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   1. Introduction. 

   The probabilistic approach to the Littlewood-Paley-Stein inequality was 
begun by Meyer [18]. Recently Bakry and Emery introduced the concept of P2. 
They used it to discuss the hypercontractivity. Further Bakry [4] established 

the Littlewood-Paley-Stein inequality for a diffusion process under the condition 
that I'2 is non-negative and subsequently, in [6] he obtained it for a diffusion 

process on a complete Riemannian manifold under conditions for Ricci curvature 
and the Hessian of the density function, which assures equivalently that I'2 is 

bounded from below. The main purpose of this paper is to extend his result 
to the case that I'2 is bounded from below under the general setting. Moreover 
we discuss the sections of Hermitian bundles. We begin with introducing P2. 
   Let M be a complete separable metric space and m be a Borel measure on 
M. Suppose we are given an m-symmetric diffusion process (Xt, PX)XEM on M 
and let etL be the corresponding symmetric semigroup on L2(M; m) with the 

generator L. We assume that the diffusion (Xt, PX)XEM is conservative and that 
there exists a dense subspace A in L2(M; m) such that 

   (i) A is an algebra, 
   (ii) ~~ ni p<ooL'(M; m)fDom(L), 
   (iii) A is stable under the operation of L. 

Then we can define a sesquilinear map P : A X A--> A by 

             P(f, g) = 1 { L(f g)-(Lf )g-f (Lg)} 

2 where - denotes the complex conjugate. Then T2 is defined by 

           [2(1, g) = 1 { LP(f, g)-P(Lf, g)-P(f, , Lg)}. 

2 We simply denote P2(f, f) and ['(f, f) by P2(f) and P(f ), respectively. 

    More generally, we consider a trivial vector bundle E =M X C n and denote 

the set of all sections whose components belong to A by A(C' ). Then L can 

be easily extended to the space of sections of E. Similarly, I' can be extended 
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to A(CT) In natural way. We consider an operator of the form L-U where 
U(x) is n X n Hermitian matrices which we call a potential. We assume that 
U is locally bounded and further there exists /3>_0 such that 

                   U(x) >_ -/3I n for x M 

y where In is the identity matrix. For this operator L-U, we define r2 by 

         P2(u, v) = 1 {LF(u, v)-F((L-U)u, v)-P(u, (L-U)v)} 

2 

                               for u, v E A(Cn). 

   The semigroup on L2(M; m)®Cn generated by L-U is not a contraction 

semigroup in general and we consider the following generator L ; 

                          L = L-U(x)-al n 

where a is a positive constant. Taking a to be large enough, the semigroup 

generated by L is contraction and we can define Littlewood-Paley C-functions 
associated with L (for precise definition, see section 2). 

y 

   We suppose that I'2 is bounded from below, i. e., there exist constants a, 
b>_0 such that 

                      P 2(u) > -af'(u)-bJuJ2. 

We assume that the above inequality holds for not only uEA(Cn) but also 
Ptu, u(C) where {Pt} is the semigroup generated by f. Here we implicitly 
suppose that I'2 is well-defined for Pt u, u E A(C n). 
   Our main results below will be to establish the Littlewood-Paley-Stein 
inequality for such C-functions. Moreover we also discuss the case that a fiber 
space is a Hilbert space. We discuss two examples. First one is considered 
on an abstract Wiener space. In this case, we have to consider a vector bundle 
whose fiber is a Hilbert space. Second one is a Laplacian acting on a vector 
bundle over a complete Riemannian manifold. As applications we will discuss, 
in another papers, the problem related to the Riesz transformation and Sobolev 
spaces on an abstract Wiener space ([23]) and on a complete Riemannian mani-
fold ([30]). 

   The organization of this paper is as follows. In section 2, we give estimates 
of F(Pt) and P(Q t), Pt, ? r being a semigroup and a Cauchy semigroup generated 
by f, respectively. In these estimates, the assumption that P2 is bounded from 
below is crucial. In section 3, we introduce the Littlewood-Paley C-functions 
and H -functions and discuss the relation among them. In section 4 we give 
estimates of C-functions and H f unctions and thereby obtain a proof of Lit-
tlewood-Paley-Stein inequalities. Here we follow a probabilistic proof of Meyer 
[18] and Bakry [6], in which inequalities for submartingales play an important
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role. We give examples in section 5. 

   2. Symmetric diffusion. 

   Let M be a complete separable metric space and m be a a-finite Borel 
measure on M. By L2(M; m), we denote the complex L2-space. Let (Xt, PX)XEM 
be an m-symmetric diffusion process on M. We assume that the diffusion is 
conservative. Then the corresponding contraction semigroup {Pt} on L2(M; m) 
is given by; 

(2.1) Pcf(x) = Ex[f(Xt)], f L2(M; m) 

where Ex stands for the expectation with respect to the probability measure 
Px. Let L be the generator of {Pt}. We assume that there exists a dense 
subspace A in L2(M; m) satisfying (i ), (ii) and (iii) in section 1. 

   As in section 1 we define sesquilinear maps P and I'2 as follows. For 
f, gEA, 

(2.2) r(f, , g) = 1 { I,(f g)-(L f )g-- f(Lg)} , 

2 (2.3) 12(1, g) = 1 { LF(f , g)-P(Lf, g)-1(f, Lg)} 

2 We simply denote ['(f, f) by 1(f) and 12(f, f) by 12(f), respectively and we 
remark that I'(f)>_0 (see e.g., Bakry-Emery [3]). We set E=MXCn, i.e., E 
is a trivial vector bundle over M with a fiber C n. We denote the set of all 
sections of E by 1(E). In general, we denote the space of Lp-sections by 
Lp(I'(E); m). We also denote the set of all sections whose components belong 
to A by J(C n). Then L can be extended to LA(C n) componentwise. Also P 
can be extended to A(C11) naturally as follows; 

      T(u, v) = 1 {L(u.v)--Lu.v--u.Lv} 

2 

n 

              = 1(u1, vi), for u=(ul, ... , un), v=(vl, ... , vn)E~(Cn), 
                           i=1 

where . stands for the inner product in C': zz'=~ti lziz'i. We consider an 
operator of the form L-U(x) where U(x) is an n X n Hermitian matrix function 
which is locally bounded and we assume that U(x) is bounded from below, i. e., 
there exists j3 >_ 0 so that 

(A.1) U(x) >_ -j3Jn for x E M. 

Further P2 associated with L-U is defined by     P2
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Z          P2(u, v) = 1 {Lf(u, v)--I'((L-U)u, v)-I'(u, (L-U)v)}. 
   We consider an operator L of the following form ; 

(2.4) L=L-U--a1 

where a is a positive constant. We denote by {P1} the semigroup generated 
by L. 

    We assume that r2 is bounded from below, i. e., there exist constants a, b 
0 such that 

(A.2) I'2(u) >_ -al'(u)-bi u 12 for u E jZ(CT) and u = Ptv, v e 

Here we have to assume that P2 is well-defined for not only u E A(Cn) but also 
Ptu, uE A(Cn) because Ptu, uEA(Cn) is not in Jl(Cn) generally. A sufficient 
condition is that for u E A(Cn), 1 P1 u 12 belongs to Dom(L) and further r(P1 u ) 
belongs to Dom(L). 

