The set of vector fields with transverse foliations

By Plácido ANDRADE

(Received Sept. 5, 1991) (Revised Dec. 4, 1991)

Introduction.

There exist precise criterions to decide whether a given C^1 flow ϕ on an m dimensional closed manifold M admits a cross-section. For example, one has the asymptotic cycles [Sc] as well as homology directions [Fr]. Both of these make use of the first real homology group of M. On the other hand, there does not exist a general criterion to decide whether a flow admits a transverse foliation. However, in the case of a three manifold this problem is solved for certain types of flows, like flows whose orbits are compact [Mi], [Wo], [E-H-N], Morse-Smale flows [Go1] and Smale flows [Go2]. In this paper we treat the problem of extending the result of Goodman's criterion to a general vector field on a three manifold. We found that the natural extension should be in terms of what we call "homotopy direction" [An2]. Using this notion we define the set $\mathcal{L}(M)$ of vector fields whose flows are homotopically linked (§ 2). Although we were not completely successful, we obtained unexpected properties which are described in the theorems below.

Let M be a smooth three dimensional closed manifold. We assume that M is oriented and for convenience we shall fix a Riemannian metric. Every flow ϕ appearing henceforth is generated by a vector field $\dot{\phi}$ in NSX(M), the space of C^1 non-singular vector fields on M endowed with the C^0 topology and every foliation \mathfrak{F} is a codimension one transversely oriented foliation on M given by a C^1 coordinate systems. We denote by $\pitchfork(M)$ the topological subspace of NSX(M) of vector fields whose flows admit a transverse foliation and by $\pitchfork(\overline{M})$ its closure.

0.1 THEOREM. The sets $\pitchfork(M)$ and $\mathcal{L}(M)$ are open and not dense in NSX(M) and satisfy the inclusions

$$\mathbb{A}(M) \subset \mathcal{L}(M) \subset \mathbb{A}(\overline{M}) .$$

We construct a flow to show the following

Partly supported by S.C.T/Pr (Brazil).

0.2 Theorem. $\pitchfork(M) \subseteq \mathcal{L}(M)$.

As a by-product we have

0.3 COROLLARY. $(M) \subseteq \operatorname{Int} (\overline{M})$.

The above example of flow has a foliation which is "non negatively transverse" to it. Thus we are lead to the problem about when the flow under this circumstance has a transverse foliation. To do that we study the frontier of $\uparrow(\mathcal{F})$, the set of vector fields positively \mathcal{F} -transverse.

0.4 DEFINITION. Let $\dot{\phi} \in h(\bar{\mathcal{F}})$. A point $p \in M$ escapes from \mathcal{F} by ϕ provided there exists a point q on the positive ϕ -orbit of p such that $\dot{\phi}(q)$ is positively \mathcal{F} -transverse.

0.5 THEOREM. Let $\dot{\phi} \in f(\bar{\pi})$. If each point in the Birkhoff center of ϕ escapes from $\bar{\pi}$ by ϕ , then $\dot{\phi} \in f(M)$.

Finally we also obtained the invariance of the set (M) under topological conjugacy (§3 Theorem 3.3).

0.6 REMARK. We don't know if $\mathcal{L}(M) = \operatorname{Int}_{\pitchfork}(\overline{M})$. However S. Matsumoto and A. Sato [**M-S**] working with the C^1 topology in NSX(M) have shown that $\mathcal{L}(M) \subseteq \operatorname{Int}_{\pitchfork}(\overline{M})$. They proved that a vector field tangent to the Hopf fibration on the three sphere S^3 lies in the $\operatorname{Int}_{\pitchfork}(S^3)$. On the other hand, the corresponding flow is not homotopically linked.

The author wishes to thank S. Goodman for useful conversations and he also thanks the referee for valuable advices.

§1. Background.

a) The chain recurrent set.

Let ϕ be a flow on M. A point $p \in M$ is called chain recurrent for ϕ if for any $\varepsilon > 0$ there exists a sequence $\Gamma = \{p = p_0, p_1, \dots, p_n = p, t_0, t_1, \dots, t_{n-1}, p_i \in M$ and $t_i > 1\}$ such that $d(\phi_{t_i}(p_i), p_{i+1}) < \varepsilon$, for $0 \le i \le n-1$. The set of chain recurrent points is called the chain recurrent set and will be denoted by \mathcal{R}_{ϕ} . It is a compact ϕ invariant set [Co] and cannot be exploded in the following F sense:

1.1 THEOREM. **[An1]** Let \Re_{ϕ} be the chain recurrent set of the flow ϕ . Then given a neighbourhood U of \Re_{ϕ} in M there exists a C° neighbourhood U of $\dot{\phi}$ in NSX(M) such that $\Re_{\phi} \subset U$ for every $\dot{\phi} \in U$.

Now, the condition that a flow has a hyperbolic chain recurrent set is

equivalent to Axiom A and the no cycle property [**F-S**]. Therefore \Re_{ϕ} is the union of a finite number of disjoint, compact, invariant pieces called basic sets, each of which contains a dense orbit. We say that ϕ is a Smale flow if the set \Re_{ϕ} is one dimensional, has a hyperbolic structure and the flow satisfies the transversality condition. In particular, a Smale flow whose chain recurrent set consists of finitely many closed orbits is called a Morse-Smale flow.

b) Lyapunov functions and filtrations.

Denote by $\sum f$ the set of critical points of the C^{∞} map $f: M \to R$ and by $\dot{\phi}(f)_p$ its $\dot{\phi}$ directional derivative at $p \in M$. We say that f is a Lyapunov function for ϕ provided

- a) $\dot{\phi}(f)_p < 0$ for any $p \notin \mathcal{R}_{\phi}$
- b) $\mathcal{R}_{\phi} = \sum f$
- c) If $r \in f(\mathcal{R}_{\phi})$, then $f^{-1}(r) \cap \mathcal{R}_{\phi}$ is a connected component of \mathcal{R}_{ϕ} .

By using a combination of results from [Co] and [N-S], we show that there always exists a Lyapunov function for ϕ . So, taking regular values of f, say $-\infty = r_0 < r_1 < \cdots < r_k = \infty$ and $r_i \in f(M)$ (1 < i < k), the collection of submanifolds $\{M_i; M_i = f^{-1}(-\infty, r_i]\}_{i=0}^k$ is a filtration for ϕ , i.e.

- a) $\{\} = M_0 \subset M_1 \subset \cdots \subset M_k = M$
- b) dim $M_i = \dim M \quad \forall i$
- c) $\phi_t[M_i] \subset \operatorname{Int} M_i \quad \forall t > 0 \text{ and } \forall i$
- d) $\dot{\phi}$ is transverse to the boundary ∂M_i , 1 < i < k.

Conversely, any filtration is obtained from a Lyapunov function by the above method.

