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1. Introduction.

Let $M$ be a $C^{\infty}$ manifold without boundary and $\pi:TMarrow M$ the tangent
bundle of $M$ . A second order equation on $M$ which is locally expressed by

$\frac{d^{2}x^{i}}{dt^{2}}=F^{i}(x^{1},$ $\cdots$ $x^{n},$ $\frac{dx^{1}}{dt}\ldots$ $\frac{dx^{n}}{dt})$

is considered to be a vector field $V$ on $TM$ with $\pi_{*}V(y)=y$ , where $(U;x^{1}, \cdots, x^{n})$

and (TU; $x^{1}$ , $\cdot$ .. , $x^{n},$ $y^{1}$ , $\cdot$ .. , $y^{n}$ ) are local coordinate systems in $M$ and $TM$,
respectively. Let $f^{t}$ be the flow on $TM$ generated by $V$ . In this paper we
study the case that $f^{t}$ has an invariant hypersurface $S$ in $TM$ such that all
fibres $S_{p}$ are star-shaped hypersurfaces around the origin in $T_{p}M$. Then we
can define the exponential map at each point $p\in\pi(S)$ by $Exp_{p}ty=\pi f^{t}y$ for any
$y\in S_{p}$ . The purpose of the present paper is to show how to give a Riemannian
metric on an open set in $T_{p}M$ on which all rays from the origin are geodesics
and how to use it to study the behavior of the trajectories.

In the geometry of geodesics in Riemannian manifolds it is important to
estimate the lengths of Jacobi vector fields $Y$ along geodesics 7: $[0, a)arrow M$ with
$Y(O)=0$ which arises from the geodesic variation emanating from 7(0). In fact,
by making use of the estimate we have proved many results in the theory of
Anosov geodesic flows (cf. [AA], [E]), the estimate of the measure theoretic
entropy of geodesic flows (cf. [PJ, [OS], [BW]), the theory of parallels (for

example, the theorem of E. Hopf and L. Green (cf. [H], [G]) $)$ , the topological
and differentiable sphere theorems (cf. [CE]), the study of non-positively and
non-negatively curved Riemannian manifolds (cf. [E], [W]) and so on. We
should notice that in the estimation used in the above theory and theorems the
Riemannian metric do not need to be defined on the whole manifold, but in the
neighborhood of a geodesic in question. For example, conjugate points of $p\in M$

along a geodesic $\gamma:[0, \infty)arrow M$ with $\gamma(0)=p$ are independent of the choice of
Riemannian metrics $g$ such that all geodesics emanating from $P$ and staying in
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a neighborhood of $\gamma$ with respect to the original metric are also geodesics with
respect to $g$ . This fact would suggest us that many results proved by making
use of the estimates mentioned above are extended to much wider classes.

Roughly speaking, systems satisfying Huygens’ principle belong to such
classes. Huygens’ principle is stated as follows (cf. [A]): Let $\Phi_{q_{0}}(t)$ be the
wave front of the point $q_{0}$ after time $t$ . For every point $q$ of this front, con-
sider the wave front after time $s,$ $\Phi_{q}(s)$ . Then the wave front of the point $q_{0}$

after time $s+t$ , $\Phi_{q_{0}}(s+t)$ , will be the envelope of the fronts $\Phi_{q}(s),$ $q\in\Phi_{q_{0}}(t)$ .
This principle corresponds to the Gauss lemma for geodesic spheres in Rie-
mannian manifolds. According to [A], Huygens’ principle defines a natural
contact structure $D$ and the contact flow on $S$ . The flows in our classes must
have such natural contact structures also (see Proposition 2.4).

In the paper [I1] we deal with the geometry of geodesic flows in the unit
tangent bundles as a special case of the following model. Let $N$ be a manifold.
Let $f^{t}$ : $Narrow N$ be a flow and $\Pi:Earrow N$ a vector bundle with inner product
$\langle\cdot, \rangle_{p}$ on each fibre $E_{p}$ . Assume that there exists a connection V along the
flow $f^{t}$ such that

$V\langle X, Y\rangle=\langle\tilde{\nabla}_{V}X, Y\rangle+\langle X,\tilde{\nabla}_{V}Y\rangle$

for any section $X,$ $Y$ : $Narrow E$ , where $V$ is a vector field on $N$ generating $f^{t}$ .
The geodesic flow $f^{t}$ on the unit tangent bundle in the above theories is the
case when $N$ is the unit tangent bundle of a Riemannian manifold $M,$ $E=$

$\bigcup_{v\in N}T_{\pi(v)}M$ and $\langle\cdot, \rangle$ is the original Riemannian metric of $M$. In the paper
[I2] we deal with it by putting $E=TN$ and $\langle\cdot, \rangle$ the natural Riemannian
metric on $TN$ induced from the Riemannian metric of $M$. The main theorem
of the present paper is Theorem 3.4 which shows the relation between these
specific models for more general flows. Moreover, the condition (1) of Theorem
3.4 is equivalent to the existence of an $f^{t}$ -invariant complementary distribution
of $V$ on $S$ because of Proposition2.2. This is the expression of Huygens’
principle by using $V$ and $S$ .

The idea of this work appeared to the author’s mind while he stayed in
University of North Carolina at Chapel Hill. He would like to express his
hearty thanks to Professor P. Eberlein for accepting his visit, and to Professor
C. Ferraris for his discussion there which stimulated him.

2. Complementary $f^{t}$-invariant distribution.

Let $g$ be a generalized metric on $\pi(S)$ (cf. [M]), namely $g_{y}$ is by definition
an inner product on the tangent space $T_{\pi Cy)}M$ for any $y\in S$ . Hence, we define
a Riemannian metric $G$ on $S$ by
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$G_{y}(W, Z)=g_{y}(\pi_{*}W, \pi_{*}Z)+g_{y}(K_{y}(W), K_{y}(Z))$

for any $W,$ $Z\in T_{y}S,$ $y\in S$ , where $K_{y}$ : $T,TMarrow T.(,)M$ is the connection map
defined in Appendix 1. A vector $W$ with $\pi_{*}W=0$ is said to be vertical. A
vector $W\in T_{y}S$ is vertical if and only if $W$ is tangent to the fibre $S_{\pi Cy)}$ . A
vector $Z$ with $K(Z)=0$ is said to be horizontal. It follows that $T_{y}S=kerK_{y}$

$\oplus ker\pi_{*y}$ and $kerK_{y}\perp ker\pi_{*y}$ with respect to the inner product $G_{y}$ for any
$y\in S$ , where $kerK_{y}$ and $ker\pi_{*y}$ are the kernels of the linear maps $K_{y}$ and $\pi_{*y}$

respectively.
Let $c(p):S_{p}arrow S$ be the inclusion map. Then, we denote $c(p)_{*y}(T_{y}S_{p})$ by

$T_{y}S_{p}$ for any $y\in S_{p}$ .

LEMMA 2.1. The following are true.
(1) $V(y)$ is horizontal for any $y\in S$ .
(2) $V(y)^{\perp}\supset T_{y}S_{\pi(_{y})}$ for any $y\in S$ , where $V(y)^{\perp}=\{W\in T_{y}S|G_{y}(W, V(y))=0\}$ .
We first show how to give a nice generalized metric on $\pi(S)$ to $V$ if $V$

has a complementary distribution $D$ on $S$ which by definition satisfies the con-
dition (1) and (2) in the following proposition.

