Sur les fonctions périodiques de plusieurs variables II (réduction au cas défini positif)

Par Yukitaka ABE*

(Reçu le 11 janv., 1991) (Revisé le 20 déc., 1991)

1. Introduction.

Les fonctions périodiques de n variables complexes se réduisent essentiellement aux fonctions méromorphes sur un groupe toroidal $X=C^n/\Gamma$. Cette fonction méromorphe s'écrit comme quotient de deux fonctions automorphes pour un facteur automorphe $\alpha: \Gamma \times C^n \to C^*$. Alors, il est important d'étudier les fonctions automorphes.

Le but de cet article est la caractérisation des facteurs automorphes pour lesquels il existe une fonction automorphe non-triviale. Dans l'article précédent [2], nous avons donné quelques conditions nécessaires pour l'existence des fonctions automorphes non-triviales. Nous leur ajoutons trois conditions nécessaires (Théorèmes 1 et 2), et montrons que le problème se réduit au cas défini positif sous ces conditions (Théorème 3). Dans le cas défini positif, nous avons la solution complète quand rang $\Gamma = n+1$, et une solution partielle en général ($\lceil 2 \rceil$).

Je tiens à remercier M.M. Stein qui m'a fait d'utiles remarques sur une seconde version de cet article et sur l'article précédent [2].

2. Conditions.

Soit $X=C^n/\Gamma$ un groupe toroidal non-compact, où Γ est un sous-groupe discret de rang n+m, $1 \le m < n$. Tout espace fibré holomorphe en droites L sur X s'écrit $L=L_\alpha \otimes L_\rho$, où L_α est l'espace fibré holomorphe en droites topologiquement trivial donné par un facteur automorphe $\alpha: \Gamma \times C^n \to C^*$, et L_ρ est l'espace fibré holomorphe en droites donné par un facteur thêta réduit de type (\mathcal{H}, ϕ) . On notera $H^0(X, \mathcal{O}(L))$ l'espace vectoriel des sections holomorphes de

^{*} Cette recherche a été partiellement supporté par "Grant-in-Aid for Encouragement of Young Scientists (No. 02854008), Ministry of Education, Science and Culture".

60 Y. Abe

L. Il est clair qu'il est isomorphe à l'espace vectoriel des fonctions automorphes pour le facteur automorphe $\alpha \cdot \rho$. Notre problème est de donner les conditions nécessaires et suffisantes pour $H^0(X, \mathcal{O}(L)) \neq 0$, et de décider la dimension de l'espace vectoriel $H^0(X, \mathcal{O}(L))$.

On écrira R_{Γ}^{n+m} le sous-espace linéaire réel engendré par le sous-groupe discret Γ de C^n . Soit C_{Γ}^m le sous-espace linéaire complexe maximal dans R_{Γ}^{n+m} . On notera \mathcal{A} la partie imaginaire de la forme hermitienne \mathcal{H} sur C^n . Définissons $\mathcal{H}_{\Gamma} = \mathcal{H} \mid_{C_{\Gamma}^{m} \times C_{\Gamma}^{m}}$ et $\mathcal{A}_{\Gamma} = \mathcal{A} \mid_{R_{\Gamma}^{n+m} \times R_{\Gamma}^{n+m}}$. Soit $K = \text{Ker}(\mathcal{H}_{\Gamma})$ la noyau de la forme hermitienne \mathcal{H}_{Γ} sur C_{Γ}^{m} défini par

$$\operatorname{Ker}(\mathcal{H}_{\Gamma}) = \{ x \in \mathbb{C}_{\Gamma}^{m} ; \mathcal{H}_{\Gamma}(x, y) = 0 \text{ pour tout } y \in \mathbb{C}_{\Gamma}^{m} \}.$$

Il est connu que si $H^0(X, \mathcal{O}(L)) \neq 0$, alors la forme hermitienne \mathcal{H}_{Γ} est semi-définie positive (Proposition 4.4 dans [1]). Nous considérons donc la condition suivante:

(C0) la forme hermitienne \mathcal{H}_{Γ} est semi-définie positive et non-null.

Ensuite, considérons la condition suivante:

$$\phi|_{\Gamma \cap K} = 1.$$

Dans l'article précédent [2], nous avons énoncé la nécessité de la condition suivante:

(C1') $\psi|_{\Gamma \cap K}$ est une représentation de $\Gamma \cap K$ qui est équivalente à la représentation unitaire 1.