1.2 DEFINITION. A block system for ϕ is a family $\mathcal{B} = \{N_i\}_{i=0}^k$ of compact connected submanifolds of M, called blocks, satisfying

- a) $N_i \cap \mathcal{R}_{\phi} \neq \{\} \forall i$
- b) $N_i \cap N_j = \partial N_i \cap \partial N_j$ if $i \neq j$
- c) {} {} = N_0 \subset N_1 \subset N_1 \cup N_2 \subset \cdots \subset N_1 \cup \cdots \cup N_k = M is a filtration for ϕ .

A Smale flow ϕ admits a block system $\mathscr{B} = \{N_i\}_{i=0}^k$ where each block N_i contains only a basic set \wedge_i and those blocks containing an attracting or repelling periodic orbit are diffeomorphic to the solid torus $D^2 \times S^1$. The topological structure of a block containing a basic set which is neither an attractor nor a repellor is described in [**B-W**]. The periodic orbits of a basic set \wedge_i are in one to one correspondence with the periodic orbits of a semi-flow on the knotholder (see too [**Go2**]).

c) Homotopy directions.

Given a block N for ϕ , let [S¹, N] be the set of homotopy classes of con-

P. ANDRADE

tinuous maps $\gamma: S^1 \to N$. For $[\gamma] \in [S^1, N]$ and $k \in Z^+$ we denote by $[\gamma]^k$ the homotopy class of the map $\alpha(z) = \gamma(z^k)$.

Take a point $p \in \mathcal{R}_{\phi} \cap N$ and $\varepsilon > 0$. An εp -sequence is a sequence

$$\Gamma_{\varepsilon p} = \{p = p_0, \dots, p_n = p, t_0, \dots, t_{n-1}; p_i \in \mathcal{R}_{\phi} \cap N \text{ and } t_i > 1\}$$

such that $d(\phi_{i_i}(p_i), p_{i+1}) < \varepsilon$ for $i=0, \dots, n-1$. Recall that there always exists an εp -sequence since $\Re_{\phi} = \Re_{\phi/\Re}$ [Co]. If ε is small enough then each εp sequence gives rise to an εp -closed orbit of ϕ , i.e., a loop $\gamma_{\varepsilon p} : [0, T] \rightarrow N$ such that

$$\gamma_{sp}([0, T]) = \bigcup_{i=0}^{n-1} \{ (\text{the trajectory from } p_i \text{ to } \phi_{t_i}(p_i) \} \}$$

+(a minimal geodesic from $\phi_{t_i}(p_i)$ to p_{i+1}).

To define the closed path $\gamma_{\varepsilon p}$ we arrange by turns the parametrization of the ϕ orbit segments $[p_i, \phi_{t_i}(p_{i+1})]$ with the geodesic parametrizations and construct the continuous function $\gamma_{\varepsilon p} : [0, T] \rightarrow N$. By using the exponential map $E_T : [0, T] \rightarrow S^1$, $E_T(t) = e^{2\pi i t/T}$, we define a class in $[S^1, N]$. A class $[\gamma] \in [S^1, N]$ is said to be an ε -homotopy direction for ϕ provided that $[\gamma]^m = [\gamma_{\varepsilon p}]^n$ for some εp -closed orbit $\gamma_{\varepsilon p}$ and some $m, n \in Z^+$. Denote by $H_{\phi/N}^{\varepsilon}$ the set of all ε -homotopy directions for ϕ in the block N. One can easily see that $H_{\phi/N}^{\varepsilon}$ is a non-empty set and that $[\gamma]^k \in H_{\phi/N}^{\varepsilon}$ for every $[\gamma] \in H_{\phi/N}^{\varepsilon}$ and $k \in Z^+$. Observe that the set of ε -homotopy directions detects all closed orbits of ϕ in the block N. Let $P_{\phi/N}$ consist of those ε -homotopy directions defined by closed orbits of ϕ . Again we have $[\gamma]^k \in P_{\phi/N}$ for every $[\gamma] \in P_{\phi/N}$ and $k \in Z^+$. On the other hand, it follows from the definition that if $0 < \delta < \varepsilon$ then a δp -closed orbit. Therefore we have the following inclusions

$$P_{\phi/N} \subset H^{\delta}_{\phi/N} \subset H^{\varepsilon}_{\phi/N}$$
.

1.3 DEFINITION. Set $H_{\phi/N} = \bigcap_{\varepsilon > 0} H_{\phi/N}^{\varepsilon}$. An element $[\gamma] \in H_{\phi/N}$ is said to be a homotopy direction for ϕ in the block N.

Recall that a block N for ϕ is also a block for any flow ψC° close to ϕ because there do not exist \mathcal{R} explosions. So, by a straightforward adaptation of the method used in **[An2]** one can prove the next two theorems.

1.4 THEOREM. Let $\mathcal{B} = \{N_i\}_{i=0}^k$ be a block system for a flow ϕ on M. Then $\forall \varepsilon > 0$ there exist a $\delta > 0$ and a \mathbb{C}° neighbourhood \mathcal{U} of $\dot{\phi}$ in NSX(M) such that for every $\dot{\phi} \in \mathcal{U}$ the following hold

- i) \mathcal{B} is a block system for ψ
- ii) $H^{\delta}_{\psi/N} \subset H^{\varepsilon}_{\phi/N}$ for each $N \in \mathcal{B}$.

1.5 THEOREM. Let $\mathcal{B} = \{N_i\}_{i=0}^k$ be a block system for a flow ϕ with a hyper-

24

bolic chain recurrent set. Then the following hold

i) $H_{\phi/N} = P_{\phi/N}$ for each $N \in \mathcal{B}$

ii) There exists a neighbourhood \mathcal{U} of $\dot{\phi}$ in NSX(M) such that for every $\dot{\psi} \in \mathcal{U}$, \mathcal{B} is a block system for ψ and $H_{\psi/N} = H_{\phi/N}$ for each $N \in \mathcal{B}$.

§2. Homotopically linked flow.

In this section we prove Theorem 0.1 and Theorem 0.2.

Let ϕ be a C^1 flow on a three manifold M. We say that ϕ satisfies the weak linking property if there is a periodic orbit σ of ϕ which bounds an imbedded 2-disk D in M then the interior of D must intersect a periodic orbit. Observe that if ϕ admits a transverse foliation \mathcal{F} , then ϕ satisfies this property since the Novikov's result [No] asserts that a 2-disk whose boundary is transverse to $\mathcal F$ must intersect some Reeb component N which contains a ϕ closed orbit [Go2]. On the other hand, the weak linking property is not, in general, sufficient to insure that $\dot{\phi} \in h(M)$. For example, a flow tangent to a Hopf fibration $S^1 \rightarrow S^3 \rightarrow S^2$ satisfies the weak linking property but is not transverse to any foliation, since any foliation on S^3 has a Reeb component N and the boundary ∂N cannot meet any closed transversal. However, for a Morse-Smale flow ϕ the weak linking property is also a sufficient condition for $\dot{\phi} \in \bigoplus(M)$ [Go1]. Notice that K. Yano proved a similar result in an equivalent terminology [Ya]. Now, to extend the above result to Smale flows ϕ requires a stronger property. We say that ϕ satisfies the linking property if there is a periodic orbit σ of ϕ which bounds an imbedded 2-disk D in M then the interior of D must intersect an attracting or repelling periodic orbit. A Smale flow ϕ satisfies the linking property if and only if $\dot{\phi} \in \bigoplus(M)$ [Go2]. To enlarge the concept above, we introduce the following

2.1 DEFINITION. A flow ϕ on M is said to be homotopically linked provided there exists $\mathscr{B} = \{N_i\}_{i=1}^k$ a block system for ϕ such that $[*] \notin H_{\phi/N}$, for each $N \in \mathscr{B}$.