PROPOSITION 2.2. Suppose there exis$tsa$ $(dimS-1)$-dimensional distribution
$D$ on $S$ such that

(1) $D(y)\not\equiv V(y)$ for any $y\in S$ ,
(2) $D(y)\supset T_{y}S_{\pi(y)}$ for any $y\in S$ .

Then there exists a generalized metric $g$ on $\pi(S)$ such that $D(y)=V(y)^{\perp}and$

$G_{y}(V(y), V(y))=1$ for any $y\in S$ .

PROOF. Since $D(y)\supset ker\pi_{*}=T_{y}S_{\pi(y)}$ , we have $\dim\pi_{*}D(y)=\dim M-1$ . And
$y\not\in\pi_{*}D(y)$ . In fact, if we suppose that $y\in\pi_{*}D(y)$ , then there exists a $W\in$

$T_{y}S_{\pi(y)}\subset D(y)$ such that $V(y)+W\in D(y)$ . Since $T_{y}S_{\pi(y)}\subset D(y)$ , it follows that
$V(y)\in D(y)$ , contradicting (1).

Let $\tilde{g}$ be a Riemannian metric on $M$ . Define a generalized metric $g$ on
$\pi(S)$ by

$\{$

$g_{y}(y, y)=1$

$g_{y}(y, \pi_{*}W)=0$ for any $W\in D(y)$

$g_{y}(\pi_{*}W, \pi_{*}Z)-\tilde{g}(\pi_{*}W, \pi_{*}Z)$ for any $W,$ $Z\in D(y)$

for each $y\in S$ . Since $V$ is horizontal, we have
$D(y)=V(y)^{\perp}-$

for any $y\in S$ with
respect to $G$ . And, $G_{y}(V(y), V(y))=1$ for any $y\in S$ .

For $y\in S$ let $(a(y), b(y))$ be the maximal interval containing zero on which
the integral curve $tarrow f^{t}y$ with $f^{0}y=y$ of $V$ is defined.
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PROPOSITION 2.3. Let $D$ be a comPlementary dislribution on S. Then,
$(f^{t})_{*}D(y)=D(f^{t}y)$ for any $y\in S$ and $a(y)<t<b(y)$ if and only if [V, $X$] $(y)\in$

$D(y)$ for any $y\in S$ and $X\in D$ , where $[\cdot, ]$ is the Lie bracket.

PROOF. If $D$ is $f^{t}$ -invariant, then $(f^{-t})_{*}X(f^{t}y)\in D(y)$ for any $y\in S$ . Hence,
[V, $X$] $(y)\in D(y)$ for any $X\in D$ , since

[V, $X$] $(y)=L_{V(y)}X= \lim_{tarrow 0}\frac{(f^{-t})_{*}X(f^{t}y)-X(y)}{t}$ ,

where $L$ is the Lie derivative.
Suppose [V, $X$] $\in D$ for any $X\in D$ . Let $(U, \varphi)$ be a local coordinate neigh-

borhood in $S$ and let $X_{1}$ , $\cdot$ .. , $X_{2(n-1)}$ be a local basis of $D$ on $U$ . Suppose
$\omega_{1},$ $\omega_{2(n-1)},$ $\omega_{2n-1}$ is the dual basis of $X_{1}$ , $\cdot$ .. , $X_{2(n-1)},$ $V$ on $U$ . Therefore,
$D=\{X|\omega_{2n-1}(X)=0\}$ . Let $X\in D$ . We have

$0=V(\omega_{2n-1}(X))=(L_{V}\omega_{2n-1})(X)+\omega_{2n-1}(L_{V}X)$ .
Since $L_{V}X=[V, X]\in D$ , we get $(L_{V}\omega_{2n-1})(X)=0$ . And we have also

$(L_{V}\omega_{2n-1})(V)=V(\omega_{2n-1}(V))-\omega_{2n-1}(L_{V}V)=0$ .
Therefore, $L_{V}\omega_{2n-1}=0$ . Define $Y$ along $f^{t}y$ by $Y(f^{t}y)=(f^{t})_{*}X(y)$ for $a(y)<t<$

$b(y)$ . Then,

$Y(f^{t+s}y)=(f^{s+t})*X(y)=(f^{S})_{*}(f^{t})*X(y)=(f^{S})_{*}Y(f^{t}y)$

for $a(y)<s,$ $t,$ $s+t<b(y)$ . Therefore, we have $L_{V(f^{t}y)}Y=0$ , and, hence,

$V(f^{t}y\chi\omega_{2n-1}(Y))=(L_{V(f^{t_{y)}\omega_{2n-1})(Y)+\omega_{2n-1}(L_{V(f^{t}y)}Y)=0}}$

for $a(y)<t<b(y)$ . Thus, $\omega_{2n-1}(Y)$ is constant along $f^{t}y$ . Since $\omega_{2n-1}(Y)(y)=0$ ,
it follows that $\omega_{2n-1}(Y)(f^{t}y)=0$ for $a(y)<t<b(y)$ .

We now have $(f^{t})_{*}X(y)\in D(f^{t}y)$ , namely $(f^{t})_{*}D(y)\subset D(f^{t}y)$ for $a(y)<t<$

$b(y)$ . Since
$\dim(f^{t})_{*}D(y)=\dim D(f^{t}y)-$

, we conclude that $(f^{t})_{*}D(y)=D(f^{t}y)$ for
any $a(y)<t<b(y)$ .

We proceed to study the relation between the existence of flows $f^{t}$ having
a complementary $f^{t}$ -invariant distribution $D$ and the shape of $S$ .

Let $(U;x^{1}, \cdots x^{n})$ be a coordinate neighborhood of $M$ such that $S$ is written
as $(x^{1}, \cdots , x^{n}, y^{1}, \cdots , y^{n-1}, H(x^{1}, \cdots , x^{n}, y^{1}, \cdots , y^{n-1}))$ in $\pi^{-1}(U)$ , where $(x^{1},$ $\cdots$ ,
$x^{n},$ $y^{1},$ $\cdots$ , $y^{n}$ ) are the coordinates of the vectors $\Sigma_{i=1}^{n}y^{i}(\partial/\partial x^{i})|_{(x1\ldots.xn)}$ . Then

$\{$

$X^{i}= \frac{\partial}{\partial x^{i}}+\frac{\partial H}{\partial x^{i}}\frac{\partial}{\partial y^{n}}$ , $i=1,$ $\cdots$ $n$

$X^{n+j}= \frac{\partial}{\partial y^{j}}+\frac{\partial H}{\partial y^{j}}\overline{\partial y}$ $j-1,$ $\cdots$ $n-1$
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is a basis of the tangent bundle of $S$ in $\pi^{-1}(U)$ , and

$V(x^{1}, \cdots x^{n}, y^{1}, \cdots y^{n-1}, H(x^{1}, \cdots x^{n}, y^{1}, \cdots y^{n-1}))$

$= \Sigma_{i=1}^{n-1}y^{i}\frac{\partial}{\partial x^{i}}+H\frac{\partial}{\partial x^{n}}+\Sigma_{j=1}^{n}b^{j}\frac{\partial}{\partial y^{j}}=\Sigma_{i=1}^{n-1}y^{i}X^{i}+HX^{n}+\Sigma_{j=1}^{n-1}b^{j}X^{n+j}$

for some functions $b^{j}=b^{j}(x^{1}$ , $\cdot$ .. , $x^{n},$ $y^{1}$ , $\cdot$ .. , $y^{n-1})(]=1, \cdot. , n)$ with

$b^{n}= \Sigma_{i=1}^{n-1}y^{i}\frac{\partial H}{\partial}+H\frac{\partial H}{\partial x^{n}}+\Sigma_{j=1}^{n-1}b^{f}\frac{\partial H}{\partial y^{j}}$ .