   We now give a probabilistic representation of the semigroup { P1} and 
thereby we show that {Pt } is a contraction semigroup if we take a large enough. 
First we define a multiplicative functional M1-M1(X) of X as the solution to 
the following differential equation ; 

                  dMt = -M1U(Xt)dt (2
.5) 

                  M0=1.                      n 

Define a semigroup {Pt} on L2(I'(E); m) by 

(2.6) Ptu(x) = Ex[e+"tMr(X)u(X1)], for u E L2(I'(E); m). 

The following proposition is a generalization of Feynman-Kac formula. 

    PROPOSITION 2.1. { P1} is a strongly continuous symmetric semigroup on 
L2(I'(E); m) with the generator L. Moreover it holds that 

(2.7) I P~u(x) I e"`' ' tP1 l u 1(x) 

   PROOF. Let M1(X)* be the adjoint matrix of M1(X). Then Mt(X)* satisfies 
the following differential equation ; 

                dMt(X)* = -U(X1)Mt(X)*dt 
(2.8) M0(X)*=1 

n 

 Hence for E C's, 

    d I M(X)* 12= _(U(X1)M1(X)*, Mt(X)*)-(M1(X)*e, U(Xt)Mt(X)*)   d
t 

             21S I Mt(X)*e 12 .
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By the Gronwall inequality, we have                       

I Mt(X)*s~ 12 < e2~t 1 12 . 

Thus we have                 

IIMt(X) L cn) = IIMt(X)*II cccn) <_ eat 

where II Illccn) stands for the operator norm. 
   Now it is easy to see that { Pt } is a strongly continuous semigroup satisfy-
ing (2.7). Moreover, by using the Ito formula, we can show that L is the 

generator of { Pt } . 
   Next we show that {Pt } is symmetric. To show this, let Em denote the 
expectation for the process (Xt) with initial distribution m. Take any T >O 
and fix it. Let us consider the reversed process Yt=XT_t, 0<_t<_T. Note that 
{M(Y)1 } satisfies 

                 dMt(Y)-1= U(Yt)Mt(Y)-1dt 

                 M(Y)1 =in. 

Hence 

                MT-t(Y)-1Mr(Y) = _U(Xt)MT-t(Y)-1MT(Y), d      J t 
              Mr-o(Y)~1MT(Y) =1n. 

By the uniqueness of the solution to (2.8), we have for 0<_t<_T, 

                M(Y)1M(Y) = M(X)*.                                     t

In particular, it holds that MT(Y)=MT(X)*. By the symmetry of (Xe), (Xt)ost~r 
and (Y)0 ts t T have the same law under Pm and hence we have 

        Em[(MT(X)u(XT), v(X o))J _ Em[(u(XT), MT(X)*v(Xo))J 

                          = Em[(u(Yo), MT(Y)v(YT))] 

                         = Em[(u(Xo), MT(X)v(XT))J 

which implies that { Pt } is symmetric. D 

   By the above proposition, {Pt } is a contraction semigroup if a >_ S. There-
fore, throughout this paper, we always assume that aj6. We construct the 
Cauchy semigroup (or Poisson semigroup) by the following subordination method. 
For any t0, let pt be the probability measure on [0, co) such that 

                     e'~s,ut(ds) _ e-~~ t for A>0. 

0 As is well-known, pt is of the following form ;



256 I. SHIGEKAWA and N. YOSHIDA

(2.9) pt(d s) = t _e-t2 f42s-3J2d s .                   2~ n 

Then the Cauchy semigroup is defined by 

(2.10) Qt = ~pst(ds). 

0 The generator of {Qt} in L2(P(E); m) is -/---L. We call it the Cauchy 
generator and denote by C. 

   Next we consider I'(Ptu) and P(2u) and have the following proposition. 

   PROPOSITION 2.2. Assume that (A.1) and (A.2) hold. Take a, r>0 so that 
a>_a+r and a>~3+r. Then we have 

(2.11) I'(Ptu) < ptr(u)+KPt2r~ I u 12 

where K=b/(a--/3-r) and P~ZT'-e-2rtPt. 

   PROOF. Take any T>0 and fix it. Define g(t) for 0 <t <_ T by 

                 g(t) = pi2r'r(Pr-tu)+Kpi2r' I Pr-tu ( 2 . 

We first show that g.'(t)>_0. In fact, by using (A.1), (A.2) and (2.7) we have 

     g'(t) = pi2T)LP(PT-tu)-Z7Pi2r'I'(Pr-tu) 
             -Pi2r'P(LPr -tu, Pr-tu)--P`2r'r(Pr-tu, LPr-tu) 

           +KPi2r'L I Pr-tu 12---2rKPi2r' I r-tu 12 
                                           i -1 -i -i -a -i             -KPc2r)(LPr -tu, Pr-tu)-KPi2r'(Pr-tu, LPr-tu) 

         = p`2r'Lr(pr_tu)_2rpt2r'r(pr -tu)-pi2r'r((L-U)pr-tu, Pr-tu) 

           -Pier)r(Pr -tu, (L-U)Pr-tu)+2aPr2r'r(Pr-tu) 

           +KPt2r'L I Pr-tu 12___2TKpt2r, Pr-tu 12_KPi2r'(LPr-tu, Pr-tu) 

           -KPr2r'(Pr -tu, LPr-tu)+2KaPt2r) I pr-tu 12 

           +KP22r)(UPr-tu, Pr-tu)+KPt2r)(Pr_tu, UPr-tu) 

          2Pt2r'r2(Pr-tu)+2(a_r)Pt2r'I'(Pr-tu) 

          +2KPi2r'I'(Pr-tu)+2(a-r)KPi2r' I Pr-tu 2 

          -2/3KPt2r' I Pr -ru 12 

         > 2(a--r_a+K)Pi2r'f'(Pr-tu)_2bPr2r' I Pr -tu 2                           

I Pr-tu 12 

        {2K(a---r)-2b} Pr2r' I Pr-2u 12 

        -0.
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Thus we have g(0)<_g(T) and hence, we have 

             I'(PTu)+KI PTu 2 <_ PT r)I'(u)+KP,?r) u 2, 

Now (2.11) easily follows. E 

   By the above proposition, we have the following key inequality. We denote 
the subordination of { Pti 2r) } by { Qi 2r) } i. e., 

                       Qi2r' = o P(2r);, (d s) . 

   PROPOSITION 2.3. Under the same assumptions as in Proposition 2.2, we have 

(2.12) P(Qtu) Q2P(u)+KQc2r' I u 12. 

   PROOF. We note the Schwarz inequality for T, i, e., II'(u, v) I <-/I'(u)x 

'/I'(v). Then we have, 

          P(u) =r upt(ds) 

0 

                 =T~Psu,ut(ds), ~ 0Pzu;ut(dz) 
                  = 

opt(ds) o,ut(dr)T(Psu, Pzu) 

                   00 pt(ds) 00pt(dz) FC u) F(Pzu) 

                  <_ su)'t(ds) 2 <_ ~I'(Psu)~Ct(ds) 
                                  0 0 

                   o {Psl'(u)+KPs2r) u 2}pt(ds) = Qtr(u)+KQi2r) I u 2 

which is the desired result. 