Recall that [*] denotes the null homotopic class of $[S^1, N]$, where N is a submanifold of M.

Let $\mathcal{L}(M)$ be the set of NSX(M) consisting of vector fields whose flows are homotopically linked. Proposition 2.2 below shows that these two notions are the same for Smale flows.

2.2 **PROPOSITION.** Let ϕ be a Smale flow on M. The following are equivalent

(i) ϕ satisfies the linking property

(ii) ϕ admits a transverse foliation

(iii) ϕ is homotopically linked.

PROOF. (i) \leftrightarrow (ii) This is S. Goodman's result [Go2].

(ii) \rightarrow (iii) Suppose that ϕ is positively \mathcal{F} -transverse. Take a family of submanifolds $\mathcal{B} = \{\{\} = N_0, N_1^+, \cdots, N_{k-1}^-, N_k, N_{k+1}^-, \cdots, N_{\bar{l}}\}$ where N_i^+ (resp. $N_{\bar{j}}^-$) denotes the Reeb components for which the flow is exiting (resp. entering), N_k is the closure of the exterior of the union of all the Reeb components and $M = N_1^+ \cup \cdots \cup N_k \cup \cdots \cup N_{\bar{l}}^-$. Since the boundary of each $N \in \mathcal{B}$ does not meet the chain recurrent set of the Smale flow ϕ , it is easy to show that \mathcal{B} is a block system for ϕ . Now, let $H_{\phi/N}$ be the homotopy direction for ϕ in a given block N. From Theorem 1.5 $H_{\phi/N}$ consists of those homotopy directions defined by closed orbits. If $N = N_i^+$ (resp. N_j^-) then each $[\sigma] \in H_{\phi/N}$ clearly represents a nontrivial element of the fundamental group $\pi_1(N) \approx Z$. Therefore $[\sigma] \neq [*]$. If $N = N_k$, then no $[\sigma] \in H_{\phi/N}$ can be the null homotopic class in N, otherwise there could be a positive power of a closed orbit of ϕ null homotopic in N and by Novikov's theorem there exists a block N_i^+ or N_j^- inside N which is a contradiction. Therefore $[\sigma] \neq [*]$ and we have proved that ϕ is homotopically linked.

(iii) \rightarrow (i) First of all we recall Corollary 3.3 in [Go2]. Let N be a block for a Smale flow ϕ containing a unique component \wedge_0 of the basic set. If no closed orbit in \wedge_0 is null homotopic in N then there is a ϕ transverse foliation \mathscr{F} tangent to the boundary ∂N . Therefore if $[*] \notin H_{\phi/N}$ the same conclusion holds because $H_{\phi/N} = P_{\phi/N}$ (Theorem 1.5). Now suppose that ϕ is a homotopically linked Smale flow. Let $\mathscr{B} = \{N_i\}_{i=0}^k$ be a block system for ϕ such that the null homotopic class is not a homotopy direction for ϕ in any block $N \in \mathscr{B}$. If there exist blocks containing more than one component of the basic set of ϕ , one can use a Lyapunov function $f: M \to R$ to define the filtration $\{\} = N_0 \subset N_1 \subset$ $N_3 \cup N_2 \subset \cdots \subset M$ and break these blocks and construct a new block system $\mathscr{B}' = \{N'_i\}_{i=0}^l$ where each N'_i contains only one component of the basic set. It is easy to see that [*] is not a homotopy direction for ϕ in any N'_i . So there exists a ϕ transverse foliation.

2.3 LEMMA. Let N be a block for ϕ . If $[\gamma] \notin H_{\phi/N}$ then there exists a C^o neighbourhood \mathcal{U} of $\dot{\phi}$ in NSX(M) such that N is a block for ψ and $[\gamma] \notin H_{\phi/N}$ for every $\dot{\psi} \in \mathcal{U}$.

PROOF. Recall that $H_{\phi/N} = \bigcap_{\epsilon>0} H_{\phi/N}^{\epsilon}$. So if $[\gamma] \notin H_{\phi/N}$ then there is an $\epsilon_0 > 0$ such that $[\gamma] \notin H_{\phi/N}^{\epsilon}$. From Theorem 1.4 one can find a $\delta_0 > 0$ and a neighbourhood \mathcal{U} of $\dot{\phi}$ such that $H_{\phi/N}^{\delta_0} \subset H_{\phi/N}^{\epsilon_0}$ for every $\dot{\phi} \in \mathcal{U}$. Thus $[\gamma] \notin H_{\phi/N}$ for every $\dot{\phi} \in \mathcal{U}$.

PROOF OF THEOREM 0.1. Take a homotopically linked flow ϕ . Let $\mathcal{B} =$

 $\{N_i\}_{i=0}^k$ be a block system for ϕ such that $[*] \notin H_{\phi/N}$ for each $N \in \mathcal{B}$. From Lemma 2.3 it follows that there exists a neighbourhood \mathcal{U} of $\dot{\phi}$ such that $[*] \notin H_{\phi/N}$ for each $N \in \mathcal{B}$ and for every $\dot{\psi} \in \mathcal{U}$. This shows that $\mathcal{L}(M)$ is open.

Of course $\pitchfork(M)$ is an open subset of NSX(M). Let us show that $\pitchfork(M)$ is dense in $\mathcal{L}(M)$. Take $\phi \in \pitchfork(M)$ and suppose that ϕ is positively \mathcal{F} -transverse. Consider the family of submanifolds $\mathcal{B} = \{\{\} = N_0, N_1^+, \cdots, N_{k-1}^+, N_k, N_{k+1}^-, \cdots, N_1^-\}$ as described in Proposition 2.2. Observe that the chain recurrent set does not intersect the boundary of ∂N_k . Otherwise if $p \in \mathcal{R}_{\phi} \cap \partial N_k$, choose an εp -sequence $\Gamma_{\varepsilon p} = \{p = p_0, \cdots, p_n = p, t_0, \cdots, t_{n-1}; p_i \in \mathcal{R}_{\phi} \text{ and } t_i > 1\}$, consider the corresponding εp -closed orbit $\gamma_{\varepsilon p} : [0, T] \to M$. For $\varepsilon > 0$ small enough we can guarantee that p_i and p_{i+1} belong to the same coordinate system of the foliation which allows us to construct a closed \mathcal{F} -transverse curve meeting a boundary component of ∂N_k . This is a contradiction, since each boundary component of ∂N_k is the boundary of a Reeb component. Now it is easy to show that \mathcal{B} is a block system for ϕ and by using the argument of Proposition 2.2 one can show that $[*] \notin H_{\phi/N}$ for each $N \in \mathcal{B}$. Thus we have the inclusion $\pitchfork(M) \subset \mathcal{L}(M)$. The density follows from C^0 density of Smale flows [O1] and from Proposition 2.2. This also shows that $\mathcal{L}(M) \subset \pitchfork(\overline{M})$.