Ici, une représentation φ de $\Gamma \cap K$ est un homomorphisme $\varphi : \Gamma \cap K \to C^*$. Nous précisons la relation d'entre les conditions (C1) et (C1'), et montrons la nécessité de (C1), dans le paragraphe 4.

Nous avons donné l'exemple (Exemple 8.3 dans [2]) qui n'a pas de section holomorphe non-triviale et satisfait aux conditions (C0) et (C1). Cet exemple ne satisfait pas à la condition d'inclusion:

(C2)
$$\operatorname{Ker}(A_{\Gamma}) \supset K$$
,

où Ker (\mathcal{A}_{Γ}) est le noyau de la forme R-bilinéaire alterné $\mathcal{A}_{\Gamma}: R_{\Gamma}^{n+m} \times R_{\Gamma}^{n+m} \to R$. Soit $\sigma: C^n \to C^n/K$ la projection canonique. On notera $\Gamma^* = \sigma(\Gamma)$ l'image de Γ par σ . Nous considérons de plus la condition suivante:

(C3) Γ^* est un sous-groupe discret de C^n/K .

On peut écrire $C^n = C^m_{\Gamma} \times C^{n-m}$. Soient $(z_1, \dots, z_m; w_1, \dots, w_{n-m})$ des coordonnées holomorphes de C^n telles que $z = (z_1, \dots, z_m) \in C^m_{\Gamma}$ et $w = (w_1, \dots, w_{n-m}) \in C^{n-m}$. Prenons une matrice P de période de Γ par rapport à ces coordonnées

telle que

$$P = \begin{pmatrix} 0 & T \\ I_{n-m} & R \end{pmatrix},$$

où I_{n-m} est la (n-m, n-m)-matrice unité, $T=(I_mS)$ est la matrice de période d'un tore complexe de dimension m et R est une (n-m, 2m)-matrice réelle satisfaisante à

$${}^t au R \notin {m Z}^{\,2m}$$

pour tout $\tau \in \mathbb{Z}^{n-m} \setminus \{0\}$ (Proposition 2 dans [3]). Supposons qu'un facteur automorphe additif $a: \Gamma \times \mathbb{C}^n \to \mathbb{C}$ (voir la Définition 2.3 dans [2]) définit le facteur automorphe $\alpha: \Gamma \times \mathbb{C}^n \to \mathbb{C}^*$ par $\alpha(\gamma, x) = \exp(a(\gamma, x))$ pour tous $\gamma \in \Gamma$ et $x \in \mathbb{C}^n$. D'après le résultat de Vogt (Proposition 8 dans [3]), on peut supposer de plus que le facteur automorphe additif $a(\gamma, x)$ a les propriétés suivantes:

- a) $a(\gamma, x)$ ne dépend pas de z. Par cette raison on écrit $a(\gamma, x) = a(\gamma, w)$ fréquemment.
 - b) $a(\gamma, w)=0$ pour tout $\gamma \in \begin{pmatrix} 0 \\ Z^{n-m} \end{pmatrix}$.
 - c) $a(\gamma, w)$ est \mathbb{Z}^{n-m} -périodique pour w.

Pour un point $w \in \mathbb{C}^{n-m}$ fixé, désignons par

$$\alpha_w(\gamma) = \alpha(\gamma, w)$$
 pour tout $\gamma \in \Gamma \cap K$

la représentation de $\Gamma \cap K$. Considérons la condition suivante:

(C4) Pour tout
$$w \in \mathbb{C}^{n-m}$$
, $\alpha_w(\gamma) = 1$ sur $\Gamma \cap K$.

3. Nécessité des conditions (C2) et (C3).

Soit $X=\mathbb{C}^n/\Gamma$ un groupe toroidal et soit $L=L_\alpha \otimes L_\rho$ un espace fibré holomorphe en droites sur X. On dira que l'espace vectoriel $H^0(X, \mathcal{O}(L))$ des sections holomorphes de L engendre L sur X si pour chaque $x \in X$ il existe une section $s \in H^0(X, \mathcal{O}(L))$ telle que $s(x) \neq 0$.

LEMME 1. Si $H^0(X, \mathcal{O}(L)) \neq 0$, alors $H^0(X, \mathcal{O}(L^l))$ engendre L^l sur X pour tout entier $l \geq 2$.