By making use of $[X^{a}, X^{b}]=0$ for $a,$ $b=1,$ $2n-1$ we have

$\{$

$[X^{i}, V]= \frac{\partial H}{\partial x^{i}}X^{n}+\Sigma_{k=1}^{n-1}\frac{\partial b^{k}}{\partial x^{i}}X^{n+k}$ , $i=1,$ $\cdots$ , $n$

$[X^{n+!}, V]=X^{j}+ \frac{\partial H}{\partial y^{j}}X^{n}+\Sigma_{k=1}^{n-1}\frac{\partial b^{k}}{\partial y^{j}}X^{n+k}$ , $j=1,$ $\cdots$ $n-1$ .

From these formulas we have the following.

PROPOSITION 2.4. If $D$ is a complementary $f^{t}$ -invariant distribution, then
$\pi_{*}D(y)$ is naturally isomorphuc to $T_{y}S_{\pi(y)}$ for any $y\in S$ . Therefore, $T_{y}S$ is
naturally isomorphuc to $span\{y\}\oplus T_{y}S_{\pi(y)}\oplus T_{y}S_{\pi(y)}$ .

PROOF. It follows from $X^{n+t}\in D$ and Proposition 2.3 that $Y^{i}:=X^{i}+$

$(\partial H/\partial y^{i})X^{n}\in D$ since $T_{y}S_{\pi(y)}=span\{X^{n+1}$ , $\cdot$ .. , $X^{2n-1}\}$ . Since $\pi_{*}X^{i}=\partial/\partial x^{i}$ for
$i=1,$ $\cdots$ , $n$ , we have

$\pi_{*}Y^{i}=\frac{\partial}{\partial x^{i}}+\frac{\partial H}{\partial y^{i}}\frac{\partial}{\partial x^{n}}$

for $i=1$ , , $n-1$ . By natural isomorphism $I$ of $T_{(y)}M$ to $T_{y}T_{(y)}M\overline{}$, we get

$I( \pi_{*}Y^{i})=\frac{\partial}{\partial y^{\ell}}+\frac{\partial H}{\partial y^{i}}\frac{\partial}{\partial y^{n}}=X^{n+i}$

$\blacksquare$

We have used the star-shapedness of $S_{p}$ in $T_{p}M$ to define a connection map
$K:TTMarrow TM$. Moreover, the following proposition shows that the star-sbaped-
ness is required to the condition in Proposition 2.2 and 2.4.

PROPOSITION 2.5. If $D$ is a complementary $f^{t}$ -invariant distribution, then $S_{p}$

is slar-shaped in $T_{p}M$ for $p\in\pi(S)$ .
PROOF. Suppose $S_{p}$ is not star-shaped in $T_{p}M$ for some $p\in\pi(S)$ , namely

there exist $y\in S$ and $c_{1},$
$\cdots$ $c_{n-1}\in R$ such that

$\Sigma_{i=1}^{n-1}y^{i}\frac{\partial}{\partial y^{i}}+H\frac{\partial}{\partial y^{n}}=\Sigma_{t=1}^{n-1}c_{i}X^{n+t}$
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Since $X^{n+i}=\partial/\partial y^{i}+(\partial H/\partial y^{i})(\partial/\partial y^{n})$ for $i=1$ , $\cdot$ .. , $n-1$ , we have that $c_{\ell}=y^{i}$

for $i=1,$ $\cdots$ $n-1$ , therefore,

$H(x^{1}, \cdots x^{n}, y^{1}, \cdots y^{n-1})=\Sigma_{i=1}^{n-1}y^{i}\frac{\partial H}{\partial y^{i}}$ .

Since

$\pi_{*}V(y)=\Sigma_{i=1}^{n-1}y^{i}\frac{\partial}{\partial x^{i}}+H\frac{\partial}{\partial x^{n}}=\pi_{*}(\Sigma_{i=1}^{n-1}y^{i}Y^{i})$ ,

the vector $V(y)-\Sigma_{i=1}^{n-1}y^{i}Y^{i}$ is vertical. The conditions $T_{y}S_{p}\subset D(y)$ and $\Sigma_{i=1}^{n-1}y^{i}Y^{i}$

$\in D(y)$ imply that $V(y)\in D(y)$ , contradicting the condition $V(y)\not\in D(y)$ . $\blacksquare$

We conclude this section with showing the relation between the shape of
$S_{p}$ and the existence of $V,$ $D$ .

THEOREM 2.6. If $D$ is a complementary $f^{t}$ -invariant distribution, then $b^{j}$

and $H$ satisfy the equation:

$\Sigma_{j=1}^{n-1}b^{j}\frac{\partial^{2}H}{\partial y^{j}\partial y^{i}}=\frac{\partial H}{\partial x^{i}}+\frac{\partial H}{\partial y^{i}}\frac{\partial H}{\partial x^{n}}-\Sigma_{j\Leftarrow 1}^{n-1}y^{j}\frac{\partial^{2}H}{\partial x^{j}\partial y^{i}}-H\frac{\partial^{2}H}{\partial x^{n}\partial y^{\ell}}$

for $\iota=1,$ $\cdots$ , $n-1$ . In particular, if $\partial^{2}H/\partial y^{j}\partial y^{i}$ make a nonsingular matrix, then
such $b^{j}C^{\cdot}=1$ , $\cdot$ .. , $n-1$ ) uniquely exist.

PROOF. For $i=1,$ $\cdots$ , $n-1$ we have

$[X^{i}+ \frac{\partial H}{\partial y^{i}}X^{n},$ $V]= \frac{\partial H}{\partial x^{i}}X^{n}+\Sigma_{j=1}^{n-1}\frac{\partial b^{j}}{\partial x^{i}}X^{n+j}$

$+ \frac{\partial H}{\partial y^{i}}\frac{\partial H}{\partial y^{n}}X^{n}+\frac{\partial H}{\partial y^{i}}\Sigma_{j=1}^{n-1}\frac{\partial b^{j}}{\partial x^{i}}X^{n+j}-(V\frac{\partial H}{\partial y^{i}})X^{n}$ .

Since $X^{n+j}\in D$ for $j^{=1}$ , $\cdot$ . , $n-1$ , it must follows that

$\frac{\partial H}{\partial x^{i}}+\frac{\partial H}{\partial y^{i}}\frac{\partial H}{\partial x^{n}}-V\frac{\partial H}{\partial y^{i}}=0$ .

