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1. Introduction and main results.

Let $R=(-\infty, \infty),$ $R_{+}=[0, \infty),$ $Z=\{0, \pm 1, \pm 2, \}$ and $Z_{+}=\{0,1, 2, \}$ . A
measure $\mu(dx)$ on $R$ is said to be unimodal with mode $a$ if $\mu(dx)=c\delta_{a}(dx)+$

$f(x)dx$ , where $-\infty<a<\infty,$ $c\geqq 0,$ $\delta_{a}(dx)$ is the delta measure at $a$ and $f(x)$ is
non-decreasing for $x<a$ and non-increasing for $x>a$ . A measure $\mu(dx)=$

$\Sigma_{n\Rightarrow-\infty}^{\infty}P_{n}\delta_{n}(dx)$ on $Z$ is said to be discrete unimodal with mode $a(a\in Z)$ if $p_{n}$

is non-decreasing for $n\leqq a$ and non-increasing for $n\geqq a$ . A probability measure
$\mu(dx)$ is said to be strongly unimodal (resp. discrete strongly unimodal) if, for
every unimodal (resp. discrete unimodal) probability measure $\eta(dx)$ , the con-
volution $\mu*\eta(dx)$ is unimodal (resp. discrete unimodal). Let $X_{t}$ (O:$t $<\infty$ ) be a
L\’evy process (that is, a process with stationary independent increments starting
at the origin) on $R$ or $Z$ with the L\’evy measure $\nu(dx)$ . The process $X_{t}$ on $R$

(resp. on $Z$ ) is said to be unimodal (resp. discrete unimodal) if the distribution
of $X_{t}$ is unimodal (resp. discrete unimodal) for every $t>0$ . The process $X_{t}$ on
$R$ (resp. on $Z_{+}$ ) is said to be of class $L$ (resp. discrete class $L$ ) if the distri-
bution of $X_{t}$ is of class $L$ (resp. discrete class $L$ ). A necessary and sufficient
condition for the process $X_{t}$ on $R$ (resp. on $Z_{+}$ ) to be of class $L$ (resp. discrete
class $L$ ) is that $|x|\nu(dx)$ is unimodal with mode $0$ (resp. discrete unimodal
with mode 1 on $Z_{+}$ ).

The following theorem is our main result.

THEOREM 1.1. Let $X_{t}$ be a Levy proce $ss$ on $Z_{+}$ with the L\’evy measure
$\nu(dx)=\Sigma_{n\Leftarrow 1}^{3}n^{-1}k_{n}\delta_{n}(dx)$ satisfying $0<2k_{1}\leqq 3k_{2}$ . Then $X_{t}$ is discrete unimodal if
and only if
(1.1) $k_{1}\geqq k_{2}$ and $k_{1}k_{3}$ $ $ki-k_{1}k_{2}+k_{2}^{2}$ .

REMARK 1.1. In Theorem 1.1, we can choose $k_{n}(1\leqq n\leqq 3)$ in such a way
that $k_{1},$ $k_{3}<k_{2}$ . In this case, $X_{t}$ is discrete unimodal but not of discrete
class $L$ .

REMARK 1.2. Let $X_{t}^{(1)}$ and $X_{t}^{(2)}$ be independent and discrete unimodal L\’evy
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processes in Theorem 1.1 such that $k_{1}^{(1)}=k_{2}^{(1)}=k_{3}^{(1)}=1$ and $k_{1}^{(2)}=1,$ $k_{2}^{(2)}=2/3$ ,
$k_{3}^{(2)}=7/9$ . Then $X_{t}=X_{t}^{(1)}+X_{t}^{(2)}$ satisfies the conditions $3k_{2}\geqq 2k_{1}$ and $k_{1}\geqq k_{2}$ but
does not satisfy the condition $k_{1}k_{3}\leqq k_{1}^{2}-k_{1}k_{2}+k_{2}^{2}$ . Hence $X_{t}$ is not discrete uni-
modal.

Many results on the unimodality of L\’evy processes are obtained by
Medgyessy [6], Sato $[7, 8]$ , Sato-Yamazato [9], Steutel-van Harn [11], Wata-
nabe $[12, 13]$ , Wolfe $[14, 15]$ , and Yamazato $[16, 17]$ . But a necessary and
sufficient condition for the unimodality of L\’evy processes in terms of their
L\’evy measures is not known. Among these works, main related results are
the following. Wolfe [15] proves that if a L\’evy process on $R$ (resp. on $Z$ ) is
unimodal (resp. discrete unimodal), then the L\’evy measure $\nu(dx)$ (resp. $\nu(dx)+$

$c\delta_{0}(dx)$ for some $c>0$ ) is unimodal (resp. discrete unimodal) with mode $0$ , and
that the converse does not hold. As a big advancement, Yamazato [16] shows
that L\’evy processes of class $L$ are unimodal. Steutel-van Harn [11] proves
the discrete unimodality of L\’evy processes of discrete class $L$ on $Z_{+}$ . Wata-
nabe [12] constructs unimodal L\’evy processes on $R_{+}$ and $R$ that are not of
class $L$ . Sato [8] proves that the mode $a(t)$ of the distribution of any unimodal
L\’evy process $X_{t}$ on $R_{+}$ is non-decreasing for $t>0$ .