   So far, we take C' as a fiber space. More generally, we can take a Hilbert 
space ~C in place of Cn. In this case, we sometimes need to consider an un-
bounded potential U. It is difficult to handle the general case however and we 
assume that U is constant : U(x)=A, for all x EE M. Furthermore, we assume 
that A is a self-adjoins operator and bounded from below, i, e., there exists a 
constant S so that 

(A.1)' A >_ -/31,9c 

where 1~ is the identity operator on JC. This condition is similar to (A.1). 
So we consider an operator of the form L=L-A-aJ~ on L2(F(E); m), where 
in this case, E=MX 9C. We set A(BC) to be the set of all 1C-valued functions 

u of the form 

N 

                 u = ~' f h1, for f i A, hi C°°(A) 
                                       i=1
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where C(A)=n1 Dom(An). 
   The semigroup {P1} generated by L is represented by 

(2.13) Ptu(x) = Ex[e-alT tu(Xt)] 

where T t=e-t 4. Note that 1 Ptu(x) I A<e-(a-1'tPt I u I %(x) where I• I~ is the 
Hilbert norm in si . In fact,          

1 Ptu(x) IA <_ Ex[ I e-atTtu(X1) I ~c] <_ Ex[e-ate~t I u(Xt) I ~] 
                    < e-ca-13)tPt I u I A(x) 

   On the other hand, we have 

    P2(u, v) = 1 {LP(u, v)-1'((L-U)u, v)-F(u, (L-U)v)} 

2 

          = 1 {LF(u, v)-r(Lu, v)-1'(u, Lv)+F(Au, v)+I'(Au, v)}. 

2 By using (A.1)', we easily have 

                        ['(Au, u) >_ -,31'(u, u). 

Assuming that ['2 associated with L is bounded from below, i. e., there exist 

constants a, b>_0 such that 

(A.2)' ['2(f) ? -a['(f)-b l f 12 for f A and f = Ptb, g , 

we have 

H 

   I'2(u) >_ -(a+/3)I'(u)-biu I2 for u E A(BC) and u = Ptv, v 

   Hence by a similar proof to that of Proposition 2.2 and Proposition 2.3, we 
have the same result in infinite dimensional case ; 

   PROPOSITION 2.4.. Assume that (A.1)' and (A.2)' hold. Take a, r>0 so that 
a>a+/3+r• Then for uEA(S1C), 

(2.14) J'(P1u) Pt['(u)+KPt2r)I u 12 

and 

(2.15) F(Qtu) < Qe['(u)+KQ/2r' 1 u 12. 

where K=b/(a--/3--r). 

   For simplicity, we consider, in the sequel, only the finite dimensional case, 

the infinite dimensional case being similarly discussed by virtue of Proposition 
2.4 under the assumptions (A.1)' and (A.2)'.
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   3. Littlewood-Paley G-functions. 

   Let us introduce the Littlewood-Paley G-functions. For any u E A(C') (or 
A(BC)), define 

                                 a~ 2 
                  g0(x, t) = atQtu(x) 

                 gt(x,t)=r(Q~u)(x) 

                   g(x, t) = g-'(x, t)+g~(x, t). 

Then, Littlewood-Paley's G-functions are defined by 
                                                       00 1/2 

(3.1) G0u(x) __ {tg-'(x, t)dt 

0 (3.2) GT u(x) = ~{tg(x, T t)dt 1/2 

0 

                                                       00 1/2 

(3.3) Gu(x) _ {tg(x, t)dt 
0 Moreover, we define the H f unctions by 

                                                00 1/2 
(3.4) H0u(x) = otQtg0(x, t)dt 

(3.5) H~u(x) = ~tQtg~(x, t)dt 1/2 

0 

                                                00 1/2 

(3.6) Hu(x) = o{tQtg(x, t)dt 
The following proposition is easily obtained by the spectral decomposition : 

    PROPOSITION 3.1. For a> 9, it holds that 

(3.7) I G-'u 12 1 II u-Eoul12, 

2 where Eo is the projection to Ker(L) and further 

 3.8) II G~u 2< l ( llull2• 2 

    PROOF. (3.7) is well known. We show (3.8). By the spectral decomposi-
tion for ~, we have 

                         L = - ~0o AdE2. 

 Hence 

    

II G~ull2 = 0t dt I'(Qtu)(x)m(dx) = - ~t dt (LQtu, Qtu)(x)m(dx)                    o M o M 

         _ - ~t dt (LQru, Qtu)(x)m(dx)- ~t dt ((U+a)Qtu, Qcu)(x)m(dx) 
                     0 M 0 M



260 I. SHIGEKAWA and N. YOSHIDA 

           <_ ~t dt Ae-2t~~d I EAu 12-(a-,3) ~t dt e-2t d E2u 12 

        < d I Eau 2 = 1 IIu112~ 

-

            J«-j9 42 4 

Here in the fifth line we used te-2etdt=1/4e2. 

0 

   Next we establish the relation between G-functions and H f unctions. For 

notational simplicity, we write II u II p Ilvll p if there exists a positive constant 

cp depending only on p so that u Il p c p 11 v l p. We use this convention without 

mentioning. 

   PROPOSITION 3.2. For aS it holds that 

(3.9) G-'u <_ 2H-'u. 

Further assuming the same assumptions as in Proposition 2.2, it holds that for 

p>_2, 

(3.10) IIG~ulI IIHtulip+~/K/yllullp. 

   PROOF. By Proposition 2.1 we have,         

I Qtu(x)1 2 :I u(x)12pt(ds) ~e-2(a-,B)3p3 I u 12(x)~t(ds) 
                            0 0 

                <-_ o Ps I u 12Cx)pt(ds) = Qt I u 12(x). 
Therefore 

         g-'(x, 2t) = as~ Qgu(x) 2 = ICQ2tu(x)I2 
                                                      S.2t 

               = I QtCQtu(x) 12 <_ Qt I GQtu 12(x) = Qtg~'(x, t). 

Thus we have, 

                                                       1/2 '0' 1/2 
             G-'u(x) = tg-'(x, t)dt = 4 tg-'(x, 2t)dt 

                                0 0 

                  <_ {4tQtgix, ~t)dt 1/2 = 2H-'u(x). 

0 

   Next we show (3.10). By using Proposition 2.3 and the Holder inequality, 

we have 

                           Qpl0 
          GTu(x)Ip = {tF(tu)(x)dt}2 

                      0t Q(21) I u 12(x))dt pl 
                                                          l2 p                      H?u(x)2+K ~tQi2r) I u 12(x)dt } 

0
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                     HT u(x)P+KPI2 ~tQt2r) I u 12(x)dt }P/2. 
0 Let q be a conjugate exponent of p/2: (1/q)+(2/p)=1. Then we have 

      tQ~2r) I u 12(x)dt pl2 
           4 1 

        - ~{teet~r1 Pdt ~e-2r3P31 u 12(x)p (ds) PI2 
                  0 o i 

        <_ {°°te g -gt~rJpdt p/2q ~ePtl2dt ~e-2r3PsI UI2(x)pt(ds) Pl2 
                  0 0 0 1 

               °° u q d u P /2q 

                      q ~rP/2dt o e-TPs IPs I u I P(x)II i;ut(ds)             o ~r e-u ~lrl 0 et          q Ip p 

          ~-(q+1~~/Zgllullp et~rPl2e-t~rPdt        ;; 

0 

        = Iu IP J7-(q+l)PI2q 2 ull           P ~
rp P 

Thus we have                

IIGTuIIP IIHTulIP+v1K/rlluNP 

which completes the proof. 

