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1. Introduction.

Let $M$ be a smooth $n$ -manifold and $C$ a conformal class on M. $(M, C)$ is
conformally flat if for any point $p$ of $M$, there exists a metric $g$ contained in
$C$ such that $g$ is flat on some neighborhood of $p$ . A conformal class $C$ is
called a flat conformal structure if $(M, C)$ is conformally flat. A manifold $M$

is: said to be conformally flat if $M$ admits a flat conformal structure. In this
paper, we always assume a manifold $M$ to be smooth, compact and connected
with $\dim M=n\geqq 3$ , unless otherwise stated. For an orientable manifold $M$, we
also assume that $M$ is oriented.

DEFINITION 1.1. An $n$ -manifold $M$ is said to be nontrivial if $M$ is not
diffeomorphic to the standard $n$ -sphere $S^{n}$ . And $M$ is C-prime if

(1) $M$ is non-trivial and conformally flat, and
(2) there is no decomposition $M=M_{1}\# M_{2}$ (a connected sum of $M_{1}$ and $M_{2}$),

where each of $M_{1}$ and $M_{2}$ has the property (1).

A well-known theorem of Kulkarni [12] states that a connected sum of
conformally flat manifolds is also conformally flat. Thus, connected sums of
$C$-prime manifolds are conformally flat. On the other hand, a simple observa-
tion gives the following proposition.

PROPOSITION 2.1. Every non-trivial conformally flat manifold is diffeomorphic
to a connected sum of a finite number of C-prime manifolds.

Thus the classification problem of conformally flat manifolds is reduced to
the classffication of $C$-prime manifolds. A decomposition $M=P_{1}\#\cdots\# P_{k}$ , where
each $P_{i}$ is $C$ -prime, is called a C-prime decomposition of $M$ in this paper.

The purpose of this paper is to show several results concerning the C-
prime decomposition of conformally flat manifolds. In section 2 we prove Pro-
position 2.1 above and some sufficient conditions for a manifold to be C-prime.
We also discuss the Yamabe invariant $\mu(M, C)$ (see Definition 2.4) of a con-
formally flat manifold $(M, C)$ . And we see that, for some $M$ , there exists a
sequence of flat conformal structures on $M$ , which maximizes the Yamabe in-
variant, such that the limit of this sequence gives a decomposition of $M$.
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In section 3 and section 4, we devote our attention to a certain class of
conformally flat manifolds. Let $\Omega$ be an open subset of $S^{n}$ , and $\Gamma$ a discrete
subgroup of the conformal transformation group Conf $(S^{n}, C_{0})$ of $(S^{n}, C_{0})$ , where
$C_{0}$ denotes the conformal class containing the standard metric on $S^{n}$ . If $\Gamma$

leaves $\Omega$ invariant and acts freely and properly discontinuously on $\Omega$ , then the
quotient space $\Omega/\Gamma$ is Hausdorff. In the case $\Omega/\Gamma$ is a manifold, $\Omega/\Gamma$ has a
natural conformal structure and it is conformally flat. A conformally flat mani-
fold $(M, C)$ is called Kleinian if $(M, C)$ is conformal to $\Omega/\Gamma$ for some $\Omega$ and $\Gamma$ .
A conformal class $C$ on $M$ is called a Kleinian structure if $(M, C)$ is Kleinian.
And a manifold $M$ is said to be Kleinian if $M$ admits a Kleinian structure.
Another theorem of Kulkarni and Pinkall [13] says that a connected sum of
Kleinian manifolds is also Kleinian. The following theorem says that the
converse of this theorem is true in a weak sense.

THEOREM 3.2. Let $M$ be Kleinian. SuPPose $M$ is diffeomorphic to a connected
sum $M_{1}\# M_{2}$ , where $M_{1}$ and $M_{2}$ are not necessarily conformally flat. Then there
exists Kleinian manifolds $M_{i}’(i=1,2)$ such that $M_{i}’$ is homeomorphic to $M_{\ell}(i=$

$1,2)$ and $1ll=M_{1}’\# M_{2}’$ .
We cannot expect $M_{i}’$ to be diffeomorphic to $M_{i}$ . Because an exotic n-

sphere $\Sigma^{n}(n\geqq 7)$ satisfies $\Sigma^{n}\#(-\Sigma^{n})=S^{n}$ but $\Sigma^{n}$ does not admit a flat conformal
structure, where $-\Sigma^{n}$ is $\Sigma^{n}$ with the opposite orientation. As a corollary, we
see that if a Kleinian manifold $M$ is $C$-prime, then $M$ is topologically prime
(see Definition 3.3 and Corollary 3.4). In section 4, we discuss the Yamabe
invariant $\mu(M, C)$ of a Kleinian manifold $(M, C)$ . Main results are the following.

THEOREM 4.3. Let $M$ be an oriented Kleinian 3-manifold. And let $P_{1}\#\cdots$

$\# P_{k}$ be the $C$-Prime decomPosition of $M$, if $M$ is non-trivial. Then $M$ admits a
Kleinian structure with Positive Yamabe invariant if and only if $M$ is diffeomorPhic

$\subset R$ to $S^{3}$ or each $P_{i}$ is diffeomorphic to either a $sPherical$ space form or $S^{1}\cross S^{2}$ .
THEOREM 4.6. $SuPPoseM$ admits a Kleinian structure $C$ with non-negative

Yamabe invariant, and is diffeomorphic to a connected sum $M_{1}\# M_{2}$ , where $M_{1}$ and
$M_{2}$ are not necessarily conformally flat. Then there exists $M_{i}’(i=1,2)$ as in
Theorem 3.2 and each $M_{i}$

’ admits a Kleinian structure with non-negative Yamabe
invariant.

In [19], Schoen and Yau proved that if $(M, C)$ is conformally flat with
positive Yamabe invariant, then the developing map of $(M, C)$ is injective, and
therefore $(M, C)$ is Kleinian. Thus, Theorem 4.3 gives the classification of
oriented 3-manifolds admitting a flat conformal structure with positive Yamabe
invariant.
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2. The $C$-prime decomposition of conformally flat manifolds.

In this section, manifolds under consideration are assumed to be conformally
flat.

PROPOSITION 2.1. Every non-trivial manifold $M$ is diffeomorphic to a con-
nected sum $P_{1}\#\cdots\# P_{k}$ of $C$-Prime manifolds.

PROOF. If $M$ is not $C$ -prime, then there exist nontrivial manifolds $M_{1}$ and
$M_{2}$ such that $M=M_{1}\# M_{2}$ . If either $M_{1}$ or $M_{2}$ is not $C$ -prime, then we can
decompose it again. All we have to do is to show this process stops in a finite
number of steps. We denote by $d(M)$ the smallest number of generators of
the fundamental group $\pi_{1}(M)$ of $M$ . Then, by the van Kampen theorem and
the Grushko-Neumann theorem, $d(M_{1}\# M_{2})=d(M_{1})+d(M_{2})$ holds. Thus, if $M=$

$M_{1}\#\cdots\# M_{k}$ with $d(M)<k$ , then $d(M_{t})=0$ for some $i$ . By a theorem of Kuiper
[11] $M_{i}$ must be diffeomorphic to $S^{n}$ . This completes the proof. $q.e.d$ .