Existence of a unimodal L\’evy process on $Z_{+}$ which is not of class $L$

(Remark 1.1) is a discrete version of a result of Watanabe [12]. But our
method of the proof is different from the continuous case. In order to prove
Theorem 1.1, we give a necessary and sufficient condition for L\’evy processes
on $Z_{+}$ , to be discrete unimodal in terms of a zero of the polynomial $Q_{n}(t)$ , de-
fined in (2.3), in Section 2. A discrete analogue of Sato’s result [8] plays an
essential role in the proof. General results on discrete unimodality and discrete
strong unimodality given in Section 2 will be of interest in themselves. In
Section 3, we prove Theorem 1.1. In Section 4, we apply our results in Sec-
tion 2 to unimodal L\’evy processes on $R_{+}$ , and give a necessary and sufficient
condition for the unimodality of L\’evy processes on $R_{+}$ .

2. Discrete unimodal L\’evy processes on $Z_{+}$ .
In thls section, let $X_{t}$ be a L\’evy process on $Z_{+}$ , not identically zero. Then

we have

$E\exp(izX_{t})=\exp(t\psi(z))$ ,
(2.1)

$\psi(z)=\sum_{n=1}^{\infty}(e^{izn}-1)n^{-1}k_{n}$ ,

with the L\’evy measure $\nu(dx)=\Sigma_{n=1}^{\infty}n^{-1}k_{n}\delta_{n}(dx)$ satisfying $\Sigma_{=1}^{\infty}n^{-1}k_{n}<\infty$ . Let
$\mu_{t}(dx)=\Sigma_{n=0}^{\infty}p_{n}(t)\delta_{n}(dx)$ be the distribution of $X_{t}$ . Then we have a relation by
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Katti [4] or Steutel [10]:

(2.2) $nP_{n}(t)=t \sum_{j=1}^{n}k{}_{j}P_{n-j}(t)$

for $n\geqq 1$ , where $P_{n}(t)=p_{n}(t)/p_{0}(t)$ for $n\geqq 0$ . Define $P_{-1}(t)=0$ and $Q_{n}(t)=P_{n}(t)$

$-P_{n-1}(t)$ for $n\geqq 0$ . Then we obtain from (2.2) that

(2.3) $nQ_{n}(t)= \sum_{j=1}^{n}(tk_{j}-1)Q_{n-j}(t)$

for $n\geqq 1$ . From (2.2) and (2.3), we find that if $k_{1}>0$ , then $P_{n}(t)$ and $Q_{n}(t)$ are
polynomials of degree $n$ and the highest coefficients are positive. Also the
equation (2.2) implies that if $k_{1}=0$ , then $P_{1}(t)=0$ for every $t>0$ and hence $X_{t}$ is
not discrete unimodal. Therefore we assume, from now on, that $k_{1}>0$ .

LEMMA 2.1. If $X_{t}$ is discrete unimodal, then, for every $n\geqq 1$ , there exists
$t_{n}>0$ such that $Q_{n}(t)<0$ for $0<t<t_{n}$ .

PROOF. Suppose that $X_{t}$ is discrete unimodal. We have by (2.3)

(2.4) $Q_{1}(t)=(k_{1}t-1)Q_{0}(t)=k_{1}t-1<0$

for $0<t<k_{1}^{-1}$ . Hence $0$ is the unique mode of $\mu_{t}(dx)$ for $0<t<k_{1}^{-1}$ . It follows
that $Q_{n}(t)\leqq 0$ for all $n\geqq 1$ and for $0<t<k_{1}^{-1}$ . Since $Q_{n}(t)$ is a polynomial, it
has only a finite number of zeros. Therefore there exists $r_{n}>0$ such that $0<t_{n}$

$\leqq k_{1}^{-1}$ and $Q_{n}(t)<0$ for $0<t<t_{n}$ .

LEMMA 2.2. Let $T\geqq 0$ . If $\mu_{t}(dx)$ is discrete unimodal for $t>T$, then the
largest mode $a(t)$ of $\mu_{t}(dx)$ is non-decreasing for $t>T$.

REMARK 2.1. If a distribution is unimodal, then either its mode is unique
or the set of its modes is a closed interval. We mean by the largest mode the
largest one in the set of modes of a distribution. This lemma is a discrete
analogue of Theorem 2.1 of Sato [8].

PROOF. Suppose that $\mu_{t}(dx)$ is discrete unimodal for $t>T$. We have

(2.5) $P_{a(t)}(t+s)= \sum_{j=0}^{a(t)}P_{a(t)-j}(t)p_{J}(s)$

and

$P_{a(t)-1}(t+s)= \sum_{j\Rightarrow 0}^{a(t)-1}P_{a(t)-j-1}(t)p_{f}(s)$

for $s>0$ and for $t>T$. Hence we get

(2.6) $Qa(t)(t+s)=P_{0}(t)p \alpha(t)(s)+\sum_{j=0}^{a(t)- 1}Qa(t)- j(t)p_{j}(s)>0$
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for $s>0$ and for $t>T$, noting that $Q_{a(t)-j}(t)\geqq 0$ for $0\leqq_{J}\leqq a(t)-1$ . We obtain
from (2.6) that $a(t)\leqq a(t+s)$ for $s>0$ and for $t>T$. This proves Lemma 2.2.

THEOREM 2.1. A process $X_{t}$ is discrete unimodal if and only if $Q_{n}(t)$ has a
unique $pos$ tive zero $\alpha_{n}$ of odd order for every $n\geqq 1$ and $\alpha_{n}$ is non-decreasing
in $n$ .

