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Introduction.

In a fundamental paper [9], Weil constructed oscillator representations of
metaplectic groups. When specialized to the case G=SL(2, k) where % is a
local field whose characteristic is not 2, the construction gives a projective re-
presentation = of G realized on L%k) such that

1) @5 PP = goxF),
2) (m(w)F)(x) = rF*(x),
for Fe L*(k). Here w:(_(l) é), ¢ is a non-trivial additive character of k, F*

is the Fourier transformation of F with respect to ¢ and 7 is a constant inde-
pendent of F. When lifted to the 2-fold covering group of G (if £#C), = be-
comes an ordinary representation. An important problem, already suggested
in [9], is to construct analogous representations for an 7-fold covering group of
G, n=23. A natural candidate is to replace x2 by x” in (1) and F* by a suitably
generalized Fourier transformation. This problem was solved by Kubota 3],
for 2=C and by Yamazaki for k=R and n is even.

In this paper, we shall give a conceptually simpler and unified treatment
of these representations including the case k=R, n is odd. We are going to
sketch our idea intuitively. First observation is that we should start from a
representation z (we choose it as a principal series representation correspond-
ing to the parameter s, see the text) of an n-fold covering group G of G and
then should examine its Kirillov realization. Thus we realize 7 on a suitable

A —

(pre-Hilbert) space V of functions f on k such that the action of x (é ll)) is

given by f(x)—¢(bx)f(x). Here, for g G, § denotes some naturally defined
element of G which projects to g (see §1). Let V be the vector space of all
functions F on k defined by F(x)=f(x"), x<k, f€V. Set F=¢(f) and put

3) #@F =ux(g)f) for g .

* This work was partially supported by the Inamori Foundation.
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If (3) is well defined, we see that # is a representation of G on ¥ which auto-
) 1 b

2 .

)) in the place of x? (resp. (0 1)),

1 b
01
hence the only remaining task would be the explicit computation of the action
of #(&).
Obviously the well-definedness of (3) is equivalent to:

matically satisfies (1) with x™ (resp. (

(4) If f(x)=0 for all x = k*, then (x(g)f)(x)=0 for all x=k", g<=G.

When £=C, the condition (4) is trivially satisfied so that we can construct Weil
type representation of SL(2, C) corresponding to any parameter s, 0<<s<3/2
(Theorem 5.3). Kubota’s representation is a special instance for s=2/n, n=2.
When 2=R and » is even, the condition (4) becomes non-trivial so that we are
forced to choose the parameter s of the representation = as s=1/n. Then #
turns out to be the representation constructed by Yamazaki (Theorem 4.1, which
holds also for odd ).

It seems that attempts to construct Weil type representation of G=SL(2)
for non-archimedean local fields are so far unsuccessful beyond Weil’s original
case (cf. Moen for example). This fact could be interpreted, though we
have no rigorous proof, that the condition (4) can never be met by any repre-
sentation 7 of G if n=3.

The reader would notice that the idea sketched above is realized in the text
in a straightforward manner, if some analytical details are disregarded. Con-
cerning this technical part, we tried to be as precise as we could manage in
compatibility of conciseness.

The author would like to express his sincere thanks to the Institute for
advanced study for generous hospitality.

NoTATION. We denote the set of positive real numbers by R,. For zeC,
A(z) and J(z) stand for the real part and the imaginary part of z respectively.
Let zeC*. We denote by arg (z) (resp. Arg (z)) the argument of z for which
we take the branch so that 0<arg (z2)<2x (resp. —n<<Arg (z2)<=).

§1. The n-fold covering group of SL(2, R).

We set G=SL(2, R) and fix a positive integer n=2. For a positive integer
m, put {n=exp2rv'—1/m). Let G be the n-fold covering group of G. We
can construct G explicitly following Shimura’s method (cf. [6], p. 443). For

g:(? z)eG and z=9, set
¢ if ¢+#0,

J(g, 2)=cz+d, x(g)= { )
d if ¢=0,
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where 9 denotes the complex upper half plane. Let p(g, 2), -+, ¢a(g, 2) be all
holomorphic functions on $ which satisfy (g, 2)"=j(g, z), 1<I<n. Clearly
we can choose (g, z) so that

(1.1) %E(l——l) Sarg p(g, 2) < gngl for all z€9, 1<I<n.

Let G be the group consisting of all couples (g, (g, z)) with geG, 1<i<n
on which the multiplication is defined by
(1.2) (81, p1(&1, 2))N &2y tr1,(82 2)) = (8182, t1,(81, L2(2))pt1,(82, 2)).

Let
p:G B(g’ )ul(g) Z))'_-)ge G

be the projection homomorphism. We obtain a central extension

~ D
(1.3) l—py—>G—>G—1
where p,=Ker(p)={(1, {) | {"=1}. We identify yg, with the cyclic group gen-
erated by {,. For g€G, take the section s, =G so that s,=(g, (g, z)). Then

§.(81, 82) = SglngSZ;gz, g1, 8:€G

cosfd —sin 6) d

is a 2-cocycle determined by For <R, put r<0):<sin 0 cos 6

set
K= {r0) | 0=R} = S0, R).

