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On affine hypersurfaces with parallel nullity
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Affine differential geometry for hypersurfaces in the classical sense of
Blaschke is based on the hypothesis that the given hypersurface is nondegen-
erate; quote from [$B$ , p. 104]: F\"ur parabolisch gekr\"ummte Fl\"achen (Torsen’,

LN–M2 $=0$) versagt die Grundform. In relative geometry (for example, see
[S] $)$ and in the study of affine immersions [N-P1], [N-P2], the nondegeneracy
condition is often important, although a few results (for example, Berwald’s
theorem [N-P2], Radon’s theorem $[0])$ have been established under a some-
what weaker assumption on the rank of the fundamental form $h$ .

In this paper, we examine a general condition weaker than nondegeneracy
under which geometry of a given hypersurface can be reduced to the classical
situation. We start with an immersion $f:M^{n}arrow R^{n+1}$ . For an arbitrary choice
of a transversal vector field $\xi$ , consider the condition that the kernel $T^{0}$ of $h$ be
parallel relative to the connection $\nabla$ induced by $\xi$ . It turns $oui$ that this condi-
tion is indePendent of the choice of $\xi$ . Under this condition of parallel nullity
and under a completeness assumption which is also intrinsic, we shall show
that $f$ is globally a cylinder immersion of the form $M^{n}=M^{r}xL,$ $f=f_{1}\cross f_{0}$ ,
where $f_{1}$ : $M^{r}arrow R^{r+1}$ is a nondegenerate hypersurface, $L$ is a leaf of $T^{0}$ , and
$f_{0}$ is a connection-preserving map of $L$ onto $R^{n-r}$ , where $R^{r+1}$ and $R^{n-r}$ are
affine subspaces in $R^{n+1}$ that are mutually transversal. Such a representation
is unique up to equiaffine transformation. Thus the geometry of $M^{n}$ is com-
pletely determined by that of a profile nondegenerate hypersurface $M^{r}$ in $R^{r+1}$

that is itself uniquely determined up to equiaffine equivalence. For later appli-
cations we include additional information on transversal vector fields.

1. Preliminaries.

Let $f:M^{n}arrow R^{n+1}$ be a connected hypersurface immersed in the affine space
$R^{n+1}$ provided with a fixed determinant function (volume element). Around
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each point of $M^{n}$ let $\xi$ be an arbitrarily chosen transversal vector field. As
usual, we write

(I) $D_{X}f_{*}(Y)=f_{*}(\nabla_{X}Y)+h(X, Y)\xi$

and

(11) $D_{X}\xi=-f_{*}(SX)+\tau(X)\xi$ ,

where $X,$ $Y$ are vector fields on $M^{n},$ $\nabla$ is the induced connection on $M^{n},$ $h$ the
affine fundamental form, $S$ the shape operator, and $\tau$ the transversal connection
form, all depending on the chosen $\xi$ . The following lemma is standard.

LEMMA 1. If we change $\xi$ to another transversal vector field $\overline{\xi}=(f_{*}Z+\xi)/\lambda$ ,

where $Z$ is a certain vector field on $M^{n}$ and $\lambda$ a positive function, then the in-
duced connection, the affine fundamental form, the transversal connection form,
and the shaPe operator change as follows:
(1) $\overline{h}=\lambda h$ ;

(2) $\overline{\nabla}_{X}Y=\nabla_{X}Y-h(X, Y)Z$ ;

(3) $\overline{\tau}=\tau+\eta-d(\log\lambda)$ ,

where $\eta$ is the 1-form such that $\eta(X)=h(X, Z)$ for all $X$ ;