PROOF OF THE IF PART OF THEOREM 2.1. The pOlynOmial $Q_{n}(t)$ iS nOn-

positive for $0\leqq t\leqq\alpha_{n}$ and non-negative for $t\geqq\alpha_{n}$ . It follows from (2.4) that
$\alpha_{1}=k_{1}^{-1}$ . Since $\alpha_{n}$ is non-decreasing, $Q_{n}(t)\leqq 0$ for all $n\geqq 1$ and for $0<t<k_{1}^{-1}$ .
Hence $\mu_{t}(dx)$ is discrete unimodal with mode $0$ for $0<t<\alpha_{1}$ . For $\alpha_{n}\leqq t\leqq\alpha_{n+1}$ ,

we have $Q_{j}(t)\geqq 0$ for $1\leqq j\leqq n$ and $Q_{j}(t)\leqq 0$ for $j\geqq n+1$ . Tberefore, $\mu_{t}(dx)$ is
discrete unimodal with mode $n$ when $\alpha_{n}\leqq t\leqq\alpha_{n+1}$ . We shall prove that $T=$

$\sup_{n\geqq 1}\alpha_{n}=\infty$ , which will complete the proof of the “if” part. Suppose that
$T<\infty$ . Then we get $Q_{n}(t)\geqq 0$ for $t>T$ and for all $n\geqq 1$ . But this implies that
$\Sigma_{n}^{\infty}{}_{=0}P_{n}(t)=\infty$ for $t>T$. This is a contradiction.

PROOF OF THE ONLY IF PART OF THEOREM 2.1. Suppose that $X_{t}$ is dis-
crete unimodal. We find from Lemma 2.1 and from $Q_{n}(t)arrow\infty$ as $tarrow\infty$ that
$Q_{n}(t)$ has at least one positive zero of odd order. Suppose that $Q_{n}(t)$ has dis-
tinct positive zeros of odd orders. Let $\beta_{n}$ and $\gamma_{n}$ be, respectively, the smallest
and the largest such zero. Then we can choose $\epsilon>0$ such that $Q_{n}(\beta_{n}+\epsilon)>0$ ,
$Q_{n}(\gamma_{n}-\epsilon)<0$ and $\beta_{n}+\epsilon<\gamma_{n}-\epsilon$ . But this contradicts Lemma 2.2. Hence $Q_{n}(t)$

has a unique positive zero of odd order. Suppose that $\alpha_{m}>\alpha_{m+1}$ for some $m\geqq 1$ .
Tben we can find $\epsilon>0$ such that $Q_{m+1}(\alpha_{m+1}+\epsilon)>0,$ $Q_{m}(\alpha_{m}-\epsilon)<0$ and $\alpha_{m+1}+\epsilon$

$<\alpha_{m}-\epsilon$ . But this contradicts Lemma 2.2. Therefore, $\alpha_{n}$ is non-decreasing in
$n\geqq 1$ . The proof is complete.

COROLLARY 2.1. If $X_{t}$ is discrete unimodal, then (1.1) holds.

PROOF. The polynomial $Q_{1}(t)$ has a unique positive zero $\alpha_{1}=k_{1}^{-1}$ . We ob-
tain from (2.3) that

(2.7) $2Q_{2}(t)=k_{1}^{2}t^{2}+(k_{2}-2k_{1})t$

and

(2.8) $6Q_{3}(t)=k_{1}^{3}t^{3}+3(k_{2}-k_{1})k_{1}t^{2}+(2k_{3}-3k_{2})t$ .

Hence $Q_{2}(t)$ has a unique positive zero $\alpha_{2}=-k_{1}^{-2}k_{2}+2k_{1}^{-1}$ , if $2k_{1}>k_{2}$ . The in-
equality $\alpha_{1}\leqq\alpha_{2}$ holds if and only if $k_{1}\geqq k_{2}$ . From (2.8), $Q_{3}(t)$ has a unique
positive zero $\alpha_{3}$ if and only if either $2k_{3}=3k_{2}$ and $k_{1}>k_{2}$ or $2k_{3}<3h_{2}$ . And $\alpha_{3}$

is given by

(2.9) $\alpha_{3}=2^{-1}k_{1}^{-2}[3(k_{1}-k_{2})+\{9(k_{1}-k_{2})^{2}-4k_{1}(2k_{3}-3k_{2})\}^{1/2}]$ .
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The inequality $\alpha_{2}\leqq\alpha_{3}$ holds if and only if $k_{1}k_{3}\leqq k_{1}^{2}-k_{1}k_{2}+k_{2}^{2}$ . Hence (1.1)

holds by Theorem 2.1.

COROLLARY 2.2. Suppose that $\lambda(dx)=\Sigma_{n\approx 0}^{\infty}k_{n+1}\delta_{n}(dx)$ is discrete unimodal.
Then $X_{t}$ is discrete ummodal if and only if $X_{t}$ is of discrete class $L$ , that is,
$k_{n}$ is non-increasing for $n\geqq 1$ .

PROOF. If $X_{t}$ is of discrete class $L$ on $Z_{+}$ , then $X_{t}$ is discrete unimodal
by Steutel-van Harn [11]. Conversely, suppose that $X_{t}$ and $\lambda(dx)$ are discrete
unimodal on $Z_{+}$ . From Corollary 2.1, the inequality $k_{1}\geqq k_{2}$ holds. Hence there
are two cases.