REMARK. In [16], Milnor pointed out that if the Poincar\’e conjecture is
true, then the proof of the topological prime decomposition theorem for 3-mani-
folds becomes easier. The proof of Proposition 2.1 is exactly the same as the
proof of the topological prime decomposition theorem for 3-manifolds, which
was suggested by Milnor, if we replace the phrase “by a theorem of Kuiper”
with “if the Poincar\’e conjecture is true”.

By the proof of Proposition 2.1, we obtain the following sufficient condition
for $M$ to be C-prime.

COROLLARY 2.2. If $d(M)=1$ , then $M$ is $C$-prime.

Another sufficient condition is given by

PROPOSITION 2.3. If the universal covering sPace $\tilde{M}$ of $\Lambda I$ is diffeomorPhic
to $R^{n}$ , then $M$ is C-Prime.

PROOF. Suppose $M$ is not $C$ -prime. Then there exist non-trivial manifolds
$M_{1}$ and $M_{2}$ such that $M=M_{1}\# M_{2}$ . So we can take a subset $S$ of $M$, which is
an embedded $S^{n-1}$ , such that $M\backslash S$ has two connected components, say $L_{1}$ and
$L_{2}$ , where $L_{i}$ is diffeomorphic to $M_{i}\backslash$ ( $n$ -disk) $(i=1,2)$ . We can also take a
subset $A$ of $M$, which is diffeomorphic to $(-1,1)\cross S^{n-1}$ and $\{0\}\cross S^{n-1}$ corresponds
to $S$ . Since $J\tilde{M}$ is diffeomorphic to $R^{n}$ , a lift $\tilde{S}$ of $S$ separates $\tilde{M}$ into two
connected components $F_{1}$ and $F_{2}$ , where $F_{1}VS$ is compact and $F_{2^{\cup}}S$ is non-
compact. Let $\pi:\tilde{M}arrow M$ be the covering projection. If $\pi(F_{1})\cap L_{1}\neq\emptyset$ and
$\pi(F_{1})\cap L_{2}\neq\emptyset$ , then we can take a lift $\hat{S}$ ’ of $S$ , which is contained in $F_{1}$ . Let
us denote two connected components of $\tilde{M}\backslash \tilde{S}$ ’ by $F_{1}’$ and $F_{2}’$ , where $F_{1}’$ is con-
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tained in $F_{1}$ . If $\pi(F_{1}’)\cap L_{1}\neq\emptyset$ and $\pi(F_{1}’)\cap L_{2}\neq\emptyset$ , then again we can take a
lift $\tilde{S}’$ of $S$ , where $\tilde{S}’$ is contained in $F_{1}’$ . Since $F_{1}\cup\tilde{S}$ is compact, this process
stops in a finite number of steps, and we can take a lift $\tilde{S}_{0}$ of $S$ so that $\pi(F)$

is contained in either $L_{1}$ or $L_{2}$ , where $F$ is a bounded connected component of
$\tilde{M}\backslash \tilde{S}_{0}$ . It is easy to see that $\pi|F$ is a covering map onto either $L_{1}$ or $L_{2}$ ,

where $\pi|F$ denotes the restriction of $\pi$ to $F$. Moreover, it is injective, since
$\pi$ is injective on $\tilde{S}_{0}$ . Thus either $L_{1}$ or $L_{2}$ is diffeomorphic to $F$. Since there
exists a lift $z\check{4}_{0}$ of $A$ , which contains $\tilde{S}_{0}$ , we see that $F$ is homeomorphic to an
open $n$ -disk by the generalized Schoenflies theorem (see for example[3]). Hence
either $M_{1}$ or $M_{2}$ is homeomorphic to $S^{n}$ . By Kuiper’s theorem [11], either $M_{1}$

or $M_{2}$ is diffeomorphic to $S^{n}$ . This contradicts our assumption that $M_{1}$ and $M_{2}$

are non-trivial. $q.e.d$ .
By Corollary 2.2 and Proposition 2.3, we see that lens sPaces, $S^{1}\cross S^{n-1}$ ,

flat manifolds, hyperbolic manifolds and products of $S^{1}$ and hyperbolic mani-
folds are C-prime.

Next we discuss the Yamabe invariant $\mu(M, C)$ of $(M, C)$ , which is a con-
formal invariant concerning scalar curvature. Though we are considering only
conformally flat manifolds in this section, manifolds and conformal classes in
Definition 2.4, Fact 2.5, Fact 2.6 and Fact 2.7 are not necessarily conformally
flat.

DEFINITION 2.4. The functional $I:Carrow R$ , which is defined by

$I(g)= \frac{\int_{M}R_{g}dV_{g}}{(\int_{M}dV_{g})^{(n-2)/n}}$ ,

is called the Yamabe functional, where $R_{g}$ and $dV_{g}$ denote the scalar curvature
and the volume element of a metric $g$ , respectively. And

$\mu(M, C)=\inf_{g\in C}I(g)$

is called the Yamabe invariant of $(M, C)$ .
The well-known Yamabe problem (see for example [10] or [15]) asked that,

for any $(M, C)$ , whether there exists a metric $g$ contained in $C$ such that $g$

satisfies $I(g)=\mu(M, C)$ . This problem was answered affirmatively by the works
of Yamabe [21], Trudinger [20], Aubin [1] and Schoen [17]. Some of the
basic known facts on the Yamabe problem are the following.

FACT 2.5. For any $(M, C)$ , there exists a metric $g$ contained in $C$ such that
$g$ satisfies $I(g)=\mu(M, C)$ . And the scalar curvature of $g$ is constant.
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FACT 2.6. For any $(M, C),$ $\mu(M, C)\leqq\mu(S^{n}, C_{0})=I(g_{0})$ holds, where $g_{0}$ denotes
the standard metric of $S^{n}$ , and the equality occurs if and only if $(M, C)$ is con-
formal to $(S^{n}, C_{0})$ .

FACT 2.7. A conformal class $C$ on $M$ contains a metric with Positive (resP.

zero, resp. negative) scalar curvature if and only if the Yamabe invariant $\mu(M, C)$

is positive(resp. zero, resp. negative).

DEFINITION 2.8. An invariant $\mu_{C}(M)$ of $M$ is defined by $\mu_{C}(M)=\sup\mu(M, C)$ ,

where the supremum is taken over all flat conformal structures on $M$ .
This invariant $\mu_{C}(M)$ is well-defined since $\mu(M, C)\leqq\mu(S^{n}, C_{0})$ holds for any

$(M, C)$ . Note that $\mu_{C}(M)$ is positive if and only if there exists a flat conformal
structure $C$ on $M$ such that $\mu(M, C)$ is positive.

