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§0. Introduction.

Let X be a non-singular projective surface defined over an algebraically
closed field £ of characteristic p. X is called unirational if there exists a gen-
erically surjective rational mapping from the projective space P? to X. In
characteristic 0, the unirationality of an algebraic surface is equivalent to the
rationality. In general, however, there exist irrational unirational algebraic
surfaces, so, it is interesting to characterize unirational surfaces over an alge-
braically closed field of characteristic p>0, a problem which many people have
been concerned with. From this point of view, T. Katsura has completely
determined irrational elliptic surfaces with sections which are unirational and
of base change type (for definition, see Definition 1.1) in the case where the
characteristic p is more than two. The objective of this paper is to give a
similar result in characteristic two.

THEOREM 0.1. Let k be an algebraically closed field of characteristic 2,
and P! the projective line with the funclion field k(P)=k(). Any minimal
Weierstrass normal form (for definition, see e.g. p. 171 [17]) of an irrational
unirational elliptic surface f: X—P* of base change type with sections over kb is
given by one of the following :

(bj, Cj, dj = k)

@) YEF18y = x34-1(bot® + b, 12 Dot + 5512 - ot x 4 d o', (bs, ¢o#0),

(2) VEHEEy = X241t + bt +byt +bs) x2, (b #0),

3) Y212y = xP (bt +b) x> F (et Lot o), (o, c270),

4) VE2y = 2P +t(bot®+ byt +by) x%+cot* x +13(d ot +dy) , (be, €o, d,%0),
5) VEH12y = x°3+t(bot®+ byt +by) X+ cot? x +d o, (boy bsco+do+0),

(6) VY = xPbt* (et +¢1),  (€o#0),

) Y +t2y = K+ (bt +b)x* +et'x+dot’,  (bo, €o#0),
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@) Yi+tty = x° 13 (bt +b)x%,  (by#0),

) VEFt2y = xP-t(bot +b1)x*+1t(cot +c1), (b1, ¢o#0),

.(10) VI = X3+ t(bot*+ byt +bo)x2+cot* x+dot’, (b, b2, ¢o#0),

(11) Y212y = x3+1(bet? -+ byt +bs)x2, (bo, b:#0),

(12) YLy = B2+ 2+ D et +c)x+E(E+1)(dot +dy), (do, do+di#0),

(13) VAL 1y = et tH1) x+dot* DY, (do#0),

(14) YEHE(E41)2y = xP4cot*(t+1)°x, (co#0),

(15) Y12y = 2 Fbot(t+1)x2, (b #0),

(16) YHEEH1)Py = 22 +bt*(t+ D +EE+ 1 (cot + ) x +2(E+1)(dot +4dy)
(bo, d1, bo(cotc)+do+d,#0),

17 YAt +1)?y = A+ 1D)(bet+-by) a2 +cot* (¢ + 11 x +dot*(t+1)°,
(boco+do, by, bo+b,#0),

(18) P12y = 22412t et ) x H 1+ 1)3(d ot + dot+do)
(do, dy1, do+di+d,=#0),

(19) VI 1)y = «°,
(20) Y2102y = x34 1410t +b1) %2, (bo, by, bo+b,#0),
(21) YEHERE41%y = x4 b 2@+ 1) x2+eot* -+ 1)2x +d ot (t+1)3, (bo,boco+do7#0).

A non-singular projective algebraic surface is called supersingular if_the
second Betti number is equal to the Picard number. Shioda ([14]) proved that
a unirational surface is supersingular. By counting the second Chern number
¢(X), we have:

COROLLARY 0.1.1. Let %k be an algebraically closed field of characteristic 2.
Then, an irrational unirational elliptic surface X over k of base change type
with sections is a supersingular K3 surface.

In characteristic more than two, there exists irrational unirational elliptic
surfaces of base change type which are not K3 surfaces ([4]). We can also
find examples of unirational K3 surfaces in characteristic 2 in Artin [I].
Furthermore, in the course of the proof of [Theorem 0.1, we have:

COROLLARY 0.1.2. Let k, X be as above. Then, the generic fiber of X is a
supersingular elliptic curve.

We note that also in characteristic more than two, an irrational unirational
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elliptic surface of base change type has the generic fiber which is also a super-
singular elliptic curve. Moreover, for each elliptic surfaces listed in
0.1, we can determine the Mordell-Weil group of the generic fiber of the elliptic
surface, because we know the numbers of the components of the singular fibers
(cf. Proposition 3.4). The key point of the proof of is the local
analysis of the behaviour of singular fibers under a specific purely inseparable
base change, which can be summarized as follows:

THEOREM 0.2. (cf. Theorem 2.1) Fix the following notation:

k: an algebraically closed field of characteristic 2,

K:=Fk((@): the field of formal power series in one variable over k,

K':=Fk((s)) (s*=t): the purely inseparable extension of K of degree 2,

Let E be an elliptic curve over K, and let E, be the singular fiber of the
Kodaira-Néron model ([8]) of E. (In what follows, by abuse of language, we
call E, the singular fiber of E.) By the base change Spec k[[s]]—Spec k[[t]],
the iype of the singular fiber of E'=EX K’ is given as in the following table
where we use Néron’s symbol (cf. [7]:)

type over K type over K’

A A

B, B,,

C, Ci, Cy, Cy, Cs,p, Cry Cy
C. Cs.u

C, Cs

C, Ci, Gy, Cy, Cs,p, Cqy, Cs
Cs., Ci, Cy, Cy, Cs,p, Coy Cy
Cs Cs

C. Cs.p

Cs Ci, Cyy Cy, Cs,p, Coy C

The proof of is based on an algorithm of Tate for the deter-

mination of the type of a singular fiber ([18]) and on a formula discribing the
relation between the conductor and the discriminant (Ogg ; see also Sect.
1). is proved after the determination of the types of the singular
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fibers of f: X—P'.

The author would like to express her hearty gratitude to Professors M.

Fujiwara, T. Katsura, Y. Miyaoka, N. Sasakura, T. Shioda for their useful
advice.

§1. Preliminaries and lemmas.

Let C be a non-singular complete algebraic curve defined over an alge-
braically closed field 2 of characteristic p, and let f: X—C be a relatively
minimal elliptic surface defined over k. '

DEFINITION 1.1. Let f:X—C be an elliptic surface. X is said to be a
unirational elliptic surface of base change type if there exist a curve C’ and a
surjective morphism g: C’'—C such that the fiber product XX C’ is rational.

LEMMA 1.2. (Katsura [4], p. 524) Suppose that f:X—C is a unirational
elliptic surface of base change type. Then C is rational, and X is transformed
into a rational surface by a purely inseparable base change.

By the above lemma, it is important to determine whether the transformed
surface is rational or not, and the following facts are useful for it:

LEMMA 1.3. (e.g. Katsura [4], p. 525) Let f: X—C be a relatively minimal
elliptic surface with a section. Then, X is rational if and only if the second
Chern number c,(X) is equal to 12 and C=P?.

LEMMA 1.4. (Ogg [10]) Let f: X—C be as in Lemma 1.3. Then we have
c(X) = X ordpAp,

PeG

where Ap is the discriminant of the minimal Weierstrass normal form of f: X—C
at P=C.

The latter lemma is a global version of the following fact, which is well-
known and useful for our study, too.