(4) $\overline{S}X=[SX-\overline{\nabla}_{X}Z+\tau(X)Z+h(X, Z)Z]/\lambda$ .
By virtue of (1) we see that the rank of $\overline{h}$ at a point $x$ is the same as

that of $h$ at $x$ . We call it the rank of $f$ at $x$ . We also see that the null
space {X: $h(X,$ $Y)=0$ for all $Y$ } at $x$ is the same as the null space of $\overline{h}$ at $x$ .
This null space of $h$ is denoted by $T^{0}(x)$ . We shall say that $T^{0}$ is paraIlel
relative to $\nabla$ if, for any curve from $x$ to $y$ , parallel translation along the curve
maps $T^{0}(x)$ onto $T^{0}(y)$ . In this case, the dimension of $T^{0}(x)$ remains constant
on $M^{n}$ . In general, it is known that a differentiable distribution, say $T^{0}$ , is
parallel if and only if for any vector field $Y\in T^{0}$ we have $\nabla_{X}Y\in T^{0}$ for every

vector field $X$.

LEMMA 2. The condition that $T^{0}$ is Parallel relative to $\nabla$ is indePendentlof
the choice of transversal vector field.

PROOF. Suppose $T^{0}$ is parallel relative to $\nabla$ . For any curve $x_{t},$
$0\leqq t\leqq 1$ ,

and for any $\nabla$-parallel $Y_{t}\in T^{0}$ , we have by (2)

$F_{t}Y_{t}=\nabla_{t}Y_{t}-h(X_{t}, Y_{t})U=\nabla_{t}Y_{t}=0$ ,

where $X_{t}$ is the tangent vector field of $x_{t}$ . Thus $Y_{t}$ is 5-parallel. This means
that $T^{0}$ is V-parallel.
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From now on, we assume that our hypersurface satisfies the condition of
parallel nullity (that is, $T^{0}$ is parallel relative to $\nabla$ ). The distribution $T^{0}$ being
parallel, it is integrable and totally geodesic. We say that $T^{0}$ is complete if
each leaf $L$ of $T^{0}$ is complete relative to $\nabla$ , that is, every $\nabla$-geodesic in $L$

extends infinitely for its affine parameter. In this regard we have

LEMMA 3. On each leaf $L$ of $T^{0}$ the induced connection $\nabla$ is the same for
any choice of $\xi$ . In particular, the property that $T^{0}$ is complete is indePendent
of the choice of $\xi$ .

PROOF. If $X,$ $Y$ are vector fields on $L$ , then we have $\overline{\nabla}_{X}Y=\nabla_{X}Y-h(X, Y)U$

$=\nabla_{X}Y$ . Thus two connections $\nabla$ and V coincide on $L$ .
From (I), we easily get

LEMMA 4. For every leaf $L$ of $T^{0},$ $f(L)$ is a totally geodesic submanifold
in $R^{n+1}$ . If $T^{0}$ is complete, then $f(L)$ is an entire affine subspace of dimension
$s=\dim T^{0}$ ; $f$ actually gives a connection-preserving diffeomorphism of $L$ onto the
affine subspace $f(L)$ . Moreover, for two distinct leaves $L_{1}$ and $L_{2}$ of $T^{0},$ $f(L_{1}\rangle$

and $f(L_{2})$ are affine subspaces which are D-parallel in $R^{n+1}$ .

REMARK 1. If the connection $\nabla$ induced by some transversal vector field $\xi$

is complete and if $T^{0}$ is parallel, then $T^{0}$ is complete.

REMARK 2. If an affine hypersurface $f:M^{n}arrow R^{n+1}$ has the property that
$\nabla h=0$ for some choice of transversal vector field, then it obviously satisfies the
condition of parallel nullity.

REMARK 3. For an affine hypersurface $f:M^{n}arrow R^{n+1}$ , the Gauss equation
implies that for each point $x\in M^{n}$ we have

$T^{0}(x) \subset\bigcap_{X,Y\in r_{x^{(M^{n})}}}kerR(X, Y)$ .
The two subspaces coincide if the rank of $S$ is $>1$ at $x$ . If rank $S>1$ every-
where and if $\nabla R_{-}O$ , then it follows tbat $T^{0}$ is parallel.