Case 1. $k_{1}>k_{2}$ or $k_{1}=k_{2}=\ldots=k_{m}>k_{m+1}$ for some $m\geqq 2$ . Then, since $\lambda(dx)$

is discrete unimodal, $k_{n}$ is non-increasing for $n\geqq 1$ .
Case 2. $k_{1}=k_{2}=$ $=k_{m}<k_{m+1}$ for some $m\geqq 2$ . We shall show that absur-

dity occurs in this case. We obtain from (2.2) that

$(m+1)Q_{m+1}(t)=(k_{1}t-1)P_{m}(t)+t \sum_{j=1}^{m}(k_{j+1}-k_{j})P_{m-j}(t)$

(2.10)

$=(k_{1}t-1)P_{m}(i)+(k_{m+1}-k_{m})t$ .
Letting $t=\alpha_{1}=k_{1}^{-1}$ , we get

(2.11) $(m+1)Q_{m+1}(\alpha_{1})=(k_{m+1}-k_{m})\alpha_{1}>0$ .
But this contradicts $\alpha_{1}\leqq\alpha_{m+1}$ . This proves Corollary 2.2.

We can prove the following theorem by argument similar to Theorem 2.1.

THEOREM 2.2. Fix $T>0$ . The distribution $\mu_{t}(dx)$ is discrete unimodal for
every $t>T$ if and only if there exists an integer $A\geqq 0$ such that, for $1\leqq n\leqq A$ ,
$Q_{n}(t)$ has no zero of odd order on $(T, \infty)$ and, for $n\geqq A+1,$ $Q_{n}(t)$ has a unique
zero $\beta_{n}$ of odd order on $(T, \infty)$ and $\beta_{n}$ is non-decreasing in $n\geqq A+1$ .

PROOF OF THE IF PART OF THEOREM 2.2. FOr l;;Sn;$A, the polynomial
$Q_{n}(t)$ is non-negative for $t>T$. For every $n\geqq A+1,$ $Q_{n}(t)$ is non-positive for
$T<t\leqq\beta_{n}$ and non-negative for $t\geqq\beta_{n}$ . It follows that $Q_{n}(t)\leqq 0$ for every $n\geqq A+1$

and for $T<t<\beta_{A+1}$ . Hence $\mu_{t}(dx)$ is discrete unimodal with mode $A$ for
$T<t<\beta_{A+1}$ . By argument similar to Theorem 2.1, we can show that $\mu_{t}(dx)$ is
discrete unimodal with mode $n$ when $\beta_{n}\leqq t\leqq\beta_{n+1}(n\geqq A+1)$ . Also we can
prove that $\sup_{n\geqq A+1}\beta_{n}=\infty$ , which completes the proof of the “if” part.

PROOF OF THE “ONLY IF PART OF THEOREM 2.2. SuppOse that $\mu_{t}(dx)$ iS
discrete unimodal for every $t>T$. Then $\mu_{T}(dx)$ is discrete unimodal, because
$\mu_{t}(dx)$ converges weakly to $\mu_{T}(dx)$ as $tarrow T$. Let $A$ be the largest mode of
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$\mu_{T}(dx)$ . We prove that, for $1\leqq n\leqq A,$ $Q_{n}(t)$ does not have a zero $\beta_{n}$ of odd
order satisfying $\beta_{n}>T$. In fact, if such a zero $\beta_{m}$ exists for some $m(1\leqq m\leqq A)$ ,
then we can find $\epsilon>0$ such that $\beta_{m}-\epsilon>T$ and $Q_{m}(\beta_{m}-\epsilon)<0$ . But this con-
tradicts Lemma 2.2. Next we show that, for every $n\geqq A+1$ , there exists $t_{n}>T$

such that $Q_{n}(t)<0$ for $T<t<t_{n}$ . Suppose that, for some $m\geqq A+1$ , there exists
a sequence $s_{n}$ such that $T<s_{n}$ , $Q_{m}(s_{n})\geqq 0$ and $s_{n}arrow T$ as $narrow\infty$ . Since $Q_{m}(t)$

has only a finite number of zeros, we can assume $Q_{m}(s_{n})>0$ . This implies that
$m\leqq a_{n}$ , where $a_{n}$ is a mode of $\mu_{s_{n}}(dx)$ . Because $a_{n}$ converges to a mode $a$ of
$\mu_{T}(dx)$ as $narrow\infty$ , we have $A+1\leqq m;$ $a\leqq A$ , which is a contradiction. It follows
from this and from $Q_{n}(t)arrow\infty$ as $tarrow\infty$ that, for every $n\geqq A+1,$ $Q_{n}(t)$ has at
least one zero $\beta_{n}$ of odd order satisfying $\beta_{n}>T$. By argument similar to
Theorem 2.1, we can prove that such a zero $\beta_{n}$ is unique and non-decreasing
in $n\geqq A+1$ . Thus we have proved Theorem 2.2.

We consider the following condltion. Let $N$ be a positive integer.

(H) $k_{n}>0$ for $1\leqq n\leqq N$ and $k_{n}=0$ for $n$ ;.}-: $N+1$ .

LEMMA 2.3. (Hansen [2]) Suppose that $k_{n}^{2}\geqq k_{n+1}k_{n-1}$ for all $n\geqq 2$ . Then
$\mu_{t}(dx)$ is discrete strongly unimodal if and only if $r\geqq k_{1}^{-2}k_{2}$ .

LEMMA 2.4. Suppose that $X_{t}$ satisfies the condition (H). Then there exists
TIIIO such that $\mu_{t}(dx)$ is discrete strongly unimodal for every $t\geqq T$.

The smallest $T$ satisfying the above condition is denoted by $T_{N}$ . This $T_{N}$

depends not only on $N$ but also on $k_{n}$ (l\leqq n$N) in general.