LEMMA 1.5. (Ogg, loc. cit.) Let K be a complete discrete valuation field
with algebraically closed residue field k, of characteristic p=0, G=Gal (K*¢*/K)
its absolute Galois group, E/K an elliptic curve defined over K, and E, the group
of ¢-torsion points on E for each prime ¢+p. Then we have Serre’s measure
0=0(K, E,) (for details, see Oggi[10]) and,

ord A = N+e+0—1,

where A is the minimal discriminant of E, =0, 1, 2, as the reduced curve over
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k is elliptic, has a node, or has a cusp, and N denotes the number of irreducible
components of the singular fiber of E/K.

We remark that ’by definition, & is invariant under a purely inseparable
base field extension. We formulate here the results of Tate [18] and Néron
on singular fibres of an elliptic surface in characteristic 2 for the readers’
convenience.

LEMMA 1.6. Let R be a complete valuation ring and v (resp. K, resp. k) its
normal wvaluation, (resp. quotient field, resp. residue field). - Assume that k is
algebraically closed and of characteristic 2. Let E/K be an elliptic curve over
K with a K-rational point O, defined by the minimal Weierstrass normal form

V4+axy+a,y = x*+ax*+ax+as, (a:ER).

Then the type of the singular fiber of E is given in Table 1.1. Here it is pro-
vided that in types B,, v(as), v(as), v(ae)=1, and in type Cy, -+, Cg, v(as)=1.

LEMMA 1.7. Let R, v, K, k, E, a; be as above. (Unlike Lemma 1.6, the
Weierstrass normal form need not be minimal.) Then the type of the singular
fiber of E is determined by the following algorithm. .

(1) vA)=0=type A.

(2) Assume v(A)#0. Then we can change coordinates so that v(as), v(as),
v(ae)=1. Do so. Then v(a,)=0= type B, with yv=v(4).

(3) Assume v(a,)=1. Then v(as)=1= type C,.

(4) Assume v(ag)=2. Then v(a,ai+a?)=2= type C,.

(5) Assume v(a,ai+a3)=3. Then v(as)=1= type C,.

(6) Assume v(as)=2. Then we can change coordinates so that v(a,)=1,
v(a)=2, v(ag)=3. Then v(asa,+as)=3 = type C,.

(7) Assume v(asas+ae)=4. Then v(ai+a,)=2= type C;.,.

(8) Assume v(ai+a,)=3. Then we can change coordinates so that v(a,)=2,
v(a)=3, v(ag)=4. Do so. Then v(a;)=2 = type C,.

(9) Assume v(as;)=3. Then we can also assume v(ay)=5. Then v(a,)=3 =
type Cs.

(10) Assume v(a,)=4. Then v(as)=5= type C,.

(11) If v(ae)=6, then the original equation is not minimal. Restart from (1)
with a;/7* (x is a prime element of R) instead of a;.

Finally, we summarize the well-known results concerning with the Mordell-
Weil rank of unirational elliptic surfaces.

LEMMA 1.8. (Ogg [9], Shafarevich [12]) Let f: X—C be a relatively mini-
mal elliptic surface with sections. Assume that the k(C)/k-trade (cf. Lang [7])
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Table 1.1.
. number necessary and
Néron picture of irred. sufficient
symbol components condition of a;
A O 1 A€ R*.
B, { v v(a)=0, w(a)>»/2, va)>v/2,
(v>0) \ v(as)=v.
C < 1 wag)=1.
Ce % 2 va)=1, v(as)=2.
Cs >’< 3 wa)22, wag)22, Way)=1.
C. L 1 ] 5 v(a)22, ©(a)22, va)z3,
B "(@:0,+a4)=3.
v(a,)=1,
“““ if v=2n-1,
Cs. viad=n+1, v(a)Zn+2, v(aesd=2n+2,
(v>0) S5+v if v=2n,
ra)=n+2, v(ay)=n+2, v(a)=2n+3.
Ce [ —— 7 w(a)=2, ®a)22, v(a)23,
v(ae)24.
C, 8 v(a)=3, v(a)=2,
v, ++ w223, va)Z5.
[
C, I I 9 v(a=3, v(a)22,
11 v(a)24, v(a.)=5.
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of the genmeric fiber E is one point. Then, the Picard number po(X) of X is
given by

o(X) = rk(E)+2+ %(mvfl),

where rk (E) denotes the Mordell-Weil rank of E over k(C), where >} denotes the
finite set of points v of C for which f~'(v)'s are the singular fibers, and where
for veXl, m, is the number of the irreducible components of f~'(v).

LEMMA 1.9. (e.g. Katsura [5]) Let f: X—C be a relatively minimal elliptic
surface with sections. If f has at least one singular fiber composed of rational
curves, then the k(C)/k-trace of the generic fiber is one point.

As for the second Chern number ¢,(X) and the Picard number p(X) of X,
we know the following result.

LEMMA 1.10. If a smooth projective surface X is unirational, then

p(X) = co( X)—2.

PROOF. Since X is unirational, the second betti number b,(X) of X is

equal to o(X) (cf. Shioda [14]), and its Albanese variety is trivial. The result
follows from these facts. O

§2. Singular fibres and base change.

In this section, we study how the types of singular fibers of an elliptic
surface in characteristic 2 are transformed by a purely inseparable base change
of degree 2.

We use the following notation in this section:

k: an algebraically closed field in characteristic 2,

K=Fk(()): the field of power series in one variable over &,

K'=Pk((s))(t=s?): the purely inseparable extension of K of degree 2.
Let E/K be an elliptic curve over K defined by

Y2+ axy+asy = x*+ax’tax+a, (e, )k[[]]).

We assume that this equation is a minimal Weierstrass normal form and that
a,(t)’s are normalized as in Table 1.1 of Lemma 1.6. The minimal discriminant
of E/K (see e.g. p. 172 [17]) is given by

A = afas+alasas+atazai+atai+as+aial

= afas+aias(ai+a.a})+alaia,+(ai+a.al)’
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and the j-invariant of E (see e.g. p. 46 [17]) is given by j=a,'?/A. We set
E'=EXgK’, then, the (not necessary minimal) Weierstrass normal form of E’
is given by
Y+ a(sHxy+as(sh)y = ¥ +ax(sP)x2+au(s>)x +ae(s?).

A’: a minimal discriminant of E’/K’.

We also denote by ord.() (resp. ords()) the normalized discrete valuation
over K (resp. K’) such that ord.(t)=1 (resp. ord,(s)=1).

For a,=3)%a, ' (as ;= k), we set

8

Qg 95412} (odd degree terms),
0

Q4,0

)

2.1)

8

Qe = 2 Qy,0:l™ (even degree terms).
0

1

I

Considering the change of coordinates of E’ over K’ defined by
x=U*%"+R,
2.2) |
y=U?y"+SU*x'"+T (R,S, T,UcsK" (U=0)),

we have the new Weierstrass normal form

(2.3) yetaix'y' +aty’ = x*+aix"*+aix’'+ag,
where

Uai=a,,

U?a; = a;+Sa,+R+S?,
2.4) Ua; = as+Ra,,

Uta; = a,+Sas+(T+RS)a,+R?,
Uta; = a¢+Ra,+R*a,+R¥+Tas;+T*+RTa,,

The new discriminant of this Weierstrass normal form is given by A/U'. We
set 0=0(K, E,) (See [Lemma 1.5.) ((+#2), and we denote by N (resp. N’) the
number of irreducible components of the special fiber of E (resp. E’).