In order to prove that (M) is not dense we use a well known result which says that the exterior of the union of all the Reeb components is an irreducible manifold, i.e., any embedded two sphere bounds a three ball.

Given a C^{∞} Smale flow ϕ on M, let N be a block for ϕ diffeomorphic to the solid torus $S^1 \times D^2$ containing only an attracting basic set in its core. We modify the flow ϕ to obtain a new Smale flow ϕ which agrees with ϕ outside N and has two basic sets contained in the block. These new basic sets are an attracting closed orbit σ_1 and a saddle orbit σ_2 , each of which bounds in N an embedded two disk without intersection [As]. Of course ψ does not satisfy the linking property, therefore $\dot{\psi} \notin (M)$. Let us show that a vector field $\dot{\xi} C^{0}$ close to $\dot{\psi}$ does not admit a transverse foliation. First of all choose disjoint compact tubular neighbourhoods V_1 , V_2 of σ_1 , σ_2 respectively, of small radius to insure that the following conditions hold: (a) $V_1 \cup V_2 \subset N$; (b) $\dot{\phi}$ is transverse to the disks of the tubular neighbourhoods; (c) $\dot{\psi}$ is also transverse to the torus ∂V_1 toward σ_1 . Now consider a C° neighbourhood \mathcal{U} of $\dot{\psi}$ in NSX(M) such that for every $\xi \in \mathcal{O}$, the flow ξ satisfies the conditions (b) and (c). Moreover we may assume that N is a block for ξ and that the chain recurrent set $\mathcal{R}_{\xi/N}$ is contained in $V_1 \cup V_2$ [Theorem 1.1]. The next step is to show that $\mathcal{U} \cap \bigoplus (M) = \{\}$. By contradiction, suppose that $\dot{\xi}{\in}\mathcal{U}$ is positively \mathcal{F}_{0} -transverse. From the density property [OI], we may assume that ξ is a Smale flow. Since $\dot{\xi}$ satisfies conditions (b) and (c), given a disk D^2 of the tubular neighbourhood V_1 , one can define the first return map for ξ , $r: D^2 \rightarrow D^2$. Observe that r must have a fixed point and that each fixed point corresponds to a closed orbit of ξ contained in V_1 . On the other hand, the fixed points of r are isolated because ξ has a hyperbolic chain recurrent set, so one can show by using an index argument that some fixed point is a source or sink, i.e., there exists an attracting or repelling, closed orbit ξ contained in V_1 . Now we can "turbularize" the foliation \mathcal{F}_0 near those closed orbits to construct a new ξ -transverse foliation \mathcal{F}_1 with Reeb components inside the tubular neighbourhood V_1 . From the fact that there is an embedded two sphere which bounds a three ball D^3 contained in the interior of the block N and such that $V_1 \subset \operatorname{Int} D^3$, it follows that the exterior of the union of all Reeb components of \mathcal{F}_1 is not an irreducible manifold. That is the contradiction. Thus $\bigwedge(M)$ is not dense in NSX(M). Since $\pitchfork(M)$ is dense in $\mathcal{L}(M)$, we conclude that $\mathcal{L}(M)$ is not dense.

PROOF OF THEOREM 0.2. First of all we construct a vector field on the manifold $V=R\times S^1\times S^1$ whose flow is homotopically linked but does not admit a transverse foliation. Notice that $S^1=R/Z$ and that $\{\partial/\partial t, \partial/\partial x, \partial/\partial y\}$ is the canonical global frame on V. Let $\dot{\mu}$ be the C^{∞} unit vector field on V tangent to the tori $T_t=\{t\}\times S^1\times S^1$ defined by

$$\dot{\mu}(t) = \cos t \, \frac{\partial}{\partial x} + \sin t \, \frac{\partial}{\partial y}.$$

By standard methods, construct a C^{∞} function $\lambda: R \to [0, 1]$ such that $\lambda^{-1}(0) = [0, \pi]$ and that $\lambda^{-1}(1) = (-\infty, -\pi] \cup [2\pi, \infty)$. Now, consider the C^{∞} non singular vector field $\dot{\xi}$ on V defined by

$$\dot{\xi}(t, x, y) = \lambda(t) \frac{\partial}{\partial t} + (1 - \lambda(t))\dot{\mu}(t).$$

The main properties of $\dot{\xi}$ are the following (a) $\dot{\xi} \equiv \partial/\partial t$ on $V_1 = \lambda^{-1}(1) \times S^1 \times S^1$; (b) $\dot{\xi}$ is transverse to the tori T_t on $V_2 = \lambda^{-1}((0, 1]) \times S^1 \times S^1$; (c) $\dot{\xi} \equiv \dot{\mu}$ on $V_3 = \lambda^{-1}(0) \times S^1 \times S^1$. So, the chain recurrent set \mathcal{R}_{ϵ} is the manifold with boundary V_3 . Note that the vector field $\dot{\xi} = \dot{\mu}$ rotates in the positive direction from $\partial/\partial y$ to $-\partial/\partial y$ when t goes from 0 to π and that the $\partial/\partial x$ -coefficient of $\dot{\xi}$ is always non negative on V_3 . This behavior forbids the existence of a transverse foliation. Indeed, by contradiction suppose that \mathcal{F} is transverse to $\dot{\xi}$ on V_3 . Let \mathcal{G}_t be the C^1 oriented one dimensional foliation on the torus $T_t = \{t\} \times S^1 \times S^1$ defined by the intersection of leaves of \mathcal{F} with T_t . We can construct a trivialization for \mathcal{F} in the following sense: there exists a C^1 diffeomorphism $F: [0, \pi]$ $\times S^1 \times S^1 \rightarrow [0, \pi] \times S^1 \times S^1$ such that $F^*(\mathcal{F}) = [0, \pi] \times \mathcal{G}_0$ and that $F^*(\mathcal{G}_t) = \{t\} \times \mathcal{G}_0$. For this consider the projection $\pi_1: R \times S^1 \times S^1 \rightarrow R$, $\pi(t, x, y) = t$ and take the vector field $\dot{\tau}$ tangent to \mathcal{F} on a neighbourhood of V_3 such that at each point (t, x, y) is projected under the derivative $d\pi_1$ onto $\partial/\partial t$. If τ_t is the semi-flow of $\dot{\tau}$ define $F(t, x, y) = (t_1 \tau_t(0, x, y))$. Now, let $\dot{\gamma}_0$ be a vector field on T_0 tangent to \mathcal{Q}_0 . So, from this trivialization we conclude that $\{\dot{\gamma}_0, \partial/\partial y\}$ and $\{\dot{\gamma}_0, -\partial/\partial y\}$ define the same orientation on T_0 which is a contradiction. Thus ξ does not admit a transverse foliation on V_3 .