Since the restriction of &, to K coincides with a cocycle defined by the n-fold
covering map of SO(2, R) to itself given by the n-th power, we find that the
order of the cohomology class of & in H¥G, p,) is precisely n. By [1.2), we
obtain

£1(81, &2) = (&1, Za(2) (G2, 2)p1(g182, z)™?
which is independent of z. Hence we have
1 if arg p(g,, gV —1)+arg m(g:, v—1) < 2z/n,
(1.4) §:(81, 82) = . - S
§n if arg pi(g1, &2V —1)+arg pi(gs, v —1) = 27/n.

By (1.4), we immediately obtain

1 if arg (j(£:18s vV —1)) = arg (j(g,, vV —1)),
Lo if arg (j(g.8,, V1)) < arg (j(g,, vV—1)),

for g,, g.=G. For g=G, put

(1.5) §:(81, 82) = {
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1 if x(g)>0,
¥(g) = { )
C. if x(9)<0,
and let
(1.6) &(g1, 82) = £1(81, 82)¥(8182)y(81)7 (&)Y, g1, £:€G

be the 2-cocycle cohomologous to &. If n=2, we can show by a straight-
forward computation that

&(g1, 82) = (x(g1), ¥(@)r(—x(g1) " x(g2), x(2182))r

where (, )z denotes the Hilbert symbol of R. Thus & coincides with the cocycle
defined by Kubota in this case.®
On the product set GXp,, we define the multiplication by

(L7) (g, 0g’", L) =(gg’, LL'&(g, &)

Then Gxp, has the group structure isomorphic to G. We take this model of
G for the convenience of calculation. For g=G, set §=(g, 1)G. For a sub-
group H of G, we denote by H the subgroup of G defined by

H=1{h, 0| heH, Lep).
We define subgroups T, B, B, and N of G by

P Swer) p={( Lyeern e
B={(§ L)esmosen), N={G Duenl

By and [1.6), we obtain the following values of the cocycle.

(1.8) &g, g)=1  for g, g.€G if g,B, or g,=B,.
0 a, 0 1 if a,>0 or a,>0,
(1.9) g((% V), (% 7 :{
<<0 all) <0 azl» &' if a,<0 and @,<0.

By we see that 7' is commutative. We see also that K is commutative.
If m is an integer such that m=1 mod #n,

(1.10) on((r(0), O) = e~ imimy(r(0)7',  0=60<2x, {Ep,

defines a one dimensional representation of K. Every genuine (i.e., o,((1, {))
={) continuous one dimensional representation ¢, of K is of this form. For
the use of following sections, we note some relations among elements of G

which can be verified easily by and (1.6). Put w:(_(l) (1))
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a1 o D=0 DL D e
am = (TG e
with cos §=—u/~vu’+1, sin §=—1/vu+1.
(1.13) o 2)=(¢" D, a=re
(1.14) b é?)w:(_(‘)‘r _2)(3 N"{)w(é :i"l), u#0.
~ 1 11 o I, u>0,
we G D=6 6 D,
~ 1y L 2L Sy 1,  u>0,
D A L i = T

§2. Principal series representations of G.

Let ¢(x)=exp(av/—1x) be an additive character of R, We assume g >0.
Let du be the self-dual measure on R with respect to the self-duality <x, y>=
¢(xy). Then du is v/a/2x times the usual Lebesgue measure. Let o be a one
dimensional representation of 7. We assume that p is genuine, i.e., oL, ©)
={, (S pn. Set

e o(§ 2) 0 =ndax wo=lar, ek, Lp,

with s&€C. Then p is a homomorphism if and only if

E((gl ° )’ <82 0 )) = 77a1’7a27751a2, a5, G ER*.

a;l a;l
Set

1 if a>0’
(2.2) Na = {

y! if a<0,

where v*={,. Then is a general form of a continuous genuine one dimen-
sional representation of 7. We shall eventually take yv=-—,,, the reason of
which shall be clarified later. Set

5((; ab) 0)=lal’, asR* beR, (cp,
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which is the modular function of B. Let PS(X) denote the space of all C>-
functions ¢ on G which satisfy

2.3)  o(ng) =@ p@M)p(g)  for all teT, n=#, with n,€N, gei.
Let =(X) denote the representation of G realized on PS(X) by right translations.
For ¢=PS®X), let @=R(¢p) denote the C=-function on R defined by

2.4) (D(u)=<p(u7((1) 1{)) ueR.

We choose s in so that 0<o=%R(s)<1l. By we have

1 0
—_ -8~1 L
0wy =n-ulul=e(( ., 1) w0
Hence we easily obtain
2.5) O®u)y=0u|"**  for |u] = oo, =0

where @¢> denotes the k-th derivative of @. Let f=4%(®) be the Fourier
transform of @, i.e.,

2.6) Fx) = SRw(w((l) )Puxdz,  xeR.