We add the following facts for later use. Assume that two transversal
vector fields $\xi$ and 6 coincide $mod T^{0}$ , that is, $\overline{\xi}=\xi+f_{*}(Z)$ , where $Z\in T^{0}$ . Then
from Lemma 1 we see that

$\overline{h}=h$ and $\overline{\tau}=\tau$

$\overline{S}=Smod T^{0}$ and $\overline{\nabla}=\nabla mod T^{0}$ ,

that is, $\overline{\nabla}_{X}Y-\nabla_{X}Y\in T^{0}$ for all vector fields $X,$ $Y$ . Now using these facts it is
easy to establish the following.

LEMMA 5. Assume that $\overline{\xi}=\xi mod T^{0}$ . Then we have
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(5) $\overline{\nabla h}=\nabla h$ ,

(6) $\overline{R}=Rmod T^{0}$ ,

that is, $\overline{R}(X, Y)W-R(X, Y)W\in T^{0}$ for all $X,$ $Y,$ $W$ .
Moreover, if $\xi$ satisfies $ST^{0}\subset T^{0}$ , then

(7) $\overline{\nabla S}=\nabla Smod T^{0}$ ,

(8) $\overline{\nabla R}=\nabla Rmod T^{0}$

2. Global cylinder representation of a hypersurface $M^{n}$ .
We now prove the following theorem.

THEOREM. Let $f:M^{n}arrow R^{n+1}$ be a connected hypersurface such that its $0f\overline{\overline{fl}}ne$

fundamental form $h$ has parallel kemel $T^{0}$ . Assume that $T^{0}$ is complete. Then
we can express $f:M^{n}arrow R^{n+1}$ as follows: $M^{n}=M^{r}\cross L,$ $f=f_{1}\cross f_{0}$ , where
$f_{1}$ : $M^{r}arrow R^{r+1}$ is a connected nondegenerate hypersurface and $f_{0}$ is a connection-
preserving map of a leaf $L$ of $T^{0}$ onto $R^{n-r}$ , and $R^{n+1}=R^{r+1}xR^{n-r}$ . Such a
representation is unique up to equiaffine transformation of $R^{n+1}$ so that a non-
degenerate profile hypersurface $M^{r}$ is determined uniquely up to equiaffine trans-
formation of $R^{r+1}$ .

PROOF. Let $x_{0}$ be an arbitrary but fixed point of $M^{n}$ . For the leaf $L$

through $x_{0}$ of $T_{0},$ $f(L)$ is an entire affine subspace of dimension $s=n-r$ through
$0=f(x_{0})$ in $R^{n+1}$ . Call it $R^{s}$ . For any point $p\in R^{n+1}$ we denote by $R^{S}(p)$ the
$s$-dimensional affine subspace through $p$ that is parallel to $R^{s}$ . Again from
Lemma 4 we know that if $x\in M^{n}$ , then the image by $f$ of the leaf $L(x)$

through $x$ coincides with $R^{S}(f(x))$ . Let us choose an affine subspace of dimen-
sion $r+1$ , say, $R^{r+1}$ through $f(x_{0})$ that is transversal to $R^{s}$ . The mapping
$f:M^{n}arrow R^{n+1}$ is then transversal to $R^{r+1}$ . In fact, for any $x\in M^{n}$ such that
$p=f(x)\in R^{r+1}$ we have $T_{p}(R^{n+1})=T_{p}(R^{r+1})+f_{*}(T_{x}(M^{n}))$ , because $f_{*}(T_{x}(M^{n}))$

contains $R^{S}(p)=f(L(x))$ , where $L(x)$ is the leaf of $T^{0}$ through $x$ . By a well-
known theorem (for example, see $[H$ , p. 22]), it follows that $M^{r}=\{x\in M^{n}$ :
$f(x)\in R^{r+1}\}$ is an $r$-dimensional submanifold of $M^{n}$ . We see that the restric-
tion of $f:M^{n}arrow R^{n+1}$ to $M^{r}$ gives rise to a hypersurface $f_{1}$ : $M^{r}arrow R^{r+1}$ ; we
shall show in a moment that $M^{r}$ is connected. In the case where the original
immersion $f:M^{n}arrow R^{n+1}$ is an imbedding, we may think of $M^{r}$ as the inter-
section of $M^{n}$ with $R^{r+1}$ .