PROOF OF LEMMA 2.4. We shall prove by induction in $N$.
(i) Suppose that $N=1$ . Then $\mu_{t}(dx)$ is a Poisson distribution and hence

discrete strongly unimodal by Keilson-Gerber [5]. This means $T_{1}=0$ . (In case
$N=2$ , the assertion is a direct consequence of Lemma 2.3. Thus $T_{2}=k_{1}^{-2}k_{2}.$ )

(ii) Assume that Lemma 2.4 is true when $N=$ ]. Consider the case $N=$ ] $+1$ .
We can choose $k_{n}^{(1)}$ such that $(k_{n}^{(1)})^{2}\geqq k_{n+1}^{(1)}k_{n-1}^{(1)}$ for 2Sn$i, $k_{n}^{(1)}<k_{n}$ for $1\leqq n\leqq j$

and $k_{n}^{(1)}=k_{n}$ for $n\geqq_{J}+1$ . Let $k_{n}^{(2)}=k_{n}-k_{n}^{(1)}$ . Then we have $\mu_{t}(dx)=\mu_{t}^{(1)}*\mu_{t}^{(2)}(dx)$ ,

where $\mu_{t}^{(i)}(dx)(i=1,2)$ is the distribution of the process $X_{t}^{(i)}$ whose L\’evy

measure is given by $\nu^{(i)}(dx)=\Sigma_{n=1}^{\infty}n^{-1}k_{n}^{(t)}\delta_{n}(dx)$ . The distribution $\mu_{t}^{(2)}(dx)$ is
discrete strongly unimodal for $t\geqq T_{j}$ by the assumption. And, by Lemma 2.3,
$\mu_{t}^{(1)}(dx)$ is discrete strongly unimodal for $t\geqq(k_{1}^{(1)})^{-2}k_{2}^{(1)}=T$. Hence $\mu_{t}(dx)$ is
discrete strongly unimodal for tlli; $T’= \max(T, T_{j})$ .

Let us denote by $[x]$ the largest integer not exceeding $x$ .

THEOREM 2.3. Suppose that $X_{t}$ satisfies the condition (H). Then $X_{t}$ is dis-
crete unimodal if and only if $Q_{n}(t)$ has a unique Positive zero $\alpha_{n}$ of odd order

for 1Sn$M+N and $\alpha_{n}$ is non-decreasing in 1S $n\leqq M$, where $M=[T_{N}\Sigma_{j\Rightarrow 1}^{N}k_{j}]$ .
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Proof of the “only if” part of Theorem 2.3 is trivial by Theorem 2.1.

PROOF OF THE “IF” PART OF THEOREM 2.3. Suppose that $Q_{n}(t)$ has $\alpha_{n}$ for
1Sn$M+N and $\alpha_{n}$ is non-decreasing in 1S $n\leqq M$ . We shall prove that

(2.12) $\alpha_{M}\leqq T_{N}<\alpha_{M+1}$ or $T_{N}<\alpha_{M}$ .
Suppose that $T_{N}\geqq\alpha_{M}$ . Then we have $Q_{j}(T_{N})\geqq 0$ for $1; J\leqq M$. Hence we

get $P_{j}(T_{N})\leqq P_{M}(T_{N})$ for $0\leqq$ ];$M. We obtain from (2.2) that

$(M+1)P_{M+1}(T_{N})=T_{N} \sum_{j=1}^{N}k{}_{j}P_{M-j+1}(T_{N})$

(2.13)

$\leqq P_{M}(T_{N})T_{N}\sum_{j=1}^{N}k_{j}<(M+1)P_{M}(T_{N})$ .

Hence we have $Q_{M+1}(T_{N})<0$ and $T_{N}<\alpha_{M+1}$ . Thus we have proved (2.12). Re-
calling Lemma 2.4, (2.12), and the proof of the “only if” part of Theorem 2.2,
we find that there exists a non-negative integer $A\leqq M(A=M$ if $\alpha_{M}\leqq T_{N}<\alpha_{M+1}$

and $A\leqq M-1$ if $T_{N}<\alpha_{M}$ ) such that, for every $n\geqq A+1,$ $Q_{n}(t)$ has a unique
zero $\beta_{n}$ of odd order satisfying $\beta_{n}>T_{N}$ and $\beta_{n}$ is non-decreasing in $n\geqq A+1$ .
This implies that $\alpha_{n}$ is non-decreasing in $1\leqq n\leqq M+N$ and that

(2.14) $T_{N}<\alpha_{M+1}\leqq\cdots\leqq\alpha_{M+N}\leqq\beta_{M+N+1}\leqq\beta_{M+N+2}\leqq\ldots$

noting tbat $\alpha_{n}=\beta_{n}$ for A+lSn$M+N. From (2.14), there exists $\epsilon>0$ such
that $Q_{M+J}(t)\leqq 0$ for $1\leqq j\leqq N$ and for $0<t<T_{N}+\epsilon$ . Therefore we have by (2.3)

(2.15) $(M+N+1)Q_{M+N+1}(t)=r_{!=1}^{N}k_{j}Q_{M+N+1-j}\langle t)-P_{M+N}(t)<0$

for $0<t<T_{N}+\epsilon$ . By induction in $i$ , we get $Q_{M+N+j}(t)<0$ for $0<t<T_{N}+\epsilon$ and
for all $j\geqq 1$ . Hence the unique zero $\beta_{n}$ of odd order satisfying $\beta_{n}>T_{N}$ is a
unique positive zero of odd order for every $n\geqq M+N+1$ . It follows from (2.14)

that $Q_{n}(t)$ has a unique positive zero $\alpha_{n}$ of odd order for every $n\geqq 1$ and $\alpha_{n}$ is
non-decreasing in $n\geqq 1$ . Therefore, $X_{t}$ is discrete unimodal by Theorem 2.1.
The proof of Theorem 2.3 is complete.