   LEMMA 3.3. For uEA(C' ), set f (x, a)= I Qau(x)I and for E>O, f 0(x, a) 
=s/f (x, a)2-F2. Then for p>_2 it holds that 

(3.11) ° (-2+L)fo                                    p >_ a
s 

and for 1p2, < <it holds that 

               a2 (3
.12) aa2 +L f p ? 2p(p-1)f P-2g 

where g=g(x, a) is defined by 

               g(x, a) = a Qau(x) 2+T (Qau)(x) •                    as 

   PROOF. We first show 

2 (3.13) aa2 (+L)f(x, a)2 ? 2g(x, a) 

2 To show this, we note that (-- 2 +L Qau(x)=0. Hence 
                  as
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2 

   aa(j+L)f(x, a)2 

2 

   = 2 (+L)IaUI2           Qas 

    = 2 Re(---au a2 Q, Qau +2 a Qau, a Qau +2 Re(LQau, Qau)+2T'(Qau) 
          aa2 as as 

    =--2Re((L--U-a)Qau, Qau)+2 a Qau 2+2Re(LQau, Qau)+2P(Qau                             a
s ) 

    >- 2(a-~) I Qau 12+2g(x, a) 

      2g(x, a) 

Here Re denotes the real part and we used (A.1) in the fourth line. 
   Secondly we show (3.11). To show this we recall the following fundamental 

relation of L and 1: for F(e1, e2, ..., n1 EEE C°°(R) and f', f2, ..., 

2 

         LF(f1, f2, , fn) _ F L i+ a F r(fi, fl) 

(see [3] Lemme 1). Hence we have, 

    a2 (--+L)f = a2 (+L)uP12                         ~)aa2 aa2 

          = P(f2)P/21 2 (- ~ -+L f2+ f' _1(f2)p/2-2 f 2                                            2 +r(f 2) 
            2 E aa2 E 2 2 ~ as 

                             2 2 

        = Pfp-2 a+ L f E+ p -2)f p-a f a +r f E)           2 ~ a
a2 4 ( as ( ' 

Hence, by using (3.13) for p >_ 2, 

2 

                   aa2 +L f p pf p-2g(x, a) >_ 0 

which proves (3.11). 
   Lastly we show (3.12) for 1<p<_2. Let us recall the derivation property 
of I' (see [3]) ; 

               F(f g, h) = f F(g, h)+gF(f, , h) 

Then, writing Qau =v=(vl, v2, • ••, vn), we have 

 i Cfe)-1 (f2)=l (f2, f2) 
                         n n 

           = I' vcz, 
                      i=1 j=1 

n 
          = {vzI'(vz, v'v~)+v~I'(v~, v'v')} 
                    i, j=1
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          = v {vivj j'(vi, vj)+vi 7T (vi, vj)-{-vivjf (vi, vj)+vivjr(vi , Uj)}                 

I v1vj 12 I J'(vti, v')12+ I j'(vz, v1)12 
                       i, j°1 i, j=1 i,1=1 

                      -~- I r(v~ , v~)12+ 1 r(vz, v') 2 
                                                                                             i,.1=1 

n 
         <_ 41 v 12 f(vi)p(v') 

n 

         <_ 4 I v 12 1 L'(vy) 
                             i=1 

          41 Qau 121 (Qau) 

Therefore, 

2 

   aa2 (+L)f p 

         fifp-2g(x, a)+ p(P-2)fp-4 4 Re a 4au, QQau 2+4lQeau I2r(Q-u                      4 as a ) 

            p-2g(x, a)+ p fi_2)-4 4 Qau 2 QauI2+4 Qau 2~ Qau        ~f 4( f as I i I() 

         p f~-2g(x, a)+p(p_2)f p-2 U Qau 2+T(Qau)                         as 

         p(p -1)f p-2g(x, a) 

which completes the proof. o 

   4. The proof of Littlewood-:Paley-Stein inequalities by martingale 
      approach. 

   In this section, we give estimates of G and H by a probabilistic method. 
The original idea is due to P. A. Meyer [18] but we mainly follow Bakry [6]. 
So many parts are merely repetition of Bakry [4, 6] or Meyer [18,19] with 
slight modification, but we give proofs for the completeness. Let (X2, Px) be 
the diffusion process on M as before. We need an additional 1-dimensional 
Brownian motion (B)20 and we regard M as a vertical space. So, from now 
on, we write Px in place of Px. Let (Bt, Pa) be a 1-dimensional Brownian 
motion starting at a E R with the generator d2/d a2. Note that the time scale 

of this Brownian motion is different from the standard one up to constant, but 
we use this for notational simplicity. Let r be the hitting time of (B2) to 0, i. e., 

                      z = inf {t; Br=O}.
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We consider the following stopped diffusion (Yt, Pcx, a)) on the state space MX 

R+ where R+=[0, oo); 

(4.1) Yt := (XtAD, BtAD), P(x, a) : = Px®Pa . 

So the generator of (Yt) is (a2/6a2)+L. We denote the integration with respect 

to P(x , a) and P(x a)m(dx) by E(x, a) and Ea, respectively. 

M 

   The following relation is fundamental. 

   LEMMA 4.1. Let : M X R+-~[0, oo) be measurable. Then 

z (4.2) Ea o7(Yt)dt = M orl(x, t)(tAa)dt 

and 

z (4.3) Ea o72(Yt)dt I Xt =x t)(x)(t A a)dt. 

    PROOF. See e. g., Meyer [18]. D 

   Set Nt=QBtAzu(XtAt) for u~A(CT). Then, by noting ((a2/aa2)+L)Qau(x) 
=0, (Nt) is a C'°-valued martingale. Hence (I Nt I) is a non-negative submar-
tingale and by the Doob inequality, it holds that for p > 1 

(4.4) E(x a)[sup I Nt I 1 ] (P/(p-1))pEcx, a)[ I Nz 1 ° ] 
                           tao 

                        = (P/(P -1))pE(x , a)[ u(X) I P] 

   We need another inequality for submartingales. Let (Zt) be a continuous 

submartingale with the following Doob-Meyer decomposition; 

                              Zt=Mt-i At 

where (M1) is a continuous martingale and (At) is a continuous increasing 

process with Ao=0. Then, for p>0, it holds that 

(4.5) E[AR] (2p)pE[sup I Zt I P]. 
                                                     tzo 

For the proof, see Lenglart-Lepingle-Pratelli [15]. 
   Now we have the following proposition. 

    PROPOSITION 4.2. For p_>2, it holds that 

(4.6) IIHu!I IIulIp for u A(Cn). 

    PROOF. For uEA(C'), set f(x, a)= Qau(x)I as in Lemma 3.3. Define 
(Z1)1?0 by 

                            Zt = (}Tt)2 

. Then (Z1) is a submartingale under P(x , a). In fact, set
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                                  rAt 82 
                Mt = f (Yt)2- 

0 aa2 +L f 2(Ys)ds 
and 

                               rnt 02                  At 0 aa2 (_+L)f2Ysds.                                     ()

Then (Mt) is a martingale and (At) is an increasing process because of (3.11). 

