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§1. Introduction.

In the present paper we consider singular solutions of second order linear
partial differential equations of Fuchsian type. Let (¢, 2)=(t, 2z, z,, -, 2,) be
the coordinate of C'XC"=C"*! and (t, §)=(r, &,, &, -, &,) be the variable dual
to (¢, 2). |z| means max;|z|, 6,—~0/dt, 0,,~0/0z; and 0,=(0,,, 0,,, -, 0,,). For
an open set W in C¥, T*(W) is the cotangent space of W and W means the
universal covering space of W. oW) (©(@)) is the set of all holomorphic func-
tions on W (resp. W). o(W) contains multi-valued functions on W. N is the
set of all positive integers and Z. is the set of all nonnegative integers, that
is, N={1,2,3, -~-} and Z,={0, 1, 2, ---}. Let L., z, 0;, 0,) (=1, 2) be linear
partial differential operators with order 7 in the form
1 L., z, 0;, 0,) = 0%+ A(t, z, 0,)0,+B(t, z, d,),

D { Li(t, z, 8, 8,) = a,(t, 2)0,+ 2 ait, 2)0,,+d(, 2).

The coefficients of L;(, z, 0;, 0,) are holomorphic in a polydisk £ whose center
is the origin in C***,

Now let K, be a characteristic surface of L,(, z, d;, 0,). We study the
equations

12 { L, z, 0., 0)ult, z2) = f(t, 2),
L(t, z, 0;, 0,) = t*L,(, z, 0., 0,)+tL,({, z, 0., 0,)+c(t, z),
where ¢(t, z)€0(2) and f(f, z) is holomorphic except on K,. We also study
L@, z, 0i, 0 )ult, z) = f(t, 2),
(1.3) u(0, 2) = u,(2),
L, z, 0,, 0,) =tL.(, z, 0, 0,)+ L., 2, 0., 0.),

where f(f, z) is holomorphic except on K, and u,(z) is holomorphic except on
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K.N{t=0}. Each L@, z, 0,, 0,) in or is an operator of Fuchsian type
with respect to {t=0} in the sense of Baouendi-Goulaouic [1]. The aim of
this paper is to obtain an integral representation of u(f, z) and the analysis of
the singularities of it.

It is well known that the singularities of solutions of linear partial dif-
ferential equations have relations to the characteristic set of operators. So we
give the assumption on the characteristic set of L,(t, z, d;, 0,).

AssuMPTION 1.1. The principal symbol (P.S.L,)(t, z,7,&) of L.t z,0;,0,)
is decomposed as follows:

(1.4) (PS.L) ¢, 2,7, 8 = (—H(, 2, ) c—H:(, 2, §)),

where H;(t, z, £ (¢ =1, 2) are holomorphic in a neighbourhood of (¢, z, &=
©,0,8),8=@,0,-,0), and H,0, 0, §=H,0, 0, §).

Let ¢;(t, z) be a solution of

(1.5) 0:04(t, 2) = Hi(t, 2, 0.01), ¢i0,2)=2z  (=1,2).
Let @@, z, { ((t, z, )cC*'XC™*XC*) be the multi-phase function defined by
(1'6) at¢(t7 z, C) - Hl(ty Z, azd)): ®<t’ 2, c)[t=c - gDZ(C: Z) .

D, z, {) exists uniquely in a neighbourhood of (¢, z, {)=(0, 0, 0). Put K;,=
{pit, 2)=0} (=1, 2). We have KN\ {t=0}={z,=0} for i=1, 2.
The characteristic set of L{t, z, 9, 9,) in or is

(L.7) {t=0Ufr=H(@ 2z Ot U{r = H(, z, O}

in a neighbourhood of (0, 0, £) in T*(Q) and by Assumption 1.1 {r=H\(, z, &)}
N{t=H,{, z, §)} =@. The relation between {{=0} and {r=H;(, z, &)} is nonin-
volutive, that is, the Poisson blacket

(1.8) {t, r—Hit,z, &)} =0 on {t=0N{r = H;t, z, &)} (i=1,2),

where {F, G}=0.F0,G—0,F0.G+3}-,(0:,F0,,G—0,,F0:,G). The characteristic
surfaces of L,(t, z, 0;, 0,) through z,=0 at t=0 are K,={p;{t, 2)=0} (=1, 2).
K,={t=0} is also a characteristic surface of the Fuchsian operator L(t, z, 0;, 0,)
in (or [1.3). So it is expected that the singularities of solutions of
(resp. lie on K, UK,\UK,, because K, and K, are simple characteristic
surfaces of L,(, z, 0., 0,) and K, is noninvolutive with respect to K, and K,.

Now we give a class of functions to which solutions belong. Put a=2N
{t=0} and w,=(Q—-K)N{t=0}={z€w; z,50}.

DEFINITION 1.1. We say that u(f, 2)€0,,, if there is a neighbourhood £,
of w, such that u(t, 2)=0(2,), where 2, depends on u(t, z).



Singularities of solutions of equations 217

We note that u(f, 2)€0;,, if and only if it has the expansion
(1.9 ut, 2) = 52 ua ()t

where u,(z2)€0(3,), and converges if |t]| <r(|z]).
Now let us return to [1.2). Put

(1.10) ¢(L; p, 2) = plp—1)+a,0, 2)p+c, 2),

which is called the indicial polynomial of L (¢ z, 0;, 0,). Suppose f(t, z) =
O(?J-:_Ifl). According to Baouendi-Goulaouic [1], if

111 «(L; p, 0) = p(p—1)+a,0, Op+c(0, 0)x0  for peZ.,

then there is a unique solution u(t, z2)€0;, of the equation for an w, whose
Taylor expansion [1.9) converges on 9% Q%¥={|t|<r, |z|<r, k|t|<|z|} for
some positive constants » and k. The expansion is not valid in a full
neighbourhood of the origin, because the singularities of u(t, 2z) lie in {k|t| =|z,|}.

In order to give an integral representation of u(f, z) we introduce several
spaces of functions. Let (t, z, {, $)eC'XC*xXC'XC*=C™**, Put

U=Ur=1{t 2 0eC"; |t <r, lz| <r, || <r},
X, =UN{Zl > cltlh (e =),

(112) (X=U—ft=0u{l=0u{l=1,

Yo =Xox (s C; 0< |5 <7},

Y = Xx{sEC; 0< 5] <.

We define spaces Oo()? )CO()?) and O.{f)c@(l’).

DEFINITION 1.3. (1) O(,()?) is the class of all holomorphic functions
W, z, {) on X, such that it can be holomorphically extensible onto X.

(2) OY) is the class of all holomorphic functions U(t, z, £, s) on ¥, such
that it can be holomorphically extensible onto Y.

It follows from the definition that 00()?) is the class of all holomorphic
functions W(t, z, {) on X such that there is a branch of W(t, z, £ which is
holomorphic on X,=UN{|&|>|t|}, that is, we can take ¢=1 in [Definition 1.3
But when we show in the following sections that a function W(z, z, {) belongs
to Oo()?), we show firstly W(, z, {)=06(X,) for some ¢ and next that it is ex-
tensible to X. From the definition W(t, z, {) has the Taylor’s expansion on X,,

(1.13) W, z, =2 wilz, OtF,

where w,(z, {) (£=0) are holomorphic on {(z, )=C"*!; |z|<r, 0<|{|<r} and
the series converges if |t]|<C|{|/c. The similar properties hold for func-
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tions in 00()7).
We have a representation of solutions of [1.2).

THEOREM 1.4. Suppose that (1.11) is satisfied and f(t, 2)eO(Q—K,) in (1.2).
Let u(t, 2)€04, be a solution of (1.2). Then u(t, z) is represented in the form

(1.14) u(t, z)= SFU*(L‘, z, L, O, z, 0)dL+ a holomorphic function at the origin,

in 3}, where Qi={{t, 2); |t|<r, |z|<r, k|t|<|z:|} for a small >0 and some
E>0, U, z, &, s)€0,Y) and the integration path I' in C-space is closed and
surrounding once {=0 in X,={|{|>|t|} and {{; @, z, {)=0} is outside of I"
(see Fig. 1.1).

Since U*(t, z, , s)e@o(?), we can deform [ homotopically in X and remove
the condition that {; @, z, O=0} is in {|C|>]|t]} (see Fig. 1.2).

'@(t, zZ, C):O A C___..t
f‘h}’ /%
0 |¢] 0
J))/ D¢, z, =0

Fig. 1.1. Fig. 1.2.

r

The singularities of U*(t, z, {, s) are on {{=0}U{{=0}U{t={U{s=0}.
Hence we have

THEOREM 1.5. Suppose that (1.11) is satisfied and f(t, 2)eO(@—K,) in (1.2).
Let u(t, 2)€0;, be a solution of (1.2). Then u(t, z) has the holomorphic prolonga-

/’\/
tion to (Q'—K\JK,\ UK, in a small neighbourhood 2’ of the origin.

Next we consider when (1.11) does not hold : there is an n,=Z. such
that

(1.15) no(ne—14ay0, 0)n,+c(0, 0) =0.

Put S={z€w; n(n,—1)+ay0, 2)n,+c0, 2)=0}, 0=2N{t=0}. We have
THEOREM 1.6. Suppose that (1.15) holds for an n.=Z., and

(1.16) plp—14a 0, 0)pu+c0, 0) %0 for p= Z.—{n,}.

Further assume S={z€w; z,=0} and f(t, 2)€0(Q). Let ult, 2)=0as, be a soiu-
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/‘\/
tion of (1.2). Then u(®, z) has the holomorphic prolongation to ' —K, UK\ UK,
in a small neighbourhood £’ of the origin.

Now we proceed to study the equation [1.3). We have
THEOREM 1.7. Suppose that

(1.17) p—1+a40,0)x0 for pEN,

@, Z)EO(Q/:K:) and uy(2)€0(@,) in (1.3). Let u(t, 2)€0s, be a solution of
/—\/

(1.3). Then u(t, z) has the holomorphic prolongation to ' —K,\JK,JK, in a

small neighbourhood Q' of the origin.

We also consider, when does not hold: there is an n,=N such that
(1.18) n,—14+a,0, 0) =0.
Put S={zew; n,—1+a,0, z)=0}.

THEOREM 1.8. Suppose (1.18) holds for an n,=N and S={zcw; z,=0}.
Let f(t, 2)€0(2) and uy(z)€O0Ww). Let u(t, 2)€0;, be a solution of (1.3). Then

N
u(t, z) has the holomorphic prolongation to 2'—K\JK,\ UK, in a small neigh-
bourhood 2’ of the origin.

REMARK 1.9. In all the cases (Theorems [.4-1.8) the existence of a solution
u(t, z)€0;, and the uniqueness in O;, follow from Baouendi-Goulaouic [1]. In
Theorems [[.6 and [.§ the assumption on S means that S is an (n—1)-dimensional
complex manifold.