THEOREM 2.1. The type of the singular fiber of E’ is given as follows.
[A] Assume E/K is of type A. Then E'/K' is of type A, and

ord,(A) =0, ord,(A") =0, ord,(j) = 12 ord.(a,).
[B,] w>0) Assume E/K is of type B,. Then E'/K’ is of type B,,, and
ord,(A) = v, ords(A’) = 2y, ord;(7) = —v.

[C] Assume E/K is of type C,. Let =0 be the largest non-negative
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integer such that
ord,(a,) = 2!/, ord.as) = 2l+1, ord,(a, . =2(+1, ord,(ai+ala,) = 6l.
[Ci—Cy U=1) If ord(ai+asa?)=6l, then E'/K’ is of type C,, and
ord,(A) = 12/, ordy(A’) =12/, ord,(j) = 12 ord,(a,)—12{ = 12/ = 12.

[Ci—C:]y ({=1) If ord,(ai+a.a?)=6(+1 and ord,(al)_=21, then E'/K' is of
type C,, and

ord,(A) = 121+1,  ord,(A") = 12142,  ord,j) = 120—1 = 11.

[Ci—C.: If ord.ai+a.a?)=6l+2 and ord,a,)=2I+1, then E’/K' is of
type C,, and

ord.(A) = 12{+4, ords(A’) = 12/+8,
ord,(j) = 12 ord,(a,)—12/—4 = 12{+8 = 8.

[C:—C.]: If ord(a+a.a})=6i4+4, ord.a,)=2(+1, ord a:)=2[+2, and
ord;(as 0)=2(+3, then E'/K’ is of type C,, and

ord,(4) = 12/+7, ordy(4d’) = 12/4-14, ord,(y) = 12[4+5 = 5.

[C.—Csly If ordyai+a.a))=6l+4, ord,(a,)=2[+2, ord(as)=2(+2, and
ord;(as 0)=2{+3, then E'/K' is of type Cs, and

ord.(d) = 12/+8, ord,(A’) = 12/+-16,
ord,(;j) = 12 ord,(a,)—12/—8 =-12/+16 = 16.

[C.—Cs]: If ord(ad+a.a?)=6[+3, ord.(a,)=2[+1, ord;(as)=2[+2, and
ord,(a, o)=2{+1, then let I'(=1=0) be the largest non-negative integer such that

ord,(a,) = 2I' +1, ord.(a;) = 20’42, ord;(a%+ala,) = 6/’ +3.
[Ci—Csup-2lr If ‘ '

6I'4+3 - C(3=3I+1
ord,(a3+ata)=1{ 60'+5 then E'/K'is of type Cs un-o with g =1 31'—3(+2
6l +7, 31’3143,
and , ,
120'+6 240 +12—121 241'—12146 = 6
ord,(A) =1{ 12410 ordy(A") = { 24'+20—12] ord,(j) ={ 24/'—120+14 = 14
120 +14, 241’ +28—121, 241 —121+22 = 22.

[Ci—Csapliv If
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6!’ +4 31'—31+1
ord,(a3+a%a,) =1 6l'+6 then E'/K’'isof type C; 4, with p =1 3I'—31+2
6’18, 31"'—3143,
and
12/74-8 241’ 4+16—121
ord,(A) =1 12I’+12 ord,(A") =1 240'4+24—12I
[ 12/'4-16, 240’ +32—12/,

12 ord,(a,)—12/"—8 = 12I'+16 = 16
ord,(j) =4 12ord(a,)—12I'—12 = 12/'4+12 = 12
12 ord,(a,)—12I'—16 = 121’420 = 20.

[C.—Cs 4u-1] Assume E/K is of type C. and ord,(a,)<ord.(as), then E'/K'
is of type Cs su-y with p=ord.(a,), and

ord,(A) = 4 ord;(a,)+2, ord,(A’) =8ord.(a,)+4, ord,j) = 8ord;(a,)—2 = 6.

[Co—Cs su-s] Assume E/K is of type C, and ord,(a,)=ord,(as), then E'/K’
is of type Cs sp-s with p=ord.(as), and

ord;(A)=4 ord,(a;), ord;(A")=8ord.(a;), ord.,(s)=12ord,(a,)—4ord,(as)=8.
[Cs] If E/K is of type C,, then E'/K’ is of type C,, and
ord,(A) =4, ords(A") =8, ord;(j) = 12 ord;(a,)—4 = 8.

[C.] Assume E/K is of type C,. Let | be the largest positive integer such
that

ord;(a,)=2l—1, ord«as)=22l, ord«a,0)=22/+1, ord,(a3+aia)=6/—2.
[Ci—C.]: If ord,(a%+a.a2)=61—2, then E'/K’ is of type C,, and
ord,(A)=12!—4, ord,(A")=12/—8, ord,(j)=12o0rd.(a,)—12/+4=12/—8=4.

[C.—C:ly If ordy(ai+a.a?)=6l—1 and ord,a,)=2I—1, then E'/K’ is of
type C,, and

ord,(4) = 12/-3, ord,(A’) = 12/—6, ord,(;) = 12—9 = 3.

[C,s—C.): If ord,(a%+a.a%)=6l, ord,(a,)=2/, and ord,(a,)=2(+1, then E'/K’
is_of type C,, and

ord;(A) = 12, ords(A’) =12!, ord.,(j)=120rd,(a,)—12{ = 12 = 12.
[C.,—C.]: If ord(a%+a.a?)=6[+2, ord,(a,)=2l, ord,(a;)=2]+1, and ord,(a, )
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=21+3, then E'/K' is of type C,, and
ord,(A) = 12143, ordy(A’) = 12/4-6,  ord,(j) = 12/—3=9.

[Ci—Csl: If ordiai+a.a})=6[+2, ord,(a,)=2/+1, ord,(a;)=20+2, and
ord;(a. ,)=214+3, then E'/K’ is of type Cs, and

ord;(A)=12/+44, ord,(A")=12/48, ord,(j)=12o0rd.(a,)—12/—4=12/48=20.

[C.—C:], Assume ord,(a3+a.a?)=6l+1, ord,(a;)=2l, ord,(a;)=2(+1, and
ord;(as .)=21+1, and let I'(=I=1) be the largest positive integer such that

ord,(a,) = 2/, ord;(a,) = 21’ +1, ord,(a3+a2a,) = 61'+1.
[Ci—Cs.ap-2dir If

6l'+1 3/'—31+1
ord,(a3+ala) =13 61’43 then E'/K’ is of type Cs sp-o with p=1 3I"—3]+2
6/'+5, 3l"—31+3,
and
120’42 241" 4+4—12] 24/ —121-2 =10
ord,(A) =1 12!’ +6 ords(A’) =14 241'+12—12] ord,(j) =4 24'"—12[4+6 = 18
120 +10, 241’ +-20—121, 241’ —121+14 = 26.
[Cd_'CS,4]J]l,l' If
(6" +2 3'—-3l+1
ord,(ai+ala,) =1 6/'+4 then E'/K' is of type Cs 4, with p =4 3I'—31+2
6/’ 46, 31'—31+3,
and
12/’ +-4 24/'4-8—12!
ord,(A) = { 12/'48  ordy(A") =1 241'4+16—12!
120" +12, 240" +24—121,

12 ord;(a,)—12/'—4 = 12/'4-8 = 20
ord,(j) =1 12 ord,(a,)—12/'"—8 = 12/'4+4 = 16
12 ord,(a,)—121"'—12 = 12I'+12 = 24.