Thus Zt=Mt+At is a submartingale. Hence, by (4.5) and (4.4), we have 

                 rnt 2 pl2 

     E(x, a) 2 +L f 2(Ys) ds $ E(x, a)[sup I Zt I ' ] E E(x , a)[ Zoo I p12, (4
.7) 0 ova tZo 

            = E(x , a)[f (Yr)p] = E(x, a)[ I Qou(Xr) I P1 = E(x, a)[ u(Xr) I p]

On the other hand, using (3.13) and (4.3) of Lemma 4.1, we have 

          Hu(x) = ~tQtg(x, t)dt p12 
                               0 1 

                  82                          +L f 2(
x, t)dt p12 

} 

                tQt 

1 

                    o ate 

                               +L f 2(x, t)(tna)dt pi2 (4.8) <_ lim m(dx) ~Qt 02                              a-+oo M 0 at2 

                = lim 
a Mm(dx)Ea 0r a Q1t22 +L f 2(Ys)ds I X(z)=x p12                                                       -+oo 

2             <_ limEa r [{(+L)f2(Ys)dS p/2 
                            a~oo 0 Q~t2 

Combining (4.7) and (4.8), we have 

    Hu(x) < lim
Mm(dx)E(x, a)[I(r)I1 uXp= lim II() u(x) pmdx= I u p         a~~ 

which completes the proof. 

   PROPOSITION 4.3. For 1<p2, <_it holds that 

(4.9) II Gu l p II u it p for u E A(C n) . 

   PROOF, Let f and f E be as in Lemma 3.3. Then, by Lemma 3.3, we have 

                                1 a2 p 2_ p               g(x
, a) = p(p --1) lm aa2 +L f Ef 

On the other hand, 

          f (x, a) = I Qau(x) I <_ o Ps I u I (x)pa(ds) <_ IuI *(x) 

where
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l u l *(x) = sup Pt l u l (x) 
                                             too 

Hence we have,            

IIGuIIp = ag(x, a)da P 2 

                                           0o a2 p12 
                    IuI*P(2-P)/2 alim 2 +L f pda                                           o E~o as 1 

2 

                               lim +L f pda P'2                 ti III u I*PI112-P)/2 oa a                                                E-o aa2 1 

by the Holder inequality for 2/(2--p) and 2/p. The following maximal ine-

quality is well-known : II u* II P II u (I P (see e. g., [21]). Hence it is easy to see 
that II I u I *P11i2-P)i2=1I I u I *IIp(2-P''2~ II uJI(2-P'/2. Moreover, by (4.2) of Lemma 4.1, 
we have 

            ~
alim a2 +L fpda                     o E-.o as 2 ~ 

               = lim m(dx) 
a.ooM slim a22+L f p(x, t)(tAa)dt                                  - 0 E-+0 at 

                         r 62              = limEa oIEm ate +L f p(Ys)ds . 

   Now we set Zt= f E(Yt)P. Then (Z2) is a submartingale such that 

                         Zt=Mt+At 

where (M2) is a martingale defined by 

2 

                                           rAt               Mt = fE(yt)P-- aa2 (+L)fYsds                            p(}0 

and (At) is an increasing process (recall (3.11)) defined by 

                              rnt 62                  At _ o a(-pj-+L)f'(Ys)ds. 
Thus by (4.5) and (4.4), we have 

                   r 62 
           E(x, a) o aa2 +L f p(Ys)ds E(x, a)[SZOPf F(li)p] 

                                   E(x, a)[Supf (Yt)P+EP] 

                                  = E(x, a)[ I u(Xr) I ~J+eP . 
By the Fatou lemma, we have
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                               i 2 . 
            (x, a) llm 2 +L f p(Ys)ds C E(x, a)[ I u(xz) I p]                             o s-•o as 

and hence 

               Ea tlim a2 +L p YS ds < u p. 

Therefore we have, 

               GulI p < IIuII(2-p)/2(Ilulip)p/2 = Ilullp 

as desired. p 

   Now the following main theorem is easily obtained. 

   THEOREM 4.4. I f a>_j6, then for 1<< p co, it holds that 

(4.10) IIu-Eoullp S IIG~ullp IIu-Eoullp for u 

where Eo is the projection to Ker(L). Moreover, we suppose (A.1), (A.2) and 
aza+r, a>j6+r. Then it holds that 

(4.11) IIGtullp~(1+/K1')llullp for u~ A(CT) 

where K=b/(a--~--7). 

   PROOF. For 1<p2, <_we have, by Proposition 4.3, 

             IIG'ullp IIu-Eoullp IIGtullp IIuIIp. 

Here we used G~u=G`'(u--Eou). Similarly, for p>_2 by Proposition 3.2 and 
Proposition 4.2, 

                IIG-'ullp 2fIH~ulip IIu-Eoullp. 

By using 1IG-'u Ip<IIuIIp, we can show IIu-EouIIQ<IIG-'u IQ by the duality where 
q is the conjugate exponent of p : (1/p)+(1/q)=1. In fact, by using (3.7) and 
Proposition 3.1 and the polarization, 

        (u--Eou, v-Eov)L2(r(E); m) 

         = 4
Mm(dx) ~t aQtu(x), a Qtv(x) dt, u, v E 4(C) 

                                                                                         n 
.                   oat at 

Hence 

       M(u0 v(x)-Eov(x))m(dx) 

          = (u(x)-Eou, v(x)-Eov(x))m(dx)
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        <_ 4 m(dx) ~t I~ Qtu(x) a Qtv(x) dt 
               M o at 

                             a 2 1/2 a 2 1/2          <_ 4 Mm(dx) of at Qtu(x) dt o{t--Qtv(x) at dt 
           = 4 

MG~'u(x)G-'v(x)m(dx) 

          411G~uIIpIlGwliq ~ 411u11p G-'vllq• 

Thus we have IIv--EovII II G-'vllq• 
   To show (4.11) for p>_2, we assume (A.1), (A.2) and a>__a+Y, a>/3+r. 
Then by (3.10) of Proposition 3.2 and Proposition 4.2, we have 

         IIGtuIIp$ IIHTuIIp+/K/rliulip $Iluilp+4/K/rlullp 

which completes the proof. D

   5. Examples. 

   We shall give two examples in this section. 

   EXAMPLE 5.1. Let (B, H, p) be an abstract Wiener space : B is a separable 

real Banach space, H is a separable real Hilbert space which is imbedded densely 

and continuously in B, and a is the Gaussian measure satisfying 

    p(l) = 
Bexp{-1 Box, 1>B*} (dx) = exp -1 I ii}, H* l B* H*.       ~` '~ 2 

We consider the following Ornstein-Uhlenbeck semigroup ; 

(5.1) Ptf(x) = B f (e-tAx+~l1-e-2tAv),a(dy) for f L2(~c). 

Here A is a non-negative definite self-adjoint operator in H. The above ex-

pression (5.1) is well-defined if the semigroup {e-tA} generated by A can be 
extended to a strongly continuous contraction semigroup in B so that 

(5.2) Ile-IA                                I r(B) < 1 

where II • IIrcB~ denotes the operator norm. In this case, {P1} is a Feller semi-

group with the probability kernel given by 

               p(t, x, C) = Blc(e-tAx+ ~l_e-2tAy)~(d.v), 

and it defines a symmetric diffusion process on B. We give the corresponding 

Dirichlet form. Set A to be the set of all functions of the form 

(5.3) f(x) = p(B<x, l1>B*, ... , Box, ln>B*), n E N,
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where p is a polynomial on Rn and l1i •••, ln~C°°(A*)nB*, A* being the dual 
operator of A in the dual space H* (we do not identify H and H*) and C°°(A*) 
=(1n=1 Dom(A*n). Then the Dirichlet form is given by 

(5.4) ~(f, g) = B(~lA*Df(x), ~A*Dg(x))x*p(dx). 