EXAMPLES. (1) If the fundamental group $\pi_{1}(M)$ of $M$ is finite, then $M$ is
diffeomorphic to a spherical space form and $\mu_{C}(M)=\mu(M, C_{0}’)=|\pi_{1}(M)|^{-2/n}\mu(S^{n}$ ,
$C_{0})$ , where $C_{0}’$ denotes the conformal class containing the constant curvature
metric on $M$ and $|\pi_{1}(M)|$ denotes the order of $\pi_{1}(M)$ .

(2) $\mu_{C}(S^{1}\cross S^{n-1})=\mu(S^{n}, C_{0})$ (see the remark following the proof of
Theorem 2.9).

(3) If $M$ admits a flat metric, then $\mu_{C}(M)=0$ . And $\mu(M, C)=\mu_{C}(M)$ holds
if and only if $C$ contains a flat metric (this follows from [5, Corollary $C]$ ).

(4) If a 4-manifold $M$ admits a metric $g$ with negative constant curvature,

then $\mu_{C}(M)=\mu(M, C_{0})$ , where $C_{0}$ denotes the conformal class containing $g$ .
And $\mu(M, C)=\mu_{C}(M)$ holds if and only if $C$ is conformal to $C_{0}$ (see [7] and
[8] $)$ .

(5) $\mu_{C}(S^{1}\cross N^{n-1})=\lim_{rarrow 0}\mu(S^{1}\cross N^{n-1}, C_{r})=0$ , where $N^{n- 1}$ is an $(n-1)-$

manifold admitting a negative constant curvature metric and C. denotes the
conformal class containing the product of the metric of $S^{1}$ with radius $r$ and
the metric with constant curvature $-1$ on $N^{n-1}$ (this follows from [5, Corol-
lary $C$]). Note that if $r=1/k$ with $k$ positive integer, then $C_{r}$ is $a$ Kleinian
structure.

(6) $\mu_{C}(S^{m}\cross N^{m})=0$ , where $N^{m}$ is as in (5). In this case, $\mu_{C}(S^{m}\cross N^{m})=$

$\mu(S^{m}\cross N^{m}, C)$ holds if and only if $C$ contains the product of the metric with
constant curvature 1 on $S^{m}$ and the metric with constant curvature $-1$ on $N^{m}$

(see [14]).

A certain modification of [9, Tbeorem 2] and [9, Corollary 1.11] gives the
following theorem. We denote by $M_{1}1LM_{2}$ the disjoint union of $M_{1}$ and $M_{2}$ .
Note that the Yamabe invariant can be defined for a compact and disconnected
manifold (see [9, Lemma 1.10]), though Fact 2.5, Fact 2.6 and Fact 2.7 turn
out to be false.
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THEOREM 2.9. (1) If $\mu_{C}(M_{1})\leqq 0$ and $\mu_{C}(M_{2})\leqq 0$ , then $\mu_{C}(M_{1}\perp M_{2})=-$

$(|\mu_{C}(M_{1})|^{n/2}+|\mu_{C}(M_{2})|^{n/2})^{2/n}$ .
(2) Otherwise, $\mu_{C}(M_{1}\lrcorner LM_{2})=\min\{\mu_{C}(M_{1}), \mu_{C}(M_{2})\}$ .
(3) $\mu_{C}(M_{1}\# M_{2})\geqq\mu_{C}(M_{1}\lrcorner LM_{2})$ .
(4) Suppose the equality in (3) holds for $M_{1}$ and $M_{2}$ and suppose that there

exists a flat conformal structure $C_{0}$ on $M_{1}\perp M_{2}$ such that $\mu(M_{1}\perp M_{2}, C_{0})=$

$\mu_{C}(M_{1}\perp LM_{2})$ . Then there exists a sequence {C.’} of flat conformal structures on
$M_{1}\# M_{2}$ , which satisfies $\lim_{\text{\’{e}}arrow 0}\mu(M_{1}\# M_{2}, C_{\epsilon}’)=\mu_{C}(M_{1}\# M_{2})$ , such that a suitable
choice of a metric $g_{\epsilon}$

’ contained in $C_{\epsilon}’$ gives a sequence $\{g_{\epsilon}’\}$ satisfying

(2.10) $\lim_{\epsilonarrow 0}(M_{1}\# M_{2}, g_{\epsilon}’)=(M_{1}\backslash \{p_{1}\}, g|M_{1}\backslash \{p_{1}\})U(M_{2}\backslash p_{1}=p_{2}\{p_{2}\}, g|M_{2}\backslash \{p_{2}\})$

for some metric $g$ contained in $C_{0}$ and for some point $p_{i}$ of $M_{i}(i=1,2)$ . The
union in the right hand side of (2.10) is given by the formal identification of $p_{1}$

and $p_{2}$ .

PROOF. (1) and (2) are just the same as [9, Corollary 1.11].

(3) Let $M$ be a compact but not necessarily connected manifold, and $p_{1}$

and $p_{2}$ two distinct points of $M$ . Remove two disks around $p_{1}$ and $p_{2}$ and
attach $I\cross S^{n-1}$ by identifying each boundary, where $I$ denotes a closed interval
of $R$ . Then we obtain a compact manifold $M’$ . If $M=M_{1}\lrcorner LM_{2}$ and $p_{\alpha}$ is a
point of M. $(a=1,2)$ , then $M=M_{1}\# M_{2}$ .

For any positive real number $\rho$ , there exists a flat conformal structure $C$

on $M$ such that $\mu(M, C)+\rho>\mu_{C}(M)$ . Since $C$ is a flat conformal structure,

there exists a metric $g$ contained in $C$ such that $g$ is flat on some neighborhood
of each $p_{\alpha}$ . With respect to the normal coordinates $(x_{\alpha}^{1}, \cdots, x_{\alpha}^{n})$ around $p_{\alpha}$ , for
some positive real number $\delta,$ $g$ can be written as $g=\delta_{ij}dx_{a}{}^{t}dx_{\alpha^{j}}$ for $x_{\alpha}=(x_{\alpha}^{1},$ $\cdots$ ,

$x_{a}^{n})$ with $|x_{\alpha}|=( \sum|x_{\alpha}^{i}|^{2})^{1/2}\leqq 2\delta$ . Take a smooth function $0\leqq w_{\delta}$Sl defined on
$R$ as $w_{\delta}(r)=0$ if $|r|\geqq\delta$ , and $w_{\delta}(r)=1$ if $|r|\leqq\delta_{0}$ for $\delta_{0}<\delta$ , and define a metric
$g_{\epsilon}$ on $M\backslash \{p_{1}, p_{2}\}$ by

$g_{\epsilon}=\exp\{\log(\epsilon^{2}|x_{a}|^{-2})w_{\delta}(\epsilon^{-1}|x_{\alpha}|)\}g$

for $0<\epsilon\leqq 1$ . Then, around $p_{\alpha},$ $g_{\epsilon}$ can be written as

$g_{\epsilon}=\{$

$\epsilon^{2}|x_{\alpha}|^{-2}\delta_{ij}dx_{\alpha}^{i}dx_{\alpha}^{j}$ if $|x_{\alpha}|\leqq\epsilon\delta_{0}$