REMARK 2.2. Suppose that $X_{t}$ satisfies the condition (H) with $N=2$ . Then
$X_{t}$ is discrete unimodal if and only if $k_{1}\geqq k_{2}$ .

PROOF. The “only if” part of the proof is clear from Corollary 2.1. Con-
versely, if $k_{1}\geqq k_{2}$ , then $X_{t}$ is of discrete class $L$ and, by Steutel-van Harn [11],

discrete unimodal.
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3. Proof of Theorem 1.1.

In this section, we prove Theorem 1.1, by using Corollary 2.1, Theorem
2.3, and the following lemma.

LEMMA 3.1. Let $A_{n}(t)=\Sigma_{j=0}^{n}a_{j}t^{j}$ be a polynomial of degree $n(n\geqq 1),$ SuP-
pose that there exists an integer $m(0\leqq m\leqq n-1)$ such that $a_{j}\leqq 0$ for $0\leqq j\leqq m-1$ ,
$a_{m}<0,$ $a_{j}\geqq 0$ for $m+1\leqq j\leqq n-1$ , and $a_{n}>0$ . Then $A_{n}(t)$ has a unique positive
zero, which is of order one.

PROOF. We shall prove by induction in $m$ .
(i) Suppose that $m=0$ . Then the derivative $A_{n}(t)>0$ for each $t>0$ and

$A_{n}(0)=a_{0}<0$ . Hence, for every $n\geqq 1,$ $A_{n}(t)$ has a unique positive zero, which
is of order one.

(ii) Assume that, for every $n\geqq 1$ , Lemma 3.1 is true when $m=j(0\leqq j\leqq n-1)$ .
Consider the case $m=j+1$ . Since the derivative $A_{n}’(t)$ satisfies the conditions
of Lemma 3.1 with $m=j$ , it has a unique positive zero $\theta$ , which is of order
one by the assumption. Hence $A_{n}’(t)<0$ for $0<t<\theta,$ $A_{n}’(\theta)=0$ , and $A_{n}’(t)>0$ for
$t>\theta$ . Because $A_{n}(0)=a_{0}\leqq 0,$ $A_{n}(t)$ has a unique positive zero, which is of order
one.

Proof of the “only if” part of Theorem 1.1 is clear from Corollary 2.1.
Conversely, suppose that $0<2k_{1}\leqq 3k_{2}$ and (1.1) hold. If $k_{2}\geqq k_{3}$ , then $X_{t}$ is

of discrete class $L$ and, by Steutel-van Harn [11], discrete unimodal. There-
fore we can assume $k_{2}<k_{3}$ . Then we have $T_{3}\leqq k_{2}^{-3}k_{3}^{2}$ (see the proof of Lemma
2.4). Let $a=k_{1}^{-1}k_{2},$ $b=k_{1}^{-1}k_{3}$ , and $c=k_{2}^{-1}k_{3}$ . Then we obtain from (1.1), $2k_{1}\leqq 3k_{2}$ ,
and $k_{2}<k_{3}$ that

(3.1) $2/3\leqq a<b\leqq a^{2}-a+1$ $ 1, $c\leqq a+a^{-1}-1\leqq 7/6$ .
Hence we have

(3.2) $M=[T_{3}(k_{1}+k_{2}+k_{3})]$ $ $[c^{2}(a^{-1}+1+c)]\leqq[539/108]=4$ .
From (3.2) and Theorem 2.3, we have only to prove the unique existence of $\alpha_{n}$

for $1\leqq n\leqq 7$ and the inequality $\alpha_{1}\leqq\alpha_{2}\leqq\alpha_{3}\leqq\alpha_{4}$ . Define $A_{n}(t)=n!Q_{n}(k_{1}^{-1}t)=$

$\Sigma_{j=0}^{n}a_{nj}t^{j}$ for $n\geqq 1$ . Then we get by (2.3) that

(3.3) $A_{1}(t)=t-1$ ,

$A_{2}(t)=t^{2}+(a-2)t$ ,

$A_{3}(t)=t^{3}+(3a-3)t^{2}+(2b-3a)t$ ,

$A_{4}(t)=t^{4}+(6a-4)t^{3}+(3a^{2}-12a+8b)t^{2}-8bt$ ,

$A_{5}(t)=t^{\overline{o}}+(10a-5)t’+(15a^{2}-30a+20b)t^{3}+(-15a^{2}+20ab-40b)t^{2}$ ,
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$A_{6}(t)=t^{6}+(15a-6)t^{5}+(45a^{2}-60a+40b)t^{4}$

$+$ ( $15a^{3}-90$ a $+120ab-120b$ )$t^{3}+(40b^{2}-120ab)t^{2}$ ,
and

$A_{7}(t)=t^{7}+(21a-7)t^{6}+$ ( $105$a–105$a+70b$ ) $t^{6}$

$+(105a^{3}-315a^{2}+420ab-280b)t^{4}$

$+(-105a^{3}+210a^{2}b-840ab+280b^{2})t^{3}-280b^{2}t^{2}$ .