Here D f (x)E H* is a H -derivative of f at x ; 

(5.5) x<h, Df (x))x* = lim f (x+th)-f (x) .                                                                          t-.o t 

In place of the assumption (5.2) for A, it is enough to assume that C°°(A*)nB* 
is dense in H* to ensure the existence of a diffusion process with the Dirichlet 

form (5.4) (see e. g., [14, 1, 22] for the construction of diffusion processes). 

   We denote /A*D by DA and the generator by LA to specify A. The 

generator LA is given as follows; for f (x)=P(B(x, l1>B*, ••• , Box, ln>B*) 

(5.6) LAf(x) = ~(A*l1, l1,)x* a2P (B<x, l1>B*, ... , Box, ln>B*) 

n 

                    -~ <x , A*lj;> a~p2 (B<x,11>B*, ... , BCx, ln>B*) • 

Here <x, A*li> stands for the Wiener integral for A*li~H* (so it is defined 

p-almost everywhere). Moreover, by using the Wiener integral, the semigroup 
(5.1) is well-defined for f ~ A. By H -differentiating both hands in (5.1), we have, 

       D(Prf)(x) = e-tA*D f(e-rA,e+~1-e-ZtAy),~(dy) = e-to*PtDf(x) 

B Hence we have the following commutation relation ; 

(5.7) DAPt = e-to*PtDA. 

By differentiating in t, we have 

(5.8) DALA = (LA-A*)DA. 

   Now we can compute F. First note that F is given by 

(5.9) r(f, g) = (/A*Df(x), /A*Dg(x))x*. 

Then, 

   2T2(f, g)(x) 

      = LAF(f, g)(x)-F(LAf, g)(x)-F(f, LAg)(x) 

      = LA(DAJ (x), DAg(x))-(DALAf (x), DAg(x))-(DAf (x), DALAg(x)) 

      = LA(DA! (x), DAg(x))-(L'ADAJ (x), DAg(x))-(DAJ(x), LADAg(x))
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        +(A*DAf (x), DAg(x))H*+(DAf (x), A*DAg(x))H* 

      = 2(DAf (x), DAg(x))H*®H*+2(A*DA f(x), DAg(x))H*. 

Hence we have 

(5.10) I'2(f)(x) = I DAf (x) I x*®H*+(A*DAf (x), DAf (x))H* >_ 0 

because A* is non-negative definite. Thus T 2 is non-negative in this case. 
   Further let iC be a separable real Hilbert space and C be a non-negative 

self-adjoint operator in TC. We consider the following operator L in L2(p)®1C; 

a (5.11) L : = LA-C . 

Then the assumptions of Theorem 4.4 are all satisfied. Hence we have for 

1<P<oo, 

                llullp $ JJG-'u P I ullp, u E A(9C) 
and                  

l Gull p C ilullp, u E A(). 

   EXAMPLE 5.2. Let M be a d-dimensional complete Riemannian manifold. 

We shall consider a diffusion process on M with the Dirichlet form on L2(e-2pdx) 

of the following form. 

(5.12) e(f, g) = 1 (af(x), ag(x))T* Me-2p(x~dx 
                       2M x 

where p is a C°° function on M and dx is the Riemannian volume. We set 

m=e-2pdx for simplicity. We denote the generator by L. Then it is easy to 

see that 

(5.13) L=1-}-b 
where b is a vector field defined by b= -grad p. We assume that the diffusion 
process generated by L is conservative. A sufficient condition is given in $akry 
[5] for example. 

   Moreover we consider a complex vector bundle E with fiber dimension n 
equipped with a Hermitian fiber metric. We assume that a unitary connection 
Q : P(E)-l'(E®T *M) is given where T(E) and I'(E®T *M) denote C°° sections. 
We consider a sesquilinear form q on I'(E) of the form 

(5.14) q(u, v) _ ? (Du(x), av(x))E ®T* Me-2p(x~dx                    2 M x x 

                + 
M((Ux)u(x), v(x))Exe-2p(x'dx for u, v P(E) 

where U e h(Hom(E ; E)) is a potential. First we assume that there exists a 

constant 9 >_ 0 such that
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(M.1) U(x)> -PIE for x E M. 

   Let L is the associated symmetric operator in L2(F(E) ; m) where L2(I'(E); 
m) is a Hilbert space of all square integrable _ sections of E with respect to the 
measure m. We can write L as 

(5.15) L = E+Qb+U 2 

where dE is the covariant Laplacian : 4E=~d 1 QiO~. In this case, the vector 
bundle E is not trivial and so our results are not applicable. Hence we have 
to introduce horizontal lifts. 
   Let O(M) be the orthonormal frame bundle and P be the principal fiber 
bundle associated with E. The structure group of P is U(n), the set of all 
unitary matrices of order n. Since M is a Riemannian manifold, we can in-
troduce the Levi-Civita connection on M which defines a connection form w' 
on O(M). Similarly, covariant derivative 0 on E defines a connection form w" 
on P. Let O(M)+P be the product bundle, i.e., the set of all (r, s)C0(M)XP 
such that 2c(r)=2r(s). Let w be the connection form on O(M)+P defined by 
w=w'+w". So w is a differential form with values in o(d)+u(n) where o(d) 
and u(n) are Lie algebras of O(d) and U(n), respectively. We can regard r~ 
O(M) and sEP as isometric linear mappings in the following way; 

                     r : Rd -~ T n(r)M, s : li n - * En(s) 

Let (Xt, Px)xEM be the diffusion process generated by L. Then the horizontal 
lift of (Xe) is realized as follows. Let L1i ••• , Ld be the system of basic 
horizontal vector fields, i. e., 

             2*(Li(r, s)) = r(b1) E Tn(r)M for i =1, ... , d 

where , od is the canonical basis in Rd. Moreover let Lo be a horizontal 
lift of b. 
   Let us consider the following stochastic differential equation on O(M)+P; 

d 

                dV t = L1(V c)° d wi+ L0(V c)dt 
(5.16) ti=1 

                Vo = (r, s) O(M)+P. 

Here (wt, ..•, wd) is a d-dimensional Brownian motion starting at 0 and stands 

for the Stratonovich symmetric integral. We denote a solution to (5.16) by 

(Vt(r, s)). The generator of (Vt(r, s)) is L=(1/2)~d 1 L~+Lo. Moreover it is 
well-known that (7r(Vr(r, s)) is a diffusion process on M generated by L. 

   We introduce a symmetrizing measure m for (Vt(r, s)) on O(M)+P. Let 
v be a Haar measure on O(d)XU(n) with total mass 1. Then t is given 

locally as
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              m = mXv on ir-1(0) OXO(d)XU(n) 

where 0 is a neighborhood in M. Then m is well-defined since v is invariant 

under the action of 0(d)X U(n). Further m is invariant under the action of 

0(d)XU(n) on 0(M)+P on the right and 2r th=m. 