By [2.5), this integral converges absolutely and f is a continuous function.
Furthermore we see

2.7) flx)=0(x|""), |x] —> oo for every N>0

using integration by parts. By Fourier inversion, we have

L1
2.8) o(; )=\ fogpwndx.
Let V, denote the vector space

{f 1 f=F(R) for some p=PSX)}.

Since R is injective, we can transport the representation =(X) to the representa-
tion m, of G on V,. By and (1.8), we obtain

2.9) (5 N0 = g0, fEVL, b, xR
By [2.6), [(1.13) and [2.1), we obtain

~

€10 @] PN =mlel @), eV, acRY, x=R
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We are going to compute the action of z(®%) on V,. Take f=F(R(¢p))
&V, ¢=PSX). By definition, we have

(@0 = { p(; ¥)ogamdu.

0
Put po(a)——-p((g a‘l))’ acsR*. By we get

~

(N = | pol—uiulp(; Y g

3 R — I -1
= pwlvl=p@(y ETmdr = | mlvl=e@(y 2)getnde.
Up to this point, the integrals are absolutely convergent. By [2.8), we obtain
(2.11) (mo(W)f Xx) = SR(ng(y)sb(vy)dy)mlvl iP(v x)dv.

This double integral does not converge absolutely hence some care is called for
to interchange two integrals. We shall show that this is permissible so that

2.12) (@) = | (] 21019y +v70)d0) F(3)d,

where the inner integral is understood in the sense 1imrﬁ+wgI o First, by
vis
and we have

(@)@ = Jim | (17 polv1-g@y+o-00dnf)dy

T
Assume y+#0. The convergence of limramg_T?}ulvI”“gl)(vy)dv is well known
and can easily be verified. The integral

(2.13) [ 2lvl-ig@y) g 5)-Ddv
is absolutely convergent. Hence
T

1 $-1 -1

Jim " plo=g@y+v00dv
exists. By the Lebesgue dominated convergence theorem, it suffices to show

T
(1 melol gy 0o )| < 1HG), 520

with He L'(R) which is independent of T. In view of the absolutely conver-
gence of and f< LY(R), it suffices to show
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T
(2.14) (1, ol =g@ndn)i | < TG, 320
with H,= L'(R) independent of T. We recall a well known integration formula
s-1 LF(S) sxv=1/2
(2.15) SO exp (cv/—1v)dv = P ' ¢>0.

(cf. [1], p. 420-421.) By we see that
(\"_mlvlg@adv)f ) & Li(R),
since |y|~*® is locally integrable at y=0. If T<|1/y|, we have
T 8-1 2 -0
| neloletgadn| < = 1y1-e.
If T=|1/y|, we have
[ 7elvlga)de| < CT* 517 < Clyl

with a constant C which does not depend on T and y using integration by
parts. This proves [2.14). Hence is justified. Changing variables, we
obtain

@16) @@ = | (| 1ol gor0mx)d0) )10y
Put
(2.17) G(x, y)= SRmylle¢(v+v'1xy)dv, x, yER.

LEMMA 2.1. Let s€R, 0<s<l. Put v=—1% y,=explav—1zr), 0<a<l,
i.e., a=1/2n (resp. a=1/2n+1/2) if v=—"0Lo, (resp. v=Cm). Then G(x, )
equals

Vazay' vV =1y {cos((5+a)z) Ju2a(x ) —sin((5+a)7)Ni@a(xy) ),
—vZmavi v =1(xy){cos((5—a)) J2a(xy) ) —sin((5—a)7 ) Nea(x 771},
\/__4,, "W =1|xy|*" sin ((S a')yr)Ks(Zalxyl”z),
(3ta)s

oV =tayle sin ((5+a)e)Kiczal sy,

according as the cases x>0, y>0; x<0, y<0; x>0, y<0; x<0, y>0 respec-
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lively.

PrROOF. We use the following integration formulas.

2

2.18) S:’vm exp(ax/:i(v— }-’—))dvz \/%Ze”“j”bsKS(Zab), a>0, b>0,

v

S:vs‘l exp (a «/—_1<v+%2-))dv

(2.19)
2

in the standard notation of Bessel functions (cf. [1], p. 470). Since

G(x, y) = %S:"vs_x exp (ax/——_l(v—%- ﬁvy—))dv—l~ Ny S:v“‘ exp (a x/:_1<v+%))dy,

= \/Lne”“‘—”zbs[v——1],,(2ab)—Ns(2ab)], a>0, b>0,

the assertion follows from (2.18) and (2.19) by simple computations.

COROLLARY 2.2. G(x, y)=0 whenever x>0, y<0 if and only if s=1/n,
v=—Cs,. In this choice of parameters, we have

G(x, y) = V2rxalinV/ —=1(x ) *" ] _1na(x )% if x>0, y>0.

§3. The intertwining operator and unitary structure.

