)). First
by [Proposition 3.7 we have

Kerd: =Imd*©OH'PIm D’ .

Moreover we conclude that the map

div/—=1Imd°: v/—1Im d° —> D2R*End?,E)

is an isomorphism. Again by [Proposition 3.7 we have

Kerd!: =Im"EH'®vV—1Imd°.
Moreover we conclude that the map
d}ImD’: Im D’ — D} Q%End°E)
is an isomorphism. So we have (3), 4). =
Now we define Kuranishi map F: C*—C! by
F+¢) = (E+@)+(d W) Q¢+ .
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Since @ is quadratic with respect to &, @, there exists a neighbourhood of 0 in
C! such that

FIlU:U— F(U)

is a diffeomorphism. If we set

V= {§+dcH'DvV—1Imd°PIlm D’ |d'(+¢)+Q(E+¢)=0},
then
FlVvnU :VvNnU — H'N\U

is_a_diffeomorphism. By the same argument in we can show VU is a
slice of the action of 6% on 9} P if we choose U small enough. So we have
the following theorem.

THEOREM 3.9. 947 7/G% is a smooth hyperkdhler manifold.

PROOF. By the above argument we have introduced a smooth manifold
structure on DiF /g3, Since Dyri=Nil-; p7’(0) as we saw in Section 3.1,
this manifold has a natural hyperkdhler structure by the same argument in the
proof of Theorem 6.7 in [11]. m

Now we can show the following theorem by the same argument in the
proof of Theorem 6.1 in [11].

THEOREM 3.10. If 9¥d 3 =Dur?, the natural Riemannian metric on the
moduli space is complete.

Now we can calculate the dimension of 97 P/g%.

THEOREM 3.11. If 9§ P+ @, then the complex dimension of Dy T/G% is
2{(g— D"+ 3 dime Ni},

where g is the genus of 2.

PROOF. Suppose D”=dz+0< Dy Y. By the above argument we saw that
the tangent space of 947 7/6¢%2 at [D”] is isomorphic to H*. So we have only
to calculate the dimension of H*'. If we define the map

S : D?QY(End°E) — DIQ*End°E)BD?Q2*(End°E)
by
S(a) = (D”a, D'a),

then S is a Fredholm operator. We write ind (S) for the Fredholm index of S.
By [Proposition 3.7 we have
dime H' = ind (S).
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Since the Fredholm index is invariant under the deformation by compact opera-
tors, we have
ind S = ind{6z: DI R"*End°E) —> D3Q*End°E)}
+ind {05 : DYQ>Y(End°E) — D3Q* End°E)}
= 2ind{0p: D1Q*(End°E) —> DiQ*End°E)}.

So by [Proposition 3.7 we have

ind S = —2ind{dz: D;2°End°E) — DYQ*(End°E)}.
By Lemma 2.4 and 2.6 we have
ind{dz: D} Q°(End’E) — D?Q%*(End°E)}
= ind {0z : L°(ParEnd’E) — 2°Y(End°E)}.

By the standard argument we see that the Dolbeault cohomology group of

5
0 —> Q°(ParEnd’E) —> Q% YEnd°E) —> 0

is isomorphic to the sheaf cohomology group of ©(ParEnd°E), which is a sheaf
of dz-holomorphic sections of End°FE preserving the flag at each parabolic point
P;. By considering the exact sequence

0 — o(ParEnd’E) — O(End°E) — ©(End°E)/0(ParEnd’E) — 0,

we have the theorem. =

4. Identification of the two moduli spaces.

In Section 2 we have constructed the moduli space of stable parabolic Higgs
bundles as 9°t%/6¢%. In the last section we have constructed the moduli space
of irreducible Hermitian Einstein parabolic Higgs bundles as 947 7/¢2. In this
section we identify these two moduli spaces. As stated at the end of Section
2, we assume that p>1 is compatible with the parabolic structure of E.

4.1. Hermitian Einstein metrics. First we review the Chern-Weil formula
for parabolic Higgs bundles. (See Lemma 3.2, Lemma 10.5.)

LEMMA 4.1. Assume that D"=9% and V<(E, D”) is a sub Higgs bundle.
Let m: E| 20—V |2, be an orthogonal projection. Then the following holds.
—_ \/:—IS —_ 1 S ” 2
pardegV = 5 zTr(nRD) O ZID )%,
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By this lemma we can show the following.

PROPOSITION 4.2. D 2c9*?.