This is our equation. $\blacksquare$

3. Flows whose trajectories are geodesics.

Let $S$ be a hypersurface in the tangent bundle $TM$ of $M$ such that $S_{p}$ is
a star-shaped hypersurface centered at the origin $0$ in $T_{p}M$ for any $p\in\pi(S)$

and let $V$ be a vector field on $S$ such that $\pi_{*}V(y)=y$ for any $y\in S$ . Suppose
$K$ : TTM– $TM$ is a connection map defined from $V$ as in Appendix 1. Let $g$

be a generalized metric on $\pi(S)$ such that $g_{y}(y, y)=1$ for any $y\in S$ and $G$ the
Riemannian metric on $S$ defined as in Section 2. Then, $G(V(y), V(y))=1$ for
any $y\in S$ .
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Let $N$ be a submanifold in $S$ and let $\varphi^{N}$ : $\bigcup_{y\in N}\{\{y\}\cross(a(y), b(y))\}arrow M$ be
the map given by $\varphi^{N}(y, t)=\pi f^{t}y$ for any $y\in N$ and $a(y)<t<b(y)$ . Let $N_{0}\subset$

$\bigcup_{y\in N}\{\{y\}\cross(a(y), b(y))\}$ be the set of all points where $\varphi_{*}^{N}$ is injective. Obviously,
$\varphi_{*}^{N}((\partial/\partial t)|_{(y.t)})=f^{t}y$ and $\varphi_{*}^{N}(X)=\pi_{*}(f^{t})_{*}X$ for any $X\in T_{y}N\subset T_{(y.t)}N_{0}$ . We de-
fine a Riemannian metric $H^{N}$ on $N_{0}$ by

$H_{(y.t)}^{N}(X, Y)=g_{f^{t}y}(\varphi_{*}^{N}X, \varphi_{*}^{N}Y)$

for any $X,$ $Y\in T_{(y.t)}N_{0}$ . Let $\nabla^{N}$ be the Levi-Civita connection of $H^{N}$ on $N_{0}$ .
In the special case that $N=S_{p}$ for a point $p\in\pi(S)$ we use a different con-

vention. Let $C_{p}=\{ty|0\leqq t<b(y), y\in S_{p}\}$ be the cone in $T_{p}M$ spaned by $S_{p}$ .
Let $Exp_{p}$ : $C_{p}arrow M$ be the map given by $Exp_{p}ty=\pi f^{t}y$ for any $0\leqq t<b(y)$ and
$y\in S_{p}$ . Thus, $Exp_{p}ty=\varphi^{N}(y, t)$ for any $0\leqq t<b(y)$ and $y\in S_{p}$ . We call $Exp_{p}$

the exponential map at $p\in\pi(S)$ . This map $Exp_{p}$ can be regarded as the usual
one as follows. Since $S_{p}$ is star-shaped in $T_{p}M$, we can extend the vector
field $V$ on $S$ to $C= \bigcup_{p\overline{r}(S)}C_{p}$ by putting $\overline{V}(sy)=s(h_{s})_{*}V(y)$ as seen in Appendix
1 Then the flow $\overline{f}^{t}$ generated from $\overline{V}$ satisfies that $\overline{f}^{t}(z)=h_{s}(f^{st}y)$ for any
$z=sy\in C(y\in S)$ and $0\leqq t<b(y)/s$ . This is because

$\frac{d}{dt}h_{s}(f^{st}y)=(h_{s})_{*}(sV(f^{st}y))=\overline{V}(h_{s}(f^{st}y))$

for any OSst $<b(y)$ . Therefore, we have that

$Exp_{p}z=\pi f^{s}y=\pi(h_{s}(f^{s}y))=\pi\overline{f}^{1}(z)$

for any $z=sy\in C_{p}(y\in S_{p})$ . We see in Appendix 1 that $Exp_{p}$ is of class $C^{1}$ at
the origin $0$ and of class $C^{\infty}$ on $C_{p}-\{0\}$ . Since $S$ is star-shaped at $0$ , it fol-
lows that $Exp_{p*0}$ is nonsingular. This implies that there exists a maximal
neighborhood $U_{p}$ of $0$ in $C_{p}$ such that $Exp_{p*}|U_{p}-\{0\}$ is nonsingular. If
$\psi:C_{p}-\{0\}arrow U_{y\in s_{p}}\{\{y\}\cross(0, b(y))\}$ is the map given by $\psi(ty)=(y, t)$ , then $Exp_{p}$

$=\varphi^{s_{p_{\circ}}}\psi$ , and, hence, $Exp_{p*}(y_{ty})=f^{t}y$ and $Exp_{p*}(tX)_{ty}=\pi_{*}(f^{t})_{*}X$ for any $X\in$

$T_{y}S_{p}$ . Define a Riemannian metric $H^{p}$ on $U_{p}-\{0\}$ by

$H_{z}^{p}(X, Y)=g_{f^{s}y}(Exp_{p*}X, Exp_{p*}Y)$

for any $X,$ $Y\in T_{z}T_{p}M$, where $z=sy\in U_{p}-\{0\}(y\in S_{p})$ . Let $\nabla^{p}$ be the Levi-
Civita connection of $H^{p}$ on $U_{p}-\{0\}$ . The relation between $H^{p}$ and $H^{s_{p}}$ is that

$H_{ty}^{p}(X, Y)=H_{(y,t)}^{s_{p}}(\psi_{*}X, \psi_{*}Y)$

for any $X,$ $Y\in T_{ty}T_{p}M(ty\in U_{p}-\{0\})$ , namely $\psi:U_{p}-\{0\}arrow(S_{p})_{0}$ is an isometry
(possibly not surjective).

The following relation between the connection $\nabla^{N}$ and the Levi-Civita con-
nection V of $G$ will play important roles in this section.
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LEMMA 3.1.

$H_{(y.t)}^{N}(X,$ $\nabla_{\partial/\partial t}^{N}\frac{\partial}{\partial t})=G_{f^{t}y}((f^{t})_{*}X,\tilde{\nabla}_{V(f^{t}y)}V)$

for any $X\in T_{y}N$ and $(y, t)\in N$ .

PROOF. Since $G_{f^{t}y}(V(f^{t}y), V(f^{t}y))=1$ for all $a(y)<t<b(y)$ , we have

$G_{f^{i}y}(\tilde{\nabla}_{V(f^{t}y)}(f^{t})_{*}X, V(f^{t}y))=G_{f^{t}y}(\tilde{\nabla}_{(f^{t)_{*}X}}V, V(f^{t}y))=0$ .
Therefore,

$\frac{d}{dt}(G_{f^{t}y}((f^{t})_{*}X, V(f^{t}y)))-G_{f^{t}y}((f^{t})_{*}X,\tilde{\nabla}_{V(f^{t}y)}V)=0$

for any $a(y)<t<b(y)$ . The first term can be computed as follows.