For o= PS(X), set

3.1 T o) = [ o (f Neodn,  g=C.
By we get

o N 170 L u>0,
3.2) e (; o= nulul=e(, 1)g>><{cm oo,
(3.3) e (§ M= 0ul=,  Jul-es,

Therefore the integral [3.1) is absolutely convergent. Furthermore by we
see that differentiations under the integral is legitimate so that T ,(¢) defines a
C>-function on G. By a direct computation, we find that 7 ,(p) obeys the
transformation rule (2.3) with X' in the place of X. Hence we have T ,(p)=
PS(X"*). Thus we obtain an intertwining operator T',, from PS(X) to PS(X™%).
Assume s€ R, i.e., 0<s<1. Then for ¢,, ¢.=PS(X), we have

(T o(@))X08)0:08) = 0(0)T (1) &)ea(g)  for every be B, g=G.
Therefore
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(3.4) o> = | (TulpN@@de, 01 9= PSO)

defines an invariant sesqui-linear form on PS(X). Here we choose the invariant
measure dg on B\G so that

~

(3.5) (i 0> = §R<Tw<¢1>><w(é~ﬁ)>¢z<w(é Dau

holds.

We are going to calculate the action of T, on @?=R(p). Let p=PS(X) and
put @=R(p), ¥=R(T ,(¢)). By we have

T = (Tww»(w(éwﬁ)) = Skgo(u%((l)w’l’)w(éwl{)mv

-1

N o

- sw;ﬁpow“)lvl "9"(“7(3 E

= &Rvjélvls“go(ﬁ/((l) ,Z;” Pav.

Define a locally integrable function T on R by
(3.6) T(x) = 724 x| "
The calculation above shows that

(3.7) U="Tx0,

where T(x)=T(—x). The integral defining T*® is absolutely convergent by
Let ¢;=PSX), D:=R(¢p,), i=1,2. By and we have

@1y Q2> = (T*@l)(ﬁz) .

Put @,(x)=@,(—x), xR and regard T as a distribution on R. Since @,x@,<=
LY(R), the double integral defining T(®,*®,) is absolutely convergent. Hence
we obtain¢®

(3.8) p1y Q2> = T(@l*éz) for ¢, p.= PS(X).
The inverse Fourier transformation
A
(@ T)x) = Jim |* T()pxs)dy
A-teo) -4

of T can be calculated by and we obtain
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sin((-%+a)7r), x>0,

(3.9) (F'T)Yx)= —2x/:_1y1\/§(1;T(s)a“’|x|“ X
—sin((%—a)zr) , x<0,

in the notation of Lemma 2.1. Put

f‘izg(@i)) i=1,2, f=f1f2: @:®1*52~
We have

F(D)=F(D)F (D)= [ .

Since f is rapidly decreasing (cf.[2.7)), we have ¥'(f)=® by Fourier inversion.
Hence we have

&)= )iIPJ:(S,,f (9 3)dy )T (x)d x
= }i?mSR(SfAT (X)p(xy)dx)f(3)dy.

As in §2, we can apply the Lebesgue dominated convergence theorem and ob-
tain T(F'f)=(g'T)f). Therefore we have shown

(3.10) <o o = | (@ TXOF O,
Hereafter we choose s=1/n, v=—{_;,. We have

3.11) {ory @2 = c,,g‘:fl(x) To0x i x,

— 94/ —1 in ~ Z l -1/n
Can=—2+ 1C4"smn\/27rp(n)a .
Dropping the constant ¢,, put
(3.12) (@1 90 = | FiFBx 1 dx.

Then defines an invariant sesqui-linear form on PS(X) such that (¢, ¢)=0
for every ¢=PS(X). Therefore is a positive semi-definite invariant her-
mitian form on PS(X). Let Vi be the space of all functions f(x) on R, such
that f(x)=f(x), x>0 for some f,=V,. On V3, we introduce the norm

=) 1/2
(3.13) 11 = ({1 FGo1xmdx) ™
Then V3 is a pre-Hilbert space with respect to || | ..

PROPOSITION 3.1. Let fEV; and g=G. Take any f1=V, such that f(x)
=fi(x), x>0. Set
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(m (@ )x) = (=@l )x),  x>0.

Then w(g) is a well defined unitary operator on V3.

PrRoOOF. Let f,€V, and assume f;(x)=0 for all x>>0. The well-definedness
follows if we can show

(mo(2)f)(x)=0  for all x>0.

This is clear for geN by [2.9Y; for g=d, this follows from and Corol-
lary 2.2. Since G is generated by N and o, the general case follows. The
unitarity of =,(g) is an obvious consequence of the invariance of the positive
definite hermitian form on V3. This completes the proof.

Let H, be the Hilbert space of all measurable functions f(x) on K, such
that

118 = 1£ 1 < o

PROPOSITION 3.2. V3 is a dense subspace of H,.