PROOF. We fix D"=3z+0< 9451, Let V< (E, D”) be a sub Higgs bundle
with 0<rank V<r. By we have

pardeg V - pardeg E
rank V. = rankE

We have to show that the equality does not occur. Assume the equality holds.
Then we have D’7=0 on 3, by Lemma 4.1. Since z=z*, we have dzr=0,
Or=n6. By the same argument in the proof of [Proposition 3.5, we can show
that there exists a sub Higgs bundle Wc(E, D”) such that E=V@W on 2,
and W=V+* on 3),. Since D”’c9' "% this is a contradiction. Therefore we
have

pardeg V
rank V

<p. N
So we can define the map
J:DHg 1/ —> 9%5/4°% .
Now we state main result of this section.

THEOREM 4.3. 7 is bijective.

To prove this theorem, we reformulate [Theorem 4.3, We have fixed the
Hermitian metric K on E and varied Higgs structures on E£. But from now on
we fix a Higgs structure D”=d+60< 9% and vary Hermitian metrics on E. So
we have to write explicitly which Hermitian metric we use. For example

Dy = 0x+6*%, Dg =D"4+D%, Rx =D%.

We define the space of Hermitian metrics compatible with the parabolic struc-
ture on E as follows.

S(K)? = {s&D}Q°(End°E) | s*X =5},
MET?S = {H=Ke*|s€S(K)%}.
For H=KheMET?, a Hermitian metric is defined by
v, wyg =<hv, wig for v, weE, for some x=3,.

Then we have the following lemma.

LeEMMA 4.4. For H=KheMET?E,
(1) Dy =h"1Dxgoh,
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(2) Ry =Rx+D"(h'Dih).

On the other hand, if we fix a Hermitian metric K on E, the corresponding
connection to g 'eD”-g for g g} is

g '+ (D"+h'Digoh)-g,

where h=(gg*X)~!. Therefore if there is a Hermitian metric H=Ke*c MET}
such that R% =0, then g=e~*2c¢° and g '-D”-gcDyr?. So the following
theorem is equivalent to [Theorem 4.3

THEOREM 4.5. Assume p>1 is compatible with the parabolic structure of
E. Fix D" 9. Then there exists a uniqgue Hermitian metric H=Ke*c MET?
such that R =0.

4.2. The Donaldson functional. In this subsection we define the Donaldson
functional (See [7, 8]) in the formulation of Simpson [17].

For a smooth function f: R—R, we define f:SH)—-S(K) as follows. Let
s€S(K). For any x=3 there exists an orthonormal basis {¢;} for E. such
that se;=4,e; for all ;. Then we set f(s)e;=f(4,)e;.

For a smooth function F: RX R—R, we define F:S(K)—>Skg(EndE), where
Sxk(End E)={T<End (End E) | T*X=T}. For A€EndE,, we write Ae,=2>);a;:e;.
Then we define

{F(s)Ale, = ‘Jj FQAw, Aj)ajre; .

Simpson showed how these constructions behave on L} spaces as follows.

LEMMA 4.6. Let S(K)E ,={s€D!Q%End E)|s*¥ =s, sup|s|g<b}. Let f:SK)
—S(K) and F: S(K)—Sk(End E) as above. Then we have the following.
(1) The map F extends to a map

F: S(K)?., —> Hom (D?Q%End E), DiQ°(End E))

for q<p. For qg<p the map is continuous in the operator norm topology.
(2) The map f extends to a map

[ SERy —> SE)»

for g<p. For q<p the map is continuous.
(3) Define df : RXR—R by

_ W)
x—y

df(x, x) = f'(x).
Then for seSK)?, and D"<= 9?3,

af(x, y) if x#y,
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D7 f(s) = df(s)(D"s).
We define ¥ : RxR—R-, by

eV F—(y—x)—1
(y—=x)*

Now we can define the Donaldson functional.

Vix, y)=

DEFINITION 4.7. The Donaldson functional M: METY?xMET?—R is de-
fined by

M(K, Ke*) = 2\/—‘1S2Tr(sRK>+2SE<w<s)<D”s>, D’syx.
Following properties of this functional are proved by Donaldson [7, 8] for
vector bundles and by Simpson [17] for Higgs bundles.

LEMMA 4.8. Suppose K, H JeMETS. Then
1 MK, H)y-+MH, )=MK, ]).

(2) d/dtM(K, He') :2\/‘——-1S2Tr(sRHets) for t=0 and s=S(H)3.

(®) dY/deME, He)limo=2{ 1D"s].