Hence we obtain from (3.1) and (3.3) that $a_{nn}=1$ for all $n\geqq 1$ and $a_{10}<0,$ $a_{20}=0$ ,
$a_{21}<0,$ $a_{30}=0,$ $a_{31}<0,$ $a_{32}<0,$ $a_{40}=0,$ $a_{41}<0,$ $a_{42}<0,$ $a_{43}\geqq 0,$ $a_{50}=a_{51}=0$ , $a_{52}<0$ ,
$a_{53}>0$ , $a_{54}>0$ , $a_{60}=a_{61}=0$ , $a_{62}<0$ , $a_{63}<0$ , $a_{64}>0$ , $a_{65}>0,$ $a_{70}=a_{71}=0,$ $a_{72}<0$ ,
$a_{73}<0,$ $a_{74}<0,$ $a_{75}>0$ , and $a_{76}>0$ . Thus $A_{n}(t)$ satisfies the condition in Lemma
3.1 and hence, for $1\leqq n\leqq 7$ , $Q_{n}(t)$ has a unique positive zero $\alpha_{n}$ , which is of
order one. The proof of Corollary 2.1 shows that $\alpha_{1}\leqq\alpha_{2}\leqq\alpha_{3}$ . We shall show
that $\alpha_{3}\leqq\alpha_{4}$ , which will complete the proof of Theorem 1.1. We have

(3.4) $24Q_{4}(k_{T^{1}}t)=(t+3a-1)6Q_{3}(k_{1}^{-1}t)+3B(t)$ ,

where $B(t)=(-2a^{2}+a+2b-1)t^{2}+(3a^{2}-2ab-a-2b)t$ . Hence the inequality $\alpha_{3}\leqq\alpha_{4}$

is equivalent to

(3.5) $B(k_{1}\alpha_{3})\leqq 0$ .
Since $0<-2a^{2}+a+2b-1\leqq 1-a$ and $-3a^{2}+2ab+a+2b>-a^{2}+3a$ by (3.1), it is
sufficient for (3.5) that

(3.6) $k_{1}\alpha_{3}$ $ $(1-a)^{-1}(3a-a^{2})$ .

We obtain from (2.9) and (3.1) that

$k_{1}\alpha_{3}=2^{-I}(3(1-a)+\{9(1-a)^{2}+4(3a-2b)\}^{1/2})$

(3.7)
$<3(1-a)+1\leqq 2$ $ $(1-a)^{-1}(3a-a^{2})$ ,

which implies (3.6) and hence $\alpha_{3}\leqq\alpha_{4}$ . Thus the proof is complete.

4. Application to L\’evy processes on $R_{+}$ .
Let $\mu(dx)$ be a measure on $R_{+}$ for which the Laplace transform $L\mu(s)=$

$\int_{0}^{\infty}e^{-sx}\mu(dx)$ exists for $s>0$ . For $s>0$ , define the measure $\eta^{(s)}(tt, dx)$ on $Z_{\neq}$ by

(4.1) $\eta^{(}(\mu, dx)=\sum_{n=0}^{\infty}p_{n}^{(s)}(\mu)\delta_{n}(dx)$ ,

where

$p_{n}^{(s)}( \mu)=(n!)^{-1}\int_{0}^{\infty}e^{-sx}(sx)^{n}\mu(dx)$ .
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Note that if $\mu(dx)$ is a probability measure on $R_{+}$ , then $\eta^{(s)}(\mu, dx)$ is a pro-
bability measure on $Z_{+}$ for every $s>0$ .

In this section, let $X_{t}$ be a non-deterministic L\’evy process on $R_{+}$ without
drift and let $\mu_{t}(dx)$ be the distribution of $X_{t}$ . Then we have

$\int_{0}^{\infty}e^{izx}\mu_{t}(dx)=e^{t\psi(z)}$ ,

(4.2)
$\psi(z)=\int_{0}^{\infty}(e^{izx}-1)\nu(dx)$

with $\nu(\{0\})=0$ and $\int_{0}^{\infty}x(1+x)^{-1}\nu(dx)<\infty$ ,

By argument in the proof of Forst’s theorem [1], we find that $\eta_{\iota^{(s)}}(dx)=$

$\eta^{(S)}(\mu_{t}, dx)$ is the distribution of a L\’evy process $Y_{\iota^{(S)}}$ on $Z_{+}$ , whose L\’evy meas-
ure is given by

(4.3) $\nu^{(s)}(dx)=\sum_{n=1}^{\infty}p_{n}^{(s)}(\nu)\delta_{n}(dx)$ ,

where $p_{n}^{(s)}( \nu)=(n!)^{-1}\int_{0}^{\infty}e^{-Sx}(sx)^{n}\nu(dx)$ for $n\geqq 1$ .
A measure $\mu(dx)$ on $R$ (resp. on $Z$ ) is said to be unimodal (resp. discrete

unimodal) with mode $\infty$ if $\mu(dx)=f(x)dx$ (resp. $\mu(dx)=\Sigma_{n=-\infty}^{\infty}p_{n}\delta_{n}(dx)$), where
$f(x)$ (resp. $p_{n}$ ) is non-decreasing for $-\infty<x<\infty$ (resp. $-\infty<n<\infty$ ). In the
following lemma, $\mu(dx)$ and $\eta^{(S)}(\mu, dx)$ may have the mode $\infty$ .

LEMMA 4.1. Let $\mu(dx)$ be a measure on $R_{+}$ for which the Laplace trans-
form $L\mu(s)$ exists for $s>0$ . Then $\mu(dx)$ is unimodal on $R_{+}$ if and only if
$\eta^{(S)}(\mu, dx)$ is discrete unimodal on $Z_{+}$ for every $s>0$ .