$\frac{d}{dt}(G_{f^{t}y}((f^{t})_{*}X, V(f^{t})))=\frac{d}{dt}(g_{f^{t}y}(\varphi_{*}^{N}X, f^{t}y))=\frac{d}{dt}(H_{(y.t)}^{N}(X,\frac{\partial}{\partial t}))$

$=H_{(y.t)(\nabla\delta_{/\partial t}^{r}x}^{N}, \frac{\partial}{\partial t})+H_{(y.t)}^{N}(X,$ $\nabla\#^{r}/\hat{o}t\frac{\partial}{\partial t})$

$= \frac{1}{2}\frac{\partial}{\partial s}H_{(C(s).t)}^{N}(\frac{\partial}{\partial t},\frac{\partial}{\partial t})+H_{(y.t)}^{N}(X,$ $\nabla_{\partial/\partial t}^{N}\frac{\partial}{\partial t})$

$= \frac{1}{2}\frac{\partial}{\partial s}g_{f^{t_{C}(s)}}(f^{t}c(s), f^{t}c(s))+H_{(y.t)}^{N}(X,$ $\nabla\delta_{/ot}^{r_{\wedge}}\frac{\partial}{\partial t})=H_{(y.t)}^{N}(X,$ $\nabla\S_{/\partial t}^{r}\frac{\partial}{\partial t})$ ,

where $c$ : $(-\epsilon, \epsilon)arrow N$ is a curve with $\dot{c}(0)=X$ , and we used the facts that
(1) $V$ is horizontal,
(2) $\pi_{*}V(y)=y$ for any $y\in S$ ,

(3) $\varphi_{*f^{t}y}(\partial/\partial t)=f^{t}y$ .

Since $Exp_{p}(ty)=\varphi^{s_{p}}(y, t)$ for any $y\in S_{p}$ and $0<t<b(y)$ , we have the follow-
ing as a special case.

COROLLARY 3.2.

$H?y(tX, \nabla_{y_{ty}}^{p}y)=H_{(y.t)}^{s_{p}}(X,$ $\nabla_{\partial}^{S}\beta_{\partial t}\frac{\partial}{\partial t})=G_{f^{t}y}((f^{t})_{*}X,\tilde{\nabla}_{V(f^{i}y)}V)$

for any $X\in T_{y}S_{p}$ and $ty\in U_{p}-\{0\}(y\in S_{p}, t>0)$ .
The following is a direct application of Corollary 3.2.

COROLLARY 3.3. Let $y\in S$ . Then, $\tilde{\nabla}_{V(y)}V$ is horizontal if $\nabla_{y_{ty}}^{p}y$ (or $\nabla_{\partial’\partial t}^{s_{p}}(\partial/\partial t)$)

is bounded near $ty=0$ (or $(y,$ $0)$ , respectively).

PROOF. Let $X\in T_{p(y)}S.$ . By construction of $H^{p}$ it follows that $H^{p}$ is
bounded near $0$ along $ty$ . Hence, we have
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$G_{y}(X, \tilde{\nabla}_{V(y)}V)=\lim_{tarrow 0}H_{ty}^{p}(tX, \nabla_{y_{ty}}^{p}y)=0$

$\blacksquare$

The following theorem shows the condition equivalent to the existence of
complementary $f^{t}$ -invariant distribution.

THEOREM 3.4. The following are equivalent.
(1) $(f^{t})_{*}(V(y)^{\perp})=V(f^{t}y)^{\perp}for$ any $y\in S$ and $a(y)<t<b(y)$ .
(2) There exists a positive continuous function $\epsilon:Sarrow R^{+}$ such that

$(f^{t})_{*}(T_{y}S_{7(y)})\subset V(f^{t}y)^{\perp}$

for any OSt $<\epsilon(y)$ .
(3) The trajectories $tarrow f^{t}y$ are geodesics in $(S, G)$ for all $y\in S$ .
(4) For any submanifold $N$ in $S$ it follows that the curves $tarrow(y, t)$ are geo-

desics in $(N_{0}, H^{N_{0}})$ , where $y\in N$.
(5) For any $p\in\pi(S)$ it follows that the curves $tarrow ty$ are geodesics for all

$y\in S_{p}$ in $(U_{p}-\{0\}, H^{p})$ .
PROOF. (2) $\Rightarrow(1)$ : We first prove this for $0<t<b(y)$ . Let $\epsilon_{0}=$

1/2 $\min\{\epsilon(f^{s}y)|0\leqq s\leqq t\}$ . Then it follows that $(f^{u})_{*}T_{f^{S}y}S_{\pi(f^{s}y)}\subset V(f^{u+\}y)^{\perp}$ for
any $0\leqq u\leqq\epsilon_{0}$ and any $0\leqq s\leqq t$ . Let $T_{z}S=span\{V(z)\}\oplus W(z)\oplus T_{z}S_{\pi Cz)}$ denote an
orthonormal decomposition of $T_{z}S$ at $z\in S$ . Let $z\in f^{[0.t]}y$ . By assumption we
have $(f^{u})_{*}(f^{s})_{*}T_{z}S_{\pi(z)}\subset V(f^{u+s}z)^{\perp}$ for any $0\leqq s,$ $u,$ $s+u\leqq\epsilon_{0}$ . Let $\overline{\epsilon}(z)>0$ be such $arrow\Delta\urcorner$

that $(Exp,(z))_{*hz}$ is nonsingular for any $0\leqq h\leqq\overline{\epsilon}(z)$ . Take an arbitrary $s$ with
$0<s<\overline{\epsilon}(z),$ $0<u+s<\epsilon_{0}$ and any $X\in V(f^{s}z)^{\perp}$ . Then, we can choose $w\in W(f^{s}z)$ ,
$\eta\in T_{J^{s_{z}}}S_{\pi(f^{S}z)}$ such that $X=w+\eta$ . Since $(Exp_{\pi(z)})_{*sz}$ is nonsingular, we have
$w_{0}\in T_{z}S_{\pi(z)}$ such that $(Exp_{\pi Cz)})_{*sz}sw_{0}=\pi_{*}(f^{s})_{*}w_{0}=\pi_{*}w$ . Therefore, there exists
an $\eta_{1}\in T_{f^{S}z}S_{\pi(f^{S}z)}$ such that $(f^{s})_{*}w_{0}=w+\eta_{1}$ . Hence, $w+\eta=(f^{s})_{*}w_{0}-\eta_{1}+\eta$ .
Thus, $(f^{u})_{*}(w+\eta)=(f^{u})_{*}(f^{s})_{*}w_{0}-(f^{u})_{*}\eta_{1}+(f^{u})_{*}\eta$ . Since $(f^{u})_{*}(f^{s})_{*}w_{0}\in V(f^{u+s}z)^{\perp}$ ,
$(f^{u})_{*}\eta_{1}\in V(f^{u}(f^{s}z))^{\perp}$ and $(f^{u})_{*}\eta\in V(f^{u}(f^{s}z))^{\perp}$ , we have $(f^{u})_{*}(w+\eta)\in V(f^{u+s}z)^{\perp}$ ,
namely $(f^{u})_{*}(V(f^{s}z)^{\perp})\subset V(f^{u+s}z)^{\perp}$ . Taking $s$ to zero, we get $(f^{u})_{*}(V(z)^{\perp})\subset$

$V(f^{u}z)^{\perp}$ for any $0\leqq u\leqq\epsilon_{0}$ . Taking the dimension in consideration, we have
$(f^{u})_{*}(V(z)^{\perp})=V(f^{u}z)^{\perp}$ for any $0\leqq u\leqq\epsilon_{0}$ . Let $0=u_{1}<u_{2}<\ldots<u_{n-1}<u_{n}=t$ be a
partition with $u_{i+1}-u_{i}<\epsilon_{0}$ for $i=1$ , , $n-1$ . Then we have

$f^{t}(V(y)^{\perp})=(f^{u_{n^{-u}n-1}})_{*}\cdots(f^{u_{2}-u_{1}})_{*}(V(y)^{\perp})=V(f^{t}y)^{\perp}$ .
For the case that $a(y)<t<0$ we get

$(f^{-t})_{*}(V(f^{t}y)^{\perp})=V(y)^{\perp}$ .
and, therefore, $V(f^{t}y)^{\perp}=(f^{t})_{*}(V(y)^{\perp})$ . This completes the proof of this part.