[Cs.sm-s—Cs)] Assume E/K is of type Cs im-3, and ord,(a,)=m. Then
E’/K’ is of type C,, and

ord;(A) = 8m, ord,(A’) = 4m,

ord,(j) = 12 ord,(a,)—8m = 4m = 4.
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[Cs,em-3—Cssp-2] Assume E/K is of type Cs 4m-s, and ord,(a,)<m. Then
E’/K’ is of type Cs,sp-e with py=2(m—ord,(a,)), and
ord;(A) = 4 ord.(a,)+4m+1, ord;(A”) = 8m—4 ord,(a,)+2,
ord,(j) = 8 ord,(a,)—4m—1.

[Cs.am-1—C,) Assume E/K is of type Csim-1, and ord,(a,)>m. Then
E’/K’ is of type C,, and

ord,(A) = 8m+4, ords(A’) = 4m+8,
ord,(s) = 12 ord,(a,)—8m—4 = 4m+8 = 12.

[Cs.am-1—Cs 4p-2] Assume E/K is of type Cs am-1, and ord,(a,)S<m. Then
E’/K’ is of type Cs sp-2 with p=2m—2 ord,(a,)+1, and

ord,(A) = 4 ord,(a,)+4m—+3, ord,(A") = 8m—4 ord,(a,)+6,
ord,(j) = 8 ord,(a,)—4m—3.

[Cs.am-2—Cis] Assume E/K is of type Csim-2, and ord.a,)=m. Then
E’/K' is of type C,, and

ord,(A) = 8m+-2, ord;(A")=4m-+4, ord,(j) =4m—2 = 2.

[C5,4m_2“‘C5_4p_2] Assume E/K Z.S Of type C5‘4m_2, Ordt(a1)<m, and Ordp(ag)
<m-+tord.,(a,). Then E’'/K’ is of type Cs su-» with p=ord.(a;)—2m, and

ord,(A) = 4 ord,(a;) = 8m+4, ords;(A”) = 8 ord,(as)—12m = 4m+8,
ord,(;) = 12 ord,(a,)—4 ord,(a;) = 0.

[Cs.em-2—Cs.4p]-1 Assume E/K is of type Cs em-2, and ord,(a;)>m, erd,(as)
>m+ord,(a,). Then E’'/K’ is of type Cs 4, p=ord,(a,), and

ord,(A) = 4m+4 ordi(a,)+2, ordy(A’) = 8 ord,(a,)—4m+4,
ord,(y) = 8 ord,(a,)—4m—2 = 0.

[Cs.am-2—Cs,4p1-2 Assume E/K is of type Cs im-2 and ord,(a))<m. Then
E'/K’ is of type Cs i, p=2m—2o0rd,(a,), and

ord,(A) = 4m-+4 ord.(a,)+2, ords(A") = 8m—4 ord,(a,)+4,
ord,(j) = 8 ord,(a,)—4m—2.

[Cs.am—Cs.4p]-0 Assume E/K is of type Cs.im and orda,)<m. Then
E’/K’ is of type Cs,4p with p=2m—2ord,(a,)+1, and
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ord,(A) =4 ord,(a,)+4m+4,  ordy(A’) = 8m—4ord,(a,)+8,
ord,(;) = 8 ord;(a,) —4m—4.

[Cs.4n—C] Assume E/K is of type Cyum and ord,(a,)>m. Let i be the
largest positive integer such that

ord,(a,) =2 m+2i—1,  ord,(as) = 2m+2,
ord;(a, ) = 2m+2i+1, ord,(ai+ala,) = 4m+6i—2.
[Cs,am—Cil: If ord.(a%+a.a?)=4m+6i—2, then E’/K’ is of type C,, and
ord,(A) = 8m-+12i—4,  ord,(A’) = 4m+12/—8,
ord,(j) = 12 ord,(a,)—8m—12/+4-4 = 4m+12/—8 > 0.

[Cs.am—C:]: If ordy(a%+a.a?)=4m+6i—1, ord;(a;)=2m<-2¢, and ord,(a,)=
m+2{—1, then E'/K’ is of type C,, and

ord,(A) = 8m+12/—3, ords(A’") = 4m+-12:—6,
ord,(;) = 4m+-12:—9 > 0.

[Csamn—Ca): If ordl(ai+a.a})=4m+6i, ord.(a;)=m+2i, and ord(ay)=
2m+2i+1, then E'/K’ is of type C,, and

ord.(A) = 8m—+124, ord;(A") = 4m+12i,
ord,(j) = 12 ord,(a,)—8m—12; = 4m+12; > 0.

[Csam—C1)i If ordlai+a.a})=4m+6i+2, ord,(a)=m+2i, ord.,(as;)=2m+
2i+1, and ordy(a. o)=2m—+2i+3, then E'/K’ is of type C,, and

ord,(A) = 8m+12{+3, ords(A”) = 4m+12i 46,
ord,(7) = dm+12:—3 > 0.

[Cs.am—Csli If ord(a3+a.a})=4m+-6i+2, ord,(a,)=m+2i+1, ord,(as;)=
2m+-2i+2, and ord,(as 0)=2m-+2i+3, then E’/K’ is of type C;, and

ord,(A) = 8m-+12/+4, ords(A’) = 4m+-12/ 48,
ord,(y) = 12 ord;(a,)—8m—12{—4 = 4m+12/4+8 > 0.

[Cs.en—Cs]; Assume ord,(ai+a.a})=4m+6i+1, ord,(a;)Zm+2i, orda)=
2m+2i+1, and ord,(a..)=2m-+2i+1, and let i'(=i=1) be the largest positive
integer such that

ord.(a,) = m+2i, ord,as) = 2m+2i'+1, ord.(ai+ala,) = dm+6i"+1.
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[C5,4m_C5,4;¢—2]i, i’ If

61" +4m+1
ord;(ai+ata,) =1 6/ +4m+3
6:' +4m—+-5,
3’ —3+1
then E'/K’ is of type Cssu-2 with p =3 3i'—3i+2
3’ —3i43,
and
12¢" +8m+2 247" +4m+-4—12¢
ord,(A) = { 12/+8m+-6 ordy(A") =< 24¢'+4m+12—12¢
12/’ +8m+10, 24¢" +4m+20—12,

247" —12i+4m—2 = 14
ord,(j) =4 24¢'—12/+4m-+46 = 22
247" —12i+4m+14 = 30.
[(Csam—Crsupliir If

6:" +4m -2
ord;(ai+ala,) =1 6/ +4m+4
61" +4m--6,
(3’ —3i+1
then E’/K’ is of type Csp with p =13 3i'—3i42
3" =343,
and
12/ +-8m+-4 247" +4m+8—12¢
ord,(A) =4 12¢'+8m+8 ords,(A”) =1 24i’+4m+16—12;
12" +8m+12, 247" +4m-+24—12;,

12 ord,(a,)—12{"—8m—4 = 12¢' +4m+8 > 0
ord,(j) =4 12o0rd.(a,)—12¢/'—8m—8 = 12{'4+4m+4 > 0
12 ords(a,)—12¢’—8m—12 = 12/’ +4m+12 > 0.
[C.] Assume E/K is of type Cs. Then E’/K’ is of type C,, and
ord,(A) =8, ord,(A") = 4, ord,(j) = 12 ord,(a,)—8 = 4.
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[Ci—Cs.uu-s] Assume E/K is of type C, and ord.(a,)+1<ord,(as). Then
E’/K’ is of type Cs 4p-s with p=ord,(a,), and
ord,(A) = 4 ord;(a,)+6, ords(A’) = 8 ord,(a,),
ord,(j) = 8 ord;(a,)—6 = 2.

