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1. Main result.

A hyper-Kahler structure on a Riemannian manifold $(Y, g)$ is a set of three
almost complex structures (I, $J,$ $K$ ) which are parallel with respect to the Levi-
Civita connection and satisfy the quaternion relations

$IJ=-JI=K$ .

We have the associated K\"ahler forms $\omega_{I},$ $\omega_{J},$ $\omega_{K}$ defined by

$\omega_{I}(v, w)=g(Iv, w)$ , $\omega_{J}(v, w)=g(Jv, w)$ ,

$\omega_{K}(v, w)=g(Kv, w)$ , for $v,$ $w\in TY$

which are closed and parallel.
Let $G$ be a compact Lie group acting on $Y$ so as to preserve the metric $g$

and the hyper-K\"ahler structure (I, $J,$ $K$ ). Each element $\xi\in \mathfrak{g}$ of the Lie algebra
of $G$ defines a vector field $\xi^{*}$ on $Y$ which generates the action of $\xi$ . The hyper-
K\"ahler moment map defined below is the set of three moment maps.

DEFINITION 1.1. A $hyper- K\dot{a}hler$ moment map for the action of $G$ on $Y$ is a
map $\mu=(\mu_{I}, \mu_{J}, \mu_{K}):Yarrow R^{3}\otimes \mathfrak{g}^{*}$ which satisfies

(a) $\mu_{A}(y\cdot g)=Ad_{g}^{*}(\mu_{A}(y))$ , $y\in Y,$ $g\in G,$ $A=I,$ $J,$ $K$

(b) $\langle\xi, d\mu_{A}(v)\rangle=\omega_{A}(\xi^{*}, v)$ , $v\in TY,$ $\xi\in \mathfrak{g},$ $A=I$ , $]$ , $K$ ,

where $\mathfrak{g}^{*}$ is the dual space of $\mathfrak{g},$
$Ad^{*}:$ $\mathfrak{g}^{*}arrow \mathfrak{g}^{*}$ is the coadjoint map and $\langle$ , $\rangle$

denotes the dual pairing between $\mathfrak{g}$ and $\mathfrak{g}^{*}$ .

(*) This author was partially supported by Grant-in-Aid for Scientific Research (No.

02854001), Ministry of Education, Science and Culture.
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Let $Z=$ { $\zeta\in \mathfrak{g}^{*}|Ad_{g}^{*}(\zeta)=\zeta$ for all $g\in G$ }. Taking a $\zeta\in R^{3}\otimes Z$ , we consider
the quotient space $\mu^{-1}(\zeta)/G$ . We assume that $\mu^{-1}(\zeta)$ is a submanifold and the
action of $G$ on $\mu^{-1}(\zeta)$ is free with Hausdorff quotient. Hence $\mu^{-1}(\zeta)/G$ is a
smooth manifold. Let $i:\mu^{-1}(\zeta)arrow Y$ be the inclusion and $\pi:\mu^{-1}(\zeta)arrow\mu^{-1}(\zeta)/G$ the
projection. Then by a result of Hitchin, Karlhede, Lindstr\"om and $RoCek[6]$ .

FACT 1.2. The quotient space $M=\mu^{-1}(\zeta)/G$ has a natural Riemannian metnc
$g_{M}$ and a hyper-Kahler structure $(I_{M}, J_{M}, K_{M})$ such that

$\pi^{*}\omega_{A}^{M}=i^{*}\omega_{A}^{Y}$ $A=I,$ $J,$ $K$ ,

where $\omega_{A}^{Y}$ (resp. $\omega_{A}^{M}$ ) is the Kahler form associated with the comPlex structure
$A=I,$ $J,$ $K$ on $Y$ (resp. $M$ ).

In the above situation, $\pi$ : $\mu^{-1}(\zeta)arrow M$ is a principal $G$-bundle and has a
natural connection $A$ where the horizontal space is the orthogonal complement
of the tangent space of the orbit in $T_{y}\mu^{-1}(\zeta)(y\in\mu^{-1}(\zeta))$ .