PROOF. Suppose that $\mu(dx)$ is unimodal with mode $a$ . If $a<\infty$ , then we
can write $\mu(dx)=c\delta_{a}(dx)+f(x)dx$ , where $c\geqq 0$ and $f(x)$ is non-decreasing for
$0<x<a$ and non-increasing for $x>a$ . If $a=\infty$ , then we can write $\mu(dx)=$

$f(x)dx$ with non-decreasing $f(x)$ .
Suppose first that $c=0$ and $\mu(dx)$ is a finite measure. Then we can prove

that $\eta^{(s)}(\mu, dx)$ is discrete unimodal on $Z_{+}$ for every $s>0$ . In fact, by Holgate
[3], $\eta^{(1)}(\mu, dx)$ is discrete unimodal. For $s\neq 1$ , define $\mu_{s}(dx)=s^{-1}f(s^{-1}x)dx$ .
Then $\eta^{(S)}(\mu, dx)=\eta^{(1)}(\mu_{s}, dx)$ is discrete unimodal.

Secondly suppose that $c>0$ or $\mu(dx)$ is a infinite measure. Then we can
make a sequence $\mu_{n}(dx)$ of measures on $R_{+}$ such that if $a<\infty,$ $\mu_{n}(dx)=$

$(cnI_{Ia.a+n^{-1\ddagger}}(x)+I_{[0.a+n]}(x)f(x))dx$ and if $a=\infty,$ $\mu_{n}(dx)=I[0.n](x)f(x)dx$ , where
$I_{E}(x)$ is the indicator function of the interval $E$ . The finite measure $\mu_{n}(dx)$ is
unimodal and does not have a point mass. Since $\eta^{(S)}(\mu_{n}, dx)$ is discrete uni-
modal and converges vaguely to $\eta^{(s)}(\mu, dx)$ as $narrow\infty$ , $\eta^{(S)}(\mu, dx)$ is $discret_{\vee}^{-}$
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unimodal for every $s>0$ .
Conversely suppose that $\eta^{(s)}(\mu, dx)$ is discrete unimodal for every $s>0$ .

Define $\zeta^{(s)}(dx)=\sum_{n=0}^{\infty}p_{n}^{(s)}(\mu)\delta_{n/s}(dx)$ . Then $\zeta^{(s)}(dx)$ is vaguely convergent to $\mu(dx)$

as $sarrow\infty$ by Forst [1] and discrete unimodal on $\{n/s : n\in Z_{+}\}$ with some mode
$a(s)$ for each $s>0$ . We can find a sequence $s_{n}$ such that $s_{n}arrow\infty$ and $a(s_{n})arrow a$

$(OSa\leqq\infty)$ as $narrow\infty$ . It is clear that $\mu(dx)$ is unimodal with mode $a$ . The
proof of Lemma 4.1 is complete.

REMARK 4.1. Lemma 4.1 is essentially due to Forst [1] and Holgate [3].

Also Forst [1] proves that $\mu(dx)$ is unimodal with mode $0$ if and only if
$\eta^{(s)}(\mu, dx)$ is discrete unimodal with mode $0$ for every $s>0$ . Similarly we can
prove that $\mu(dx)$ is unimodal with mode $\infty$ if and only if $\eta^{(s)}(\mu, dx)$ is dis-
crete unimodal with mode $\infty$ for every $s>0$ .

THEOREM 4.1. A L\’evy process $X_{t}$ without drift is unimodal on $R_{+}$ if and
only if $Y_{t}^{(S)}$ is discrete unimodal on $Z_{+}$ for every $s>0$ .

Proof is clear from Lemma 4.1.
Let $Q_{n}^{(S)}(t)$ be the polynomial $Q.(t)$ in (2.3) corresponding to the L\’evy process

$Y_{t}^{(\theta)}$ on $Z_{+}$ . We obtain the following corollary from Theorems 2.1 and 4.1.

COROLLARY 4.1. A L\’evy process $X_{t}$ without drift is unimodal on $R_{+}$ if and
only if, for every $s>0,$ $Q_{n}^{(S)}(t)$ has a unique positive zero $\alpha_{n}^{(S)}$ of odd order for
each $n\geqq 1$ and $\alpha_{n}^{(S)}$ is non-decreasing in $n$ .

COROLLARY 4.2. Suppose that $x\nu(dx)$ is unimodal on $R_{+}$ . Then $X_{t}$ without
drift is unimodal on $R_{+}$ if and only if $X_{t}$ is of class $L$ .

PROOF. If $X_{t}$ is of class $L$ on $R_{+}$ , then $X_{t}$ is unimodal by Wolfe [14].

Conversely suppose that $X_{t}$ and $\tilde{\nu}(dx)=x\nu(dx)$ are unimodal on $R_{+}$ . Let $v^{(s)}(dx)$

$=\Sigma_{n=1}^{\infty}n^{-1}k_{n}^{(s)}\delta_{n}(dx)$ (see (4.3)) and define $\lambda^{(S)}(dx)$ by

(4.4) $\lambda^{(s)}(dx)=\sum_{n=1}^{\infty}k_{n+1}^{(s)}\delta_{n}(dx)=\sum_{n=0}^{\infty}sp_{n}^{(s)}(_{1)}^{\sim})\delta_{n}(dx)$ .

Then $\lambda^{(S)}(dx)$ is discrete unimodal on $Z_{+}$ for every $s>0$ by Lemma 4.1. Since
$Y_{t}^{(S)}$ is discrete unimodal on $Z_{+}$ by Theorem 4.1, $\lambda^{(S)}(dx)$ is discrete unimodal
with mode $0$ for every $s>0$ by Corollary 2.2. Hence $x\nu(dx)$ is unimodal with
mode $0$ by Remark 4.1. It follows that $X_{t}$ is of class $L$ on $R_{+}$ . We have
proved Corollary 4.2.
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