[C:—Cs,4p-1] Assume E/K is of type C, and orda,)+1=ord.(as). Then
E’/K’ is of type Cs 4p-1 with p=ord,(as)—2, and

ord,(A) = 4 ord,(a,), ords(A’) = 8 ord.(a;)—12,
ord;(j) = 12 ord,(a,)—4 ord,(as) > 0.

[Cs] Assume E/K is of type Cs. Let | be the largest positive integer such
that
ord,(a,) = 21—1, ord.(a;) = 2{+1,

ordy(as. o) = 2{+1, ord;(a%+a?a,) = 6[—1.

[Cs—C.], If ord a%+a.a?)=6l, ord.,(a,,)=2[+3, and¥ord,(a,)=2l—1, then
E’/K’ is of type C,, and

ord,(4) = 12/—1, ordg(A’) = 12/-2, ord,(;) = 12/—11 > 0.

[Cs—Csl, If ord,(ai+a.a})=6l, ord,as.,)=2(+3, and ord,a,)=2l, then
E'/JK’ is of Cs, and

ord(A) =121,  ord (A) =12,  ord.(j) = 12 ord,(a,)—121 = 12i.

[Cs—Ci]y If ord.(a3+a.a})=6[+2, ord,(a))=2], ord,(a..)=2/4+3, and
ord,(as)=2[+2, then E'/K’ is of type C,, and

ord,(A) = 12/4-4, ordy(A") = 12/—4,
ord,(j) = 12 ord,(a,)—12/—4 = 12{—4 > 0.

[Cs—C.]: If ord(ai+a.a})=6(+3, ord.(a,)=2[, ord(as)=2[+2, and ord.(a., o)
=2[43, then E'/K’ is of type C,, and

ord,(A) = 12{+5, ordy(A") = 12/-2, ord,(j) = 12/—5 > 0.

[Cs—C.]y If ordi(ai+a.a})=6/+4, ord,(a,)=2[+1, ord,(as)=2[+3, ord.(a.,.)
>21+3, and then E’/K’ is of type C,, and

ord,(A) = 12/+8, ord,(A") = 12/+4,
ord,(j) = 12 ord,(a,)—12{—8 = 12[4+4 > 0.

[Cs—Cs]: (I=22) Assume ord.(as.)=2l+1, and let I'(=I=2) be the largest
positive integer such that
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ord,(a,) = 2I'—1, ord;(as) = 2I'+1, ord;(ai+ala,) = 6/'—1.
[Cs—Csap-2dr,v If

6/'—1 3 —31+1
ord,(a+a%ay) =4 6I'+1 then E'/K' is of type Cs su-s with py=1 31'—31+2
6’43, 31'—31+3,
and
12172 24" —4—121
ord,(A) =4 12'4+2  ordy(A) =1 24//+4—12]
121’ +6, 241" +12—121,

241"—12]—10= 14
ord,(7) =1 24I'—12]—-2 = 22
240’—121+6 = 30.
[Co—Cosplir If

6/ 3—-31+1
ord;(a%+ata,) =1 6I'4+2 .then E'/K’ is of type Cs i with p =1 3I'—31+2
6l’+4, 30'—31+3,
and
120 247" —121
ord,(A) =< 12I’+4  ordy(A’) =< 24I"+4+8—121
121 +8, 240'+16—12(,

12 ord,(a,)—120" 2 121" > 0
ord,(/) =14 12o0rdy(a,)—12'—4 = 12/"—4 > 0
12 ord;(a,)—12/'—8 = 120’ +4 > 0.

ProoOF. Now, we prove [Theorem 2.1

[Case 1.] If E/K is of type A, B,, C,, C;, C; or C,, then the proof is
relatively easy and guessed from the way of the following steps. So, we omit

the proof.
[Case 2.] The case where E/K is of type Cs.,.

We set S=+/a;, U=1, R=T=01in k[[s]]. Then, by the change of coordi-
nates of E’ in we have a!=a,, ay=+/0,a,, a4=as;, ai=a,++/a,a,;, and

at=as Set [=ord.(a,).
(1) Assume that v=4m—3.
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By Lemma 1.6, the Weierstrass normal form satisfies t|a,, t]a., #*™|as,
2™+ q,, and #*™|a,. Here, t/|a;, means a; is divisible by #/, and t’|a; means
a; is divisible by #/ and is not divisible by #/*'.

(1-1) If m<l, we apply the algorithm of Tate to (ai/s'™)’s.
Then, ai/s™, ai/s*™, and al/s*™ are divisible by s and s|la;/s*™, hence E’/K’
is of type C,, and

ord,(A) = ord;(afas+alasa,+ata.aitatai+tai+aiald)
= ord,(a?) = 8m,
ordy(A’) = 16m—12m = 4m,
ord,(y) = 12]—8m.

(1-2) If m>I, we apply the algorithm to (a;/s**)’s. Then, we have s|aj/s’,
s?|ai/s%, s*lai/s*, st|al/s®, and s|ai/s*, hence E’/K’ is of type Cs ., and

ord,(A) = ord;(ata,a?) = 4{+4m+1,
ord,(A”) = 81+8m+2—12] = 8m—41+2,
ord.(y) = 12]—4]—4m—1 = 8/—4m—1.
By the formula of Ogg (Lemma 1.5), we have
0 = 4l+4m+1)—(5+4m—3)—2+1

= (BI+4m+2)—(5+pm)—2+1,
soJu=8m—8/+2.

In the case of type C;,,, the following subcases are similar to (1).

(2) Assume y=4m—1.

In this case we have t|a,, t||a,, 2™ a;, 2™*?|a,, and #*™**|a,. Apply the
algorithm to aji/s'™ if I>m, to a}/s‘’ otherwise. We get [Cs sn-1—C,] and
[C5,4m—l_cs,4p-—2:|'

(3) Assume y=4m—2.

In this case we have t|a,, t|a,, *™**|a,, t*™*'|a,, and t*™*'|a,. Apply the
algorithm to ai/s'™ if [>m, to ai/s** otherwise. We get [Csim-2—C.],
[Cs,4m-2"‘cs,4p—2], [C5,4m—2'—cs,4p]_n and [Cs,4m—2—c5,4p]-2-

(4) Assume y=4m.

In this case we have t|a,, t|a., t*™*%|a,, 1*™**|a,, and t*™*%|q,. If [<m,
apply the algorithm to ai/s**. We get [Csim—Csaul-0- We will treat the
case when />m in Case 3.

[Case 3.] The case where E/K is of type Cs, in(ord,(a,)>m), C,, C,, or Cs.

(1) Assume E/K is of type C,. Then, a,, a,, as;, and a, are divisible by
t, and t| as.
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As described in the statement of [Theorem 2.1, let />0 be the largest
integer such that

ord;(a,) =2 2I, ord.(as) = 2[+1,
ord;(as,0) = 2[+1,  ord.,(ai+a.a}) = 6l.

By the change of coordinate with U=1, R=+/a,;, S=+/a,+(a..)"% and
T =+/asa,+a; we have

5, st a;=a,
s | gy = (Ve (a4, Va1 +(as,0)' 2,
s%, s | a5 = as++/asa,,
$%, s |l = V02034 0sa1 (a4, ) (as++/8uay),
s?, ¥4 | g = (v @e++/0200)(as+/Tsay).