Theorem 1.4 is fundamental in this paper from which [Theorem 1.5 follows.
Other theorems follow from [Theorem 1.5

Finally we state results about Fuchsian equations in complex domains and
integral representations of singular solutions of partial differential equations in
complex domains. The existence and uniqueness of holomorphic solutions at
the origin for Fuchsian equations were firstly treated in Hasegawa [5] and
generally in Baouendi-Goulaouic [1]. Solutions which admit singularities at
{t=0} were studied in Tahara [8]. As for the investigations which are much
relevant to this paper, Urabe [9] and Fujiie are cited. In Urabe the
Cauchy problem with a singular initial data u,(z) is considered for a special
class of Fuchsian operators in C? with the principal part t0?—02, which is
reduced to by changing ¢t=s?. He used the hypergeometric functions to
study singularities of solutions. In Fujiie the statements of [Theorem 1.8
was obtained for a special class of Fuchsian equations in C?. As for integral
representations of solutions with singularities on a characteristic surface, we
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refer to Ouchi [6] and [7], where behaviours of solutions near the characteristic
surface were also considered, but Fuchsian operators were not treated.

In the following sections we often write only the noteworthy variables in
the notations of functions, operators or sets, omitting other variables for sim-
plicity. Many constants will appear. So we denote by A, B, --- various con-
stants. Constants R, R’, r, ---, which define neighbourhoods of the origin, are
chosen so small, if necessary. The author thanks the referee who read the
manuscript carefully and gave him useful advices.

§2. New operator .L(t, z, , 0, 0,, 07).

In order to show [Theorem 1.4, we define in §2 a new operator .L(t, z, {,
0, 0., 0r) which is derived from the operator L(¢, z, 0, 0,)=t*L,(t, z, 0, 0,)+
tL,@, z, 0, 0,)+c(t, z) in (1.2, and give equations (2.12) and below. In
the following we construct U*(t, z, {, s) in the integral representation (1.14) by
using a solution W(t, z, {, A) of the equation (2.12).

Now let us define an operator .£(, z, {, 0;, 0,, 0;) after some simple cal-
culations. In the following d(¢, z, {) means various holomorphic functions which
are not important and z, means ¢.

Put

2.1 H¢, z, {) = H\(, z, 0,00, z, {)—H.(, z, 0,9, z, ©)).
For the multi-phase function @, z, {) we have

LemMmA 2.1. (1) K,={@{, z, 00=0} and K,= {@@, z, t)=0} in a neigh-
bourhood of (¢, 2)=(0, 0).

(2) There are holomorphic functions X, z, {) and %, z,{) in a neigh-
bourhood of (&, z, )=(0, 0, 0) such that

2.2 { H(@t, z,{) = —0:0@, 2z, DX, 2, ),
' 1, 2, §) = 1+C—DX(t, 2, 0).
Proor. The assertion (1) is obvious. We show (2). Since @@, z, {) =

0sL, A+ Hi(s, 2, 0,005, 2, O)ds, we have

0.0, 2, §) = 8upa(C, 2)—Hi(C, 2, 0.9, 2, O)+O0(1t—L))
= H,(, z, 0.0:(C, 2)—H\(C, 2, 8.0, 2z, O)+0(|t—L))
=—H( 2z, O+0(1=L)) = —H({, z, O+ 0(1—C]).

By Assumption 1.1, H(0, 0, 0)>0. Hence there are X(t, z, {) and X,(t, z, {) with
X(t, z, O=1+({—DX(, z, §) such that H(, z, )=—0:0(, z, O, z, 0.
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In the following ((2.3)-(2.11)) W(, z, £, A) is a holomorphic function on X,
with a parameter A.

LEMMA 2.2. The following identity holds:
2.3 L(t, z, 0, 0,) (exp(AD(t, z, D)W, 2, &, A)
=exp(AD(t, z, O){(AL.(, 2, L, 0¢, 0.)+L(t, z, 0, 0.)W(, 2, L, D},
where
(2.4) L., z, &, 0., 0,) = H(t, z, Dt*(0,:— X7, 0¢, Hi(t, 2, 0.9)0.,)
+iH(Ztoaqlt, 2)0,,0+td, 2, 0).
Proor. We have
exp(—2A0, z, Q)L({, z, 0, 0.)exp(AD(t, z, O)W(t, z, L, )
= 2{t*0.9—H,(t, z, 0,9)) (0.— X1, 0¢,H. (¢, z, 0.9)0.,)
+H (X0 ailt, 2)0,,Q+td(t, z, ONW(, 2, §, DL, z, 0, 0.)W(t, 2, &, ).
From 0,0(, z, )=H.(, z, 0.9, z, ), we have (2.3) and [2.4).
From Lemmas .1 and 2.2
(2.5) Lt 2, L, 0,, 0,) = —(0:D(t, z, O, z, OME, z, ¢, 0, 0.),
where
(2.6) M, 2, §, O, 0,) = 10— 210, Hi(t, 2, 0,0)9.)+1b%(, 2, ),
b*(t, z, §) = (B a4, 2)0,,Q+td(t, 2, O)/HE, 2, {).
Now we introduce an operator
2.7 £, 2z 0, 0, 0O)W
= (1—tXo(t, z, D)L, z, 0., 0 )W 0 X, 2, DM, 2, L, 0, )W),

using X,(t, z, {) given in [2.2). L£=.,(, 2, 0., 0, d7) can be also written as
follows :

2.8) L=xL({tzC 0, 0, 0)
= 2{(1—1Xo(t, 2, )01 +X(t, 2, {)3.0:)
+A, z, §, 0,)0.+B.(, z, C, 0,)0.+C,(, z, &, 0,)}
+t{a(2)0:+b(z, )0;+ 211 a4(2)0,,+d(t, 2z, O} +c(2),
where ord.A,(t, z, {, 0,)<1, ord.B,(, z, , 0,)<1, ord.C,(t, z, &, 9,)<2, and

{ a(z) = a0, 2), az)=10a0,2) (G=1),
bz, ) = 0%, 2, ), ¢(2) =¢, 2).

(2.9)



222 S. OucHI

We remark that .L=.(, 2z, {, 0, 0,, ) is also an operator of Fuchsian type
with respect to {=0}, as for the indicial polynomial ¢(.L; p, z, D)=¢(L; p, 2),
and {{=0} and {t={} are its characteristic surfaces.

Put

(2.10) U, 2, 2) = | exp(0, z, DIV, 2 &, DdL,

where the path I is chosen so that the following calculations are valid. We
have, from and by integration by parts,

@1 L, 2, 8, 8JUG, 2, D)
= {,exp (0, 2, DYALAE, 2,8, 80, 0L, 7, 0, DNWE, 2, §, DG

= oo, 2 01006, 2 DL, 2, DI, 2,8, 8, BIWE, 2, €, D
+ L, 2,8, 0IW, 2, &, Db dC

= {(—ocexp D, 2, O, 2, DI, 2, L, 0, 2IWE, 2, €, D
+exp(A0(, z, D)LY, 2, 8., BIWE, 2, &, D} L

= | exp (0, 2, YO, 2, DM, 2, C, 0, BIWE, 2, T, )
+Lt, 2,9, 9IW, 2, L, DL

= [, exp @0, 2, DYI—1L(t, 2, OXLE, 2, €, B, 0., BIWE, 2, D)L,

which will be justified later.
Now we give an equation to determine W(t, z, {, A) in [2.10) as follows:

LW, 2, D)= ‘—g(t—z—zn’—lg-ﬁ (mod. holomorphic functions at {=0),

7, 2z, 2
(1=, 2, 0))’

where f(t, z, 2) is determined by f(t, z) given in [I.2), which is holomorphic in
{@#, 2z, A); |t|IZR, |z| <R, |A| <40} (see §6). Note that the right hand side
of the first formula of (2.12) has a pole at {=0. Our next aim is to construct
a singular solution W(¢, z, {, 1) of the equation (2.12) in a neighbourhood of
¢, z, =, 0, 0).

In order to construct W (¢, z, £, 1), we introduce auxilliary functions
{f 2} nez used in Hamada [3]:

2.12)
gt, 2z, A=
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g 1 1
[ Cri)n (log C_<1+7+ +_n—» nzl,
@.13) fAO=:}%;MgC n=0,
! por (=D
| (-1 577 4 n<0.
It holds that
(2.14) -%n©:n4©
and
{Uﬂ@=m+nnﬂ© n<0,
(2.15)
LFall) = (D fanrQ+Col* 2 0.

We find W(t, z, {, 2) in the form
@16 W28 0= fuC—ptuatt, 2§ 0, Ddp.

We have a formula, putting X,(t, z, )=1—X,(¢, 2z, )7,

(2.17) LfC—ptw, 2, L, p, D)

= f7C— oD %, 2, O(p*—pX(, 2, On(, 2, C, p, A}
+f/(C—pt) (P, 2, DA, 2, D—2p)0:— pX(t, 2, £)0)
+B.(t, 2, §, 9.)— oA, 2, €, 9.))+1(b(z, H—palDhv(t, 2, G, o, 4)
+ f(C—pt) {22, 2, )03+, 2, £)0.07)
+ A, z, , 0,)0:+B,\(t, z, §, 0,)0;+C.t, z, {, 3,)
+ (D0 a:(2)0,,+ bz, Lor+dE, z, O)+e@vi, 2, E, p, A).

Hence we have

(2.18) LW, 2, L &)

= 2w=-lg =d[fn—2(C_Pt) {tle(ty Z, C)(Pg"'{)x(t, Z} C))wn(t: Z) C’ P: 2>}

Lol
+ fa-iE—p) PG, 2, O(QAQ, 2, )—2p)0:— pX(¢, 2, D)+ B, 2, £, 0.)
—pAQ, 7, §, 9.)+1(b(z, D—pa(@)}twat, 2, §, o, 4)

+ 72— pt) (P2, 2, D@ +X(, 2, £)0:0¢)

+ AL, 2, ¢, 0,)0,+B,(, 2, &, 0,)0c+C,(, z, {, 9,))

+ (0 a:(2)0,,+b(2, 0O:+d(, z, D)+t wat, 2, §, o, Hldp.

We note that
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(2.19) tfa-1(C—pt) = —0,f n({—pt)
and from

(2.20) C—=pt)f n-1({—pt) = nfo({—pt) + a polynomial of ({— p?)
= nf,({{—pt) mod. holomorphic functions at { =0.

In the following = means modulo holomorphic functions at {=0 as in (2.12).

The following calculations are formal but they are justified later.
2, z, O=1+C—1X(, 2, §), we have

2.21) 0 —pX(@, z, §) = (p*— p)(1—tX(, 2, )X, 2, O)pC—pb)

and

2.22) { (A—=t2,(t, 2, D) (0*—pA(t, 2, §)) = (0*—p)—X¥(t, 2, pC—p1),
X, 2, 0 = (1—tho(t, 2, O) (e, 2, O).