DÉMONSTRATION. Pour chaque entier positif q, désignons par $A(L^q)$ l'ensemble des fonctions automorphes pour $\alpha^q \cdot \rho^q$. Il est clair que $A(L^q) \cong H^0(X, \mathcal{O}(L^q))$. Par hypothèse, il existe $f \in A(L)$ telle que $f \not\equiv 0$.

Nous démontrons le lemme pour l=2 à cause de la simplicité. Cette démonstration est validement pour le cas général. En utilisant f, nous définissons la fonction holomorphe F(a, x) sur $C^n \times C^n$ par

62 Y. Abe

$$F(a, x) = f(x-a)f(x+a).$$

Prenons $x^0 \in C^n$ quelconque. On pose

$$f_0(a) = F(a, x^0).$$

Si $f_0|_{C_I^m}\equiv 0$, on a $f\equiv 0$. Par suite il existe $a^0\in C_I^m$ tel que $f_0(a^0)\neq 0$. Fixons maintenant $a^0\in C_I^m$. Alors $F(a^0,x)$ est une fonction automorphe pour

$$\alpha(\gamma, x-a^0)\alpha(\gamma, x+a^0)\rho(\gamma, x-a^0)\rho(\gamma, x+a^0)$$
.

Puisque le facteur automorphe $\alpha(\gamma, x)$ ne dépend pas de z, on a

$$\alpha(\gamma, x-a^0)\alpha(\gamma, x+a^0) = \alpha(\gamma, x)^2$$
.

De plus, il est bien connu que $\rho(\gamma, x-a^0)\rho(\gamma, x+a^0)$ est un facteur thêta réduit de type $(2\mathcal{H}, \phi^2)$. Par conséquent, la fonction $F(a^0, x)$ appartient à $A(L^2)$ par rapport à x. Comme $F(a^0, x^0)=f_0(a^0)\neq 0$, $H^0(X, \mathcal{O}(L^2))$ engendre L^2 sur X. \square

REMARQUE. Soient D_1 et D_2 deux diviseurs effectifs sur X. L'ensemble $\{x \in X; D_1 + x = D_2\}$ est contenu dans le diviseur $D_2 - d_1$ pour tout $d_1 \in D_1$. Alors, on peut prendre a^0 convenable dans la démonstration du lemme tel qu'il existe deux sections holomorphes premières relativement de L^2 si $H^0(X, \mathcal{O}(L)) \neq 0$.

THÉORÈME 1. Supposons $H^0(X, \mathcal{O}(L)) \neq 0$. Alors L satisfait aux conditions (C2) et (C3).

DÉMONSTRATION. Supposons que $L=L_{\alpha}\otimes L_{\rho}$ ne satisfait pas à la condition (C2). Par le Lemme 1, l'espace vectoriel $H^0(X, \mathcal{O}(L^2))$ des sections holomorphes de L^2 engendre L^2 sur X. L'espace fibré holomorphe en droites L^2 sur X ne satisfait pas à la condition (C2) aussi. Alors, nous pouvons supposer depuis le commencement que $H^0(X, \mathcal{O}(L))$ engendre L sur X et L ne satisfait pas à la condition (C2). De plus, on peut supposer l'existence de la fonction méromorphe non-constante f sur C^n qui s'écrit comme quotient de deux sections holomorphes premières relativement de L par la Remarque susdite. La période P_f de f est un sous-groupe fermé de C^n contenant Γ . Alors on a $P_f = A \oplus B$, où A est un sous-espace linéaire complexe de C^n et B est discret. Donc, il existe la fonction méromorphe f' sur C^n/A avec la période B telle que f est l'image réciproque π^*f' de f' par la projection $\pi: \mathbb{C}^n \to \mathbb{C}^n/A$. Comme $\Gamma \subset P_{f'}$ l'image $\Gamma' = \pi(\Gamma)$ de Γ par π est un sous-groupe de B. Par suite, on obtient la surjection $\bar{\pi}: X \to X' = (C^n/A)/B$ en vertu de π . Nous notons que X' est aussi un groupe toroidal. Pour f', il existe un espace fibré holomorphe en droites L'sur X' et deux sections holomorphes s'_1 , s'_2 premières relativement de L' telles que $f'=s_2'/s_1'$. Comme $f=\pi^*f'$, on a $L\cong \bar{\pi}^*L'$. Soit \mathcal{H} une forme hermitienne de $L=L_{\alpha}\otimes L_{\rho}$, c'est-à-dire que ρ est le facteur thêta réduit de type (\mathcal{H}, ϕ) . Soit \mathcal{H}' une forme hermitienne de $\bar{\pi}^*L'$. Alors nous obtenons $\mathcal{A}_{\Gamma}=\mathcal{A}'_{\Gamma}$. Comme f est constante sur K (voir la démonstration de la Proposition 4.5 dans [1]), on a $K\subset A\subseteq C^m_{\Gamma}$. Nous avons d'abord

$$\mathcal{A}'(x, y) = 0$$
 pour tous $x \in K$ et $y \in \mathbf{R}_{\Gamma}^{n+m}$.