   For any uEP(Tq(M)®E), we can define a scalarization u : 0(M)+P-~ 

(Rd)p®®(Rd)*q®®Cn as follows 

                     u(r, s) = (r-l®s-1)u(2r(r, s)). 

We use - to denote the scalarization. Fortunately, we do not need to use com-

plex conjugate in the sequel, so there is no fear of confusion. We note that 
u is equivariant, i.e., for gEO(d)XU(n), 

                       u((r, s)g) = g-1u(r, s). 

Here the action of 0(d)XU(n) is extended to (Rd)p®O(Rd)* ®®Cn in natural 

way. 
   We note the following fact; for uEI'(E) 

                                  Qu.i = Liu 

where ;i denotes the i-th component of covariant derivative. Moreover by 

noting that L0=1 L1, we have for uEI'(E), 

(5.17) Lu = - (L+Lo)u i= 1 a2u+biou,i = -aEu+abu .                  2 ~=1 i=1 2 2 

   We shall give the Dirichlet form on L2(t) for the diffusion process (Vt(r, s)). 
To do this, we give another expression of m. Let {Aa} and {AI } belbases of 
o(d) and u(n), respectively. Then we can write 

                           (V = 
                                            a I 

Moreover let 9=(O', • • , 0L) be a canonical 1-form on 0(M)+P defined by 

            8(r,s)(X) = r-' r*X for X E T (r ,s)(0(M)+P). 

Define a volume form by 

             = CBIA ... nednw~ln ... nw~d(d-1)/2n~„ln ,.. n~iin(n+1)/2 

where C is a normalizing constant. It is easy to see that e-2A~I definesra 

measure m. For any X EI'(T(O(M)+P)), we denote the Lie derivative by LX. 

Then by the structure equation (see [13] Theorem III. 2.4), we can see 

                        LL11) =0 for i=1, •.., d. 

Then the Dirichlet from of (Vt(r, s)) is given by
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       j, g) = 1 Li f Ligdm for f, E C~ 0 M +P                2 0(M)+P i=1 g ( ( ) ) 

where C~(0(M)+P) is the set of all C°° functions on 0(M)+P with compact 
support. To see this, we note that for f ~C~(0(M)+P), 

                 f LL(f)=O.                                      ir~0(M)+P 

Hence 

       o= f LL (fg~) 
                   0(M)+P a 

         = (LLif )gi+ f (LLig1))+ f gLL i~                    0(M)+P 0(M)+P 0(M)+P 

which implies 

                    (LLif )g~ = 0(M)+P f (LLig)~ .                       0(M)+P 

Thus, by using Lo=Ed 1biLi=-~a 10L1, we have 

d 

   e(f, g) = 2 0(M)+P Lif Lige_ZP~ 

      - -1 Li(Lif e"2p)g = -1 (Laf -2Li^Lif )ge-2p 
             2 0(M)+P i=1 2 O(M)+P i=1 p 

                                 (Lf )gdm               0(M)+P 2 i=1 0(M)+P 

which means that L is an associated generator. We take C~(0(M)+P) as an 

algebra A. 

   Define L 1         by 

(5.1$) L = 1 J L~+Lo+U,                                  2 i=1 

then, by using (5.17), it is easy to see that for uEP(E), 

(5.19) Lu = Lu. 

Let { Pt } and {P1} be semigroups generated by L and L, respectively. Then 
we have 

(5.20) Pu = Pu . 

Moreover, by the definition of m, the scalarization 

              1,(E) u ~--~ u E T ((0(M)+P)x C n) 

is an isometric linear mapping from Lp(1'(E); m) into Lp(T((0(M)+P)xCn); 
m). Now we can discuss everything on 0(M)+P. But we remark here that
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we treat only equivariant functions on 0(M)+P since our interest is in I'(E). 
So to be precise, we consider the set of all equivariant C n-valued functions in 
place of J(C'1). 
   Let us check assumptions in Theorem 4.4. First of all, let us compute F 

for (Vt(r, s)). For u, i EEF((0(M)+P)X Cn), 

      F(u, v) = 1 {L(u•v)-(Lu)•v-u•(Lv)} 

2 

            ld             = 4 {L2(u.v)-(L2u).v-u.(Liv)} 

            ld             = 4 {(L~u)•v+2Liu • Liv+u.(Liv)--(Liu)•v-u •(Liv)} 

            id             = 2 J Liu.Lii 

which is a well-known result. Here . stands for the Hermitian inner product 
in C'. 

y 

   To compute T2i the commutation relation is fundamental. So we shall 
obtain the explicit form of [L1, L;]. We note that [L1, L;] is vertical since 
the torsion vanishes (see [13] Proposition 111.5.4) and w([L1, L;])=-2Q(Li, L;) 

(see [13] Corollary 11.5.3) where 9 is the curvature form on 0(M)+P. For 
any AEO(d)+u(n), a 1-parameter subgroup {exptA} induces a vector field on 
0(M)+P since O(d)XU(n) acts on 0(M)+P on the right. We denote it by 
A*. Then it holds that [A'*, Li]=~;A''1L; for A'Eo(d), and [A"*, L1]=0 
for A"gu(n) (see [13] Proposition 111.2.3) where A'~1 are components of A'. 
Hence, writing a basis of o(d) and u(n) by {Aa} and {Aj } respectively, we 
have 

           [L1, L,] = -2~Q'a(Li, L;)A« -2~Qh1I(Li, L~)Ac* 
                                       a j 

where Q'a, 9"j are components of curvature forms 9', 9". Hence, by noting 

that Lo=~f 1 biL1, we have 

                     d d     [L,, L,] _ [b1L1, L, = {b1[L1, L,]-(L,bi)L1} 
                            i=1 i=1 

d 
          _ L,]+a2p;i;iLi} 
                      i=1 

d 

         _ f {2Q'a(Li, Li)AY*+a2p;r;iLi} 
                      i=1 a j 

and further
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    [Lti, L,] = LiL;-L;L~ = Lz[L1, L;]+[L1, L;]L, 

           = -2L1(~Q~a(L1, L;)A«Lz 
                               a a 

            -2L1(EQ"'(Lti , L;)A7*)-2~Q1/'(L1 L;)A7*Li 
                         1 1 

           = -2>2(L1Q'"(L1, L;)A« _2EQ'«(L1, L;)LIA« 
                            a a 

                                      L1)[A«, L.] 
                           a a 

             -2
I(L1Q"(L1, L;)A1 *-2~Q'/'(L1, L,)LzAj * 

             -2~Q"(L1 , L1)LzA1 *-2~Q"I(L1i Lj)[A7*, L~] 
                      I 1 

           _ -2 (Lz~~«(L2f L,;))A« _4~Q'a(L1, L;)LIA« 
                           a a 

d             -2± ~ Q,a(Lz, LJ)Al«~Lk-2~(L1Q"(Lti, L;))Ac * 
             _4EQ"(Lti , L;)L1AI* 

1 

           = _2~(LiQ,a(Li, L;)LIA« 
                           a a 

             _2 ~; Q'k~(LZ, L;)Lk-2~(L1Q"(LI! L,))Ai * 
                              k=1 1 

             _4~Q"(L2 f L;)L~A7*. 