$\delta_{ij}dx_{\alpha}{}^{t}dx_{c\iota}^{j}$ if $\epsilon\delta\leqq|x_{\alpha}|\leqq 2\delta$

and on $M\backslash \{B(p_{1},2\delta)\cup B(p_{2},2\delta)\},$ $g_{\epsilon}$ coincides with $g$ , where $B(P 2\delta)$ denotes
the set of all points with $|x_{\alpha}|\leqq 2\delta$ . With respect to new coordinates $(y_{\alpha}^{1}, \cdots, y_{\alpha}^{n})$ ,

where $y_{\alpha}^{t}=\epsilon^{-1}x_{\alpha}^{i},$
$g_{\epsilon}$ is written as

$g_{\epsilon}=\epsilon^{2}\exp\{\log(|y_{\alpha}|^{-2})w_{\delta}(|y_{\alpha}|)\}\delta_{ij}dy_{\alpha}^{i}dy_{\alpha^{j}}$



Decomposltion of conformally flat manifolds 111

for $|y_{\alpha}|\leqq 2\delta\epsilon^{-1}$ . In particular,

$g_{S}=\{$

$\epsilon^{2}|y_{a}|^{-2}\delta_{ij}dy_{\alpha}{}^{t}dy_{\alpha}^{j}$

$\epsilon^{2}\delta_{ij}dy_{a}{}^{t}dy_{a}^{j}$

if $|y_{\alpha}|\leqq\delta_{0}$

if $\delta\leqq|y_{\alpha}|$ ;Sl $2\delta\epsilon^{-1}$

holds. Note that $(B(p_{\alpha}, \epsilon\delta_{0})\backslash \{p_{a}\},$ $g_{\epsilon}|B(p_{\alpha}, \epsilon\delta_{0})\backslash \{p_{\alpha}\})$ is isometric to a half
infinite cylinder $[0, \infty)\cross S^{n-1}(\epsilon)$ of radius $\epsilon$ . Put $\delta’=\exp(\log\delta_{0}-\epsilon^{-4})<\delta_{0}$ , and
let $N=M\backslash \{B(p_{1}, \epsilon\delta’)\cup B(p_{2}, \epsilon\delta’)\}$ . Identifying two boundary components of
$(N, g_{\epsilon}|N)$ by an isometry, we obtain a conformally flat Riemannian manifold
$(M’, g_{\epsilon}’)$ . It is easy to see that $(M’, g_{\epsilon}’)$ contains a subset isometric to $(0,2\epsilon^{-3})$

$\cross S^{n-1}(\epsilon)$ . Then $\mu_{C}(M’)\geqq\mu_{C}(M)$ follows from a slight modification of the proof
of [9, Theorem 2].

(4) Take $C_{0}$ as $C$ in the proof of (3). Then, it is clear that $g_{\epsilon}’$ in the
proof of (3) satisfies (2.10). And flat conformal structures $C_{\epsilon}’$ containing $g_{\epsilon}’$

satisfy $\lim_{\epsilonarrow 0}\mu(M’, C_{\epsilon}’)=\mu(M’, C_{0})=\mu_{C}(M’)$ by the proof of (3). q.e. $d$ .

REMARK. If both $\mu_{C}(M_{1})$ and $\mu_{C}(M_{2})$ are positive, then $\mu_{C}(M_{1}\# M_{2})$ is also
positive by Theorem 2.9. That is, a connected sum of two manifolds admitting
a conformally flat metric with positive scalar curvature also admits a confor-
mally flat metric with positive scalar curvature. This fact was proved by
Schoen and Yau ([18, Corollary 5], see also [9]).

REMARK. If we put $M=S^{n}$ , then $M’$ is an $S^{n-1}$ bundle over $S^{1}$ . Since we
have seen that $\mu_{C}(M’)\geqq\mu_{C}(M)$ holds and since, by Fact 2.6, $\mu_{C}(M)\leqq\mu(S^{n}, C_{0})$

$=\mu_{C}(S^{n})$ holds for any $M$, we get (2) in the examples following Definition 2.8.
See also the remark following [9, Lemma 6.2].

REMARK. Theorem 2.9 suggests that it may be possible to get a C-prime
decomposition of $M$ as the limit of a suitable sequence of flat conformal struc-
tures on $M$, which maximizes the Yamabe invariant.

Known examples satisfying the assumption of (4) are, for instance, the
following.

(a) $M_{1}=T^{n}$ and $M_{2}=T^{n}$ .
(b) $M_{1}=S^{m}\cross N^{m}$ , where $N^{m}$ is an $m$-manifold admitting a negative constant

curvature metric and $M_{2}$ is $T^{2m},$ $S^{m}\cross N^{m}$ or $2m$-manifold with $\mu_{C}(M_{2})>0$ .
(c) $M_{1}=T^{2m}$ and $M_{g}$ is a $2m$-manifold with $\mu_{C}(M_{2})>0$ .
By [2, Corollary 8.8], [5] and (3) of Theorem 2.9, $\mu_{C}(M_{1}\# M_{2})=0=$

$\mu_{C}(M_{1}\perp M_{2})$ for these manifolds. And $\mu_{C}(M_{1}\perp M_{2})=\mu(M_{1}\perp M_{2}, C)$ holds for $C$

satisfying $\mu(M_{1}, C|M_{1})=\mu_{C}(M_{1})$ and $\mu(M_{2}, C|M_{2})>0$ (if $\mu_{C}(M_{2})>0$ ) or $\mu(M_{2}$ ,
$C|M_{2})=\mu_{C}(M_{2})$ (if $M_{2}=T^{n},$ $S^{m}\cross N^{m}$ ) by [9, Lemma 1.10].



112 H. IZEKI

3. The Kleinian case.

Let $M$ be a Kleinian manifold. Then there exists an open subset $\Omega$ of $S^{n}$

and a regular covering $\pi:\Omegaarrow M$, where its deck transformation is an element
of Conf $(S^{n}, C_{0})$ . On the other hand, if there exists a conformal structure $C$

on $M$ and a regular conformal covering $\pi:\Omegaarrow(M, C)$ for some $\Omega$ , then each
element of the deck transformation group $\Gamma$ of this covering can be uniquely
extended to an element of Conf $(S^{n}, C_{0})$ by Liouville’s theorem, and hence $\Gamma$ is
a discrete subgroup of Conf $(S^{n}, C_{0})$ . That is, $C$ is a Kleinian structure. Since
we assume $M$ to be connected and hence we can choose $\Omega$ to be connected, we
assume that $\Omega$ is connected in the rest of this paper.

PROPOSITION 3.1. Let $M$ be a non-trivial Kleinian manifold. If the homotopy
grouP $\pi_{n-1}(M)$ is trivial, then $M$ is C-Prime.