Now we shall show that ξ is a homotopically linked flow. Let $\mathcal{D} = \{V\}$ be the trivial block system for ξ . Given $\varepsilon > 0$ and $p \in \mathfrak{R}_{\xi} = [0, \pi] \times S^1 \times S^1$, consider an εp -sequence, say $\Gamma_{\varepsilon p} = \{p_0 = p, p_1, \dots, p_n = p, t_0, \dots, t_{n-1}, p_i \in \mathfrak{R}_{\xi} \text{ and } t_i > 1\}$ and the corresponding εp -closed orbit $\gamma_{\varepsilon p} : [0, T] \rightarrow [0, \pi] \times S^1 \times S^1$. Recall that

$$\gamma_{\mathfrak{s}p}([0, T]) = \bigcup_{i=0}^{n-1} \{ (\text{the trajectory from } p_i \text{ to } \phi_{t_i}(p_{i+1})) \}$$

+(a minimal geodesic from $\phi_{t_i}(p_i)$ to p_{i+1}).

To prove that $\gamma_{\epsilon p}$ cannot be null homotopic, we show that $\pi_0 \gamma_{\epsilon p}$ is not null homotopic, where $\pi : [0, \pi] \times S^1 \times S^1 \to \{0\} \times S^1 \times S^1$ is the natural projection along the *t*-axis, or equivalently that the lifted curve $\widetilde{\pi_0}\gamma_{\epsilon p}$ to R^2 , the universal covering of $\{0\} \times S^1 \times S^1$, is not a closed curve. We may assume that the lifted curve $\widetilde{\pi_0}\gamma_{\epsilon p}$ starts at (0, 0). Observe that the trajectory from p_i to $\phi_{t_i}(p_i)$ gives rise to a line segment from $\widetilde{\pi(p_i)}$ to $\pi(\phi_{t_i}(p_i))$ of length equal to $t_i > 1$ and that the *x*-coordinate of $\pi(\phi_{t_i}(p_i))$ is not less than the *x*-coordinate of $\overline{\pi(p_i)}$ because the $\partial/\partial x$ -coefficient of $\xi = \mu$ is non negative on $V_3 = \Re_{\xi}$. On the other hand, the distance between the points $\pi \phi_{t_i}(p_i)$ and $\widetilde{\pi(p_{i+1})}$ is less than ε . So, for $\varepsilon = 1/3$ it is not hard to show that the end point of $\overline{\pi_0}\gamma_{\epsilon p}$ is not a closed curve on R^2 therefore $\gamma_{\epsilon p}$ is no null homotopic on V. Since $H_{\varepsilon} = \bigcap_{\varepsilon > 0} H_{\xi}^{\varepsilon}$ and $[*] \notin H_{\xi}^{1/3}$ we have shown that ξ is a homotopically linked flow.

Let us show that $\pitchfork(M) \subseteq \mathcal{L}(M)$. Given a C^{∞} Smale flow ϕ which is homotopically linked we may construct a block system for ϕ , $\mathcal{B} = \{N_i\}_{i=0}^k$ such that each block contains one and only one basic set of ϕ . Moreover, $[*] \notin H_{\phi}$ for every $N \in \mathcal{B}$. Since ϕ is a Smale flow there exists an attracting closed orbit σ . Let us assume that σ is contained in the block N_k which is diffeomorphic to the solid torus $S^1 \times D^2$. Note that the boundary of N_k is diffeomorphic to the torus $S^1 \times S^1$ and the flow is transverse to ∂N_k , by using ϕ we can define a C^{∞} diffeomorphism $F: R \times S^1 \times S^1 \to M$ such that $F(-1, x, y) \in \partial N_k$ and that $F_*(\partial/\partial t) = \dot{\phi}$. Now we modify $\dot{\phi}$ by $F_*(\dot{\xi})$ inside the submanifold $F(V_1)$ and construct a C^{∞} vector field $\dot{\phi}$ on M. We claim that the flow ϕ is homotopically linked. Indeed, consider the block system for ϕ , $\mathcal{B}' = \{\{\} = N_0, N_1, \dots, N_{k-1}, N'_k, N'_{k+1}\}$ where $N'_k = F_*(V_1)$ and N'_{k+1} is the closure of N_k/N'_k . Since ξ is homotopically linked on V_1 and N_k/N'_k contains in its core the closed orbit σ it follows that $\dot{\phi} \in \mathcal{L}(M)$. Since ξ does not admit a transverse foliation on V_1 then ϕ does not admit a transverse foliation on $F_*(V_1)$. Thus $\dot{\phi} \notin \pitchfork(M)$.

§3. Conjugations.

Denote by θ_{ϕ} the one dimensional oriented foliation given by the orbits of the flow ϕ , for $\dot{\phi} \in NSX(M)$. A foliation θ_{ϕ} is conjugate to θ_{ϕ} if there is a homeomorphism $h: M \to M$ which carries leaves of θ_{ϕ} homeomorphically onto leaves of θ_{ϕ} and preserves the orientation. The homeomorphism $h: M \to M$ is said to have a C° positive ϕ derivative if for each $p \in M$, the path $\alpha_p(t) =$ $h(\phi_t(p))$ is C^1 and $\alpha'_p(0) = \lambda(h(p))\dot{\phi}(h(p))$ for a continuous function $\lambda: M \to R^+$. Set $\alpha'_p(0) = \dot{\phi}(h)_p$.

3.1 PROPOSITION. If θ_{ϕ} is conjugate to θ_{ϕ} by a homeomorphism $h: M \rightarrow M$, then θ_{ϕ} is conjugate to θ_{ϕ} by a homeomorphism $k: M \rightarrow M$ having a C^o positive ϕ derivative.

Before the proof of Proposition 3.1 we fix the following notation. For δ , $0 \leq \delta < 1/2$, denote by I_{δ} the cube in $R^2 \times R$ defined by

$$I_{\delta} = : \{ (x, y) \in R^2 \times R ; \delta < x_i < 1 - \delta \text{ and } \delta < y < 1 - \delta \}.$$

Consider the two foliations induced from $R^2 \times R$ into I_{δ} , namely: the two dimensional horizontal foliation \mathcal{H} transverselly oriented by the canonical vertical vector field $\partial/\partial y$ and the one dimensional foliation $\theta_{\partial/\partial y}$ oriented by $\partial/\partial y$. A flow box for a flow ϕ is a C^1 diffeomorphism $f: U \subset M \to I_{\delta}$ such that $f_*(\dot{\phi}) = \partial/\partial y$. Since $\dot{\phi}$ is a C^1 vector field, there are flow boxes around any point $p \in M$. On the other hand, a C^1 coordinate system for θ_{ϕ} is a C^1 diffeomorphism $f: U \subset M \to I_{\delta}$ such that $f^*(\theta_{\partial/\partial y}) = \theta_{\phi}$.