1 o(d), A"Eu(n). Moreover 

                   2Q'(L~, L;) = R(TM)11, 

                   2L1Q"(L1, L;) = VR(E)i;;i, 

(see [13] Theorem 111.5.1 and Proposition III.5.2). Here R(TM) and 
curvature tensor of T M and E, respectively. Hence we have 

d 

        [Lo, L;]u = d {2~V p;iQ"(L1, Lj)Ai *u+V 2p;i;;Liu} 

d 

                 = {2V Q"(Li, L;)u+V 2P;t;;Liu} 
                                     i=1 

d 

                  = {VP;~R(E)i;u+V 2P;ti;;Lju} 
                                      i=1 

and 

          L;]u = ~i {-2~(L~Qi1(L1, L;))Ai'u-4EQ"(L1, L,)L1Ayu} 
        ti=1 i=1 1 1 

                            d d 
                 -2 ~ > Q'k1(Lz , L,)Lku 

                                   {=1 k~1

275

Note that A'*u=0 and A"*u=-A"u for a scalarization u of uEI'(E and A'E

R(E) are
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d = ± {-2LiQ"(L1, Lj)u-4Q"(Li, Lj)Liu}-2 ± ±Q"(L1, iL;)Lku 
    i=1 i=1 k=1 

   d d 

= {-VR(E)ij;iu-2R(E)ijLiu}+2 J Sk;Lku 
   1=1 k=1 

= {-VR(E)ij;iu-2R(E)ijLiu+2SijLiu} 
    i=1

where S is the Ricci tensor ;

                      r'2, Now w

        Sij= R(TM)kikj--~R(TM)tkkj. 
                        k=1 k=1 

e can compute 

                           ^ a 

r2(u, v) _ - {LP(u, V)-F((L-U)u, v)-F(u, (L-U))} 2 

     = 1 Lti+Lo (L,u•Lw) 
           2 j=1 2 i=1 

                 Li+Lo-U        _L,((--> u • 
                  2 i=1 

d 

        -L;u•L; Z ± Lz+L0_U v 

     = 1 ~' 1 ~' {L(LJu.LJ)+LOLJu iv• L;v+L;u • LOLjv 
           2 ~=1 2 i=1 

d 

         _L; 2 ± L?u . L11-L,Lou • L,i 

d 

        +(L;U)u• L;v+(ULju)• L;v-L;u• L1(-- Lw 

        -L;u • L ,Lov+L ju •(L;U)v+L;u •(UL;v) 

       id       = 4 {L~(Lju•Ljv)-(L;Liu)•Ljv--L;u•L;Ltiv} 
                         ,,=i 

        id         -}-- {[L0, L,Ju. L;v+L1u' [Lo, L,JV+2(UL;u)• Ljv 
             2 ;=1 

             +(L;U)u • L,i +L ju •(L;U)v} 

      = 1 Z {[Lz, L;Ju•Ljv-FLju.[L, L;Jv+2L1LjuLiLjv} 

4 d 
        +- {[Lo, L;]u • L;v-{-L;u• [L0, L,]v+2(UL;u)• Ljv 

             +(L,U)u • Ljv+L,u •(L;U)v} 

      = 1 {-VR(E)i;.iu • Ljv-2(R(E)i1L1u)• Liv
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                    +2Si;Liu • L;v-L;u •VR(E)i;;iv-2Liu • (R(E)i;Liv) 

                   +2L;u • Si;Liv+2L1L;uL1L;v 

                    +2a p;iR(E)i;u • L;v+2Q2P;i;1Liu • L;v 

                   +2L;u•ap;iR(E)i;v+2L;u•a2p;i;;Liv} 
             ld            + 

Z {2(UL;u)• U)u• U)v} 

            = 1 {-(VR(E)i;.iu)• L w-L ,u•(QR(E)i .iv 

                   -4(R(E)i;Liu)• L;v+4Si;Liu • L;v+2LiL;uL1L;v 

                   +2a p;iR(E)i;u • L;v+2L;u •Q p;iR(E)i;v 

                     +2p2 p;i;;Liu • L;v} 

                + )v}                    1 {2(UL;u)• L;v+(L;U)u • L'v+L;u •(L;U                            2 ;=1 

           l d             = Z 
ill {2(Si;+O2p;i;;)Liu• L;v-2(R(E)i;Liu)• Lw 

d 

                 +LiL;uLtiL;v}+ ± (UL;u)• L;v 

1 

              l d ..~.               + 
2 i, l { 2(OR(E)i;;iu)•L;v 2L;u•(QR(E)i;;iv) 

                     +2a p;iR(E)i;u • L;v+2L;u •Q p;iR(E)i;v} 

            + 1 J {(L;U)u•L;v+L;u•(L;U)v'} .                     2 ;=1 

  For F E P (T 2M) = I'(T *M ®T *M ), we define F # E P (T M ®T *M ) 
F(Hom(TM)) by 

           g(X, F#Y) = F(X, Y) for X, Y I'(TM) 

where g is the Riemannian metric on M. Hence S#, (Q2p)#~f'(Hom(TM)). 

Similarly, we can define R(E)4 EF(Hom(T M®E)). We assume the following 

conditions : there exists a constant c>_O such that 

(M.2) S#®IE+(Q2p)#®IE--R(E)#+ITM®U -CITM®IE 

and 

(M.3) ~iVR(E)i;;i, Q p®R(E) and VU are bounded. 

Then under the conditions (M.1), (M.2) and (M•3) we have
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                                d d 1/2 
    L'2(u) > ---c IVu 2_(2 ( E VR(E)ij,i)2 

                                           j=1 i=1 00 

                 +211ap®R(E)II00+Ilvu 100 lau I I u 

                                d d 2)1/2 
            -C V u l 2- L V R(E)ij ; i 

                                         j=1 i=1 oc 

                +IlaP®R(E)II=+ IlVUIl= (lau 2+ I u12) 2 

                            d d \2)112 
         > -( ,,c+ VR(E)i;;i                                 j=1 i=1 

                 +IIaP®R(E)II00+1IIVUlloor(u) 

2 

                ± VR(E)1j; 2 1/2 +IIVP®R(E)Iloo 1 IIVUllooI u 12. 
                           j=1 i=1 2 

   The above inequality is valid for equivariant C°° sections. By noting the 
hypoellipticity of L, we have that Pzu is equivariant and C°° and hence the 

assumption (A.2) is satisfied. Thus the assumptions of Theorem 4.4 are all 

satisfied. Hence we have estimates (4.9) (4.10) of G-functions for L=L-U-a. 
   By projecting this result to the base manifold M, we have similar estimate 

a of G-functions for L=L-U-a. We sum up in a theorem. 

   THEOREM 5.1. Assume that (M.1), (M.2) and (M.3) hold. Then for a, 7'>0 

such that a>_c+Y+II {~j(~iVR(E)ij;i)2}1/211+IIVP®R(E)lloo+(1/2)IIVUIIoo, a>jS+r, 
we have for 1 < p < co, 

             llu1I IG00ullp~llulp for u~l'~(E) 
and 

           IIGullp (1+- R7 )llullp for u E P(E) 

where K=(II {~j(~iVR(E)ij;i)2}1/21100+11Vp®R(E)ll~+(1/2)IlVUil~)/(a--Q--7) and 
J'G(E) is the set of all C°° sections with compact support.
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