Now, we apply the algorithm of Tate to aj/s.
Since s'*!|aj, we see that

N

if s%*' || ai( & ord,(ai+asa?) = 60), then C, (I=1).
If so, we have
ord,(A) = ord.(afas+alas(ad+a.ad)+ata.ai+(ai+a.a})?)
= ord;((ai+a.a?)?) = 121,
ord;(A’) = 2 ord,(A)—12/ = 24]—12] = 12,
ord,(7) = 12 ord,(a,)—ord,(A) = 24[—12] = 12/ > 12.
Assume that ord,(ai+a.a})=6/+1. Then, we have
if s+ || ai( © ord,(a,) = 2I) then C,(I=1).
If so, we have
ord,(A) = ord,(afae) = 12{+1,
ord,(A”) = 12{42,
ord;(y) = 12/—1 = 11.
Assume that ord,(a,)=2{+1.

REMARK 2.1.1. Under the above assumptions, (i.e. ord;(ai+a.a?)=6[+1,
ord,(a,)=2[+1, ord.(as)=2[+1, ord,(a, ,)=2/+1), we have

ord;(ai+a,a?) = 6/+2, and if [=1, ord,(a,) = 2[42.
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PrROOF. This follows from the calculation of the valuation of the odd de-
gree terms in a?+a.al. O

Now, since s**?|a;, s***'|a;, s**%|a;, and s%*+%|q}, we see that
if s8*2 | gjai+as (o s | af © ord,(a}+a.a?) = 6[+2), then C..

From now on, we omit the calculus of ord,(A), ords(A’), and ord,(7).
Assume that ord;(ai+a.a?)=6(+3.
Then we have ord,(a;)=2 if /=0.

If so, we have s***|q; and s®**|a}, therefore, we see that
if s*'*'| a3( & ordi(as,,) = 2[+1), then C; ,.

(¢ is determined in the following subcase (2).)
Assume that ord,(a, ,)=2/+3. Then ord,(a3+a.a})=6/+4. Therefore, we
see that
if s**2| gy @ ord.(a,) = 2{+41), then C,.

Assume that ord;(a,)=2/+2. Then we have ord,(a3+a.a})=6l+4. If (=1,
then we have ord,(a;)=2/+3. Therefore, we see that

if s8*% | as( © ord;(ai+asa?) = 6/+4), then Cs,.

Assume that ord.(a?+a%a,)=6/+5, then ord,(a3+a%a,)=6/+6, and ord.(as)
=204+3 if [=0. This contradicts the maximality of /.

(2) The case where E/K is of type C,, and E’/K’ is of type Cs, ..

From the consideration in (1) of case 3, we know that /(=0) satisfies
ord,(a,)=2{+1, ord.a,)=1, ord,(a;)=2[+2, ord,a..,=2[+1, ord,(as)=1, and
ord,(ai+a.a?)=6/+3.

Let /(={=0) be the largest integer such that ord.,(a,)=2/"+1, ord.(a;)=
20’42, and ord,(a}+a.a})=6!"+3.

Assume that ord;(a(+a2a,)=6/"+3. Then, we have

ord,(A) = ord,(atas+aias(ai+a.ad)+ata,ai+(ai+atan)?)
= ord,((ai+ala,)?) = 12146,
ord,(A") = 24/'— 12412,

0rd(as) = 5 (0rda, sad—21—1) = - (ordai-+ata)—~2I—1)

- %(61’4—3—21——1) = 3+,

SO,
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ord,(y) = 36/’'—121+12—121'—6
= 12('—=1)+12I"+6 = 6.
Finally we obtain g from the formula of Ogg:
0= 120"46—1-2+1 = (24I'+12—120)— (5+ p)—2+1,
p=121"—12142 = 4(3!'—3]+1)—-2.
Now assume that ord,(a}+a%a,)=6!"+4.
REMARK 2.1.2. Under the above condition,
ord,(a,) = 2/'+2.
PROOF. We can prove this in a similar way to Remark 2.1.1. O
Since ord.(a%+aa,)=6/’'+4, we have
ord,(A) = 2 ord,(ai+aia,) = 12/’ +8§,
ord(A’) = 241’— 121416,
ord,(j) = 12 ord,(a,)—12/"—8 = 24/’ 4+-24—12/"—8 = 16,
p=43I'—3l+1).

In the case where ord,(a(+a%a,)=6/'+5, 6/'+6, it is quite similar.
Assume that ord,(ai-+alas)=6/’+7. Then we know that ord,(a,)=2!'-+3,
ord,(a,)=2/’"+4 by a similar way to Remark 2.1.2. Therefore, we have

1207 +14

6l +7
ord,(a3+ala,) = == ord,(4) =
61’+8 120416,

and ords(A’), ord.(5), and p are also easily calculated.

If ord.(ai+a%a,)=6/’'+9, it contradicts the maximality of [/, so, this sub-
case is proved.

(3) The case where E/K is of type C,, Cs, or C; 4n(ord;(a,)>m) is treated
in a similar way to the subcases (1) and (2).

Hence, we complete the proof of [Theorem 2.1

§3. The Weierstrass normal form of the irrational unirational
elliptic surfaces of base change type with sections.

Here, we prove [Theorem 0.1.

PROPOSITION 3.1. Let k be an algebraically closed field of charactgrz'stz'c 2,
and let E be an elliptic curve over K=Fk((t)). Let us put K :=K(@#"*") (i=0),
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E®:=EXxK®, and A :=the mimimal discriminant of E. Assume that
ord A <12 for some >0, and that if ord A=12, then ord A <12 for some :>0.

Then, the singular fiber of E is given as in Table 3.1, where v,:=ord,(a,) for
(11#0.

Note that if f: X— P! is an irrational unirational elliptic surface of base
change type with sections, then any singular fiber of f must be formally iso-
morphic to one of the above [1]—[34] in Table 3.1 by Lemma (1.3). In Table
3.1, shown are the types of the special fibers and the valuations of the j-
invariants over the original field K and the extension K.

REMARK 3.1.1. In Table 3.1, we have, ord A®»=2'ord A in [1], ---, [6],
ord AP =0ord A® (;=2) in [7], -+, [20], ord A%*®=0rd A®”> (?=0) in [21], ---,
[34].

PROOF OF ProposITION 3.1. In the following, I, J, M denote positive
integers.

Step 1. Easier cases.

(1) If E/K is of type Cs, then the type over K®/-» is (4, and the type
over K@D is C,, so we get [29] in Table 3.1.

) If E/K is of type C, then we get [28] as in (1).

(3) If E/K is of type [C;—Cs 4p-3s] With ord (A)=4], then the type over
K@Y ig [Cs 47-3—Cs] with ord (A®/-2)=8], and the type over K¢ is
[Cs—C5.4s-5], with ord (A®?)=4]. We consider only the case where ord (A®Z-1)
or ord (A®D)<12, so, putting J=1, 2, 3, we get, respectively, [30], [32], and

[96] [Cz_cs, 9]_[C5,9_C2]_[C2_C5,9]"‘
ord (A®) =12, ord (AV) =24, ---.

By assumption, the case [96] is excluded. :
(4) If E/K is of type [Cs.im-s—C:), [Ci—Csupu-1], [Csam-1—C:], or
[Cs,am-2) Cs,4p-2], as in (3), we get [31], [33], [34], and

[97] [C7“‘C5,3]—[C5,3_C7J"‘[C'I—Cs,a]"
ord (A®) = 12, ord (AV) =12, -,
[98] [Cs,z“Cs,z]"“[Cs,z"‘Ca,z]'*[cs,z“‘cs,z]"'

ord (A®) = 12, ord (A®) =12, ---.