NOW we define a one-to-one map $\Phi$ : $M^{n}arrow M^{r}xL$ as follows. We consider
$o=f(x_{0})$ as the origin of $R^{n+1},$ $R^{s}$ , and $R^{r+1}$ , whenever we need a reference
point in eacb of these affine spaces. Now for any $x\in M^{n}$ , we define
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$\Phi(x)=(y, z)\in M^{r}\cross L_{0}$ ,

where $y,$ $z$ are determined as follows. Consider $p=f(x)$ . For the leaf $L(x)$ of
$T^{0}$ through $x$ , $f(L(x))$ is the affine subspace $R^{S}(p)$ , which meets $R^{r+1}$ at a
certain unique point, say, $q$ . Since $f$ is one-to-one on $L(x)$ , there is a unique
point $y\in L(x)\subset M^{n}$ such that $f(y)=q$ . This means $y\in M^{r}$ . On the other
hand, the vector from $q$ to $p$ is parallel to the vector from $0$ to $z$ , where $z$ is
a certain uniquely determined point of $R^{s}$ . It is now easy to find the inverse
map $M^{r}\cross Larrow M^{n}$ of $\Phi$ . Since $\Phi$ is differentiable, the existence of the projec-
tion $M^{n}arrow M^{r}$ shows that $M^{r}$ is connected. So we get a cylinder representa-
tion of $M^{n}$ with a profile hypersurface $M^{r}$ .

We have yet to prove the uniqueness of such a representation. For this
purpose we use the following lemma in analytic geometry that is easy to prove.

LEMMA 6. Let $R^{s}$ be a fixed affine subspace of the affine space $R^{n+1}$ . Sup-
pose $R^{r+1}$ and $\overline{R}^{r+1}$ are two affine subspaces that are transversal to $R^{s}$ . We
define a map $F_{1}$ of $R^{r+1}$ onto $\overline{R}^{r+1}$ as follows: for each point $x\in R^{r+1}$ , let $R^{s}(x)$

denote the affine subspace through $x$ that is parallel to $R^{s}$ . We let $\overline{x}$ be the uni-
quely determined point of intersection with $\overline{R}^{r+1}$ and set $F_{1}(x)=\overline{x}$ . Then $F_{1}$ is
an affine transformation of $R^{r+1}$ onto $\overline{R}^{r+1}$ . Moreover, $F_{1}$ is equiaffine (that is
volume-preserving) if we fix a determinant function (parallel volume element) $\omega_{n+1}$

on $R^{n+1}$ and a determinant function $\omega_{s}$ on $R^{s}$ , and further define deferminant
functions $\omega_{r+1}$ and $\overline{\omega}_{r+1}$ on $R^{r+1}$ and $\overline{R}^{r+1}$ , respectively, such that $\omega_{n+1}=\omega_{r+1}\wedge\omega_{s}$

$=\overline{\omega}_{r+1}\wedge\omega_{s}$ .

NOW suppose $\overline{\Phi}$ : $M^{n+1}arrow\overline{M}^{\gamma}\cross\overline{L}$ is another cylinder representation, where
$\overline{f}_{1}$ : $\overline{M}^{r}arrow\overline{R}^{r+1}$ is nondegenerate hypersurface of $\overline{R}^{r+1}$ and $f_{0}$ : $Larrow R^{S}$ is a con-
nection-preserving map of a leaf $\overline{L}$ of $T^{0}$ onto an affine subspace $\overline{R}^{s}$ transversal
to $\overline{R}^{r+1}$ . We may assume, without loss of generality, that $L=\overline{L},$ $R^{s}=\overline{R}^{s}$ , and
$f_{0}=\overline{f}_{0}$ . Then we get an equiaffine transformation $F_{1}$ : $R^{r+1}arrow\overline{R}^{r+1}$ in the manner
of Lemma 6. Combining this with the identity map: $R^{s}arrow\overline{R}^{s}$ we get an equi-
affine transformation, denoted by $F$, of $R^{n+1}$ onto itself. It is now clear that
$F_{1}(M^{r})=\overline{M}^{r}$ and $\overline{\Phi}=F\circ\Phi$ . This completes the proof of the theorem.