Hence, by [2.19), (2.20), (2.22) and integrations by parts, we have

(2.23) (1—1A(t, 2, O)_lglp|=dfn-2(c—pl‘)l‘2(p2——p}((t, z, Q)walt, 2, &, 0, Ddp
= SIm:dfn_z(i—pt)tz((pz—p)~X?§(t, z, DoC—pwat, z, &, p, Ddp

= S|p|=d{fn<c_pt)((p2—p)wn(t: 2,8 0, D)oy
—fra1@—pot)(n—1)A¥E, 2z, Dow,G, 2, C, p, D)oot dp .
Then we have
2.24) LW 2,0 D)= ;‘o=‘1g|p.=d[f"<5‘f’f){<<92~—p)wn(t, .y

+(b(z, —pal@)walt, 2, &, p, M) +c(@walt, z, L, p, )}
F Qo {(LG, 2, O, 2, O—20)0.—pX(, 2, {)d7)

Since

+B.(t, 2, §, 0.)—p AW, 2, §, 0.)—(n—DXE(, 2, Dp)waC, 2, §, o, D)y

+(Z0 a(2)0,,+b(z, DO+ d(t, z, D)walt, 2, &, o, D)o}
+f 2= o) {2, 2, D@ HXE, 2, £)d.0r)

"I-Al(t; Z’ C; az)at+Bl(t, Z, C, az>aC+ Cz(t, Z; C’ az))wn(t; Z: C’ 10) 'D}pp:ldp'

Define

2.25)  Mw = MG, z, & 0w = {(p°—p)w} o+ {(b(z, {)—pa(z)w} ,+c(z)w

and
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(2-26) Nn(u: U) = ag{(PA’f(t, Z, C, at; aZ) aC)+BT(ty Z, C: at, az: a())u(t: z, C' P)}
+C1@, 2, §, 0, 0, 0)0,ut, 2, §, p)+(n—2)C3(t, z, D)o (pult, 2, €, p)
+D%(, 2, C, 0., 0, 0)0(t, 2, C, p),

where

A, 2, €, 8, 8., 8) = Xu(t, 2, D20, 4X(, 2, D)+ AL, 2, T, 0.)
B¥(t, 2, §, 8., 8., 8) = —B\(t, 2, §, )1, 2, DG, z, {)a.
@on ) €16 288, 0,80 = —{Dl0 a2 +b(z, D+ dC, 2,0}
C3@, 2, 0 =x8¢, 2, Q)
D3(t, 2, L, 0, 0, 07) = — {Xi(t, 2, )@+, z, {)d.0)

+A,(t, 2, ¢, 0.0, +B.(t, 2, §, 8)0;+Cs(t, z, C, .)}.

Thus we have

(2.28) LW, 2, C, 4)
= 2w=—lglpl=¢fn(c_pt) {Mw,(t, z, g, 0, A= No(Wn-1, Wa-)} dp.

Now let us return to (2.12). We note that, if [{|>d]t],

g(t’ Z, Cr 2) _ g(t’ Z, C} 2) dP _ g(ty 2, gr 2) f—l(c—pt)
2.29) 2wl o 2ri)? S1p|=d C—pt)p o 2mi Slpl=d o dp-

Hence, considering (2.28) and (2.29), we determine w,(, z, {, p, 4) in the
following way:

¢
{ M 2 0,00w-it 2, G, 0, )= £ 0D

M(t; Z, O, ap)wn(t; <, C, 0, 2) = Nn(wn-b wn—‘z) (" = 0)

b

(2.30)

M is a second order linear ordinary differential operator of p and it is
Fuchsian on C which has regular singularities at p=0, 1, . In the following
sections we solve under the condition

(2.31) &(L; p, 0)=14(L; p, 0, 0) = p(pe—1)+ao0, 0)pr+-c(0, 0)x0 for p < Z,.
In §3 we construct W(, z, §, A) = ;‘;Z_lgm:dfn((:—.l)t)wn(f, 2, p, Adp and
show that it is holomorphic in X,=U@N{|C|>clt|}, UFR={C, z, {); |t <z,
|z|<r, ||<r}, for some ¢=1 and »>0 as a function of (f, z, {). As we re-
marked above, the operator £ has the characteristic surfaces {t=0}, {{=0}

and {{={}. So it will be shown in §5 that W(t, z, {, ) is holomorphic except
these surfaces.
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§3. Construction of W(t, z, {, 2).

In §3 we solve and construct a solution W(t, z, {, 1) of (2.12). Before
solving it, we prepare majorant functions which are used to show convergence
of W, z, {, ) and other functions. Then we obtain majorant estimates as
functions of (¢, z, {), regarding other variables as parameters.

Let z=(z,, z,, ---, zy) be the coordinate of CV*!, a=(a,, @i, -, ay)EZ.Y
be the multi-index and z%=z,%z,%t--- zy*¥. Let A(E)=.A.2* and B(z)=
>B.z® be formal power series of z. A(z)>B(z) means A,=|B.| for all a
and A(z)>0 means A,=0. We have

LEMMA 3.1 (Wagschal). Let O@) be a formal power series of one variable
t, such that @()>0 and (R—1)O()>0. Let L(z, 0,) be a linear partial differential
operator of order m with holomorphic coefficients in {|z|<R’}(R’>R). Then

(3.1) 0 < (R—1)O'(),

3.2) (R'—=1)'0@) < (R"—R)™'6(1),
and

(3.3) L(z, 9,)0(x) € AB™(x),

where x=30z, and A is independent of O(1).

This lemma is fundamental and for the proof we refer to Wagschal [10].
In this paper we only use

(3.4) G(r; H=@r—n"1,

which satisfies (r—1)8(@; t)>0.

Now let us return to solve the equation ((2.30) under the assumption (2.31).
Under the notation put

(3.5) Mme(2z, p) = 2—p)l—p)—(1—ma(z)+c(2).

The condition (2.31) is equivalent to

(3.6) mu(z, )0 for s=1,2, - in {z& C*; |z| <R’} for an R’ >0.
We try to find w,(p)=w,(t, z, {, o, 4) in the form

3.7 Wa(p) = ZiznseWa,s(t, 2, &, DP~°.

This means that w,(p) (n=—1) are holomorphic at p=co. Recall U(»)={(, z,
&); 1t1<r, |z|<r, |§|<r} and put

(3.8) Z(eo, b)) =Ur)x{lpl > b}.

7 is chosen so small, if necessary, and
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3.9 x =t+2%1z:+E.
Now we have

LEMMA 3.2. There exists a constant A>0 such that
Mz, $)' € A(1+s2)"0(R”; x),
(3.10)
{2—=s)(1—35)—(1—3s)b(z, O} /me(z, s) K AG(R"; x)
where b(z, ) is given in (2.9) and s N.

PROOF. We have from [3.6) |m.(z, s)"'|<A(l+s%»™! in U(R’). Hence the
first estimate in holds. Since (2—s)(1—s)—(1—s)b(z, H)<KA1+sHI(R”; x)
for R”>R’, we have the second estimate from [Lemma 3.1

In the following of this section we assume in [(2.30
(3.11) gt z, ¢, ) K MQAOR; x).
We have

PROPOSITION 3.3. There exist w,(p)=O(Z(o, b71))(n=—1) satisfy‘z'ng'(Z.SO)
for some constant b>1, each of which has the form (3.7) and converges on
Z(co, b™Y), The estimates

(3.12) Wa,s(t, 2, {, ) K AMQ)a™b* 20" D(R ; x)

and

(B.13)  walp) K AMQ)(b+1Da™*|p| "2 (R; x) for p € Z(eo, (b+1)7")
hold for some constants A and a.

PrOOF. We have

(3.14) Muw,(p) = Z5n2 {Ma(z, SYwa, s, 2, §, A)

+F((1=3)b(z, H—2—3) L—=sNwn,s-1, 2, §, D} p~°
and

(3.15) No(Wa-y, Wa-z) = ZinseNa,sl, 2, § D™,

where

(3.16) a5, 2, L, A = R—s)(1—=95)A%({, 2, §, 0, 0,, 0DWn-1,s-1(, 2, {, A)
+(1=95)Cit, 2, §, 0, 0,, 0wn-1,5-:, 2, &, A)
+(n—2)2—s)1=95)CI(, 2, Qwa-1.5-:1(, 2, §, 4)
+@—s)(1—s)B*(@, 2z, L, 0:, 0., 0)Wn-1,5-2(t, 2, &, )
+@2—s)(1—s)D¥@, z, {, 0;, 0., 0)Wn-2,5—2(t, 2, §, 4).
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Therefore we determine w,(p)=w,(t, 2, {, P, H=25n+2Wa,slt, 2, L, Hp™* in
the following way:

BN Malz, SWors = (@=5) L= =(U=5)b(z, DW-se-iHd01 5z

BlNn  Mulz, Hwa,s = (=) 1=5)—(1—95)b(z, O)wn.s-1+Nas 720,

It follows from that w, s are successively determined. We show the
estimate of Wus=wnst 2z, { A by induction. We have w-;,<
AM@)O(R ; x). Assume is valid for n<N—1 and n=N with s<S—1.
Then, by Lemma 3.1,

(3'18) (Z_S) (I_S)Aﬂf(t: Z, C: at) az, aC)wN'—l.S—l
& AMQ)C(14-S2)aVpS-V-20V+(R: x)
and since (n—1)0™(R; x)KO" (R x),

(3.19) (N=1) 2-S)(A-)C¥(, 2z, Dwn-1,5-1
K AMQ)C(1+S%aVbS-¥-20WV+D(R; x).
Other terms in 9y, s, 2, {, 4) are estimated in the same way. Hence we have
(3.20) Py.s K AMQRQ)CA+SHa¥bS V20N +D(R; x).
So it follows from that for large a and b
(321) wy,s € C,1+SHOR’; x) {AMQ)C(1+S?) (a¥bS-V-24-gN+1pS-V-2)
XOND(R; x)} K AMA)aVpS- V29N +D(R; x).

Thus w,(p) = w,(t, z, {, p, D=22n+eWn, s, 2, {, A)p~* converges in Z(oo, b71)
and (3.13) holds as a function of (¢, z, {) for peZ(co, (b+1)7).

Put Z={peC—1{0, 1, }} and

(3.22) w(t, 2, 0, ) =251 [2C—ptwa, 2, § p, D),

whose convergence is given in [Proposition 3.4, In the following the constant
b is that in [Proposition 3.3. Then we have

PROPOSITION 3.4. (1) w,(p)=w.@, 2, , p, Neo) as a function of p.
(2) There exist h and r>0 such that w(t, z, , p, 2) convergesin {(¢, z, {, p);
@ z, UM, 0<|{—pt|<hlpl, |p|>b+1}.