4.3. Proof of To prove we have to solve the
variational problem with respect to the Donaldson functional. In Simpson
solve this problem in a certain function space. However, to construct the
moduli space of stable parabolic Higgs bundles, we have to solve this variational
problem in MET?Y, which is different from Simpson’s function space.

For positive number B>0, we set

MET3(B) = {HEMET:| ARyl 17, n<B},

where || ||z»,x is the norm with respect to H.

The following lemma is due to Simpson (Proposition 5.3, Corollary 10.7
and 10.8).

LEMMA 4.9. Fix D’e9* and B>0. Then there are constants C, C,>0
such that

sup|s|x < C,M(K, Ke®)+C,  for any Ke*cMET%Y(B).
COROLLARY 4.10. {M(K, Ke*)|Ke*=METZ3(B)} is bounded from below.

The next lemma shows this variational problem is solvable in MET?(B).

LEMMA 4.11. There exists Ho=Ke*>c MET%(B) such that
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M(K, Ke*=) = inf {M (K, Ke*)|Ke*= MET%(B)}.

PrOOF. Let {H,=Ke* =Kh,}c MET?(B) be a minimizing sequence of
MK, ) in MET%(B). By we have the following estimate.

1) sup|s:|x < Cy,

where C, is independent of 7.
Recall that the Donaldson functional is the following

M(K, Ke%) = 2x/:TLTr(siRK)—{—ZSz(W(s,-)(D"si), D"sp>k .
So we have

Sz<w(si)(D,’si), D’sdpr < Cs,

where C; is independent of ;. Therefore |D”s;||z:<Cs. So we have the fol-
lowing estimate.

@ Isill ;2 < Cs.
On the other hand by Lemma 4.4 we have

Ry, = Rx+D"(hi'Dxhy).
Since H,=e MET%(B), we have

@ [D7(h7'Dxhdler < Cs.

Recall

@ D”(h3'Dihy) = dp(hi'dxhe)+10, 7' [0*F, hi1],
where D”=dz+6. By (1) we have

®) IC8, h7*[6*F, hillllr < Ce.

By (3), 4) and (6) we have

©) lds(hi'dxhle < Co.

By (2), (6) we have

@) Ih7'dxhillp < Cs.

We set a;=h7'%9gh;. So we have
(8) 8Kh¢ == hia,; .

By (7) we have HaiHL{:ng. By (1) we can show ||h;a:|.22<C,. By (8) we
have Ilhi[[,,zfgcm. Then we have IlhiaillL{)_S_Cu. Again by (8 we have
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Hhi”Lé’ <Cy-

By taking a subsequence, if necessary, we may assume that {s;} converges to
S weakly in D3Q°End°E) and strongly in D?2?Q2°(End°E). Then by
we have

lim M (K, Ke®t) = M (K, Ke*).

1—00

So we have completed the proof of [Lemma 4.11. m

Next we have to show that H.=Ke*> is a Hermitian Einstein metric. To
do this we need the following lemma.

LEMMA 4.12. Assume H=MET? and s=S(H)2. Then
(1) If D”s=0, then s=0.
(2) If Dys=0, then s=0.

Proor. First we prove (1). Since D”s=0 and s*?=s, we have Dys=0.
By the same argument in the proof of [Proposition 3.5, we have s=0. The
proof of (2) is the same. m

Now we come to the final stage of the proof of [Theorem 4.5.
LEMMA 4.13. H.=MET? is a Hermitian Einstein metric, that is, R _=0.

ProOOF. First we claim that there exists s=S(H.)3% such that

D"Dyps = —Rk.,.

In fact, since by [Proposition 3.7| the map

v/ =1AD"Dy..: S(Ho)Z —> S(Hx)%

is a Fredholm operator with index zero, by we conclude that this
map is surjective. So the existence of s is clear. :
Since

d
7 IAR b ets 122, Boet® im0 = — DI ARHNIEP, oo
we have H.e*=MET?Y(B) for small t=0. By we have
d S B .
9 MK, Hoe')| oo = 24/=I\ Tr(sRu)) = —25 1D”sll%. .
dt = =

Since H. attains the minimum of M (X, )-on MET3%(B), we have D”s=0. By
Lemma 4.12 we have s=0. Therefore

Ryi.=—D"Dy . s=0. m
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We have to show the uniqueness of Hermitian Einstein metric. If we use
(3), the proof is easy. So we omit the proof. Thus we have com-
pleted the proof of [Theorem 4.5
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