By assumption, the cases [97] and [98] are excluded.

(5) If E/K is of type [C,—Cs 4p-1] with ord (A®)=4]+2, then the type
over K@I-Y ig [C; 4y_,—C,] with ord (A®I-V)=8]+4, and the type over K@D
is [C,—Cs,4s-1] with ord (A®D)=16]—4. So, putting /=1, we get [12].
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(6) If E/K is of type [C;—Cs su-s], as in (5), we get [13], [14], and [15].

(7) If E/K is of type [Ci—Cs 4p-21i,1r, with ord(A®)=12/"4-6, then the
type over K11 is [Cs a1 -s1+1-2— Cs, 4314 0-2] With ord (A®I-1)=24/"—12{+12,
and the type over KD is [Cs, ssi+1y-2—Cs, 431 —s1417-2] With ord (A®D)=12/"+12.
So, putting {’=I1=0, we get [1L].

@® If E/K is of type [Ci—Cssp-2], [Coe—Csup-2], [Csam—Csap-2], O
[Cs—Cs 4u—2], we can treat as above. Since ord(A”’)>12 in any cases, we can
exclude these cases.

9 If E/K is of type [C,—C,];, with ord (A)=12/—3, then the type over
K® is [Cy—Cs scs1-2y-1] with ord (A)=12[{—6, the type over K" is [Cs, acsi-2y-1
—C,] with ord(A®?)=24/—12, and the type over K®+V is [C;—Cs scs1-2>-1]
with ord (A®7+v)=12/. Putting /=1, we get [10].

(10) If E/K is of type [C,—C.], [C,—C.]1;, [C:—C:1i, [Csamn—C:ls,
[Csam—C1li, [Cs—C,]i, or [Cs—C.];, as in (9), we get [7], [8], [O]

If E/K is of type B,, then it is clear that v<6 and we get [1], -,
[6] in Table 3.1.

Step 2. Relatively stable cases.

Assume E/Kis of type [Cs—C1]i, [Coa—Cs. st —s142>10.17» LCs.ac3m5— C1li,
[C5,4(3M)_Cs,d(ai'—3i+2)]i,i’a [Cl_c4]l7 [C1“‘Cs,4(3z'~3l+3)]l,l', [C5,4(3M—-1)"C4]i,
or [Csacsir-1>—Cs acr-si40]s,4+. Temporarily, we call the 8 types, (a), (b), (c),
(d), (e), (), (g), (h) in the above order.

LEmMA 3.1.2. If E/K is of type (a), (b), (c), (d) (resp. (e), (), (g), (h)),
then the type over K@~V is (e), (f), (g), (h) (resp. (a), (b), (c), (d)), and the type
over K®P 4s (a), (b), (c), (d) (resp. (e), (f), (g), (h)) respectively.

Proor. It suffices to prove this lemma only for K’ and K. Let N,
N® N@ be the number of irreducible components of the special fiber of E,
EXgK®Y, EXgK®, respectively.

Recall that Serre’s mesure 6(F) is invariant under a purely inseparable base
change. By [Theorem 2.1, if E is of additive reduction type (see [17], p. 179),
then so are EXxK® and EXgK®. Therefore, by the formula of Ogg (Lemmal
1.5), we have

ord (A®)—N®=ord (A®)— NP =ord (A®)—N®,
In particular, we have
ord (A®)— N = ord (AP)—N® = ord (A®P)—-N® (mod 12).
Hence, if E/K is of type (a), (b), (c), or (d), by Table 1.2 and [Theorem 2.1,

N® =1, N® =5, (mod 12).
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So, again by Table 1.2, EXK® is of type C, or Cs ssx-1y, and EXK® is of
type C, or Cs.scu. The expected results are acquired from the calculus of
ord (A), ord (A®) and [Theorem 2.1

If E/K is of type (e), (f), (g), or (h), then we get the result in a similar
way. O

By the above lemma, if E/K is of type (a), (b), ---, (h), then so is EXgK®
for all 7=0.

It is clear that ord (A®)<12 if and only if E/K is either of type (a) and
I=1, or of type (e) and [=0.

Suppose E/K is of type (b), (c), (d), (f), (g), or (h). Then, we have ord(A®")
>16. Therefore, by Lemma 3.1.2, we have ord (A©)=16 for all I>0 in these
cases. Hence, by assumption, these cases are excluded. Suppose E/K is of
type (a) with /=1 (resp. of type (e) with [=0). Then, we have ord A”=8
resp. ord A®=4), Using these facts, we get [21] and [22] in Table 3.1.

Assume E/K is of type [C,—C.], [Ci—C5s.4u], [Cs—Csl, [C:—C.],
[Cl—cﬁ,-iy]; [Cl—csj, [C5,4m—cljy [Cs,4m_c4], [Cs,4m—ca,4y], [C5,4m_C8],
[Cs—Ci], [Cs—C,], [Cs—Cs 4], or [Cs—Cs]. We get easily [23], [24], [25],
[26], and [27] in a similar way.

Step 3. Remaining cases.

Assume E/K is of type [Cs ¢m—Cs, 4,]-0.

Set [=ord.(a,). If I<(@m-+2)/3, the type over K™ is also [Cs sem-21+1y—
C; inl-0. Putting [=m=1, we get

[99] [Cs54—C540—[Cs,4—Cs, . Jo— -+
ord (A®) =12,  ord (A®) =12, ---.

If I=(2m+2)/3, we see easily that it suffices to check the cases where the
type over K is either [C; ,—C,] with ord (A®)=16([25]) or [Cs ;—C,] with
ord (A®)=24 ([27]). The type over K becomes [25] if and only if m=[=2,
so we get [16]. Since 8#4(2m—2{+1) for any m, /, the case where the type
[Cs..—C,] with ord (A®)=16 over K™ is excluded.

Assume E/K is of type [Csim-2—Cs4u]. As above, it suffices to
choose the cases where it comes to [25], [27] by Step 2, or [16], [99] by [14).
Since it is impossible, we have none in this case.

Assume E/K is of type [Cs sm-»—C,]. Considering if ord (A®)<12,
or if it comes to [21] in Step 2, we get [17], [18].

If E/K is of type [cs,4m—3_cs,4,u—2] or [C5,4m—1—c5,4/z—2]) we get
[19] or [20] since it must come to or over K™, respectively.

This completes the proof of [Proposition 3.1.
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PROPOSITION 3.2. Let f: X—P*' be an irrational unirational elliptic surface
of base change type with sections in characteristic 2. Then, X does not contain
fibers of type [1], [2], ---, [20]. So, the j-invariant of the generic fiber is 0.
Movreover a,(t) in Weierstrass normal form is 0.

PRrRoOOF. If j-invariant is 0, then we have a,(t)=0 since j=ai?*/A in charac-
teristic 2.

By [Lemma 1.2, there exist a purely inseparable regular map g: P'—P' and
a commutative diagram

) QRN ¢

il s

P — - p,
g

where X denotes the rational surface with structure of a relatively minimal
elliptic surface f: X— P! which is birationally equivalent to XX p1 P' and where
g is the reduced rational map. By Remark 3.1.1, we may assume that the
degree of g is 2, 4, or 8. We can assume that X has a Weierstrass normal
form which is minimal over every point of the affine line A' (since k[t] is a
principal ideal domain, this can be proved in a similar way to Proposition 8.2
in [16]) and that X has a regular fiber over the point at infinity.