PrOOF. First we shall show V3#=#{0}. For an integer m such that m=
n+1 mod 2n, define a function ¢, on G by

oul(§ D)0, 0= arrie oy o)L

for acR,, b=R, 0£6<2r, {cy,. Then we can verify that ¢, transforms
according to o, (cf. under the right action of K and that ¢,& PS®X).
Put @,.=R(¢n), fa=F(Pn). By we have

Dn(u) = G (Vul41)2-1e " imbin
with cos §=—u/+u?+1, sin §=—1/vu’+1, 0£0<2x. We have
" = —(u+ =1 (u— =112, VU1 = (V=D (u— = 1)2
when we choose the branches so that
0<Arg(og (u++v—=1)<m, —n<Arg(og(u—+/—1))<0

for uc R. Put m=n+142nt with t€Z. Then we get

Dn(u) = —Co(u+ V=1 (u—~/=1yt-+vin =R,

fmlx)=— ;;Sl(u—l—\/—-vl)‘(u-—\/——vl)“t""*”/” exp(—+—1laxu)du, x=R.

For R>1, consider the integration of @,(u)exp(—+/—1laxu) along the contour
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R to —R on the real line, —R to R on the semi-circle C lying in the lower
half plane, of radius R, the center at the origin. If x>0, the integral on C
tends to 0 as R—-+oo. Therefore we obtain

Fml(x) = \/zznviic;;xResidue of (u4~/—1)(u—A/—1)-t-cn+bn
(3.14) 2z

exp(—+/—laxu) at u = —~'—1, x>0.
From (3.14), we see immediately that

fm(x)=0  for all x>0 if ¢=0,

fonn(x) = \/—Q-ZM/——KZ%Z"”” exp(—ax), x>0,
(3.15) 2

a

5 xa polynomial of degree (precisely) |¢|—1 of ax

fm(x) =
X exp(—ax), x>0, t<0.

In particular, we obtain Vi {0}.

Let V3 be the closure of V3 in H,. Let feV$, f+0 and take any func-
tion heH, from the orthogonal complement of V3 in H,. Put f.(x)=f(x)x"%2,
hy(x)=h(x)x"*®>. Then f,, hye L}(R,). Since ¢(ux)f(ax)=V3; for every ucR,
a=R: by and (2.10), we have

(3.16) S:gb(ux) Fiah(x)dx=0  for every u=R, a=R:.

Fix ¢>0 and put F(x)=f(ax)h,(x) for x>0, F(x)=0 for x<0. Then Fe LY{R)
and implies F(F)=0. Hence F=0 as a distribution which implies F(x)
=0 for almost all x. Since f, is continuous, we can find 0<a<f such that
f1(x)#0 for all x&(a, B). Then we have h,(x)=0 for almost all x=(a"'a, a™'p).
Since Uaseq,(a7'a, a'B)=R,, we obtain h,(x)=0 for almost all x. This implies
h=0 in H,. Hence V}=H, and this completes the proof.

REMARK 3.3. (1) Let s=1/n, v=—C,. By[B.11)and (3.15), we have ¢,
Ker (T,,), m=n-+1+2nt if and only if t=0. Hence PS(Q) is reducible. The K-
type of =, is determined by (3.15).

(2) Let v=—0C:». We see by a similar argument as above that PS(X) is
irreducible for 0<s<1, s#1/n. We can also see by more argument using (3.9)
and that PS(X) is unitarizable for 0<s<1/n but not unitarizable for 1/n
<s<l1.

By Proposition 3.2, =, extends to a unitary representation of G on H,.
We use the same letter x, for this representation. By [3.4), we see easily that
g—r,(g)f is a continuous map from G to H, for fixed fH,. Hence =z, is a
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continuous unitary representation of G on H, (cf. Warner (7], p. 219, p. 237,
Proposition 4.2.2.1).

PROPOSITION 3.4. There exists a unique irreducible unitary representation m,
of G on H, which satisfies the following conditions for f<H,.

M @y PN = gonfx), bR x<R..

2) (m((& ao_l>)f)(x)=na!all‘”"f(azx), acR*, x=R,.
@ (@) = Jim [ kGG dy,  xeR,,
where

k(2) = V2rxaliiN/—1212" ] _11.(2a2"?), z>0.

ProorF. The formulas (1) and (2) follow from and (2.10) respectively.
By the well known asymptotic formula

(3.17) Jz) = \/EZE cos (z- % ——})+O( 217, Re)>S— 1,

for |z|—oo satisfying —r+d<Arg(z)<zx for fixed 0<d<z/2 (cf. [8], p. 197-
199), we see that®

tim { kGr)f )y-indy = 2im { kGey)f o)y mdy
T+ J0 T—+40J0

exists for almost all xe R,, since f(¥?)y*/?~*< L¥ R,). By [2.16) and [Corollary]
2.2, this coincides with the action of =,(@) for f=V3i. By Proposition 3.2 and
we see that this fact holds also for f€H, by a standard theorem on the
Fourier transformation of L2-functions.

What remains to be shown is the irreducibility of =,. Let V={0} be a
closed invariant subspace of H, and let W be the orthogonal complement of V.
Take f<V, f+0. Choose a=C?(R,) and consider the multiplicative convolu-

tion fo(x)-—-gja(t)f(tx)dt. By (2), we have foeVAC=(R,). We can choose a

so that f,#0. Now by the same proof as in [Proposition 3.2, we conclude W=
{0}. Hence the irreducibility follows.