3.2 LEMMA. Let $h: I_{\epsilon} \rightarrow R^2 \times R$ be a homeomorphism onto the image which preserves the vertical foliation $\theta_{\partial/\partial y}$. Then given $\epsilon < \delta < 1/2$ and any C^1 function $\beta: I_{\epsilon} \rightarrow [0, \infty)$ such that $\beta^{-1}(0) = I_{\epsilon} \setminus I_{\delta}$, there exists $k: I_{\epsilon} \rightarrow R^2 \times R$ a homeomorphism onto the image which preserves the vertical foliation $\theta_{\partial/\partial y}$ and satisfying

- a) $k \equiv h$ on $I_{\varepsilon} \setminus I_{\delta}$
- b) k has a C^o positive $\dot{\xi} = \beta \partial/\partial y$ derivative on I_{δ} .

PROOF. From the hypothesis, $h(x, y) = (h_1(x), h_2(x, y))$ and for a fixed x the function $h_2(x, \cdot)$ is an increasing real function. Now, given $\varepsilon < \delta < 1/2$ and any C^1 function $\beta : I_{\varepsilon} \rightarrow [0, \infty)$ such that $\beta^{-1}(0) = I_{\varepsilon} \smallsetminus I_{\delta}$, consider the flow ξ on I_{ε} generated by the C^1 vector field $\xi = \beta \partial/\partial y$. Define a function $k : I_{\varepsilon} \rightarrow R^2 \times R$, $k(x, y) = (k_1(x, y), k_2(x, y))$, by setting $k_1 \equiv h_1$ and $k_2(x, y) = \int_0^1 h_2(\xi_t(x, y)) dt$. Of course k preserves the vertical foliation $\theta_{\partial/\partial y}$. Since $\dot{\xi} \equiv 0$ on $I_{\varepsilon} \smallsetminus I_{\delta}$, it follows easily from the definition of k_2 that $k_2 \equiv h_2$ on $I_{\varepsilon} \smallsetminus I_{\delta}$. This proves (a). In order to prove (b) we observe that

$$\frac{k_2(\xi_s(x, y)) - k_2(x, y)}{s} = \frac{1}{s} \left[\int_s^{1+s} h_2(\xi_t(x, y)) dt - \int_0^s h_2(\xi_t(x, y)) dt \right]$$

By taking $s \to 0$, one obtains $\dot{\xi}(h_2) = h_2 \circ \xi_1 - h_2$ which must be positive on I_{δ} because ξ is a non constant vertical flow there and $h_2(x, \cdot)$ is an increasing function. Since $\dot{\xi}(k) = \dot{\xi}(k_2)\partial/\partial y$, part (b) is proved. It remains to show that k is a homeomorphism onto its image. Recall that k preserves the vertical foliation, so from (a) we need only show that $k_2(x, \cdot)$ is a homeomorphism from the vertical segment $\sigma_x = [(x, \delta), (x, 1-\delta)]$ onto the vertical segment $h(\sigma_x)$. Indeed, the images by $h_2(x, \cdot)$ and $k_2(x, \cdot)$ of each end point of σ have the same values and k_2 is an increasing function in the interior of the segment σ . So, k_2 is a homeomorphism from σ to $k(\sigma)$.

Notice that we have adapted Kakutani's proof which approximates continuous real functions by functions having flow derivative [Sc, p. 272].

PROOF OF PROPOSITION 3.1. Let $\dot{\phi}, \dot{\psi}$ be two C^1 non singular vector fields on M. Suppose that there exists a homeomorphism $h: M \to M$ conjugating θ_{ψ} to θ_{ϕ} . Given $\{g_j: W_j \to I_{\rho_j}\}_{j=1}^m$ a family of flow boxes for ϕ whose domains form an open cover of M, consider $\{f_i: V_i \to I_{\delta_i}\}_{i=1}^n$ a family of flow boxes for ϕ so that $\{V_i\}_{i=1}^n$ is an open cover of M and $h(V_i)$ is contained in some W_j . Now, choose $\varepsilon_i, 0 < \delta_i < \varepsilon_i$, such that $\{f_i^{-1}(I_{\epsilon_i})\}_{i=1}^n$ is another open cover. Recall $I_{\epsilon_i} \subset I_{\delta_i}$. Let $1 = \sum_{i=1}^n \beta_i$ be a C^{∞} partition of unity subordinate to $\{V_i\}_{i=1}^n$ satisfying $\beta_i^{-1} > 0$ in $f_i^{-1}(I_{\epsilon_i}) i=1, \cdots, n$. Let $\dot{\phi} = \sum_{i=1}^m \beta_i \dot{\phi}$. Observe that $f_{*_i}(\beta_i \dot{\phi}) =$ $\beta_i \circ f_i^{-1}(\partial/\partial y)$ is a C^1 vector field on I_{δ_i} . So from Lemma 3.2, starting at $k_0 = h$ and working successively inside each V_i , we may obtain a homeomorphism $k_i: M \to M$ from the homeomorphism $k_{i-1}: M \to M$ conjugating θ_{ψ} to θ_{ϕ} and having a C^0 positive $\sum_{i=1}^i \beta_i \dot{\psi}$ derivative on $\bigcup_{i=1}^i f_i^{-1}(I_{\epsilon_i})$. Of course $k_m: M \to M$ has a C^0 positive $\dot{\psi}$ derivative since $\{f_i^{-1}(I_{\epsilon_i})\}_{i=1}^n$ is an open cover of M.

Recall that a transversely oriented Lyapunov foliation on M is a pair $(\mathcal{F}, \dot{\phi})$ satisfying the following condition

i) $\dot{\phi}$ is a C⁰ vector field which is uniquely integrable

ii) There exists a collection of C° real value function $\{f_i: W_i \subset M \to R\}_{i=1}^k$ such that (a) $\bigcup_{i=1}^k W_i = M$; (b) f_i has a C° positive ϕ derivative, $i=1, \dots, k$; (c) The level set of f_i describe the foliation \mathcal{F} on W_i .

If there exists a transversely oriented Lyapunov foliation $(\mathcal{F}, \dot{\phi})$ then there exists a C^1 foliation \mathcal{G} transverse to $\dot{\phi}$ [En].