PROOF. w,(p) (n=—1) satisfy ordinary differential equations [2.30). Hence
wn(p)eO(Z) as a function of p. The convergence of w(, z, {, p, A) follows
from (2.13), (3.13) and |0 (R; x)|<AB"n! for |x|<r(r<R).
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Let the constant 4 be that in [Proposition 3.4. Choose positive constants
d and r satisfying d>b+1 and r(d-*+1)<h. Then 0<|{—pt| <h|p]| for |po|=d
and (¢, z, )eU@) with |{|>d|t]. Now we can define for {(t, z, ); @, z, O
eU(r), |1C1>d|t]}

(3.29 Walt 2,6 0= wat, 2 G o, DfaG—ptidp
and
(3.24) We 2 6=\ w2l e dde.

We have W, z, {, )=2n-_1W,(@, 2z, {, ). Put X,;=U@NN{|L|>cl|t|}, c=b+1,
and X=U@r)— {=0} U {{=0} U {t=L}. Recall 0,(X) (see §1). As for the holo-
morphy of W,@, z, {, ), we have

ProposiTION 3.5. W.,(, z, C, Z)EOO()?) as a function of (@, z, {) and ¢t is an
entire function of A.

PRrROOF. Let us show that W,(t, z, {, 4) is holomorphic on X, namely,
W, z, , H=0(X,). The integrand w,(, z, {, p, Af.({—pt) in is multi-
valued with respect to { for n=0. It is due to log({—pt). Hence the difference
of two branches of the integrand is 2ami for some meZ. It follows from [3.7)
that S,p,=d(C—pt)"wn(t, 2, ¢ p, Ddpo=0. Hence W,(t, z, & 2) € OX,). Let us
prolong W,(@, z, £, ) from X, to X. Since w,(@, z, {, p, H=O(2) by [Proposition]
3.4, the singularities of the integrand in are p=0, 1, o and J/t. Let
#=X and o={0o(s); 0<s<1} be a continuous path in X such that g(0)eX, and
o(1)=%. Hence {/t=0,1, o on ¢. So we can deform the integration path
lol=d in homotopically in Z to y=r,—Z so that the holomorphic pro-
longation of W,(t, z, {, A) along ¢ is given by W, ,{, z, {, )

(3.25) Worlt, 2 G = 2@ pthwatt, 2, ¢, 0, Ddp

(see Fig. 3.1). W,(t, z, £, 2) can be holomorphically extensible from X, to X by
this method. Thus W,(t, z, {, )=0,(X) as a function of (¢, z, ).

Q-space
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REMARK 3.6. It follows from and (2.20) that
SIp]=dfn—2(c—Pt)P(C_Pt)wn(t, 2, C, o, 2>d(0

=@=0|  faul—ptowat, 2, L 0, Ddp.

o

Hence we can replace = by = in (2.23) and (2.24). The method in
3.5 to prolong W, z ¢ 4 from X, to X will be used again to show
Wit, z, ¢, He0y(X) in Theorem 5.7,

We have the existence of a solution of (2.12).

THEOREM 3.7. W, z, {, A) defined by (3.24) is holomorphic in X,, that is,
W, z, , DeoX,), and
A _ 8tz & A
(3.26) L, 2, 0,0, 0O0W(E, 2z, ¢, ) = Sail
holds.

Proor. It follows from Proposition 3.4-(2) and proposition 3.5 that
W, z, £, A) is holomorphic on X,. The calculations in §2 ((2.16)-(2.28)) are
justified. We have (2.12) without modulo parts by Remark 3.6.

Consequently it is shown that w,(t, z, £, o, ) is holomorphic on Z for
(t,z,0)eU@) and 2=C and W,(t, z, DeEX). W,z D= P WLt 2,82
converges in X, and belongs to ©(X,). Since W,(t, z, {, Z)EOO()?), it is expected
that W(, z, &, H=0,(X). We show it in §4 and §5.

§4. Holomorphic extension of W(t, z, {, 2) - 1.

We investigate the singularities of W(t, z, {, ) more precisely. As we
have shown in §3, W(, z, {, A) is represented in the form on X,. So in
order to show W(, z, & DE0(X), X = {¢, z, 0 ; 0<|t]| <7, |z| <r, 0< || <7,
tx{}, we study w,(, z, , p, ) (n=—1) as functions of p which are determined
by the relation [2.30). Our aim in §4 is to make preparations for showing
W, z, g, DE0,(X). In this section we denote (¢, z, O)=C(, 2y, - , 2, O) by z=
(2o, 21, *** 5 Zny Zn+1), 20=Lt, Zp+1=C, for simplicity. For pEZ~, n(p) is the projec-
tion from Z on Z={p=C—{0, 1, wo}}.

Now let us study the Cauchy problem at p:xef.

{ M(z, o, 0,)V(z, p) = G(z, p),
Vi(z, o) p=e = Az, ),  (09,)V(z, 0)| o= = B(z, &),

@.1)

where M(z, p, 0,) = {(0*—p) '}, +{(b(z)—pa(2))-},+c(2)-. Firstly we consider
(4.1) when the initial point™x does not equal to 0 but near 0. Put my(z, p)=
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pb(z)—p—1), pi(z)=0 and pi(z)=b(z)—1. The path C, in p-space is defined as
follows. If p5(0)—p5(0)=b(0)—1& Z, C, is a closed path surrounding pi(z)(i=1,2)
once and points pi(z)+s@=1, 2, s€Z—{0}) are outside of C,. If p3(0)—pi(0)=
b(0)—1=n,cZ, C, is a closed path surrounding {g(z)—n,, pi(z), pi(z), ps(@)+n.}
= {p8(2)—n,, pi(2), 0, no}once and points pi(z)+s@=1, 2, s€ Z—{0}, G, s)=(1, ny),
(2, —n,)) are outside of C,. A, is a compact neighbourhood of C, on which
mo(z, p+35)%0 for s=€Z and {|z|<R'}.

By the change p=r«, (4.1) becomes

@2 { Mz, 7,k 0V(z 1, 8) =G 1, K),
' Viz 1,6 = Az, £), 0.V(, 1, 5 =BG, K,
where V{(z, 7, k)=V(z, 7, ), G(z, 7, k)=kG(z, T&) and

“4.3) Mz, 7, k, 0;) = {tlkr—1) -} - {(b(2)—Ka(2)T)  } HKC(2) - .

We treat instead of [@.1).
Assume A(z, k), B(z, £)cOUR)X {0<|k| <ro}) » <R, 0<r,<1) and

(44) G(Z: 7, ’f) = ;r:"“lrsgc Tpg\?(Z’ ﬂ? K)dﬂ,
0

where s*<0, gi(z, g, )EOUR) XA X {0< |£] <ro}). In the following we con-
sider £ as a parameter and we often omit the domain of & in the notations,
for example g.(z, ¢, £)€OUR)*x4,). We also assume

Az, k), B(z, k) K KK)O(R; x),
64-5) 1 \s-s*+1
gz, 1, 8) < K(/c)(1+sz)(7> OR; x) for pe A,
where (R ; x)=n!/(R—x)"*! for some n=Z,, and x=37¢z;. Hence G(z, 7,

£eOUR)X {0/<T‘E—</2} ). We have

PROPOSITION 4.1. Suppose & is small, namely, 0<|k|<B for some B<r,.
Let V(z, 7, k) be a unique solution of (4.2). Then
(1) Vz, 7, k) is represented in the form

4.6) Ve 70 =S|t 0de,
. 0
where vs(z, p, £)€OU(R)XA,) and
1 \s-s*
@) vz, o) < TEW(3)  OR; 2)

holds for some constant v independent of k and s, and
2) for any w>0, the series (4.6) converges on UR)X {0<|7|<2; |argr|<
o}, and there exist Alw) and c¢ such that
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4.8) Viz, t, k) € A@KE) || 2—|7|) 'O ; x).

Before the proof we give a formula used often. Let V(z, 7, g, £)=
12:0s(2, ¢, K)T#** be a formal series. Then

4.9 Mz, 7,k 00V (2 7, p#, £) = 25251 {mo(z, p+s+Dvsii(z, g, k)
+a((pt+s+2)(p+s+1)—a@(p+s+D)+c@)vs(z, p, K)}ree.

In order to show [Proposition 4.1 we give two lemmas. First we consider
the equation without the initial conditions :

4.10) Mz, t, k, 0.)E(z, 7, k) = G(z, 7, K),

where G(z, 7, ¥) has the form [4.4) with gs(z, g, £) (s=s*—1) satisfying the
assumption [4.5). We have

LEMMA 4.2. Suppose k is small, namely, 0<|k|<B for some B<r,. Then
(1) there exists a solution E(z, 7, k) of (4.10) of the form

@.11) EG, 7, 5) = Sise'|_cte, g 0dp,
0
such that es(z, pt, K)€OUR)XA,) as a function of (z, ), and for pEA,
1 \&-s*
4.12) es(z, ¢, £) < TlK(x)(g) OR; x)

holds for some constant ¥, independent of & and s, and
(2) for any w, the series (4.11) converges in t={0<|7| <2, |argr|<w} and
there exist Alw) and c such that

(4.13) E(z, 7, £) K 11C@)KE®) |72~ |z)T'OR; x).

PROOF. Assume FE(z, 7, ) has the form [4.1I). We substitute it into
and use (4.9). Then we obtain

4.14) mo(z, p+s+1esa+e((u+s+2)(u+s+1)—a@)(p+s+1)+c(2)es
=gz, g, £)  (s=s*—1).

Since my(z, p+s)x0 on A, ez, p) (s=s*) are successively determined. We
show [4.12). The assumption my(z, g+s)%0 on U(R’)X A, means

4.15) mo(z, p+s)"' € A(l4s) (R’ —x)™, x=231 2,

So from Lemma 3.1, en(z, #1, £) = mo(z, +5)"'ges (2, o1, £) K AK(K) O(R; x).
Assume that holds for s<S. Then we have

(4.16) esi1 = mo(z, p+S+1)"H{gs—r((p+S+2)(u+S+1D)—a(@)(u+S+1)+c(2))es}
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% K(x)(-é—)SH-S.(A—l- k| Br)OR: x).

If |k|B<1/2 and 7, is large, then A+ |x|By,<r:. This means for s=
S+1. Let us show (2). We have, if |argr|<w,

@.17) s, 1 6) < C)leRe e Kw(5)  OR; 0
for p=A,. Hence, if |argr| <w, there are C’(w) and ¢ such that
1 \8-s*
@.18) S (e, , Ddp < C'@)e K@ () OR; x).
Co
Therefore, for ¢ with 0<|z|<2 and |argr|<w
4.19) E(z, 7, k) K 11C@K@®)|7|*OR; x)/2—|7]).
Next let us consider a homogeneous equation with initial conditions:

{ Mz, 7, k, 0.)H(z, 7, k) =0,
H(z, 1, k) = Az, ), 0.H(z 1, k) = B(z, x),

(4.20)

where A(z, ) and B(z, x) satisfy [45). The existence of a unique solution

H(z, =, k) is obvious. Moreover we have also a representation of H(z, z, k)
such as by the following lemma.