PROOF. Suppose $M$ is not $C$ -prime. Then there exist non-trivial confor-
mally flat manifolds $M_{1}$ and $M_{2}$ such that $M=M_{1}\# M_{2}$ . So we can take $L_{1},$ $L_{2}$ ,
$S$ and $A$ as in the proof of Proposition 2.3. Since $M$ is Kleinian, there exists
a connected open subset $\Omega$ of $S^{n}$ and a regular covering $\pi:\Omegaarrow M$. Take a
lift $\tilde{S}$ of $S$ and fix it. Then $\tilde{S}$ separates $S^{n}(\supset\Omega)$ into two open disks $D_{1}$ and
$D_{2}$ by the generalized Schoenflies theorem. If $\Omega$ contains neither $D_{1}$ nor $D_{2}$ ,
in other words, there exist points $p_{i}$ contained in $D_{i}\backslash (D_{i}\cap\Omega)(i=1,2)$ , then
$\tilde{S}$ represents a non-trivial element of the homotopy group $\pi_{n-1}(\Omega)$ . This con-
tradicts our assumption $\pi_{n-1}(M)=0$ . Thus, we may assume $\Omega\backslash \tilde{S}$ contains $D_{1}$ .
Hence, $\Omega\backslash \tilde{S}=(\Omega\cap D_{1})\perp(\Omega\cap D_{2})=D_{1}\perp(\Omega\cap D_{2})$ , where $D_{1}\perp(\Omega\cap D_{2})$ denotes the
disjoint union of $D_{1}$ and $\Omega\cap D_{2}$ . Since $D_{1}\cup\tilde{S}$ is compact, we can derive a
contradiction as in the proof of Proposition 2.3. $q.e.d$ .

THEOREM 3.2. Let $M$ be Kleinian. SuPPose $M$ is diffeomorPhic to a con-
nected sum $M_{1}\# M_{2}$ , where $M_{1}$ and $M_{2}$ are not necessarily conformally flat. Then
there exist Kleinian manifolds $M_{1}$

’ and $M_{2}$
’ such that $M_{i}’$ is homeomorphic to

$M_{i}(i=1,2)$ and $M=M_{1}’\# M_{2}’$ .

PROOF. Let $L_{1},$ $L_{2},$ $A$ and $S$ be as in the proof of Proposition 2.3, and
$\pi$ : $\Omegaarrow M$ be a regular covering map, which induces a Kleinian structure on
$M$. Take a lift $\tilde{A}$ of $A$ , and let $\tilde{S}$ be a subset of $\tilde{A}$ , which corresponds to $S$ .
Define $A_{+}$ and $A_{-}$ by $A_{+}=L_{2}\cap A$ and $A_{-}=L_{1}\cap A$ , respectively. Let $A_{+}$ and $\tilde{A}_{-}$

be subsets of $\tilde{A}$ , where $\tilde{A}_{+}$ and $\tilde{A}$ -correspond to $A_{+}$ and $A_{-}$ , respectively. By
the generalized Schoenflies theorem, $s^{n}\backslash S$ has two connected components and
both are homeomorphic to an open $n$ -disk. Denote them by $D_{1}$ and $D_{2}$ so that
$D_{1}\supset\tilde{A}_{+}$ and $D_{2}\supset\tilde{A}_{-}$ . Moreover $D_{i}\cup\tilde{S}(i=1,2)$ is diffeomorphic to a closed n-disk
if $n\neq 4$ . In the case $n=4$ , using a result of [4], we see that there exists $g_{\subset A}$
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such that $D_{i}Vs$ is diffeomorphic to a closed $n$ -disk. Let $M_{1}$
’ be a manifold

obtained by attaching $D_{1}$ to $L_{1}\cup S\cup A_{+}$ by $\pi|A_{+}:$ $\overline{A}_{+}arrow A_{+}$ . Since $\pi$ induces a
flat conformal structure on $L_{1}\cup S\cup A_{+},$ $M_{1}’$ is conformally flat. It is easy to
see that $M_{1}’$ is homeomorphic to $M_{1}$ (but not diffeomorphic in general). We
can construct a conformally flat manifold $M_{2}$

’ in the same way, and $M_{2}$
’ is

homeomorphic to $M_{2}$ . Clearly, $M=M_{1}’\# M_{2}’$ . The above construction of $M_{t}$
’

defines a flat conformal structure on each of $M_{i}’$ . In the rest of the proof, the
word “conformal” means conformal with respect to this flat conformal structure.
Note that there exist conformal embeddings $\xi_{1}$ : $D_{1^{\cup}}S_{\cup}A_{-}arrow M_{1}’$ and $\xi_{2}$ : $D_{2}\cup$

$s_{\cup\tilde{A}_{+}arrow M_{2}’}$ by our construction.
TO see $M_{i}’$ is Kleinian, we construct a regular conformal covering $\Omega_{i}arrow M_{i}$ ,

where $\Omega_{i}$ is a connected open subset of $S^{n}$ . Choose a connected component
$\Omega_{0}$ of $\Omega\backslash \pi^{-1}(S)$ . Since $\pi(\Omega\backslash \pi^{-1}(S))=L_{1}\lrcorner LL_{2},$ $\pi(\Omega_{0})$ is contained in either $L_{1}$ of
$L_{2}$ . Assume $\pi(\Omega_{0})\subset L_{1}$ . Take $\tilde{X}\in\Omega_{0}$ and let $x=\pi(\tilde{x})$ . For any point $y$ of $L_{1}$ ,
there exists a path $\gamma$ contained in $L_{1}$ , which starts at $x$ and ends at $y$ . Take
a lift 7 of $\gamma$ so that 7 starts at $\tilde{x}$ . Since $\gamma\cap S=\phi,\tilde{\gamma}$ is entirely contained in
$\Omega_{0}$ and hence $y\in\pi(\Omega_{0})$ . Thus, $\pi(\Omega_{0})=L_{1}$ . It is easy to see that $\pi|\Omega_{0}$ : $\Omega_{0}arrow L_{1}$

is conformal covering. Moreover, since $\pi:\Omegaarrow M$ is regular, $\pi|\Omega_{0}$ : $\Omega_{0}arrow L_{1}$ is
also regular. Let $\{S_{\lambda}/\lambda\in\Lambda\}$ be the set of all lifts of $S$ . Since $M$ is Kleinian,
there is a discrete subgroup $\Gamma$ of Conf $(S^{n}, C_{0})$ such that $\Gamma$ acts on $\Omega$ as the
deck transformation group of the covering $\pi:\Omegaarrow M$. Thus, there exists an
unique element $\gamma_{\lambda}$ of $\Gamma$, which satisfies $\gamma_{\lambda}(S)=\tilde{S}_{\lambda}$ for $\tilde{S}$ and $S_{\lambda}$ , where $S$ is a
lift of $S$ which we took in the first part of the proof. Let $\Lambda_{0}$ be the set of
all $\lambda$ with $S_{\lambda}$ contained in the closure of $\Omega_{0}$ . And denote two connected com-
ponents of $S^{n}\backslash S_{2}$ by $D_{1.\lambda}$ and $D_{2.\lambda}$ , respectively, so that $D_{2.\lambda}$ contains $\Omega_{0}$ .
Then, $\gamma_{\lambda}(D_{1})=D_{1.\lambda}$ and $D_{1.\lambda}\cap D_{1.\mu}=\emptyset$ for $\lambda,$ $\mu\in\Lambda_{0}$ with $\lambda\neq\mu$ . Let $\tilde{A}_{\lambda}$ be a
lift of $A$ , where $\tilde{A}_{\lambda}$ contains $S_{\lambda}$ . And let $A_{-.\lambda}$ be a lift of $A_{-}$ , where $\tilde{A}_{-.\lambda}$