D'autre part, il existe $x_0 \in K \setminus \text{Ker}(\mathcal{A}_{\Gamma})$ par hypothèse $\text{Ker}(\mathcal{A}_{\Gamma}) \subseteq K$. Alors, il exists $y_0 \in \mathbf{R}_{\Gamma}^{n+m}$ tel que $\mathcal{A}(x_0, y_0) \neq 0$. Ceci est une contradiction. Par conséquent, il faut que la condition (C2) est satisfaite.

Ensuite, nous montrons la nécessité de la condition (C3). Comme $\mathcal{H}'_{\Gamma} = \mathcal{H}_{\Gamma}$ et il existe une forme hermitienne \mathcal{H}'_{0} definie positive sur C^{n}/A telle que $\mathcal{H}' = \mathcal{H}'_{0} \circ (\pi \times \pi)$, on a A = K. Nous avons donc $\Gamma' = \Gamma^{*} = \sigma(\Gamma)$.

REMARQUE. Soit \mathcal{H} une forme hermitienne sur \mathbb{C}^n dont la partie imaginaire $\mathcal{A}=\operatorname{Im}\mathcal{H}$ est à valeurs entières sur $\Gamma\times\Gamma$. On dira qu'une forme hermitienne $\widetilde{\mathcal{H}}$ sur \mathbb{C}^n est une extension de \mathcal{H} si $\widetilde{\mathcal{A}}_{\Gamma}=\mathcal{A}_{\Gamma}$, où $\widetilde{\mathcal{A}}=\operatorname{Im}\widetilde{\mathcal{H}}$ (cf. [2]).

Supposons maintenant que \mathcal{H}_{Γ} est semi-définie positive. Alors, \mathcal{H} a une extension $\widetilde{\mathcal{H}}$ semi-définie positive sur \mathbb{C}^n si et seulement si la condition (C2) est satisfaite (Proposition 8.1 dans [2]). Dans ce cas, on a

$$\operatorname{Ker}(\mathcal{H}_{\Gamma}) = \operatorname{Ker}(\widetilde{\mathcal{H}}) = \{x \in \mathbb{C}^n ; \mathcal{H}(x, y) = 0 \text{ pour tout } y \in \mathbb{C}^n\}.$$

4. Remarque sur les conditions (C1) et (C1').

Dans ce paragraphe, nous complétons l'article précédent [2] et montrons la nécessité de la condition (C1).

LEMME 2. Supposons que la condition (C3) est satisfaite. Alors, $K/(\Gamma \cap K)$ est un tore complexe.

DÉMONSTRATION. Soit $2k = \dim_{\mathbf{R}} K$. Si rang $\Gamma \cap K < 2k$, alors on a rang $\Gamma^* > n + m - 2k$. Ceci contradit à la condition (C3).

REMARQUE. Nous avons énoncé la nécessité de la condition (C1') (Théorème 3.4 dans [2]). Il n'est pas correct qu'il existe la projection canonique $X \rightarrow X_0 := K/(\Gamma \cap K)$ (p. 91, lignes 18 et 19 dans [2]). Mais on peut conclure que X_0 est un tore complexe si $H^0(X, \mathcal{O}(L)) \neq 0$, par le Théorème 1 et le Lemme 2. Ensuite, la démonstration du Théorème 3.4 dans [2] est validement.

PROPOSITION. Supposons $H^0(X, \mathcal{O}(L)) \neq 0$. Alors, la condition (C1) est satisfaite.

DÉMONSTRATION. Par le Théorème 3.4 dans [2] et la Remarque susdite, la condition (C1') est satisfaite. Comme $K/(\Gamma \cap K)$ est un tore complexe (Lemme

64 Y. Abe

2), il est clair que $\phi|_{\Gamma \cap K} = 1$.