§4. Metaplectic representations of G.

Let 9, be the Hilbert space of all measurable functions F on R, such that

1) = (a1 F G172 ) < o
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By the map H,=3f(x)—=F(x)=f(x")<$,, H, and §, are isomorphic as Hilbert
spaces. We transport the representation =, of G on H, to the representation
# of G on 9,. Then we obtain the following theorem.

THEOREM 4.1. There exists a unique irreducible unitary representation % of
G on 9, which satisfies the following conditions for FE9,.

) (ﬁl<(3~f)>F><x>= $bxMF(x), bR, x<R,.

@ (¢ iﬁl)wx) = palal""F(Jal""x), a=R*, x=R..
®) E@F)X) = Jim [TKG)FG)ydy, <R,
Here 7o is given by (2.2) with y=—Con, w=(_) ) and

K(z) = nk(z") = nV2rxalimv/—12"%] _1;2(2a2"'?), z>0.

If n=2 and a=nx, we have K(z)=2+/2%; cos 2rz). Noting dy in (3) is v/1/2
times the usual Lebesgue measure, we see that # coincides with the usual Weil
representation realized on even functions in L% R).

§5. Metaplectic representations of SL(2, C).

The construction of metaplectic representations of SL(2, C) can be carried
out in a similar manner as in the case SL(2, R). Since SL(2, C) is simply
connected, its algebraic part is quite simple though analytic part is somewhat
more complex.

Let G=SL(2, C) and define subgroups 7', B, Nof G as in §1 with C (resp.
C*) in the place of R (resp. R*). For simplicity, we fix an additive character
¢ of C so that ¢(z):exp(nx/:T(z-+E)). Then the usual Lebesgue measure dxdy
for z=x++—1y, x, y=R is the self-dual measure with respect to the self-
duality <x, y>=¢(xy) of C. We denote this measure simply by dz since no
confusion is likely. Set

o((§ L)) =1a1  ascrbec

which is the modular function of B. For a quasi-character X of C*, let PS(X)
denote the space of all C~-functions ¢ on G which satisfy

(5.1) o(tng) = o(t)'*X(t)p(g)  for all teT, neN, gG.

Let #(X) denote the representation of G realized on PS(X) by right translations.
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For ¢p=PS(X), let ?=R(¢) denote the C~-function on C defined by

(5.2) @(u):go(w((l) ) uec

where w=<__(i (1)> We take X so that
Xa)=lal?®, acsC*

with s€C, 0<o=%(s)<3/2. By

Dlu) = |u1-8~2¢((i_1 (]))) ueC*,
we obtain ‘
(5.3) (6/0u,)™1(9/0u)™2@(uy+~—1luy) = O(lu| =779, lu|—oo
for my, me=0, u=u,+~—1lu,, u;, u,=R. Put f=F(@), that is
(5.4) flx) = cho(w(é )FEndu,  xeC.
By [5.3), f is a continuous function on C which satisfies
(5.5) f(x)=0(x|"%Y), x| — oo for every N>O0.

Hence we have @=9'(f), i.e.,

1
(5.6) o(y )= Scf(x)gb(ux)dx, ueC.
Let V, denote the vector space

{f | f=F(R(p)) for some p=PSX)}.

Since R is injective, we can transport the representation n(X) to the representa-
tion =y of G on V. By [5.4), we immediately obtain

1 b
(5.7) (=l(y POE) =900 (), beC, xEC,

58) wl(§ PN = el e, asCr, veC

for feV,. We can compute the action of wy(w) on f&V, as in the real case
and obtain

(5.9) i) = | (| £OMEnay) 101901 0d.

Hence we have
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|v]* 2y +v'x)dv) f(3)dy.

1v1sT

510 e = fim{ (]

To justify the interchange of the limit and the integral, let us first consider
the integral

J— §-2
= ol gy
Using the polar coordinate, put
(5.11) v=ype"Y, y=re’t  0<Zp, 0<r, 0<¢, 6<2r.

Then we have
Ir= S:Sinp"l exp 27/ —1rp cos (8 +§)ddd o
- ZﬂS:p"l Jo2aro)do = an“S:Tx“"l Jo2zx)dx.
Here we have used an integration formula

(5.12) SZexp(«/:Tz cos 0)cos n0df = (V=D)"zJ.(2), neZ,

(cf. [1], p. 482). By the asymptotic formula we see that
rT
’So x5! ]O(an)dx.gc with a constant C independent of », T. We have

A1, 1
- o T(gten)
(5.13) gox“jo(ax)dx—Zf‘a B a0, —1<R(p<I/2.
(=)
(cf. [I], p. 684.) Hence we obtain
H 8-2 . 1-~8 F(S/Z) -8
(5.14) TlleSm.g'”' PNy =z w17

Since |I7|=2xCly|~? and |y|~°f(y)= LYC), it suffices to show the existence
of H= LY(C) such that

615 |([ 11 eegen—Dde)f»)] S THG), 30,

and also the existence of the limit

(5.16) limSlmSTIvl*'ng(vy)(gb(v‘lx)—l)dv, y 0.