LEMMA 4.3. Assume 0<|k|<B for some small B. Then the unique solution
H(z, t, k) of (4.20) has the form

4.21) Hiz 7, )= ;*;“z,rsgc "he(z, p, K)dp.
0
Here hy(z, p, £)cOUR)XA,) as a function of (z, p), for pi,
1\2
®.22) hz g, ©) <1K@(5) OR; %)

holds for some constant 7, independent of & and s, for any @ the series (4.21)
converges in {0<|7| <2, |argr|<w} and

(4.23) H(z, 7, k) K 1 A@K ®|7[°C—|7])'O(R; x)
holds, where the constant ¢ is that in the inequality (4.13).

PRrROOF. Put g_.(z, g, ¥)=1 and g,(z, ¢, £)=0 for s—1. Obviously
(4.24) Gl 7, 0 =S| tae p, 0dp=0.
0

Determine e,(z, g, £) (s=0) by (4.14). Each e(z, g, #) is a rational function of
o whose poles are in {¢; TTj-omo(z, #+7)=0} and we have ey (z, g, £)=mq(z, p)™*
and es(z, y, K)=r’c¥(z, p) for s=1. Put
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H'z, , k) = Z‘.Slofsgcorf‘es(z, ¢, K)dp = S COT"/mo(z, wdp

+2353 (m)sg Cof"‘e?(z, wdy,

(4.25)

H'(z, 7, k) = ?i%rsg thpes(z, p, K)dp IS p#/mo(z, p)dp
Co Co

+ 365 ) < petCa, ).

It follows from and the definition of the integration path C, that
Hi(z, 7, k) (=0, 1) are linearly independent solutions of M(z, 7, k, 0-)H(z, 7, k)
=0. Hence we have

(4'26) H(Z: T, IC) = ¢0(Z, E)HO(Z, T, IC)+¢1(2) IC)HI(Z, T, ,f>,
where
o ) = Az, If)ale(Z, 1, Ii‘)-—B(Z, /c)Hl(z’ 1, £)
'z w) = Wiz, 1, k) ’
— Hz, 1, ’ o(z, 1,
(4.27) 3z, K) = A(z, £)o-H (ZW(ZIC)1+3(2 K)H(z, 1, k) ,
Wz, t, £) = Hz, z,8) H'z 7, K)

0:-Hz, 7, 8) 0.H'z 7, £)I’

It follows from (4.25) that W(z, z, x)=W(z, 7, 0)+&W*(z, 7, k). If 0<|k]| <8 for
a small B, [W(z 1, £)|=C>0 for some constant C independent of « and
Wz, 1, £) '€ A(R’—x)"'. Therefore ¢'(z, ) K AK(x)O(R; x) (=0, 1). By put-
ting hs(z, p, £)=(@%z, £)+pd'(z, K))es(z, p, k), we have (4.21)-(4.23).

Now we give the proof of Proposition 4.1|.

PROOF OF PROPOSITION 4.1. By there is an E(z, 7, £) such that
M(z, =, k, 0.)E(z, 7, ¥)=G(z, 7, £). Let H(z, 7, £) be a solution of

Mz, 7, &, 0)H(z, 7, k) =0,
H(z, 1, k) = A(z, ¥)—E(z, 1, k), 0.H(z, 1, £) = B(z, ¥)—0.E(z, 1, k).

It holds by that Az, k)—E(z, 1, K) K CK(£)O(R; x) and B(z, k)—
0:E(z, 1, &)< CK()@(R ; x). We have, by [Lemma 4.3, a unique solution H(z,
7, £) of (4.28) in the form of [4.2I). By putting v,(z, g, £)=es(z, g, £)+hs(z, o,
k) and V(z, 7, k)=E(z, 7, )+ H(z, 7, k), we have [4.6). The estimates and
follow from Lemmas and E.3.

(4.28) {

Now let us apply [Proposition 4.1] to a series of Cauchy problems:
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MGz, 0, 3)Va(z, 0, 8) = Na(V sy Vo) +-8n, -, EEL,
4.29),, { £, 0o)V 'z £ o
Vn(z,- 0, Ii)l o=k — an<Zy ﬁ); (pap)Vn(Z; 0, ’C)Ip=/c = bn(Z, ’f), n:g _‘]-,

where N,(U, V) is defined by (2.26). We assume that a,(z, k), b.(z, £)SOU(R)
X {021?1{%}) and they satisfy
K(x)

|Ifln+1

(4.31) g(z) K AG(R; x) (A< K@).

(4'30) an(Z; ’C); bn(Z, ,C) << an+10(n+1)(R; x))

By the change p=r«r, the equation (4.29), becomes

Mz, 7, K, 0:)Vi(z, 7, £) = Nyl ; Vi, V?‘f—z)+5n,_1_gf)‘,

V?}:(Z’ T) K)lf—‘—‘l = an(Z: IC), aTV;'l((Z} T: IC)!2-=1 - bn(Z; IC))

4.32), {

where Vi(z, 7, £)=V.(z, 0, k)| p=+, and

.39 Nule; U, V4 = = {(ee Az, 80+ Bz, 60U -

FCHz, BIU) o+ (=D e CHAUH) ot - (D2, 0V e,

where A%¥(z, 0,) etc. are the same operators as those in (2.26) with the nota-
tions of independent variables of this section.
We have

LEMMA 4.4. There exist a*>1 and 0<B8<r, such that the following holds.
Suppose a=a* and 0<|k|<B. Then
(1) the unique solution V¥(z, t, k) of (4.32), has the form

@.3) Vi 7, 0 = S| G p 0dp,
0

where v}, (z, p, )EOUR) XAy X {OM}) with

(4.35) v sz, 1, lc)<<7’K(lc)Ilcl“”"‘a"“(—;—)sm”@cmn(lg; x),

v being a constant independent of k, n, s and a, and
2) for any >0 the series (4.34) converges in {0<|7|<2, i|argr| <w}
and there exist 7,(w) and ¢ such that

et ‘Tl—n—u-c

(4.36) Vi, t, 6) 1. KE®) £ " ' 2=z

(R ; x).

ProOF. By [Proposition 4.1 we have (4.34)-(4.35) for n=-—1. Assume
(4.34)-(4.35) are valid for n<N—1. Then we have
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4.37) Nyle; Vi, Vo) = Z§'=°°—(N+2)ngc 0%, s(z, o, K)dy,
[
where
(4.38) 755z, p, &) = (p+s+2)(p+s+1)A%(z, 00051, sz, g, £)

+(pu+s+1DCEz, 0.)v5-1,51(2, ¢, K)
+(n=2)(u+s+2)(u+s+1D)CHvE 1, e01(2, p, £)

+%(ﬂ+s+2)(ﬂ+s+l)3"f(2, 01 ey 1, B)

+%(ﬂ+s+2)(y+s+1)D’§(z, 0k a ez, 1 ).

We can show in the same way as in [Proposition 3.3 that there exists a constant
A independent of 7, &, @, N and s such that

S+ N +2
@39 mhae D < ALK e~ ad(5) T g R, ).
We choose a* to satisfy Ar/a*<1. Hence if a=a*,

8+N+
@40 ghate ) € (HOK@Iel - aros(2) T gorng ).

Then we have from [Proposition 4.1 that v¥, :(z, g, ) has the form for
n=N and that

4D R ) < TE@IE v () 00 0@R; 1) sz V4,

holds. We have also (2) in the same way as in [Proposition 4.1[.

Now let us return to the equations (4.29), (n=-—1). We have, by the
change r=p/k,

PROPOSITION 4.5. There exist a*>1 and $>0 such that the following holds.
Suppose aza* and 0<|g|<B. Then
(1) the unique solution V ,(z, p, k) of (4.29), is represented in the form
s 7
(4.42) Vo, 0,0 = St am(S) | (5) vn, 1 0,

K o\ K

where v sz, 1 EOUR)XAx {0< |1 = B}) with
(4.43) Va.s(z, 1K) < TK<'C>|'C|'”"“"“(‘%‘)“Ma<n+”<fe; %),

v being a constant independent of k, n, s and a, and
(2) for any @>0 there exist v,(w) and ¢ such that the series (4.42) converges
and
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|p|—n+c-—1
@lel—1pD

holds for p={0<]|p| <2|k|, |arg p/k| <w}.

The results similar to Lemma 4.4 and Proposition 4.5/ hold for the Cauchy
problems (4.29), (n=—1) with initial point & with 0<|gk—1]|<7r,. We explain
them shortly. Put m,(z, p)=p(u—a(2)+b(2)+1), pi(z)=0and pi(z)=a(z)—b(z)—1.
The path C, in p-space is defined as follows. If g3(0)—pi(0)=a(0)—b0)—1&Z,
C, is a closed path surrounding pi(z) (=1, 2) once and points pi(z)+s (=1, 2,
s€Z—{0}) are outside of C,. If pi(0)—pi(0)=a0)—b0)—1=n,€Z,C, is a
closed path surrounding {gi(z)—n,, pi(2), pi(2), pi@)+n.} ={pi@)—n,, #i(2),0, n}
once and points pi(z)+s /=1, 2, se Z—{0}, (i, s)=(, —n,), (2, n,) are outside
of C,. A, is a compact neighbourhood of C, on which m,(z, p+s)=0 for s€Z

_— e ———
and {|z|SR’}. We assume that a,(z, &), b.(z, )SOUR)X {0< |k—1]|Z 7)),
g)eoU(R)) and

4.44) Valz, p, £) < 1. K(@®) | k] o™ 0" (R; x)

{ a.(z, k), bp(z, k) £ IT_I_(-(lx—]),H—lannacnu)(R; x),

(4.45)
8= K AO(R; x) (A< K@),

in (4.29),. By expanding g(z)/p=g(2)Zi(l—p)* at p=1 in the right hand side
of (4.29), and using the preceding method in this section, we have

PROPOSITION 4.6. There exist a*>1 and >0 such that the following holds.
Suppose a=a* and 0<|k—1|<B. Then
(1) the unique solution V ,(z, p, k) of (4.29), is represented in the form

—1\s -1
@46 Va0, 0= St an(Sg) |, (So0) vate 2 0dp,
1

r—1 £—1
/‘\___/
where v, 4(2z, g, £)EOUR) XA X {0<|x—1| < B}) with
(4.47) Vas(, ) < TK(Ic)Ilc—ll‘"‘la"+1(%)s+n+10<n+1)(]g; 2,

where 7 is a constant independent of k, n, s and a, and
(2) for any w>0 there exist 7,(w) and ¢ such that

Ip_ll—n+c—1

.4 n , , L - -C+1,n+1
(4.48) Val(z, 0, k) K 71K@®) =1 a @lr—1—|p—1))

g +D(R; x)

for pe{0<]p—11<2[e—1], larg(p—1)/(x—1)| <o}.