(1) $\Rightarrow(3)$ : We have to show that $G_{y}(X,\tilde{\nabla}_{VCy)}V)=0$ for any $y\in S$ and any
$X\in T_{y}S$ . Since $G(V, V)=1$ on $S$ , we have $G_{y}(\tilde{\nabla}_{VCy)}V, V(y))=0$ . Let $X\in V(y)^{\perp}$ .
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Then, by using $(f^{t})_{*}V(y)^{\perp}=V(f^{t}y)^{\perp}$ , we have

$0=X(G(V, V))=2G_{y}(\tilde{\nabla}_{X}V, V(y))=2G_{y}(\tilde{\nabla}_{V(y)}(f^{t})_{*}X, V(y))$

$=2\{V(y)(G((f^{t})_{*}X, V))-G_{y}(X,\tilde{\nabla}_{V(y)}V)\}=-2G_{y}(X,\tilde{\nabla}_{V(y)}V)$ .

This completes the proof of this part.
(3) $\Rightarrow(4)$ : We have only to prove that $\nabla_{\partial/\partial t}^{N}(\partial/\partial t)=0$ . Since $H^{N}(\partial/\partial t, \partial/\partial t)=1$

on $N_{0}$ , we have $H^{N}(\partial/\partial t, \nabla_{\partial/\partial t}^{N}(\partial/\partial t))=0$ on $N_{0}$ . $LetX\in T_{y}N$. By Lemma 3.1 and
the assumption (3), we get $H^{N}(X, \nabla_{\partial/\partial t}^{N}(\partial/\partial t))=0$ on $N_{0}$ . These imply that
$\nabla_{\partial’\partial t}^{N}(\partial/\partial t)=0$ on $N_{0}$ .

(4) $\Rightarrow(5)$ : Since $\psi:(U_{p}-\{0\}, H^{p})arrow((S_{p})_{0}, H^{s_{p}})$ given by $\psi(ty)=(y, t)$ is an
isometry, we see that (5) is a special case of the condition (4) because $\psi_{*}(y)=$

$\partial/\partial t$ .
(5) $\Rightarrow(2)$ : The condition (5) implies $\nabla_{y}^{p}y=0$ where $y$ is the vector field on

$U_{p}-\{0\}$ given by $y_{ty}=y$ for any $y\in S_{p}$ . Hence, by Corollary 3.2, we see that
$G_{J^{t_{y}}}((f^{t})_{*}X,\tilde{\nabla}_{V(f^{t}y)}V)=0$ for any $y\in S$ , any $X\in T_{y}S_{p}$ and any $t$ with $ty\in$

$U_{\pi(y)}-\{0\}$ . This implies that $(f^{t})_{*}(T,S.(y))cV(f^{t}y)^{\perp}$ for any $y\in S$ and $ty\in$

$U_{\pi(y)}-\{0\}$ , because

$V(f^{t}y)(G((f^{t})_{*}X, V))=G_{f^{t}y}( \theta_{V(f^{t}y)}(f^{t})_{*}X, V(f^{t}y))=\frac{1}{2}(f^{t})_{*}X(G(V, V))=0$

and $G_{y}(X, V(y))=0$ for any $X\in T_{y}S_{\pi(y)}$ . Since the functions $b,$ $s_{1}$ : $Sarrow R^{+}$ are
lower semi-continuous as seen in Appendix 2, we can find a positive function
$\epsilon$ : $Sarrow R^{+}$ in the condition (2). $\blacksquare$

We conclude this section with a remark on singular points of $Exp_{p}$ . Let
$\gamma_{y}$ : [$0,$ $b(y))arrow M$ denote $\gamma_{y}(t)=\pi f^{t}y$ for any $y\in S$ . We say that $\gamma_{y}(s)$ is a con-
jugate point to $p$ along $\gamma_{y}$ if $(f^{s})_{*}T_{y}S_{\pi(y)}\cap T_{f^{S}y}S_{\pi(f^{s}y)}\neq\{0\}$ . It follows that $p$

is a conjugate point to $\gamma_{y}(s)$ along $\gamma_{y}$ if so $\gamma_{y}(s)$ is to $p$ . Since $Exp_{p}ty=\pi f^{t}y$

for any $y\in S_{p}$ and $0\leqq t<b(y)$ , we have that $(Exp_{p})_{*sy}$ is singular if and only if
$\gamma_{y}(s)$ is a conjugate point to $p$ along $\gamma_{y}$ .

According to Appendix 2. let $s_{1}$ : $Sarrow R^{+}$ be defined by

$s_{1}(y)= \inf$ { $s>0|\gamma_{y}(s)$ is a conjugate point to $p$ along $\gamma_{y}$ }.

We call $\gamma_{y}(s_{1}(y))$ the first conjugate point to $p$ along $\gamma_{y}$ . Thus, we have

$U_{p}=$ { $ty|y\in S_{p}$ and $0 \leqq t<\min\{s_{1}(y),$ $b(y)\}$ }.

COROLLARY 3.5. Assume that one of the conditions in Theorem 3.4 is true.
Let $y\in S_{p}$ . Then $\gamma_{y}(s)$ is a first conjugate point to $p$ along $\gamma_{y}$ if and only if there
exists a nontrivial Jacobi vector field $Y$ along the geodesic $tarrow ty$ in $(U_{p}-\{0\}, H^{p})$

such that $\lim {}_{tarrow+0}H?_{y}(Y(t), Y(t))=0$ and $\lim_{tarrow s-}{}_{0}H_{ty}^{p}(Y(t), Y(t))=0$ .
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PROOF. The curves $tarrow ty$ are geodesics in $(U_{p}-\{0\}, H^{p})$ for all $y\in S_{p}$ , so
a vector field $tarrow tz=:Y_{z}(t)$ along the geodesic $ty$ is a Jacobi vector field for any
$z\in T_{y}S_{p}$ . Since

$H_{t}^{p},(Y_{z}(t), Y_{z}(t))=g_{f^{t}},((Exp_{p})_{*ty}tz, (Exp_{p})_{*ty}tz)=g_{f^{t}y}(\pi_{*}(f^{t})_{*}z, \pi_{*}(f^{t})_{*}z)$

for any $0\leqq t<b(y)$ , this corollary is true. $\blacksquare$

A direct consequence is the following.