3.3 THEOREM. The set $\pitchfork(M)$ is invariant under topological conjugacy.

PROOF. Suppose that θ_{ϕ} is conjugate to θ_{ϕ} , where $\dot{\psi}, \phi \in NSX(M)$. From Theorem 3.1, we may assume that the foliations are conjugate by a homeo-

morphism $k: M \to M$ having a C^0 positive ψ derivative. If there is a foliation \mathcal{F} transverse to $\dot{\phi}$ we consider the C^0 foliation $k^*(\mathcal{F})$. Now, it is easy to show that $(k^*(\mathcal{F}), \dot{\psi})$ is a transversely oriented Lyapunov foliation. From [En], there is a C^1 foliation transverse to $\dot{\psi}$. Thus $\dot{\psi} \in \bigoplus(M)$.

Next we prove Theorem 0.5.

3.4 LEMMA. Given a vector field $\dot{\phi} \in \bigoplus_{\delta(\mathcal{H})} (\mathcal{H})$, there exists a vector field $\dot{\psi} \in \bigoplus_{\delta/\mathfrak{s}} (\mathcal{H})$ satisfying the following properties

(a) The leaf of θ_{ψ} on \tilde{I}_0 starting at (x, 0) ends at (x, 1)

(b) θ_{ϕ} agrees with θ_{ϕ} except on a parallelepiped R_{δ} , namely, $R_{\phi} = \{(x, y) \in I; \delta < x_i < 1-\delta, 1-(2/3)\delta < y < 1-(1/3)\delta, i=1, 2\}$.

PROOF. Given $\dot{\phi} \in \bigoplus_{\delta}(\mathcal{H})$. Let $\bar{I}_0 \bigcup_f \bar{I}_0$ be the double compact unitary cube whose glue map is the identity of the top face of \bar{I}_0 . Of course $\bar{I}_0 \bigcup_f \bar{I}_0$ is canonically diffeomorphic to $K = \{(x, y) \in R^2 \times R; 0 \le x_i \le 1, 0 \le y \le 2, i = 1, 2\}$. Now we consider the double foliation θ_{ϕ} on K oriented by a C^1 vector field $\dot{\xi}$ positively transverse to \mathcal{H} . Since the leaf of the double θ_{ϕ} starting at (x, 0)ends at (x, 2), we may complete the proof by constructing a C^{∞} diffeomorphism $k: K \to \bar{I}, k(x, y) = (x, k_2(y))$ where $k_2: [0, 2] \to [0, 1]$ is a C^{∞} diffeomorphism such that $k_2(y) = y$ for $\delta < y \le 1 - \delta$, and which conveniently maps $[1 - \delta, 2]$ onto $[1 - \delta, 1]$. Now we consider $\dot{\phi} = k_*(\dot{\xi})$ which satisfies the properties required.

Given \mathcal{G} a codimension one transversely oriented foliation on the unit open cube I_0 , let $\dot{\nu}$ be a normal vector field positively transverse to \mathcal{G} . We say that $\partial/\partial y$ is non negatively transverse to \mathcal{G} provided $\langle \partial/\partial y(x, y), \dot{\nu}(x, y) \rangle \geq 0$ for every $(x, y) \in I_0$, where \langle , \rangle denotes the canonical inner product on $R^2 \times R$. Let J_{δ} be the parallelepiped in I_0 defined by $J_{\delta} = \{(x, y) \in I_0; \delta < y < 1 - \delta\}$, for $0 \leq \delta \leq 1/2$.

3.5 LEMMA. Let \mathcal{G} be a two dimensional transversely oriented C^1 foliation on the cube I_0 which agrees with the horizontal foliation \mathcal{K} on $I_0 \setminus J_{\delta}$. If $\partial/\partial y$ is non negatively transverse to \mathcal{G} , then there exists a C^{∞} diffeomorphism $k: I_0 \rightarrow I_0$ satisfying

- (a) k(x, y) = (x, y) for every $(x, y) \in I_0 \setminus I_{\delta/3}$
- (b) $k^*(\mathcal{G})$ is transverse to $\theta_{\partial/\partial y}$ on I_{δ}
- (c) $k^*(\mathcal{G}) = \mathcal{G}$ on $I_0 \smallsetminus I_{\delta}$.

PROOF. Let $\dot{\eta}$ be a C^{∞} unitary vector field on I_0 positively transverse to \mathcal{G} and $\beta: I_0 \rightarrow [0, 1]$ be a C^{∞} function so that $\beta^{-1}(0) = I_0 \setminus I_\delta$. Since the vector field $\dot{\phi} = \partial/\partial y + \beta \dot{\eta}$ belongs to $\bigcap_{\delta}(\mathcal{H})$, from Lemma 3.4 there exists $\dot{\phi} \in \bigcap_{\delta/s}(\mathcal{H})$ such that the leaf of θ_{ϕ} starting at (x, 0) ends at (x, 1) and that θ_{ϕ} agrees with θ_{ϕ} except on the parallelepiped $R_{\delta} = \{(x, y) \in I_0; \delta < x_i < 1 - \delta, 1 - (1/3)\delta < y < 1 - (2/3)\delta\}$. By construction $\dot{\phi}$ is a C^{∞} vector field transverse to horizontal foliation \mathcal{H} , so the ϕ holonomy map h_y from the bottom face of \tilde{I}_0 to the horizontal leaf $l_{(x, y)}$ is a C^{∞} diffeomorphism, namely $h_y: [0, 1]^2 \times \{0\} \rightarrow [0, 1]^2 \times \{y\}$, $h_y(x) = \{[0, 1]^2 \times \{y\}\} \cap \{\phi$ orbit starting at $(x, 0)\}$. Hence $k: I_0 \rightarrow I_0$, $k(x, y) = (h_y(x, 0), y)$, is clearly a C^{∞} diffeomorphism which maps the foliation $\theta_{\partial/\partial y}$ on $I_0/I_{\delta/3}$ and that the ϕ orbit starting at (x, 0) ends at (x, 1). Since $k^*(\theta_{\phi}) = \theta_{\partial/\partial y}$ and ϕ is transverse to \mathcal{G} on $I_{\delta}(=k(I_{\delta}))$, then statement (b) holds. Now, for $k^*(\mathcal{H}) = \mathcal{H}$ and from the fact that $\mathcal{G} = \mathcal{H}$ on $I_0 \setminus J_{\delta}$ one can easily show property (c).

We denote by $\omega_{\phi}(p)$ (resp. $\alpha_{\phi}(p)$) the ω -limit set (resp. α -limit set) of a point $p \in M$ under the flow ϕ . Recall that the Birkhoff center $\mathcal{C}(\phi)$ is the closure of the set $\{p \in M; p \in \omega_{\phi}(p) \cap \alpha_{\phi}(p)\}$ which is a compact ϕ -invariant nonempty set. Any compact ϕ invariant set contains points of $\mathcal{C}(\phi)$.