is contained in $\check{A}_{\lambda}$ . Clearly, for $\lambda\in\Lambda_{0},\tilde{A}_{-.\lambda}$ is contained in $\Omega_{0}$ . Define $\Omega_{1}$ by
$\Omega_{0}\cup\{\bigcup_{\lambda\in\Lambda_{0}}(S_{\lambda^{\cup D_{1.\lambda}}})\}$ . And define $\pi_{1}$ : $\Omega_{1}arrow M_{1}’$ as $\pi_{1}=\pi$ on $\Omega_{0}$ and $\pi_{1}=\xi_{1}\circ\gamma_{\lambda}^{-1}$

on $D_{1.\lambda^{\cup}}S_{\lambda}v\tilde{A}_{-.\lambda}$ for $\lambda\in\Lambda_{0}$ . Then it is easy to see that $\pi_{1}$ : $\Omega_{1}arrow M_{1}’$ is a
well-defined regular conformal covering. Thus, $M_{1}$

’ is Kleinian (if $\pi(\Omega_{0})$ is
contained in $L_{2}$ , then $M_{2}’$ is Kleinian). Since, for each of $L_{1}$ and $L_{2}$ , there
exists a connected component of $\Omega\backslash \pi^{-1}(S)$ , which covers $L_{i}(i=1,2)$ , we see
that both $M_{1}’$ and $M_{2}’$ are Kleinian. $q.e.d$ .

REMARK. It is easy to see that $\Omega_{1}$ contalns $\Omega$ by our construction. And
the deck transformation group $\Gamma_{1}$ of the covering $\pi_{1}$ : $\Omega_{1}arrow M_{1}’$ is generated by
$\{\gamma_{\lambda}\circ\gamma_{\lambda_{0^{-1}}}/\lambda\in\Lambda_{0}\}$ , where $\lambda_{0}$ is some fixed element of $\Lambda_{0}$ (in fact, $\Gamma_{1}$ coincides
with $\{\gamma_{\lambda^{Q}}\gamma_{\lambda_{0}^{-1}}/\lambda\in\Lambda_{0}\})$ . Thus $M_{1}$

’ admits a Kleinian structure defined by $\pi_{1}$ :
$\Omega_{1}arrow M_{1}’$ , where $\Omega_{1}$ contains $\Omega$ and the deck transformation group $\Gamma_{1}$ is a
subgroup of $\Gamma$ . The same is true for $M_{2}’$ .
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DEFINITION 3.3. A non-trivial manifold $M$ is topologically prime if there
is no decomposition $M=M_{1}\# M_{2}$ , where each of $M_{1}$ and $M_{2}$ is not homeomor-
phic to $S^{n}$ .

If we replace the condition “not homeomorphic to $S^{n}$ ’ by “not diffeomorphic
to $S^{n}’$ , then this definition makes no sense. In fact, if an exotic $n$ -sphere $\Sigma^{n}$

exists, then $M=M\#\Sigma^{n}\#(-\Sigma^{n})(n\geqq 7)$ holds and hence every $n$ -manifold cannot
be topologically prime. In the case $n=3$ , a topologically prime manifold is just
a prime manifold in the sense of 3-dimensional topology (see [16]). Theorem
3.2 says that the $C$ -prime decomposition is reasonably fine in some sense, and
this can be stated as the following corollary.

COROLLARY 3.4. Let $M$ be a Kleinian manifold. Then $M$ is C-prime if and
only if $M$ is topologically prime.

Combining Theorem 3.2 and Corollary 3.4 with the proof of Proposition 2.1,
we get the following.

COROLLARY 3.5. Let $M$ be a non-trivial Kleinian manifold. Then there
exists a $C$-prime decomPosition $P_{1}\#\cdots\# P_{k}$ of $M$ such that each $P_{i}$ is Kleinian and
topologically prime.

In particular, for a Kleinian 3-manifold $M,$ $M$ is $C$ -prime if and only if $M$

$is:prime$ in the sense of 3-dimensional topology. This fact gives the following
corollaries.

COROLLARY 3.6. Let $M$ be an oriented non-trivial Kleinian 3-manifold. Then
$M$ is C-prime if and only if either $M$ is diffeomorphic to $S^{1}\cross S^{2}$ or the homotopy
grou $\pi_{2}(M)$ of $M$ is trivial.

PROOF. The “if” part follows from Corollary 2.2 and Proposition 3.1. The
“only if” part follows from Corollary 3.4 and [16, Theorem 2]. $q.e.d$ .

COROLLARY 3.7. Let $M$ be an oriented non-trivial Kleinian 3-manifold. The
$C$-Prime decomPosition of $M$ is unique uP to permutation and each $P_{i}$ is Kleinian.

PROOF. Take a $C$ -prime decomposition $M=P_{1}\#\cdots\# P_{k}$ of $M$. Then, by
Theorem 3.2 and Corollary 3.4, each $P_{i}$ is topologically prime and Kleinian.
That is, any $C$ -prime decomposition of $M$ is a prime decomposition of $M$ in the
sense of 3-dimensional topology, and hence unique by [16, Theorem 1].

$q.e.d$ .

4. The Yamabe invariants of Kleinian manifolds.

First, we introduce an invariant for Kleinian manifolds, which is defined by
the same manner as $\mu_{C}(M)$ in section 2.
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DEFINITION 4.1. For a Kleinian manifold $M,$ $\mu_{K}(M)$ of $M$ is defined by
$\mu_{K}(M)=\sup\mu(M, C)$ , where the supremum is taken over all Kleinian structures
on $M$ . We define $\mu_{K}(M)=-\infty$ for a non-Kleinian manifold $M$ .

This invariant $\mu_{K}(M)$ is well-defined and $\mu_{K}(M)$ is positive if and only if
there exists a Kleinian structure $C$ on $M$ such that $\mu(M, C)$ is positive. This
follows from the same reason that $\mu_{C}(M)$ has such properties. Note that flat
conformal structures discussed in the examples following Definition 2.8 are all
Kleinian. Then we get the following examples of $\mu_{K}(M)$ .