5. Nécessité de la condition (C4).

THÉORÈME 2. Soit $L=L_{\alpha}\otimes L_{\rho}$ un espace fibré holomorphe en droites sur un groupe toroidal $X=\mathbb{C}^n/\Gamma$. Si $H^0(X,\mathcal{O}(L))\neq 0$, alors α est équivalent au facteur automorphe qui satisfait à la condition (C4).

DÉMONSTRATION. Par les résultats jusqu'ici, on peut supposer que $L=L_{\alpha}\otimes L_{\rho}$ satisfait aux conditions $(C0)\sim(C3)$. Soit $\bar{\sigma}:X\to Y=(C^n/K)/\Gamma^*$ la surjection induite de la projection $\sigma:C^n\to C^n/K$, où $\Gamma^*=\sigma(\Gamma)$. Par la démonstration du Théorème 1, il existe un espace fibré holomorphe en droites $L'=L_{\alpha'}\otimes L_{\rho'}$ sur Y tel que $L^2\cong \bar{\sigma}^*L'$. Supposons que ρ' est de type (\mathcal{H}',ψ') . Comme $L^2\cong \bar{\sigma}^*L'$, $\alpha^2\rho^2$ est équivalent à $(\alpha'\cdot\rho')\circ(\sigma\times\sigma)$. De plus, on peut supposer $2\mathcal{H}=\mathcal{H}'\circ(\sigma\times\sigma)$, car $(2\mathcal{H})_{\Gamma}=(\mathcal{H}'\circ(\sigma\times\sigma))_{\Gamma}$. Comme ρ^2 et $\rho'\circ(\sigma\times\sigma)$ sont deux facteurs thêta réduits avec la même forme hermitienne, il existe une représentation $\lambda:\Gamma\to C_1^\times=\{\zeta\in C\; ;\; |\zeta|=1\}$ telle que $\rho^2=\lambda\cdot(\rho'\circ(\sigma\times\sigma))$. Alors α^2 est équivalent à $\lambda^{-1}\cdot(\alpha'\circ(\sigma\times\sigma))$. Soit $\varphi:\Gamma\to R$ le homomorphisme tel que $\lambda(\gamma)=\exp(\varphi(\lambda))$. Alors, deux facteurs automorphes additifs $a(\gamma,w)$ et $-(1/2)\varphi(\gamma)+(1/2)a'(\sigma(\gamma),w)$ sont équivalents, où $\alpha=\exp a$ et $\alpha'=\exp a'$. Pour $\gamma\in\Gamma\cap K$, on a $\alpha'(\sigma(\gamma),w)=\alpha'(0,w)=1$. D'autre part,

$$\phi(\gamma)^2 = \lambda(\gamma)$$
 pour tout $\gamma \in \Gamma \cap K$.

Comme $\phi(\gamma)=1$ pour $\gamma \in \Gamma \cap K$ par (C1), on a $\lambda(\gamma)=1$ pour $\gamma \in \Gamma \cap K$. Alors nous pouvons supposer que $\phi(\gamma)=0$ pour tout $\gamma \in \Gamma \cap K$. Par conséquent, le facteur automorphe $\exp(-(1/2)\phi(\gamma)+(1/2)a'(\sigma(\gamma),w))$ satisfait à la condition (C4). \square

6. Réduction au cas défini positif.

Soit $X=C^n/\Gamma$ un groupe toroidal, où rang $\Gamma=n+m$, $1\leq m < n$. Supposons qu'un espace fibré holomorphe en droites $L=L_\alpha \otimes L_\rho$ sur X satisfait aux conditions $(C0)\sim(C4)$. Nous pouvons supposer par (C2) que la forme hermitienne $\mathcal H$ est semi-définie positive sur C^n et $\ker(\mathcal H)=\ker(\mathcal H_\Gamma)=K$ (Remarque dans le paragraphe 3). De plus, la projection canonique $\sigma:C^n\to C^n/K$ donne la surjection $\bar\sigma:X=C^n/\Gamma\to Y=(C^n/K)/\Gamma^*$ par (C3). Ici Y est aussi un groupe toroidal. Il est clair qu'il y a la forme hermitienne $\mathcal H_0$ définie positive sur C^n/K telle que $\mathrm{Im}\ \mathcal H_0$ est à valeurs entières sur $\Gamma^*\times \Gamma^*$ et $\mathcal H=\mathcal H_0\circ(\sigma\times\sigma)$. Pour chaque $\gamma^*\in\Gamma^*$ il exists $\gamma\in\Gamma$ tel que $\gamma^*=\sigma(\gamma)$. En utilisant tel γ , nous définissons $\phi_0:\Gamma^*\to C_1^*=\{\zeta\in C: |\zeta|=1\}$ par $\phi_0(\gamma^*)=\phi(\gamma)$. Par la condition (C1), $\phi_0(\gamma^*)$ est indépendante du choix de γ avec $\gamma^*=\sigma(\gamma)$. Nous obtenons alors un semi-caractère ϕ_0 de Γ^* attaché à $\mathcal H_0$. Ensuite on a le facteur thêta réduit positif $\rho_0:\Gamma^*\times$