In this normal form, we denote by A(¢) the minimal discriminant, and by
7(t) the j-invariant. We also select a minimal Weierstrass normal form of
7 X— P!, and we denote by A(t) the corresponding discriminant.

Step 1. If X contains some fibers of type [7], ---, [20] and none of type
[1], ---, [6], then j(*) has only zeros and no poles on P'. This is absurd.

Step 2. Assume X contains some fibers of type [1], -, [6] and none of
type [7], ---, [34]. Then j(t) has poles of total order 3 (if g has degree 4) or
of total order 6 (if g has degree 2). But since j=ai*/A, under regular fibers,
7(t) has a zero of order multiple of 12. It is absurd, too.

Step 3. Now we prove that if cz()? y=12, then X cannot contain any fibers
of type [1], ---, [20].

(1) Assume g: P'—P* has degree 8. Since cz()? )=12, combinations of the
singular fibers of f which do not contradict steps 1, 2 are given by {[1], [9]},
{C11, 193}, {[C13, 217}, {[13, [28]}, or {[1], [31]}. If the combination of
singular fibers of f is either {[1], [9]}, or {[1], [19]}, then we have c¢,(X)=12,
hence, X is a rational surface. Therefore, these cases are excluded. If the
combination of singular fibers of f is one of {[1], [21]}, {[1], [28]}, {[1], [31]},
then j(¢) has only one pole of order 1 under the fiber of type [1], but a zero
of order greater than 4 under the other singular fiber, which is impossible.

(2) If g has degree 4 or 2, the proof is similar to (1). O



735

Unirational elliptic surfaces in characteristic 2

PROPOSITION3.3. Any combination of the singular fibers of an irrational
unirational elliptic surface f: X—P' of base change type with sections in charac-
teristic 2 is given by ome of the following.

M {271}, @) {341},

@) {[21], [241}, 4 {[21], [25]},
(6) {[281, [241}, (7) {[28], [25]},
9 {(311, [241}, (10) {[31], [25]},

() {[21], [33]},
(8) {[28], [33]},
(11) {[31], [331},

(12) {{21], [21], [28]},
(14) {[28], [28], [31]},
(16) {(21], [21], [31]},
(18) {[21], [21], (211},
(20) {[31], (311, [31]},

(13) {[21], [28], [28]},
(15) {[31], [31], [28]},
(17) {[31], [31], (211},
(19) {[28], [28], [281},
(21) {[211], [28], [311}.

PROOF. Since the possibilities of types of singular fibers are [21], ---, [34],
it suffices to consider the following situation:

F X

N

Pl EPI,
F

where F is a purely inseparable morphism of degree 2, X is a rational surface
which is birationally equivalent to XXp P!, f: X—P! is a relatively minimal
elliptic surface, § is a rational map which makes the diagram generically com-

mutative. We choose all combinations of singular fibers on X which satisfies
c(X)=12 and ¢,(X)*#12. Then we have the list of combinations in this pro-
position. O

ProoF oF THEOREM 0.1. By [Proposition 3.3, we see that the number of
singular fibers of f: X—P!' is at most 3. So, we take (1), (3), and in
[Proposition 3.3 as examples of irrational unirational elliptic surfaces f: X—P!
of base change type with one singular fibers, two singular fibers, and three
singular fibers, respectively, and prove the theorem only in these cases. The
remaining cases can be proved similarly.

We write a minimal Weierstrass normal form of f: X— P! as follows:

Y2taxy+asy = B +a.x+ax+a,
with a,=k[t].
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Proof of (1).

We may assume the singular fiber is over the point {=0 in P!. Since f
has a regular fiber over the point {=oe, as in the proof of Theorem II in
Katsura (p. 541), we have

a,=0, dega, =6, dega, <4, dega, <8, dega,=<12,

Since the type of the singular fiber is [C; s—C,], in [Theorem 2.1, we have
ord,(a,) =6, ord,(a,) =1, ord,a,) =86, ord,(ae = 11.
So, we can write
as =1% a,=tbt*+b,1*+byt+bs), (bs#0),
a; = (et teittcs), (c:#0), ag=1t"(dd+dy),

with by, ¢;, d;=k. By a suitable coordinate change, we can make ¢, and ¢, to
zero, so0 we get a minimal normal form of f as in [Theorem 0.1l

Proof of (3).

Assume the fiber of the type [C,—C,] is over t=0, and the fiber of type
[Cs—C,] is over t=o0. Since the order of a minimal discriminant over t=co
is equal to 16, we have as in the proof of (1),

a;,=90, dega;=2, dega, <4, dega, <8, dega;=<12.
So, by [Theorem 2.1, we can write
as =1, ay,=1Hbt+by), a,=ct? as=1d+d*+d,t>+dst+d,),
with
bico+ds # 0, do# 0.

After a suitable coordinate change, we have a minimal normal form of f as in
[Iheorem 0.1l

Proof of [12).

Assume the fibers of type [C.—C,] are over t=0, 1, and the fiber of type
[C¢] is over t=co. Since the order of a minimal discriminant over t=co is
equal to 8, we have as in the proof of (1),

a, =0, dega;=4, dega, <4, dega, <8, dega,=<12.
So, from [Theorem 2.1, we can write
a; =12(E+1?,  a, = bt(t+1), a,=1*t+1)(cit+cy),

Ag = ta(t+1)3(dot2+d1t—l— d,),
with
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beci+ds # 0, bylcotcy) # do+di+ds .

After a suitable coordinate change, we have a minimal normal form of f as in

[Theorem 0.1 O
PROOF OF COROLLARY 0.1.1. By [Proposition 3.3 and Lemma 1.4, we have
co(X)=24, hence X is a K3 surface. O

PrROOF OF COROLLARY (.1.2. By [Proposition 3.2, the j-invariant of the
generic fiber is 0. Therefore, it is supersingular. {j

Finally, we calculate the Mordell-Weil group.

PROPOSITION 3.4. Let »; (resp. t;) (1=i=21) be the Mordell-Weil rank (resp.
the order of the torsion subgroup of the Mordell-Weil group) of f;: Xi—P?,
where f;: X;— P is the elliptic surface defined by the Weierstrass normal form
of (@) in Theorem 0.1. Then,

z'1234k5\678i9 10
ri8788}7i665]77
[tioooo}o\eoo\oo

il 121314 151617 18] 19 2] 2

t; 0 0 0 0 0 0 0 0 3 0 0

PRrOOF.
By Lemmas [.8, [.9, and L.I0.
22 = Cz(Xi)—Z = p':Xl) = 7’1‘{"2“*‘ (771“—1) .

a=0,1,0

Here, m, denotes the number of irreducible components of the fiber over t=a.
Hence,

Since we know m,’s explicitly, we can calculate »; form this formula.

For a=0, 1, o, let G, be the group of the non-singular part of the fiber
over t=«. Since we have (t;, 2)=1 from [Corollary 0.1.2, we see ¢, is a divisor
of the order of the torsion subgroup of G, for a=0, 1, = (cf. p. 304, Proposi-
tion 5.3.4 [2]). It follows that t,=0 except for the case of /=19, and in the case
of /=19, #;<3. Since y=0 gives points of order 3 of [19), we conclude that
t;=3 for [19). O
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