EXAMPLES. (1) If the fundamental group $\pi_{1}(M)$ of a Kleinian manifold $M$

is finite, then $M$ is diffeomorphic to a spherical space form and $\mu_{K}(M)=$

$|\pi_{1}(M)|^{-2/n}\mu(S^{n}, C_{0})$ , where $|\pi_{1}(M)|$ denotes the order of $\pi_{1}(M)$ .
(2) $\mu_{K}(S^{1}\cross S^{n-1})=\mu(S^{n}, C_{0})$ .
(3) If $M$ admits a flat metric, then $\mu_{K}(M)=0$ .
(4) If a 4-manifold $M$ admits a metric $g$ with negative constant curvature,

then $\mu_{K}(M)=\mu(M, C_{0})$ , where $C_{0}$ denotes the conformal class containing $g$ .
(5) $\mu_{K}(S^{1}\cross N^{n-1})=0,$ $whereN^{n-1}isan(n-1)$-manifold admittinga negative

constant curvature metric.
(6) $\mu_{K}(S^{m}\cross N^{m})=0$ , where $N^{m}$ is as in (5).

Our main interest in this section is how $\mu_{K}(M)$ changes if we take a con-
nected sum of Kleinian manifolds or if we decompose a Kleinian manifold into
a connected sum of Kleinian manifolds. The following analogue of Theorem
2.9 holds for $\mu_{K}(M)$ . Since we are interested in connected manifolds, as a
matter of convenience, we say that a conformal structure $C$ on $M_{1}\perp M_{2}$ is
Kleinian if both $C|M_{1}$ and $C|M_{2}$ are Kleinian structures on $M_{1}$ and $M_{2}$ , res-
pectively.

THEOREM 4.2. Let $M_{1}$ and $M_{2}$ be Kleinian.
(1) If $\mu_{K}(M_{1})\leqq 0$ and $\mu_{K}(M_{2})$ $ $0$ , then $\mu_{K}(M_{1}\perp M_{2})=-(|\mu_{K}(M_{1})|^{n/2}+$

$|\mu_{K}(M_{2})|^{n/2})^{2/n}$ .
(2) Otherwise, $\mu_{K}(M_{1}\lrcorner LM_{2})=\min\{\mu_{K}(M_{1}), \mu_{K}(M_{2})\}$ .
(3) $\mu_{K}(M_{1}\# M_{2})\geqq\mu_{K}(M_{1}\lrcorner LM_{2})$ .
(4) Suppose the equality in (3) holds for $M_{1}$ and $M_{2}$ , and suppose there exists

a Kleinian structure $C_{0}$ on $M_{1}\perp M_{2}$ such that $\mu(M_{1}4LM_{2}, C_{0})=\mu_{K}(M_{1}\perp LM_{2})$ . Then
there exists a sequence $\{C_{\epsilon}’\}$ of Kleinian structures on $M_{1}\# M_{2}$ , which satisfies
$\lim_{\epsilonarrow 0}\mu(M_{1}\# M_{2}, C_{\epsilon}’)=\mu_{K}(M_{1}\# M_{2})$ , such that a suitable choice of a metric $g_{\epsilon}’$

contained in $C_{\epsilon}’$ gives a sequence $\{g_{\epsilon}’\}$ satisfying

$\lim_{\epsilonarrow 0}(M_{1}\# M_{2}, g_{\epsilon}’)=(M_{1}\backslash \{p_{1}\}, g|M_{1}\backslash \{p_{1}\})\bigcup_{p_{1}=p_{2}}(M_{2}\backslash \{p_{2}\}, g|M_{2}\backslash \{p_{2}\})$

for some metric $g$ contained in $C_{0}$ and for some point $p_{i}$ of $M_{\ell}(i=1,2)$ .
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PROOF. We use the same notation as in the proof of Theorem 2.9. Let
$M=M_{1}\perp M_{2}$ . Note that if each of $C|M_{i}(i=1,2)$ is a Kleinian structure, then
the flat conformal structure defined by $g_{\epsilon}’$ is also Kleinian (this follows from
the proof of [13, Theorem 5.6] $)$ . Thus the proof is the same as that of
Theorem 2.9. $q.e.d$ .

AS an application of results in section 3 and Theorem 4.2, we get the
following.

THEOREM 4.3. Let $M$ be an oriented Kleinian 3-manifold. And let $M=P_{1}$

$\#\cdots\# P_{k}$ be the $C$ -Prime decomPositton of $M$, if $M$ is non-trivial. Then $\mu_{K}(M)$

is Positive if and only if $M$ is diffeomorPhic to $S^{3}$ or each $P_{i}$ is diffeomorPhic to
either a spherical $sPace$ form or $S^{1}\cross S^{2}$ .

PROOF. Clearly, $\mu_{K}(S^{3})$ is positive. If $M$ is nontrivial, then by Corollary
3.6, for each $P_{i}$ , either $P_{i}$ is diffeomorphic to $S^{1}\cross S^{2}$ or the homotopy group
$\pi_{2}(P_{i})$ of $P_{i}$ is trivial. If $\pi_{2}(P_{i})=0$ and the universal covering space is non-
compact, then $P_{i}$ is $K(\pi, 1)$ by the Hurewicz theorem. But if $P_{i}$ is $K(\pi, 1)$ ,

then $M$ carries no metric with positive scalar curvature by [6]. Thus, if
$\pi_{2}(P_{\ell})=0$ , then the universal covering space of $P_{i}$ is compact and hence dif-
feomorphic to $S^{n}$ by Kuiper’s theorem. Therefore $P_{i}$ is diffeomorphic to a
spherical space form, if $\pi_{2}(P_{i})$ is trivial. This shows the “only if” part of
Theorem 4.3. Conversely, if each $P_{i}$ is diffeomorphic to either a spherical
space form or $S^{1}\cross S^{2}$ , then $\mu_{K}(M)$ is positive by Theorem 4.2. $q.e.d$ .

COROLLARY 4.4. Let $M$ be an oriented Kleinian 3-manifold. Suppose that
$M$ admits a Kleinian structure $C$ with $\mu(M, C)=0$ and that $\mu_{K}(M)=0$ . Then $C$

contains a flat metric. That is, $M$ is a fiat manifold.
PROOF. Let $M=P_{1}\#\cdots\# P_{k}$ be the $C$ -prime decomposition of $M$ (which is

unique by Corollary 3.7). Then each $P_{i}$ is a spherical space form, $S^{1}\cross S^{2}$ , or
$K(\pi, 1)$ . By Theorem 4.3, $P_{i}$ must be $K(\pi, 1)$ for some $i$ . Thus, by [6], $M$

cannot admit a metric with positive scalar curvature and in particular metric
with non-negative scalar curvature on $M$ is flat. By our assumption, $C$ contains
a metric with zero scalar curvature (see Fact 2.7) and it must be a flat metric.

$q.e.d$ .
In [19], Schoen and Yau studied a relation between the scalar curvature

and the developing map of a conformally flat manifold, using the Green’s func-
tion for the conformal Laplacian. In particular, they proved that if a flat con-
formal structure $C$ on $M$ contains a metric with positive scalar curvature $(i.e.$ ,
$\mu(M, C)$ is positive), then the developing map of $(M, C)$ is injective and hence
$(M, C)$ is Kleinian. Moreover, for a Kleinian manifold $M=\Omega/\Gamma$ they obtained
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some results concerning the Hausdorff dimension of the complement of $\Omega$ .
Denote the Hausdorff dimension of a set $E$ by $\dim_{H}E$ .