COROLLARY. Under the assumption of the theorem, we can find a unique
transversal vector field $\xi$ for $M^{n}$ with the following properties:

1) $\xi$ is $D$-parallel in the direction of $T^{0},\cdot$ the affine shape operator vanishes
on $T^{0}$ .

2) The restriction of $\xi$ to a profile hypersurface $M^{r}$ coincides with the affine
nomal of the nondegenerate hypersurface $M^{r}$ .
Such $\xi$ is unique once a profile hypersurface is chosen.

REMARK 4. If we do not assume the completeness for $T^{0}$ , then for any
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point $x_{0}$ of $M^{n}$ we can get a local cylinder decomposition of a neighborhood $U$

of $x_{0}$ in the form $V\cross W$ , where $U$ is a nondegenerate hypersurface in $R^{r+1}$ and
$W$ is an open subset of $R^{s}$ .

We add some more information on the relationship between the geometry
of $M^{n}$ and that of $M^{r}$ . Continuing the notation in the proof of the theorem,
we define a distribution $T^{1}$ by

$T_{x}^{1}=f_{*}x^{-1}(R^{r+1})$ for each $x\in M^{n}$ ,

where $R^{r+1}$ is now considered as the vector subspace instead of the affine space
$R^{r+1}$ through $f(x_{0})$ . This distribution is obviously integrable. We denote by
$\pi$ the projection of the vector space $R^{n+1}$ onto $R^{r+1}$ (parallel to the subspace
$R^{s})$ . We also denote by the same symbol the projection of $TM$ onto $T^{1}$ parallel
to $T^{0}$ so that $f_{*}\circ\pi=\pi\circ f_{*}$ . Let $\xi$ be a transversal vector field to $f$ . We
define $\overline{\xi}=\pi\circ\xi$ . Then $\overline{\xi}$ is also transversal to $f$ and equal to $\xi mod T^{0}$ . By the
formulas preceding Lemma 5 and by those in Lemma 5 we have

PROPOSITION.
$\overline{h}=h$ , $\overline{\tau}=\tau$ , $S=\pi\circ S$ , $\overline{\nabla}_{X}Y=\pi(\nabla_{X}Y)$

$\overline{R}(X, Y)W=\pi(R(X, Y)W)$ ,

$(\overline{\nabla}_{X}\overline{S})(Y)=\pi(\nabla_{X}S)(Y)$ ,
and

$(\overline{\nabla}_{W}\overline{R})(X, Y)W=\pi((\nabla_{W}R)(X, Y)V)$ ,

where $X,$ $Y,$ $V,$ $W$ are vector fields belonging to $T^{1}$ ; for the last two identities
we need to assume that $\xi$ satisfies the condition $ST^{0}\subset T^{0}$ in Lemma 5. Moreover,
the same relations hold if $\overline{\nabla}$ is considered the connection on $M^{r}$ (that is, the re-
striction to $M^{r}$ ).

REMARK 5. If $\xi$ is assumed to be equiaffine, then certainly all the identities
in Lemma 5 hold. Moreover, $\xi$ is parallel relative to $D$ along $T^{0}$ .

Combining Remarks 3, 5 and the last identity in the proposition we obtain

COROLLARY. Assume $\xi$ is an equiaffine transversal vector field to a hyper-
surface $f$ : $M^{n}arrow R^{n+1}$ such that the induced connection satisfies $\nabla R=0$ . If rank
$S>1$ everywhere, then $M^{n}$ is locally a cylinder $M^{r}\chi R^{s}$ and $F$ on $M^{r}$ is locally
symmetric.
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