 $(C^n/K) \rightarrow C^*$ de type (\mathcal{H}_0, ψ_0) tel que $\rho = \rho_0 \circ (\sigma \times \sigma)$. Soit L_{ρ_0} l'espace fibré holomorphe en droites sur Y donné par le facteur thêta ρ_0 . Alors, L_{ρ} est l'image réciproque $\bar{\sigma}^* L_{\rho_0}$ de L_{ρ_0} par $\bar{\sigma}$.

Considérons ensuite L_{α} . Nous définissons le facteur automorphe $\alpha_0: \Gamma^* \times (C^n/K) \rightarrow C^*$ par

$$\alpha_0(\gamma^*, w) = \alpha(\gamma, w)$$
 pour $\gamma^* \in \Gamma^*$,

où γ est un élément de Γ tel que $\gamma^*=\sigma(\gamma)$. Cette définition de α_0 est indépendante du choix de γ avec $\gamma^*=\sigma(\gamma)$ par (C4). Soit L_{α_0} l'espace fibré holomorphe en droites sur Y donné par α_0 . Il est clair $L_{\alpha}=\bar{\sigma}^*L_{\alpha_0}$ par la définition de α_0 . On a donc $L_{\alpha}\otimes L_{\rho}=\bar{\sigma}^*(L_{\alpha_0}\otimes L_{\rho_0})$.

THÉORÈME 3. Soient $X=C^n/\Gamma$ un groupe toroidal, et $L=L_\alpha\otimes L_\rho$ un espace fibré holomorphe en droites sur X satisfaisant aux conditions (C0) \sim (C4). Soient $Y=(C^n/K)/\Gamma^*$ le groupe toroidal et $L_{\alpha_0}\otimes L_{\rho_0}$ l'espace fibré holomorphe en droites sur Y, obtenus par la construction précédente. Alors on a un isomorphisme

$$H^{0}(X, \mathcal{O}(L_{\alpha} \otimes L_{\rho})) \cong H^{0}(Y, \mathcal{O}(L_{\alpha_{0}} \otimes L_{\rho_{0}})).$$

DÉMONSTRATION. On écrira $z=(z',z'')\in K\times C^{m-k}=C^m_T$. Soit f une fonction holomorphe sur C^n telle que

$$f(x+\gamma) = \alpha(\gamma, w) \rho(\gamma, x) f(x)$$

pour $\gamma \in \Gamma$ et $x = (z', z''; w) \in \mathbb{C}^n$. Prenons $\gamma \in \Gamma \cap K$ quelconque. D'abord on a $\phi(\gamma) = 1$ et $\alpha(\gamma, w) = 1$ par les conditions (C1) et (C4). Comme $k = \text{Ker}(\mathcal{H}) = \text{Ker}(\mathcal{H}_{\Gamma})$ par (C2), nous obtenons

$$\mathcal{A}(\gamma, x) = 0$$
 pour tout $x \in \mathbb{C}^n$.

Alors, la fonction f(x) a la période $\Gamma \cap K$. Grâce au Lemme 2, il en résulte que f(x) ne dépend pas de $z' \in K$. Le théorème est ainsi démontré. \square

Bibliographie

- [1] Y. Abe, On toroidal groups, J. Math. Soc. Japan, 41 (1989), 699-708.
- [2] Y. Abe, Sur les fonctions périodiques de plusieurs variables, Nagoya Math. J., 122 (1991), 83-114.
- [3] Ch. Vogt, Line bundles on toroidal groups, J. Reine Angew. Math., 335 (1982), 197-215.

Yukitaka ABE Département de Mathématiques Université de Toyama Gofuku, Toyama 930 Japon