REMARK 4.7. We can obtain the similar result to Propositions and 4.6
when the initial point p=x is near oo.
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Finally we consider (4.29), in a neighbourhood of regular points. Let >0
be a fixed positive constant. Put Z;={o=C"'; |p—1|>0d and |p|>d}. Consider

{ M(z, p, 0,)V(z, p) = G(z, p),
V(z, 0)lp=e = Alz, ),  (00,)V (2, 0)] o=« = Bz, £),

where k=Z;, G(z, p)<A:0R; x) in Z; and Az, k), B(z, ) <KK®)OR ; x). We
have

4.49)

LEMMA 4.8. Let V(z, p) be a solution of (4.49). Then there are 7(0) and
r1(0) such that

4.50) V(z, p), 00,V(z, p) K 70K K)+AsOR; x)
holds for p with |p—k|<r.(0).

follows from the existence and uniqueness theorem for Cauchy
problems. Now we assume in (4.29), that a,(z, k), b.(z, £)SOUR)X Zs), g(2)
e0oU(R)) and

4.51) a.(z, k), by(z, k) K KEKa"'@" DR x),
4.52) g(z) € AG(R; x) (A< K@k).
We have, by the similar method to the preceding one,

PROPOSITION 4.9. Suppose that k=25 and the estimates (4.51) and (4.52) hold
in (4.29),. Then there are a*>1, 7(0), and r,(0) such that the solution V ,(z, p, k)
of (4.29), satisfies the following: if a=a*,

(4.53) Valz, p, £), 00,V (2, p, £) K 7TO)K(K)a™ 0" >(R; x)
in |p—k| <ri(0).

§5. Holomorphic extension of W(t, z, C, 2)-1I.

In §5 we show W(, z, {, DE0,(X), X=U(r)— {t=0}U {t=C}U{{=0}, as a
function of @, z, ). Recall Z=C—1{0, 1, -} and = is the projection from Z to
Z. Put x=t+3¥,2z;+¢ and for >0

Se=1{p€Z;0< ()| <30},
5.1 Si={peZ;0<|zp)—1] <30},
Se=1{pcZ; |z >3, |=F)—1| > ).

We study the prolongation of w,(0)=w.({, z, {, @, 4) and its estimate. Let 0=
B/4, where <1 is that in Propositions and in §4. Choose p,=S.. so
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that wa(p) (n=—1) are represented by the convergent power series of p~! in a
neighbourhood of f, (see [3.7). We note that w,(p) (n=—1) are determined
by the equations [2.30), which suggests that Propositions in §4 are available
for them.

Now let us consider the prolongation of w,(p). Let V<Z be any open
connected set such that =V and V is compact. Take « so large that w,(5,),
D0, wa(Po) K AMQR)a** 6+ P(R ; x) (see Proposition 3.3). We can extend w,(p)
from p, to any p,&V along a continuous path p(s) (0<s<1) with p(0)=p, and
p()=p,. Suppose p,=S.. Then we can continue w,(p) along a path p(s) (0<s
<1) not always contained in V such that p(s)cS. for 0<s<1. We decompose
the path f(s): H(s)=21, Hi(s), where pi(s)={H(s); s:-1=<5=<s;} and 0=s5,<s, <+
<8;< - <sp=1. Put k;=5H(s;) and choose {s;; 0<i<m} to satisfy |k;—r;-,|<
r1(0)/2 for all 7, where r,(6) is that in [Proposition 4.9. By the assumption on
V, we may assume that m<N’ for some N’&N, which does not depend on
$.€VNS.. It follows from [Proposition 4.9 that ‘

W), 0, wa(0) L 1L AMA)a™* ' "*P(R; x) at o =k«;.

Using [Proposition 4.9 repeatedly, we have

w(0), PO, wa(p) L TEAMA)a™*' 0" * (R ; x) at o ==&;.
Hence there exists a constant K(V) such that for peVNS.
(5.2) wa(p), 0, wa(p) K KV)M@A)a™ 0" (R ; x).

Suppose p,=S,. We can prolong w,(p) along a path $(s) (0<s<1) such
that {f(s); 0<s<s’}cS. and {p(s); s'<s<1}c=S,. We may put p(s’)=« and
assume 20< || <30=38/4<1. We have from [5.2

(44 n

G.3) wn(lc),xapwn(/c)<<K(V)M(2)a““0(”“>(R;x)<<K(V)M(2)( m) “oaoR: x).

So it follows from [Proposition 4.5 that in a neighbourhood of 5,

©.4) wa(0) K K'V)ar ' M(A)|p|*"7'Q2le| —p) 0P (R; x),

for some positive constant K’(V). When p,=S,, an estimate similar to
holds. Thus we have

PROPOSITION 5.1. Let V<Z be an open connected set such that V is com-
pact. Then the following estimate for w,(t, z, C, p, A) holds:

wa, 2, &, 0, ) K AVIMQA)a™ 0" D(R; x) for p € VNS,
(5.5) {1 walt, 2, §, p, A K AV)M@a™* | p|¢ "0 D(R; x) for p € VNS,,
wal, 2, §, p, D) K AV)M@Aam+ | p—1¢"1*D(R; x) for p € VNS,.
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Recall the definition formula of W, z, &, A on X,. Then we have
for n=0

1

68 Wil 20 D=5

{Slp[=d(5—pt)nIog(—ct———p)wn(t, 2, ¢ p, Ddp

+logt|  @—ptrwalt, 2, &, o, Ddp

tol

_Sw=d(C—pt)n(1+—;—+ —}—%)wn(t, % G p, ,z)dp} on X,.

It follows from [Proposition 3.5 that its holomorphic prolongation in X is given by

G.7) Warlt, 2, € D= Fal—ptuat, 2, G o, Do,

where y={r(s); (0<s<1)} is a homotopic deformation of the path |p|=d in
(5.6). We decompose 7(s). Let 0=s,<s;< -+ <s;=1 and put 7,={r(s); si-:=
s<s;}. Assume that each 7; is contained entirely in S,, S; or S. and that
7(s)ES. 0Zi<]). Put

(5.8) Wart, 2, & &) = Snfn@—pt)wn(t, 2 ¢, p, Ddp.

/——‘—‘\___/
We have W, .t 2z, D€OUR)—\U,er; {{—pt =0}). Let us investigate [5.8).
Fix k€S, with 26<|x| <3d. Then, by Proposition 4.5, we have in a neigh-
bourhood of p=0 except p=0

o O\ O\e
(5-9) wn(t; 2, C) P, 'z) = 2;=-—(n+1)(?> scl)(_’c—) wn,s(t; 2, Cr .u) K, l)d#’
Put for k=Z,
(5.10) wRk(t, 2, G, p, A)

s k
= 2;—:-(n+1)(%> SCO(%Y (‘L¢+s+1)-‘f-(p—|—s+k) Wa, s 2, §, o, K, Adpe.

Then

—_—
LEMMA 5.2. () w3zt 2, §, p, DEOUR)X(0< |p| <2]x|)).
(2) For any >0, there exist constants C(w) and A such that

(6.11) wRk, z, L, p, A)
< C@M@)(Aramp|t* Y /2l = pDE NI (R; x)
for pe {0 <|pl <2|x|; largp/r| <w}.
®)) 0wz, 2z, & 0, D) =wi* ¢, 2,L 0,0 for 0<s<k.
follows from [Proposition 4.5 and it is not difficult to show Lemma
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5.2. So we omit the details of the proof.
Let 7’={p(s); a<s<b} be a path such that #(s)cS,. Then, by integrations
by parts, we have

612) | foG—ptuat, 2, C o, Ddo = fuC—ptofusrt, 2,2 p, Ddp

= fuiC—ptwint, 2, ¢ 0, Ddp+1at, 2, € 0, Dlarr,

where
(6.13) It 2§ p, D) =Tk " fa e E—p)wz* ', 2, C, 0, D).
LEMMA 5.3. It holds that for (¢, z, cU(r) (0<r<R)

G.14) |10, 2 ¢ p, D] < CMQ)|log C—pb)| IPIC”a"*’A"([tl—l————ICI—;“l’” )

PrROOF. We have

(AT CE—pD [P * DYy
|1, 2, G, 0, D= CM@llog €| (D= — e o™

This means (5.14).
LEMMA 5.4. Suppose that ;< S, or y.<S,. Let K be a compact set in
m}. Then there exist Ag,;, and L such that
(5.15) (Wt 2, & D] < Ag,y MALAL+ [N on K,
where LzL(é) is independent of K, 7, and n.

PROOF. Suppose 7;=S,. After changing the right hand side of into
the form (5.12), estimate (5.12), using Lemmas B.2 and 5.3. Then we have

(5.15). When 7,c<S,, the statement follows from the same arguments as 7,<S,.

Suppose 7,=S.. Then, by Proposition 5.1, we have for ¢, z, ) U(r)
(6.16) |fa@—pHw,(t, 2, & p, D £ Ay, M) |logC—pt)| |L—pt|"a™*!

on pcy,. Hence

LEMMA 5.5. Let K be a compact set in

m
U —(Uper i, 2, 0 ; L—pt=0}1 U {t=0}). Suppose that r,=S. and |z(1:)| <e/|t]
for any (t, z, ) K. Then there exist Ak ;.. and L such that

6.17) Wa @ 2,0 D < Agpy MAOL(L] ) ! on K,
where L is independent of K, v; and n.
Lemmas and mean
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PROPOSITION 5.6. Let K be a compact set in X and 7 be a path in Z such

N
that K cUr)—(Uper{Ct, 2, O s E—pt=01 U {t=0}) and |=(r)| <e/|t] for any (8, 2, {)
K. Then there exist Ak., . and L such that

(.18 \Wait, 2,6 Dl < Ag.r, MALAL+ [+ on K,
where L=1L(0) is independent of K, 7, ¢ and n.

Now let us recall the definition of the sets X, and X (see (1.12))
Xo={@, 2, &C**?; [t|<r, |z|<r, || <r and c[t|<I{[},
X={t20cC"?; [t|<r, |z|<r, [{|<rt={t =0V {{ =0V {t =}
We have

(5.19) {

THEOREM 5.7. Let W(t, z, {, AH=O(X,) be a solution defined by (3.24) of the
equation

(5.20) L2 8 3 0 W, 2 L = EL 25D

271
(see Theorem 3.7). Then W(t, z, €, A) is holomorphically extensible to X asa
function of (t, z, O, that is, W, z, {, HE0O(X).