COROLLARY 3.6. Assume that one of the conditions in Theorem 3.4 is true.
If $(U_{p}-\{0\}, H^{p})$ has nonpositive radial sectional curvature centered at the origin,
then there is no conjugate point to $p$ along $\gamma_{y}$ for any $y\in S_{p}$ .

4. Metric structure.

In this section we assume that $\pi(S)=M$ and $V$ is complete in $S$ . Let $M$

have a Riemannian metric $\tilde{g}$ . Since $S_{p}$ is a star-shaped hypersurface centered
at the origin, we can find a generalized metric $g$ on $M$ as seen in Proposition
2.2 if there is a complementary distribution $D$ . We assume that $D$ is $f^{t}-$

invariant in this section. In order to define a pseudo-distance (see Lemma 4.1)

on $M$ we need a function $L$ : $TM-\{0\}arrow R^{+}\cup\{0\}$ which is defined as follows:

$\{$

$L(z)=\lambda=\sqrt{g_{y}(z,z)}$ if $z=\lambda y(\lambda>0)$ and $y\in S_{p}$ ,

$L(z)=0$ if $z\not\in C_{\pi(y)}-\{0\}$ .
The function $L$ is continuous on $TM-\{0\}$ . Any two points $p$ and $q$ in $M$ can
be joined by a piecewise smooth curve, since $M$ is connected. Let

$\lambda(c):=\int_{a}^{b}L(\delta(t))dt$

which is called the length of a curve $c$ : $[a, b]arrow M$. It follows that $\lambda(c)$ is in-
dependent of the choice of an oriented parameter of $c$ . Thus, we define a
function $d:M\cross Marrow R^{+}\cup\{0\}$ by

$d(p, q):= \inf$ { $\lambda(c)|c$ is a piecewise smooth curve from $p$ to $q$ }.

Since we do not assume the symmetry of the function $L$ , this function
$d(\cdot, \cdot)$ is not necessarily symmetric ([B2], [BM]).

LEMMA 4.1. The following are true.
(1) $d(p, q)\geqq 0$ for any $p,$ $q\in M$.
(2) $d(p, q)=0$ if $p=q$ .
(3) $d(p, q)\leqq d(p, r)+d(r, q)$ for any $p,$ $q,$ $r\in M$.
(4) $d(p, q)=0$ implies $p=q$ if all $S_{p}$ are closed hypersurfaces in $T_{p}M$,
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namely compact hypersurfaces without boundary.

Let $B_{p}^{+}(t)=\{q\in M|d(p, q)\leqq t\}$ and $B_{p}^{-}(t)=\{q\in M|d(q, p)\leqq t\}$ . In general,
$B_{p}^{+}(t)\neq B_{p}^{-}(t)$ . The property (3) in Lemma 4.1 implies that $B_{p}^{+}(t)\supset B_{\gamma(s)}^{+}(u)$ for
$t=s+u,$ $0\leqq s,$ $u$ , where $y\in S_{p}$ . If $B_{p}^{+}(t)$ and $B_{r_{y^{(s)}}}^{+}(u)$ are differentiable at $\gamma,(t)$ ,

then their tangent space is $\pi_{*}D(f^{t}y)$ . This is connected with Huygens’ principle
$([A])$ .

We shall pay our attention to geometry in $Exp_{p}(U_{p}-\{0\})$ . We say that
$c:[a, b]arrow M$ is an underlying curve from $c(a)=Exp_{p}(y)$ to $c(b)=Exp_{p}(z)$ in
$Exp_{p}(U_{p}-\{0\})$ if there exists a curve $\overline{c}:[a, b]arrow U_{p}-\{0\}$ such that $\overline{c}(a)=y$ ,
$\overline{c}(b)=z$ and $Exp_{p}\overline{c}(t)=c(f)$ for any $a\leqq t\leqq b$ . As seen before any curve $tarrow ty$ in
$U_{p}-\{0\}$ is a geodesic in $(U_{p} \{0\}, H^{p})$ for any $y\in S_{p}$ . This does not mean
that $\gamma$ , : $[a, b]arrow M$ has minimum length in the set of all underlying curves
from $\gamma,(a)$ to $\gamma_{y}(b)$ in $Exp_{p}(U_{p}-\{0\})$ . However we have the following.

LEMMA 4.2. If $S_{q}$ is convex in $T_{q}M$ for any $q\in M$, then any curve $\gamma_{y}$ : $[a, b]$

$arrow M$ has minimum length $b-a$ in the set of all underlying curves $c$ from $\gamma_{y}(a)$

to $\gamma_{y}(b)$ in $Exp_{p}(U_{p}-\{0\})$ with $L(\dot{c})\neq 0$ , where $y\in S_{p}$ .
PROOF. Let $c:[a, b]arrow M$ be a $C^{\infty}$ underlying curve from $c(a)=\gamma_{y}(a)$ to

$c(b)=\gamma_{y}(b)$ in $Exp_{p}(U_{p}-\{0\})$ and let $\overline{c}(t):=Exp_{p}^{-1}c(t)$ for any $a\leqq t\leqq b$ . Define
$v:[a, b]arrow S_{p}$ and $s:[a, b]arrow R$ by $\overline{c}(t)=s(t)v(t)$ for any $a\leqq t\leqq b$ , and we have
that $c(t)=\gamma_{v(t)}(s(t))=\pi f^{S(t)}v(t)$ for any $a\leqq t\leqq b$ . Therefore,

$\dot{c}(t)=\dot{s}(t)f^{s(t)}v(t)+\pi_{*}(f^{S(t)})_{*}\dot{v}(t)$ .

for any $a\leqq t\leqq b$ . Since $L(\dot{c}(t))\neq 0$ for any $a\leqq t\leqq b$ , there is the unique vector
$y(t)\in S_{c(t)}$ such that $\dot{c}(t)=L(\dot{c}(t))y(t)$ for each $a\leqq t\leqq b$ . We can have the decom-
position of $y(t)$ as

$y(t)=\alpha(t)f^{S(t)}v(t)+w(t)$

where $w(t)\in\pi_{*}V(f^{S(t)}v(t))^{\perp}=T_{f^{S(t)}v(t)}S_{c(t)}$ for any $a\leqq t\leqq b$ . Since all $S_{q}$ are con-
vex, we have $\alpha(t)\leqq 1$ for any $a\leqq t\leqq b$ . Since

$L(\delta(t))(\alpha(t)f^{s(t)}v(t)+w(t))=\dot{s}(t)f^{s(t)}v(t)+\pi_{*}(f^{s(t)})_{*}\dot{v}(t)$

for any $a\leqq t\leqq b$ , and $(f^{S(t)})_{*}\dot{v}(t)\in V(f^{S(t)}v(t))^{\perp}$ , we have $L(c(t))\alpha(t)=\dot{s}(t)$ for any
$a\leqq t\leqq b$ . Thus we get $L(\dot{c}(t))\geqq\dot{s}(t)$ for any $a\leqq t\leqq b$ because $L(\dot{c}(t))>0$ . Hence
we finally have

$\lambda(c)=\int_{a}^{b}L(\dot{c}(t))dt\geqq\int_{a}^{b}\dot{s}(t)dt=s(b)-s(a)=b-a$ .
$\blacksquare$

This lemma states that any point $q$ can be joined from any point $p$ by a
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broken geodesic 7 with minimum length if there is a piecewise smooth curve
$c:[a, b]arrow M$ with $c(a)=p,$ $c(b)=q$ , $L(\dot{c}(t))\neq 0$ for any $a\leqq t\leqq b$ with minimum
length. It is natural to ask when a point $q$ can be joined from a point $p$ by a
geodesic segment with minimum length. The spaces with this property are
studied in the book [BP].