THEOREM 4.5 (cf. [19, Theorem 4.7]). SuPPose $(M, C)$ is conformal to $\Omega/\Gamma$

for some $\Omega$ and $\Gamma$ . Then Yamabe invariant $\mu(M, C)$ of $(M, C)$ is non-negative
if and only if $\Omega$ satisfies $\dim_{H}(S^{n}\backslash \Omega)\leqq(n-2)/2$ .

For the proof, see [19]. By Theorem 4.5, we obtain some information on
the relation between $\mu_{K}(M)$ and a decomposition of $M$.

THEOREM 4.6. Suppose that $M$ admits a Kleinian structure $C$ with non-
negative Yamabe invariant and that $M$ is diffeomorPhic to a connected sum $M_{1}\#$

$M_{2}$ , where $M_{1}$ and $M_{2}$ are not necessarily conformally flat. Then there exist
$M_{t}’(i=1,2)$ as in Theorem 3.2 and each $M_{t}’$ admits a Kleinian structure with
non-negative Yamabe invariant.

PROOF. Suppose $(M, C)$ is conformal to $\Omega/\Gamma$ . Then, by Theorem 4.5,
$\dim_{H}(S_{n}\backslash \Omega)\leqq(n-2)/2$ . By the remark following Theorem 3.2, each $M_{i}’$ admits
a Kleinian structure $C_{i}$ induced by the covering $\Omega_{i}arrow M_{i}’$ , where $\Omega_{i}$ contains
$\Omega$ . Since $\dim_{H}(S^{n}\backslash \Omega_{i})\leqq\dim_{H}(S^{n}\backslash \Omega)\leqq(n-2)/2$ follows from $S^{n}\backslash \Omega_{t}\subset S_{n}\backslash \Omega$ ,
$\mu(M_{i}’, C_{i})$ is non-negative by Theorem 4.5. $q.e.d$ .

If either $M_{1}$
’ or $M_{\mathfrak{g}}$

’ is non-trivial and not $C$ -prime, then we can proceed
with the above decomposition and obtain a $C$ -prime decomposition $P_{1}\#\cdots\# P_{k}$

of $M$ . Consequently, each $P_{l}$ has a Kleinian structure defined by the covering
$\Omega_{i}arrow P_{i}$ and $\Omega_{i}$ contains $\Omega$ . Thus, we get the following.

COROLLARY 4.7. If a non-trivial manifold $M$ admits a Kleinian structure $C$

with non-negative Yamabe invariant, then there exists a C-prime decomposition
$P_{1}\#\cdots\# P_{k}$ of $M$ such that each $P_{i}$ admits a Kleinian slructure with non-negative
Yamabe invariant.

The author hopes that $M_{t}’(i=1,2)$ in Theorem 4.6 admits a Kleinian struc-
ture with positive Yamabe invariant in the case $\mu_{K}(M)$ is positive. Then this
gives the converse of a result of Schoen and Yau ([18, Corollary 5], see also
the remark following the proof of Theorem 2.9), and in particular, $\mu_{K}(P_{\iota})$ in
Corollary 4.7 turns out to be positive for a Kleinian manifold with $\mu_{K}(M)>0$ .
Thus the classification of manifolds admitting a flat conformal structure with
positive Yamabe invariant (then it is Kleinian) is reduced to the classification
of $C$ -prime manifolds with $\mu_{K}(M)>0$ .

References

[1] T. Aubin, Equation diff\’erentielles non lin\’eaires et Probl\‘emes de Yamabe concernant
la courbure scalaire, J. Math. Pures Appl., 55 (1976), 269-296.



118 H. IZEKI

[2] J. P. Bourguignon, Les vari\’et\’es de dimension 4 \‘a signature non nulle dont la cour-
bure est harmonique sont d’Einstein, Invent. Math., 63 (1981), 263-286.

[3] M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math.
Soc., 66 (1960), 74-76.

[4] R. E. Gompf, Killing the Akbulut-Kirby 4-sphere, with relevance to the Andrews-
Curtis and Schoenflies problems, Topology, 30 (1991), 97-115.

[5] M. Gromov and H. B. Lawson, Spin and scalar curvature in the presence of a funda-
mental group I, Ann. of Math., 111 (1980), 209-230.

[6] M. Gromov and H. B. Lawson, Positive scalar curvature and the Dirac operator on
complete Riemannian manifolds, Publ. Math. IHES, 58 (1983), 295-408.

[7] D. Johnson and J. J. Millson, Deformation spaces associated to compact hyperbolic
manifolds, Discrete Groups in Geometry and Analysis, (ed. R. Howe), Progr. Math.,
67, Birkh\"auser, Boston, 1987.

[8] 0. Kobayashi, A Willmore type problem for $S^{2}\cross S^{2}$ , Lecture Notes in Math., 1255,
Springer, Berlin-Heidelberg, 1987.

[9] 0. Kobayashi, Scalar curvature of a metric with unit volume, Math. Ann., 279
(1987), 253-265.

[10] 0. Kobayashi, On the Yamabe problem (in Japanese), Sem. Math. Sc., 16, Dept.
Math. Keio Univ., 1990.

[11] N. H. KuiPer, On conformally flat spaces in the large, Ann. of Math., 50 (1949),
916-924.

[12] R. S. Kulkarni, On the principle of uniformization, J. Differential Geom., 13 (1978),
109-138.

[13] R. S. Kulkarni and U. Pinkall, Uniformizations of geometric structures and applica-
tions to conformal geometry, Lecture Notes in Math., 1209, SPringer, Berlin-
Heidelberg, 1986.

[14] J. Lafontaine, Remarque sur les varietes conform\’ement plates, Math. Ann., 259
(1982), 313-319.

[15] J. M. Lee and T. H. Parker, The Yamabe problem, Bull. Amer. Math. Soc., 17
(1987), 37-91.

[16] J. W. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math.,
84 (1962), 1-7.

[17] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar cur-
vatures, J. Differential Geom., 20 (1984), 479-495.

[18] R. Schoen and S. T. Yau, On the structure of manifolds with Positive scalar cur-
vature, ManuscriPta Math., 28 (1979), 159-183.

[19] R. Schoen and S. T. Yau, Conformally flat manifolds, Kleinian groups and scalar
curvature, Invent. Math., 92 (1988), 47-71.

[20] N. S. Trudinger, Remarks concerning the conformal deformation of Riemannian
structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa, ser. 3, 22 (1963),
265-274.

[21] H. Yamabe, On a deformation of Riemannian structures on compact manifolds,
Osaka Math. J., 12 (1960), 21-37.



DecomPosition of conformally flat manifolds 119

Hiroyasu IZEKI
Department of Mathematics
Faculty of Science
Tokyo Metropolitan University
Minami-Ohsawa 1-1, Hachioji-shi
Tokyo 192-03
Japan

Added in proof. Recently Nayatani proved that if $\mu_{k}(M)$ is positive in
Theorem 4.6, then $M_{i}’$ admits a Kleinian structure with positive Yamabe
invariant (private communication).
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