Proor. Put e=1/2L and »r=1/6L. Then [{/t|<r/|t|<e/|t| and &/|t]>3
for (t, z, C)E)A(I. Let #=X and o={0(s); 0<s<1} be a continuous path in X
such that ¢(0)eX, and ¢(1)=%. Then we can choose a compact set K in X
and a homotopic deformation 7y =7y, of the integration path such that

/""—\_____,/
0K cU@)—(Uper{{—pt=0}U{t=0}) and |z(r)|<e/[¢] for @, 2, D<K (see Fig.
5.1). Then, by [Proposition 5.6, we have |W, ,(, z, {, DI SMQR)Ak.(5/6)"".
Hence W,(t, z, {, A=33521 W, z, {, A) converges on K, which is the holo-
morphic prolongation of W, z, {, 4) along ¢. Thus we have W(, 2, {, A<
o X)coX).
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§6. Integral representation.

In §6 we complete the proof of which gives a representation
of singular solutions of [1.2). W(, z, {, 1) contains a holomorphic parameter A.
We integrate functions of (¢, z, {, 2) with respect to A4 and obtain a formula of
singular solutions. For this purpose we give a representation of f(, 2)&

O([?—T}_(:), where K,={¢,(t, z)=0} with ¢, 2) given by [L.5).

PROPOSITION 6.1. Let f(t, 2)20(@2—K,). Then f(t, z) is represented in the
following form in a neighbourhood Q' (2'<8) of the origin.

Let =R and let (t, z)= Q" with |arg¢,(t, z)—n—0|<m. Then there exisi
functions fo(t, z, DO’ XC) and hq(t, 2)=O(2’) such that

cogl N
60 £ 2= " exppit, Dfott, 2, DAkt D, 1g+01<n/2,

holds. Moreover fa(t, z, A) has the following properties.
(1) For any &>0 there is a constant C.>0 such that for |largd+0|<=z/2
(6.2) | folt, 2, M| < C.exp(el]).

@) Let |8—6'|<z—25(0<25<x) and put fo.o (t, 2, N=Fo(t, 2, D—Fo (&,
z, A). Then there is a constant ¢;>0 independent of 8 and 0’ such that

(6.3) | Fo.0:(t, 2, | < Cy, 9 exp(—cs|A])
for 2 with max(—@0, —0')—rn/2+d<argA<min(—@, —8’')+n/2—0.

We have [Proposition 6.1] from Propositions given in Appendix. Now let
Welt, z, £, 1) be a solution of (2.12) where we put f(t, z, )=Fe(t, z, A). Then
it follows from [6.2) and that for any ¢>0 and any compact set
Kin X

(6.4) [Wo(t, 2z, §, D] = Ck,.exp(eldl])
holds for A with |argi+0|<=z/2.
Put Sy={s=0; |args—n—0| <z} and define

oogl

65 Uit 58 9= " expGoWit, 2 & Ddl, 19401 < /2.

U¥(t, z, £, s) is holomorphic as a function of s in S, by and U, z, {, s)
€0,(X) as a function of (¢, z, {). Moreover

PROPOSITION 6.2. U§(, z, £, s) is holomorphic in Y, with Y y=X, X {0<]s| <
R.} for some R, and extensible to YV with Y=Xx {0<|s]<R,}.

PrOOF. Let § and 6’ be |8—0'|<m/2. We have
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(6.6) LW, 2, &, N—Wyit, 2, L, D) = 0.0, 2§ 4) ,
27iC

Fo.ot, 2, 2)
(I=tholt, 2, )
C") be a unique solution of

where gg.4:(, 2, {, )= Let We, (¢, 2, &, 2 O(XOXCl)f\(?()?X

(6.7) LW ot 2,8, 2) = 8o.0(t, 2, ) .
2riC
It follows from that for any compact set X in X
(6'8) |W0.0'(t1 Z, C; l)l é CK,H,@'eXp(—CIZD (C>O)

for 2 with max(—60, —6’)—r/4<argA<min(—0, —6’)+=r/4. We have, by the
uniqueness in 0y(X), Wy(t, z, {, D=We- (¢, 2, {, D+Ws. 4., z, &, A). Put

ooeﬁ[’
(6.9) Usott, 2,69 =" expQsWo.0t, 2 €, Dd2,

where max(—6, —0')—=n/4<¢<min(—0, —0")+=/4. Then, by [6.8), U (¢, z,
g, s)=0X,Xx {|s| <C}) and it is extensible to X x {|s|<C}. We have U§(, z,
L, s)=Uk@, 2z, & $)+Uko @, 2, & s) in XoX(SpNSeN{ls]<C})and in XX(SyN
Se-N{|s|<C}). So U¥t, z, , s) is holomorphic in X, xX((Ss\USe)N{ls|<C})
and in XX((S@USpf)f\“S[ <C}). By continuing this process, it is shown that
UX, z, £, s) is holomorphic in ¥, and is extensible holomorphically to V.

Put T={{t, z, DeU@); D@, z, )=0}. We have

LEMMA 6.3. There is a holomorphic function (@, z) in a neighbourhood of
t=2=0 such that T={{=¢@, 2)}, K,;={¢@, 2)=0}, K,={J(t, z2)=t} and

6.10)  &t, 2) = (z+H,0, z, E)t)/(H.0, z, £)—Hy0, z, £)+0([t]*+ 2|2,
PrROOF. We have
D, z, O = z,-+H\0, z, t+(H(0, z, £)—H,0, z, HHCH0(|t1*+1Z1?).

Since H,(0, z, &)— H.(0, 2, 5)#0, it follows from the implicit function theorem
that there is a holomorphic function ¢(, z) with (6.10) in a neighbourhood of
the origin such that T={{=¢(, 2)}. Since O, z, 0)=¢,(, 2) and D, z, )=
¢a(t, 2), we have K= {¢p.(t, 2)=0} = {¢(t, 2)=0} and K.= {¢.(t, 2)=0} = {¢(t, 2)=t}.

PROOF OF THEOREM 1.4. We denote by U*(¢, z, {, s) the prolongation of
Uk, z, {, s) defined on Sy for some 6. It follows from (6.10) in
that there is a positive constant % such that if [z,|>k|[t], |¢(, 2)| >c¢|t| holds
for some ¢>1. Put Qi={G, 2); |t|<r, |z|<r and |z,|>Fk]|t]|} for a small »>0.
For (t, z)&€824 we can choose a path I" in {-space so that it is closed and sur-
rounding once {||<|t]} in X, and {{; @@, z, £)=0} is outside of I (see Fig.
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1.1). Since U*@, z, &, s)=0,(Y), we can define for ¢, z)€ 2}

61) w2 = U 5 ¢ 06 2 O)aC

= SrdCSr:ewexp AD(t, z, O)Wo(t, z, L, AHd, |9+0] <=z/2,

which is holomorphic in J). We show (6.11) is a desired integral representa-
tion. From the method of construction of Wy(z, z, £, 1), we have

(6-12) L(t’ 2, at: az)v(t: Z) = S[’L(t’ 2, at; az)U*(t; 2, C) @(t; 2, C))dc

cogld
={ atl " exp0, 2 DAL 2, € 8 BIWC, 2, T, DA
coeid
+{ el e, 2, OILE, 2, 0, 0IWAC, 2, € a2
By [2.5), we have

619 (™ exp0, 2 DAL, 2 8, 8, 3Watt, 2, €, Dad
= " exp0(, 2 DU-3DC, 2, ONG, 2 DG, 2,8, B, LWt 2, T, DR
— o] exp U0, 2 O, 2 DM, 2, T, 8, Wl 2, &, DA

weiSb
+{" e a0, 2, a1, 2, OME, 2, € 9, 3IWott, 2, ¢, DY
Hence, we have, by (2.7) and (2.12),
(6-14) L(t; 2, aty aZ)U(t, Z)

= SrdC{—GCS:ewexp (A0, 2, DM, 2, DM, 2, 31, 0IWolt, 2, T, DdA}
+ at] ™ exp a0, 2, 011, 2 OAE, 2T, B Wl 2, €, DhdA
+{ at[™ expa0, 2, OILE, 2, 8 2IWtt, 2, €, Dad

= Srdcgjewexp QD 2, OYA—tholt, 2, OILE, 2, C, Be, 8., WG, 2, L, D} dA

cogi¢ 7 et n
= at[ expi0e, 2, c»—f%—z%ﬁd,z =" exoao, 2, 0740, 2, Dax

::fo(t, z) = f(t: z)+h, 2),

where h(t, z) is holomorphic atjthe origin. Put w(t, z2)=u(, z)—v(t, z). Then,
since w(t, 2)€0z, and L(, z, 0;, ,)w(t, 2)=h(, 2), w(, z) is holomorphic at the
origin by (1.11). This completes the proof of [Theorem 1.4.

PrROOF OF THEOREM 1.5. Let us proceed to analysis of u(f, z) defined by
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(6.11). By [Proposition 6.2 Ux(t, z, {, $)E@,(Y). So we can deform the integra-
tion path I' if ¢(t, 2)=0, ¢ (see Fig. 6.1.) and have the holomorphic prolongation
of v(t, z) from £, to a wider set. It follows from this deformation and
that v(t, z) is holomorphic except the set {t=0}\U {¢(, 2)=0} U {¢(t,
)=t} =K,UK,UK,. Thus we have u(t, 2)c0(2 —K, UK, UK, for a neighbour-
hood £’ of (¢, z2)=(0, 0).

C=tn

Fig. 6.1.

§7. Proof of Theorems.

In §7 we show Theorems [.6-1.8. Let L;(t, z, 0,, 3,) (¢=1, 2) be those in
§ 1. First of all we give a lemma.

LEMMA 7.1. The following identities hold :

(7.1) L,@, z, 0;, 0 )t*w(t, z)
= {t* Ly(t, 2, 0, 0.)+kt* 120, + A, z, 0.))+k(k—1)t**tw(, 2),
(7'2) Ll(ty Z; al) az)tkW(t, Z) == {tkL1<t’ Z) at; az)+/€tk_laﬁ(t1 Z)}w(t) Z)-

It is not difficult to show [Lemma 7.1. So we omit the proof. Let L(t,z,4.,0,)
=t2Ly(t, 2, 0:, 0,)+tL.(t, 2, 0, 0,)+c(t, z2). By [Lemma 711 we have

(7.3) L, z, 0., 0)t*w(, z) =t*M*(t, 2, d,, 0)w(, z),

where

(7.4) M*@, z, 0;, 0,) = t*L,(t, z, 0, 0,)+tM%(@, z, 0, 0,)+ M@, 2),
(7.5) M3, 2, 0:, 0,) = 2k0,+ L \(t, z, 0., 0,)+RAG, z, 3.),

(7.6) Mit, z) = k(k—1)+ka @, 2)+c(, 2).