LEMMA 4.3. Assume that $S_{r}$ is closed and convex in $T.M$ for any $r\in M$ .
If a point $q\in M$ can be joined from $p\neq q$ by a piecewis $e$ smooth curve $c:[a, b]$

$arrow M,$ $c(a)=p,$ $c(b)=q$ with $\lambda(c)<s_{1}(p)$ , then there exists a $y\in S_{p}$ such that 7, : $[0, d]$

$arrow M$ is a geodesic segment from $p$ to $q$ with minimum length.

PROOF. Since $Exp_{p}$ is nonsingular in $U_{p}-\{0\}$ , we can lift $c$ to $U_{p}-\{0\}$ ,
namely there exists a piecewise smooth curve $\overline{c}:[a, b]arrow U_{p}$ such that $Exp_{p}\overline{c}(t)$

$=c(t)$ for any $a\leqq t\leqq b$ . In fact, $\overline{c}$ does not reach the boundary of $U_{p}$ , since
$\lambda(c)<s_{1}(p)$ and Lemma 4.2. We have a $y\in S_{p}$ such that $\overline{c}(b)=\alpha y$ for some $\alpha>0$ .
Then, 7, : $[0, \alpha]arrow M$ is a desired geodesic segment. $\blacksquare$

In the case when $s_{1}(r)=\infty$ for any $r\in M$ we have the following.

COROLLARY 4.4. Assume that $S_{r}$ is closed and convex in $T_{r}M$ for any $r\in M$

and any point has no conjugate point along any geodesic. Then, any point $q\in M$

can be joined from $p\neq q$ by a geodesic segment. Moreover, there exists the uni-
que geodesic segment from any point $p$ to any point $q$ in $M$ if $M$ is simply con-
nected.

We conclude this section with the case where $S_{r}$ are strictly convex in
$T_{r}M$. In the following “finitely compact” by definition means that bounded
closed sets are compact.

COROLLARY 4.5 ([B1], [B2], [BM]). Assume that $S_{r}$ is closed and strictly
convex in $T_{r}M$ for any $r\in M$ and the distance $d(\cdot, )$ is finitely compact. Then,
$M$ becomes a $G$ -space with possibly nonsymmetric distance in the sense of Buse-
mann.

5. Appendix 1. Connection map.

Let $M,$ $TM,$ $V$ and $S$ be as in Introduction. Let $h_{\alpha}$ : $TMarrow TM$ be a map
given by $h_{a}(y)=\alpha y$ , where $\alpha>0$ . We define a vector field $\overline{V}$ on the cone
spaned by $S$ as $\overline{V}(\alpha y)=\alpha(h_{a})_{*}(V|S)(y)$ for any $\alpha>0$ and $y\in S$ . Then, $\overline{V}$ is of
class $C^{\infty}$ on $C-\{0\}$ . Let $(U;x^{1}, \cdot. , x^{n})$ be a local coordinate system of $M$ and
(TU; $x^{1},$ $\cdots$ $x^{n},$ $y^{1},$ $\cdots$ , $y^{n}$ ) a local coordinate system of $TM$ such that a vector
$y=\Sigma_{i=1}^{n}y^{i}(\partial/\partial x^{i})|_{Cx1\ldots.x^{n)}}$ has coordinate $(x, y)=(x^{1}, \cdots x^{n}, y^{1}, , , y^{n})$ . In this
coordinate neighborhood we assume that
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$\overline{V}(y)=\Sigma_{i=1}^{n}y^{i}\frac{\partial}{\partial x^{i}}|_{(x.y^{)}}+\Sigma_{i=1}^{n}b^{i}(x, y)\frac{\partial}{\partial y^{i}}|_{(x}y)$

for some functions $b^{t}$ : $TU\cap Carrow R$ . Then,

$b^{i}(x, \alpha y)=\alpha^{2}b^{i}(x, y)$

for any $\alpha>0$ . This shows that $\overline{V}$ is at least of class $C^{1}$ at the origin. Let
$P:Carrow S$ be a projection such that $P(w)$ is the intersection of $S$ and the ray
passing through $w\in C$ from the origin. As seen in the paper [D] we can find
functions $\Gamma_{jk}^{i}$ : $Sarrow R,$ $i,$ $j,$ $k=1,$ $\cdots$ $n$ such that

$b^{t}(x, y)=-\Sigma_{i,j.k}\Gamma_{jk}^{i}(P(y))y^{j}y^{k}$

for any $y\in T_{x}U\cap C$ . Actually we have

$\Gamma_{jk}^{t}(y)=-\frac{1}{2}\frac{\partial^{2}}{\partial y^{i}\partial y^{k}}b^{i}(x, y)$

where $y\in S_{x}$ . At last we can define a connection map $K_{y}:T_{y}TMarrow T_{\chi}M$

$(\pi(y)=x)$ by

$K_{y}(x, y, X, Y)=(x, Y+\Gamma(P(y))(y, X))$

where

$\Gamma(P(y))(y, X)=\Sigma_{i=1}^{n}(\Sigma_{j.k}\Gamma_{jk}^{i}(P(y))y^{j}X^{k})\frac{\partial}{\partial x^{i}}|_{x}$

in $TU\cap C$ . In fact, $\Gamma(P(y))(y, X)$ depends on the choice of the coordinate
system, but $Y+\Gamma(P(y))(y, X)$ is independent of the choice of the coordinate
system $(U;x^{1}, \cdots , x^{n})$ .

6. Appendix 2. Domains of flows.

Let $a,$ $b:Sarrow R$ denote the functions given by

$a(y)= \inf$ { $s|f^{t}$ is defined for all $s<t\leqq 0$ },

$b(y)= \sup$ { $s|f^{t}$ is defined for all $0\leqq t<s$ }.

It follows that $a$ is upper semi-continuous and $b$ is lower semi-continuous,
namely

$\varlimsup_{yarrow y_{0}}a(y)\leqq a(y_{0})$

$\varliminf_{yarrow y_{0}}b(y)\geqq b(y_{0})$

for any $y_{0}\in S$ . Therefore, we can find continuous function $\underline{a}$ and $\overline{b}$ on $S$ such
that $a<\underline{a}<0$ and $0<\overline{b}<b$ .

Let $s_{1}$ : $Sarrow R^{+}$ be the function such that $\gamma_{y}(s_{1}(y))$ is the first conjugate point
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to $\pi(y)$ along 7,. By definition, $\overline{s}_{1}$ is lower semi-continuous. Thus, we can
find a continuous function $\overline{s}_{1}$ : $Sarrow R$ such that $0<\overline{s}_{1}<s_{1}$ .

The function $\epsilon$ : $Sarrow R^{+}$ given by $\epsilon(y)=\min\{\overline{s}_{1}(y),\overline{b}(y)\}$ is continuous on S.
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