Tstoo
We have |¢(v7'x)—1|=ci/|vl, lv|=1 with some constant ¢,. If ¢<1, the inte-

gral S |v|*-2dv is absolutely convergent. Hence we obtain [5.15) and [(5.16).

w21
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If 10<3/2, we take the first order term of the expansion of ¢(v='x)—1 in v~!
and 77! into consideration. Using the polar coordinate we obtain

v] 20 Py)dy = S

To(2

i §-2,-V=1¢ —7
Srlgw.gz Tlgo o e exp (2r+/—1rp cos (0 +¢))d¢dp

T

zzm/fle“—_wr-mg :2xs—2 T@rx)dx
1

r

by (5.12). Similarly we obtain

v |57 P(vy)dv = an/:Te‘“'—”r‘s“S :2x3‘2]1(27rx)dx.
1

S T
TysivisTy T

By the asymptotic formula for J,, we see that the integral S:st‘z J1@rx)dx

is absolutely convergent. This proves the existence of the limit [(5.16). If ¢>1,

x*72J:2nx) is locally integrable at x=0 and this proves [5.15). If o=1, we
have

{7 /s@rndx | = 0(llog 4], A +o.

Since f(y)|y|=**'log|y| is integrable, follows. Therefore we obtain

w0 = Jim ([ 112 gwy+v0dv) ()dy
(5.17) B
= [, Jim ({ 11 g0+v20)d0) ()51 dy.
Put
(5.18) b(z) = Tlixlqwg]v]§r|v|s-2¢(v+v-lz)dv, 2&C.

LEMMA 5.1. We have, for s= R, 0<s<3/2,
k@) = —x| 2|23 (e T H [y 2m 2t H U2 )

2

:____ﬂ__ 8/2 1/2\]2__ 17212
SiH(STC/Z)lZ] (| J-s122m2"?) ] | Js2(m2")[%), zeC.

PROOF. Set z=re’"'%, y=pe’'~*¢ in the polar coordinate. Here we choose
0 so that —x<f#<=x. Then we have
T(2n
0.0

J 10y = | 7o exp Q=1 cos gt cos (9 0)) dgdp

= zﬂgjps-ljo(szpz+(_%>2+2r cos 0)dp

TivrT

- an“zgo 0 To (227 pz+(%)2+z cos 8 )dp
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by [(5.12). Hence it suffices to show

g:ov“'1]‘16”((1«/1)2 +vi2+2 cos 0)dv
_ v —1
2

(5.19)
e T HiYae M H a0, a>0, —<O7.

We employ an integral representation for Hankel functions (cf. [I], p. 956).
(5.20) H,<1>(z):—*/7r 1,-v=m /S exp[ \/——_lz(t+%):lt""ldz‘, vel, 320,

Take a, B€C, Ja>0, IB>0. By (5.20), we have
HP(a)H P (B)

:—%e‘“:”"s:ogjexp[%x/w (H— )+ \/—19< )]t-“ ~ididu

T

with the absolutely convergent double integral. Changing variables so that
v=+tu, w=+/t/u, we obtain

HO@H ()= — 5o

|, exo [\/ 1{(“”+’§)w+(%+ﬁv) Huw-to-wdwan.

Let I denote the inner integral of (5.21). Assume |a|=]|f| and set

(5.21)

a=pe’, B=pe"  with p>0, 0<¢y, ¢<m.
Then we find

(5.22) I = S:exp [iz__lppllef(%Hbz)/z {e“j’/w—l-e“’j’iw"}]w“‘dw,

where p; and 9, —z<9<m, are determined by

p1= \/vz+ 1_)12—+2 cos (¢1—¢2),

01C0S 9 = cos(ﬁ—‘_é‘ibf(vqh—?l)—), p1sin p = sin ¢—1;—¢2(v——1>

v
Since
—n/2< < /2 0<g—b~1;—9b2i1)<7r
for v>0, we see easily that the path of integration in (5.22) can be altered to

e=Y=17(+0)
S Then, by (5.20), we get

0
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I = '\/:——ln‘Hél)<pple“/?l_((/:'l’}";'z}/z).
Hence we have

e P
T

H>(a)HP(B) = —

S:OU_2”—1H(§1)<[CY [ AR AR TN «/1)2—}— 1 +2cos (¢1—¢2))dv'

,UZ

Changing the variable v to v™! and putting v=s/2, we obtain the formula‘®

(5.23) S:ovs“Hé”(\/a"’—i— prraf v+ L))dv= -’D/;e“mxlzfl;;;(a)H;}’z(ﬁ).

e
This formula holds whenever J(a)>0, J(B)>0, |a|=|B]| for arbitrary s&C

when +/~ is taken to have positive imaginary part. Recall the asymptotic
formula

(5.24) H,S”(z):(%)m exp(¢——1(z—”—§f-—%))[1+o<1z[-1>], SR(V)>—%

when |z|—co satisfying —r+0<Arg(z)<rz for fixed 0<d<n/2. We see that
the integral (5.23) is absolutely convergent and defines an analytic function of
two variables @« and 8 in the domain 0<Arg(a+B)<zn/2, J(aBf)>0 when +/
is taken to have positive imaginary part. Hence (5.23) holds in this domain by
analytic continuation. If 0<$(s)<<3/2, we see, by continuity, that (5.23) holds
also for the domain 0=ZArg(a+B)=<n/2, J(aB)=0, af+0 if 4/ is taken to
have non-negative real and imaginary parts. Putting a=ae’"'%/?, f=qae ""19/2,
we obtain (5.19). This completes the proof.