The indicial polynomial ¢(M*; ) of the Fuchsian operator M*(, z, 9;, 9,) is
(7.7 o(M*¥; ) = plp—D+2kp+a,0, 2)p+k(k—1)+ka,0, 2)+c(, 2)
=4(L; p+k).
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ProoF OF THEOREM 1.6. First we assume n,=0. So the conditions of
the theorem mean that ¢(0, z)=2z%c¢(2), ¢,(0)=0 and ¢(M*'; p)=0 for all p=Z,.
Let us expand f(t, 2)€0(Q): ft, 2)=2+2.f¥(z)t". Define

(7.8) v, 2) = f§@)/ i, 2)Pco(2).
Then there is a function g(t, z) with a pole on K, such that
(7‘9> L(t: 2, at; az)v(tr Z) - tg(t) Z)+f>(‘)<(2)<21/$01(t7 Z))p .

Put u(t, 2)=v(t, 2)+tw(, 2). Since u(t, 2), v(t, 2)€0;, and u(0, 2)=v(0, 2), w(, 2)
also belongs to O;, (see Definition 1.2 and [1.9). Then we have

(7.10) tMt, z, 0;, 0,)w(t, 2) = L(, z, 0., 0,)u(t, 2)— L(t, z, 0., 0.)v(¢, 2)
= —tg(t, 2+ 2)— [§=)(z/e:t, 2))°
= —1tg@t, 2)+ 252, fa@t" - 5@ (@it, 2)P—20)/@.(t, 2)7 .

Since ¢,(0, z)=z,, there is a function A, z2)€0(2—K,) with a pole on K,
such that

(7.11) M'@, z, 0, 0)w(t, 2) = h(t, 2).

In the above formula we have w(, 2)€0a, A, 22€O0(Q—K,)_and 4(M*; p)
%0 for pu=Z,. Consequently, when n,=0, follows from
15. Let n,>0. Put k=n,. By the assumption there exists a polynomial of
tt, 2)=3%2 t"v,(2) such that L(, z, 0, 0,)v(t, 2)—f(, 2)=t*g(t, z), where g(t, z)
is holomorphic at the origin. Put u(, z)=v({, z)+t*w(, z). Then we have

(7'12) L<t9 2, at’ az)u(t; Z)
= L(t) 2, at; az)v(ty Z)+tkMk<t: z, at: az)w(t: Z) = f(t) 2)-

Hence M*(t, z, 0, 0,)w(t, z2)=—g(t, z). Since ¢(M*; p)=¢(M; p+k), the roots
of ¢(M*; p)=0 are p,(z)—k (f=1,2). Hence we have for n,>0
by the preceding result for n,=0.

Now we proceed to show Theorems [.7 and 0.8 Let L(, z, @, 0,)=
tLs(, z, 0,, 9)+ L., 2, 0, 0,). By we have

(7.13) L(t, z, 8, O)t*w(t, z) = t*'M*(t, z, 0, O,)w(t, 2),
where

(7.14) M*@, 2, 0., 0,) = t*Ls(t, z, 0., 0.)+tMi(Q, 2, 0., 0.)+ M, 2),
(7.15) M, z, 0, 0.) = 2k0,+ L\(t, 2z, 8, 0.)+RA(, 2, 0,),
(7.16) M, z) = k(k—1)+ka,(t, z).
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The indicial polynomial ¢(M*; p) of the Fuchsian operator M*(t,z,0;,d,) is
(7.17)  e(*; ) = p(p—1)+2kp+a,0, 2)p+k(k—1)+ ka0, 2) = &(L; p+k).
PRrROOF OF THEOREM 1.7. Let v(¢t, 2)c0(2'—K,), 2'c£, be a solution of
LZ(t, z, at» az)v(ty 2) = 0 »
(7.18)
v(0, 2) = uy(2) .

The existence of v(#, z) is assured by Hamada [3], Hamada, Leray and Wagschal
[4] and Wagschal [10]. Put u(t, 2)=v(, z)+tw(, z). Then we have
(7'19) Ml(t; Z’ al’ az)u)(ty Z) = L<t) 2, ah az)u(t’ Z)_L<t’ z, al; az)v(t: Z)

= f(t, 2)— L., z, 0:, 0. v, z) = h(t, z2) € O(2'—K,).

Since £(M*; 1)=(p+1)(p+a,0, 2))%0 for p=Z, from the assumption, we have
Theorem 1.7 from [Theorem 1.5l

PROOF OF THEOREM 1.8. Put u(f, z)=u,(z)+tw(t, z). Then
(7'20) L(t; z, at} az)u(ty Z)
= L(t, z, 0i, 0)us(2)+M'(, 2, 0:, 0Jw(t, 2) = f(t, 2) .

We have M@, z, 0., 0)w(, z) = f(t, 2)— L, z, 0, 0)u,(z) = g@t, 2€0(2) and
w(t, 2)€0;, Since ¢(M*; w)=¢(M; p+1), the roots of ¢(M*'; 4)=0 satisfy the
condition of So we have [Theorem 1.8l

§ 8. Appendix.

Let z=(z, 21, -, 2v)=(20, 2’) be the coordinate of C¥*!, W={zeC"*!; |z|
<R}, K={z,=0}, W(a, b)={zeW—K ; a<arg z,<b} and W= {z€CV*'; |z2]<R}.
We give a representation of f(z)eO(ﬁ). For a given 8=R define

o) Fole, B =5, exp(—it)ft, )it

T(0) is a path starting at Re*?*?™  going to ¢2*“+* (0<e<R), rounding the
origin once on |#,|=¢ and ending at Re!’ (see Fig. A.l).
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i0

T(6) Re

p \//R
N

VS

t,-space

Fig. A.1.

For fo(z’, ATwe have

PROPOSITION A.l. (1) f4(z/, A) is an entire function of A.
(2) For any &>0, there exists a constant C.>0 such that

(A.2) suspR | folz’, D] < C.exp(e|d]) for 2 with |arg A+8|<=n/2.
12

() Put f9.4:(z', D=Ffo(z', )—fo:(z’, D). Suppose |6—0'|<x—28 (0<20< 7).
Then there is a ¢;>0 independent of 8 and 0’ such that

(A.3) | fo.0:(2, D) < Cop, 5 €xXp (—cs|A))
for A with max(—@0, —68")—n/2+d<arg A<min (—@, —8")+=r/2—0.

PROOF. The proof of assertions (1) and (2) is easy. So we omit it. We
show (3). Define a path T*(@, ") on |t,|=R: T*(, 0')={t,=Ret1-0+:6">.
0<s<1}. We have

A8 foo@, D=nd|  exn-27t, Nt exp(=207(t, 2)dt}

1

~ omi

Put ¢=argi. Since it holds that |exp(—A4t,)|<exp(—|2|R cos(¢+argt,) on

T*, 6’y and T*(0+2x, 6’+2x), we have cos(¢p+argi,)=c;>0 on the same

arcs for any A with max(—@, —0’)—z/24+0<¢<min (—8, —0")4+r/2—4. This
means (3).

T(

U rrrns s XD 20F 0, )= exp (=20t 2)dt}.

For the inversion formula we define
wel® .
(A5) fole) =" exp 20 fatz', Daz,

where |¢+60|<z/2 and a is a fixed constant. It follows from (A.2) that f4(z)
is holomorphic in W(8, 8+2x).

ProPOSITION A.2. There exists a funciion he(z)€0{|z,| <R, |2’| £R} such
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that

(A.6)

S. OucH1

fo(@) = f(@+he(z)  in W(O, 6+27),

which means that fo(z)eO(W—K).

PROOF. We have for z, with |arg zp+¢—r| <m/2

(A.7)

1 (wei? ,
fo@ =5\ exp(add| | exp(—a)f(to 2.

Put ¢=—@ and let arg z,=6+x and |z,| >2e. Then we have

(A.8)

Fol) = g ft, 2)exp(—alto—2)/ =2k dty = (D —ho(a),

T®

where l’le(z):;‘—s {f(t,, 2)exp(—alt,—zy))/to—z0)} dt, and T*(f) is a path

TINT &

starting at Re'’ and going around anti-clockwise on the circle |¢]=R once. So

he(2)

is holomorphic on {z; |z,| <R, |2’| £R}.

Proposition 6.1 easily follows from Propositions A.1 and A.2.

(1]
£2]
(3]
[4]

(5]
£6]

(7]

£8]
(9]
(10]

References

M. S. Bauoendi and C. Goulaouic, Cauchy problems with characteristic initial hy-
persurface, Comm. Pure Appl. Math., 26 (1973), 455-475.

S. Fujiie, On some degenerate elliptic equations of Fuchsian type with variable
characteristic exponents (in Japanese), Kyoto Univ. master thesis, (1989).

Y. Hamada, The singularities of solutions of Cauchy problem, Publ. Res. Inst.
Math. Sci., 5 (1969), 21-40.

Y. Hamada, J. Leray and C. Wagschal, Systémes d’équations aux derivées partielles
a caractéristiques multiples; probléme de Cauchy ramifié; hyperbolicité partielle,
J. Math. Pures Appl., 55 (1976), 297-352.

Y. Hasegawa, On the initial value problems with data on a characteristic hyper-
surface, J. Math. Kyoto Univ., 13 (1973), 579-593.

S. Ouchi, An integral representation of singular solutions of linear partial dif-
ferential equations in the complex domain, J. Fac. Sci. Univ. Tokyo, Sect. A Math.,
27 (1980), 37-85.

S. Ouchi, An integral representation of singular solutions and removable singulari-
ties of solutions to linear partial differential equations, Publ. Res. Inst. Math. Sci.,
26 (1990), 735-783.

H. Tahara, Fuchsian type equations and Fuchsian hyperbolic equations, Japan. J.
Math. (N. S.), 5 (1979), 245-347.

J. Urabe, Meromorphic representations of the solutions of the singular Cauchy
problems T, J. Math Kyoto Univ., 28 (1988), 335-342.

C. Wagschal, Probléme de Cauchy analytique a données méromorphes, J. Math.
Pures Appl., 51 (1972), 375-397.



Singularities of solutions of equations 251

Sunao OUCHI

Department of Mathematics
Faculty of Science and Technology
Sophia University

Kioicho Chiyoda-ku

Tokyo 102

Japan



	\S 1. Introduction.
	THEOREM 1.4. ...
	THEOREM 1.5. ...
	THEOREM 1.6. ...
	THEOREM 1.7. ...
	THEOREM 1.8. ...

	\S 2. New operator $\mathcal{L}(t, ...
	\S 3. Construction of ...
	THEOREM 3.7. ...

	\S 4. Holomorphic extension ...
	\S 5. Holomorphic extension ...
	THEOREM 5.7. ...

	\S 6. Integral representation.
	\S 7. Proof of Theorems.
	\S 8. Apppendix.
	References