PROOF OF THEOREM 0.5. Let $\dot{\phi}$ be a vector field on the frontier of $(\widehat{\mathcal{F}}_1)$ such that every point $p \in \mathcal{C}(\phi)$ escapes from \mathcal{F}_0 by ϕ . First of all we observe that every point $p \in M$ escapes from \mathcal{F}_0 . Indeed, since $\mathcal{C}(\phi) \cap \omega_{\phi}(p)$ is non empty there exists a point $q \in \omega_{\phi}(p)$ such that $\dot{\phi}(q)$ is positively transverse to \mathcal{F}_0 , so for some $t_p > 0$ we can insure that $\phi_{t_p}(p)$ is so close to q that $\dot{\phi}(\phi_{t_p}(p))$ is positively transverse to \mathcal{F}_0 . By using a similar argument we prove that there is some $s_p < 0$ such that $\dot{\phi}(\dot{\phi}_{t_p}(p))$ is positively transverse to \mathcal{F}_0 .

Consider the compact set $K = \{p \in M; \dot{\phi}(p) \text{ is tangent to } \mathcal{F}\}$. From the paragraph above, given $p \in K$ there exist real numbers $s_p, t_p, s_p < 0 < t_p$, such that the vector field $\dot{\phi}$ is positively transverse to \mathcal{F}_0 on a neighbourhood of the end points of the orbit segment $\sigma_p = [\phi_{s_p}(p), \phi_{t_p}(p)]$. Since ϕ is a flow without fixed points we may assume that σ_p is an embedded segment. Otherwise, σ_p is a closed orbit which is transverse to \mathcal{F}_0 at some point q. So, we may choose s'_p, t'_p , with $s_p < s'_p < 0 < t'_p < t_p$ such that the orbit segment $\sigma'_p = [\phi_{s'_p}(p), \phi_{t'_p}(p)]$ is embedded. Now we construct a tubular neighbourhood V_p of σ_p and a C^1 system of coordinates of $\theta_{\phi}, f_p: V_p \rightarrow I_0$ such that the induced foliation on the cube $I_0, \mathcal{G}_p = f_p^{-1}(\mathcal{F})$ agrees with the horizontal foliation \mathcal{H} on a neighbourhood of the top and the bottom of \tilde{I}_0 . Note that $\partial/\partial y$ is non negatively transverse to \mathcal{G}_p . From the compactness of K, there exists a finite family of those coordinate systems say $\{f_i: V_1 \rightarrow I_0\}_{i=1}^m$ whose domains form an open cover of K. Choose $\delta > 0$ small enough to insure that $\{f_i^{-1}(I_\delta)\}_{i=1}^m$ is another open cover of

R. ANDRADE

K and that the induced foliation $\mathcal{G}_i = f_i^{-1*}(\mathcal{F})$ is the horizontal foliation on $I_0 \setminus J_{\delta}$. For i=1, let $k_1: I_0 \to I_0$ be the C^{∞} diffeomorphism constructed in Lemma 3.5 i.e., $k_1^*(\mathcal{G}_i)$ is transverse to $\theta_{\partial/\partial y}$ on I_{δ} . From property (a), the C^1 diffeomorphism $h_1: V_1 \to V_1, h_1 = f_1^{-1} \circ k_1 \circ f_1$ can be extended as the identity outside V_1 . From property (b), the foliation $\mathcal{F}_1 = h_1^*(\mathcal{F})$ is transverse to θ_{ϕ} on $f_1^*(I_{\delta})$ and from property (c) \mathcal{F}_1 agrees with \mathcal{F}_0 outside $f_1^{-1}(I_{\delta})$. Applying Lemma 3.5 repeatedly one can construct a C^1 diffeomorphism $h_i: M \to M$ such that $\mathcal{F}_i = h_i^*(\mathcal{F}_{i-1})$ is transverse to θ_{ϕ} on $f_1^{-1}(I_{\delta}) \cup \cdots \cup f_i^{-1}(I_{\delta})$ and that \mathcal{F}_i agrees with \mathcal{F}_{i-1} outside this open set. Since $\{f_i^{-1}(I_{\delta})\}_{i=1}^m$ is an open cover of K, we construct a foliation \mathcal{F}_n transverse to ϕ . Consequently $\dot{\phi} \in \bigoplus(M)$.

References

- [An1] P. Andrade, Fluxos que admitem folheações transversas, Thesis, PUC-Rio, Rio de Janeiro, Brasil, 1985.
- [An2] P. Andrade, On homology directions for flows, Japan. J. Math., 17 (1991).
- [As] D. Asimov, Flaccidity of geometric index for non-singular vector fields, Comment. Math. Helv., 52 (1977), 145-160.
- [B-W] J. Birman and R.F. Williams, Knotted periodic orbits in dynamical systems II: Knot holders for fibred knots, preprint.
- [Co] C. Conley, Isolated invariant sets and Morse index, CBMS Regional Conf. Ser. in Math., 38.
- [E-H-N] D. Eisenbud, U. Hirsch and W. Newmann, Transverse Foliation of Seifert bundles and self homeomorphism of the circle, Comment. Math. Helv., 56 (1981), 638-660.
- [En] C. J. Ennis, Sufficient conditions for smoothing codimension one foliation, Thesis, Univ. of California, Berkeley, 1980.
- [Fr] D. Fried, The geometry of cross sections to flows, Topology, 21 (1982), 353-372.
- [F-S] J. Franke and J. Selgrade, Hyperbolicity and chain recurrence, J. Differential Equations, 26 (1977), 27-36.
- [Go1] S. Goodman, Vector fields with transverse foliations, Topology, 24 (1985), 333-340.
- [Go2] S. Goodman, Vector fields with transverse foliations II, Ergodic Theory Dynamical Systems, 6 (1986), 193-203.
- [Mi] J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv., 32 (1957-58), 215-223.
- [M-S] S. Matsumoto and A. Sato, Perturbations of the Hopf flow and transverse foliations, preprint, 1980.
- [No] S.P. Novikov, Topology of foliations, Trans. Moscow Math. Soc., 14 (1965), 248-278; Amer. Math. Soc. Transl., 1976, pp. 268-304.
- [N-S] Z. Nitecki and M. Schub, Filtration, decompositions and explosions, Amer. J. Math., 107 (1975), 1029.
- [OI] M. Oliveira, C⁰ density of structurally stable dynamical systems, Thesis, Univ. of Warwick, 1976 (revised 1979).
- [Sc] S. Schwartzman, Asymptotic cycles, Ann. of Math., 66 (1957), 270-283.
- [Ya] K. Yano, Non-singular Morse-Smale flows on 3-manifolds which admit transverse

foliation, Adv. Stud. Pure Math., 5 (1985), 341-358.

[Wo] J.W. Wood, Bundles with totally disconnected structure group, Comment. Math. Helv., 46 (1971), 257-273.

Plácido Andrade

Departamento de Matemática Pontifícia Universidade Católica - RJ Av. Marquês de São Vicente 225 Gávea - Rio de Janeiro - Brasil CEP 22453