For o= PS(X), set

(5.25 (T o)) = [ o (y ordn,  g=G.

This integral is absolutely convergent. As in the real case, we see that 7 ,(¢)
ePS(X™") and that T, defines an intertwining operator from PS(X) to PS(X~Y).
Assume s=R, i.e., 0<s<3/2. Set

(5.26) o e =, TuoloXOP@ds, g1, g=PSO.

Here we have normalized the invariant measure dg on B\G so that

(5.27) o o> = | (Tulew(y 4] “Dau.

Then we have
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Tuonw(y = 1wt “ v, u=c.

Define a locally integrable function T on C by
(5.28) T(x)=|x|*? xeC.
Then we get
R(T () =T*®, @ =R(@) for p=PSX).

Now it follows immediately that
(5.29) (o1, o> = T(®xB,)  for ¢,=PSX), P,=R(py), i=1, 2.
Let

(@ TYXx) = lim | TGy
be the inverse Fourier transformation of 7. We have

I'(s/2)

(5.30) (F'T)x)= ﬂl'sf(”l—_s'“/—z)lﬂ"‘

by [5.14). When transferred to the Fourier transformation, yields
(5.31) {1, @2 = csgcfl(x)fz(x)lxl"dx, 01, @€ PS(),

where c¢,=n'"*I(s/2)/'(1—s/2), f:=F(D;), D:=R(¢:), i=1,2. Dropping the
constant ¢;, put

(5.32) (@ 99 = | FLOFD 51 dx.

Then defines an invariant positive definite hermitian form on PS(X). Let
H, denote the Hilbert space with the norm | |, of all measurable functions f(x)
on C such that

1713 = { LFG12 ] ~dx < o,

As in [Proposition 3.2, we see that V, is a dense subspace of H, (the fact V
# {0} is trivial in this case). Hence =, extends to a unitary representation of
G on H, which we denote by the same symbol 7,. We see that = is continuous
and irreducible as in the real case. Summing up, we have obtained:

PROPOSITION 5.2. For every real number s, 0<s<3/2, there exists a unique
irreducible unitary representation ns of G on H, which satisfies the following
conditions for every fe< H,.
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M l(; PHE=gonfx),  beC, x=C.
@ @(§ )N@= e, asCx, e
® (mfXn)y = Jim | kenfIyIdy,  xeC.
where

TC2

k(z) = sin (s7/2) [2]*1%() ] 5 22r2 %) | — | Jore2m2*)| %), zEC.

We remark that (3) can be shown in a similar manner as in the real case
using (5.24) and the first expression of 4(z) given in [Lemma 5.1

Let §; be the Hilbert space with the norm | ||, of all measurable functions
F on C such that

Fux)=F(x), x€C, |[Flw= (nSCIF(X)lzlx |22 x )P oo,

By the map H,=f(x)—=F(x)=f(x")=9s, H; and §; are isomorphic as Hibert
spaces. We transport the representation =; of G on H, to the representation
#s of G on ;. Then we obtain the following theorem.

THEOREM 5.3. For every real number s, 0<s<<3/2 and a natural number n,
there exists a unique irreducible unitary representation #s of G on s which
satisfies the following conditions for every F<9;.

(1) (:a(((l) PVEXD) = goxF(), b€, x=C.

@ @ L)Pi = el rery,  ascr, xec
®) (P = fim|  KepFO)yimdy,  xeC
g

nr?

K(z) = nk(z") = Sin (s7/2) 12 ™%(| J 51222 %) [P — | Js2(2m2™1?)|?), z<=C.

If s=2/n, the representation #; coincides with the Weil type representation
constructed in Kubota [3].
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Notes

This simple observation must have been noticed by specialists. The author himself
had this idea long time ago.

It is probable that we can compute the cocycle also for non-archimedean local fields
by Shimura’s method using an analogue of the complex upper half plane; the same
idea may apply to some higher dimensional cases.

These formulas can be summalized by a single formula

=) . b2 " S _
S v*7! exp(a«/—l(v-l- ——))dv=\/21n\/—le”""’zbsHél)(Zab),
0 v T

a>0, 0=argh<z/2, 0<s<1
involving the Hankel function H{, which can be derived from (5.20).
A similar inner product formula for p-adic groups of higher rank is considered by
the author [11].

If v=—1/2, holds as the identity without the O-term. We also note that
k(|z|) is continuous on R.

This formula may be derived from [1], p. 722, 6.648. But we think it better to
give a proof here.
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