Our main results is the following:

THEOREM 1.3. The natural connection $A$ satisfies the equation

$R_{A}(I_{M}v, l_{M}w)=R_{A}(J_{M}v, J_{M}w)=R_{A}(K_{M}v, K_{M}w)=R_{A}(v, w)$

for all $v,$ $w\in TM$ .
In Particular, $A$ is an Einstern-Hermitian connection (with respect to the comPlex
stntcture $I_{M}$ ) with zero Einsturn constant. Namely the curvature form $R_{A}$ is of
tyPe $(1, 1)$ and satisfies

$tr_{\omega_{I}^{M}}R_{A}=\frac{1}{2}\sum_{i}R_{A}(e_{i}-\sqrt{}\overline{-1}I_{M}e_{i}, e_{i}+\sqrt{-1}l_{M}e_{i})=0$ ,

where $\{e_{1}, I_{M}e_{1}, \cdots , e_{m}, I_{M}e_{m}\}$ is a local orthonormal frame for the tangent
bundle $TM$.

REMARKS. 1) When the base manifold is 4-dimensional, a connection $A$

is anti-self-dual if and only if it is Einstein-Hermitian with zero Einstein constant.
2) Since everything is independent of the particular choice of the complex

structure, $A$ is also an Einstein-Hermitian connection with respect to $J_{M}$ and $K_{M}$ .

We shall give the both proofs of Fact 1.2 and Theorem 1.3 since they are
closely related to each other.

PROOF. Let $y\in\mu^{-1}(\zeta)$ . The tangent space of $\mu^{-1}(\zeta)$ at $y$ decomposes as

$T_{y}\mu^{-1}(\zeta)=T_{y}(G(y))\oplus H_{y}$ ,
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where $H_{y}$ is the orthogonal complement of the tangent space $T_{y}(G(y))$ of the
orbit through $y$ .

We first show that complex structures $I,$ $J,$ $K$ preserve $H_{y}$ . Let $v\in T_{y}\mu^{-1}(\zeta)$ ,
$\xi\in \mathfrak{g}$ . The associated vector field $\xi^{*}$ is orthogonal to $Iv$ , since

$g(Iv, \xi^{*})=\omega_{I}(v, \xi^{*})=-\langle\xi, d\mu_{I}(v)\rangle=0$ .
Similarly $\xi^{*}$ is orthogonal to $Jv$ and $Kv$ . These also imply that $I\xi^{*},$ $J\xi^{*},$ $K\xi^{*}$

are in the orthogonal complement $(T_{y}\mu^{-1}(\zeta))^{\perp}$ in $T_{y}Y$ . If $v\in H_{y}$ , then

$\langle\xi, d\mu_{I}(Iv)\rangle=g(I\xi^{*}, Iv)=g(\xi^{*}, v)=0$ ,

$\langle\xi, d\mu_{J}(lv)\rangle=g(J\xi^{*}, Iv)=g(\xi^{*}, Kv)=0$ ,

$\langle\xi, d\mu_{K}(Iv)\rangle=g(K\xi^{*}, lv)=-g(\xi^{*}, Jv)=0$ .
This shows $Iv\in kerd\mu$ . Since we have already seen that $Iv$ is orthogonal to
$T_{y}(G(y)),$ $Iv$ is in $H_{y}$ . Similarly $Jv,$ $Kv$ are in $H_{y}$ . The above argument also
shows that the tangent space of $Y$ at $y$ has an orthogonal decomposition:

(1.4) $T_{y}Y=H_{y}\oplus T_{y}(G(y))\oplus IT_{y}(G(y))\oplus JT_{y}(G(y))\oplus KT_{y}(G(y))$ .

The tangent space $T_{\pi(y)}M$ of the quotient space $M$ at $\pi(y)$ is isomorphic
to $H_{y}$ via the map $\pi_{\vee}$ . Hence $I,$ $J,$ $K$ descend to almost complex structures on
$M$, which we denote by $I_{M},$ $J_{M},$ $K_{K}$ . They clearly satisfy the quaternion rela-
tions. We also have a Riemannian metric $g_{M}$ induced from $g|H_{y}$ . The projec-
tion $\pi$ : $\mu^{-1}(\zeta)arrow M=\mu^{-1}(\zeta)/G$ is a Riemannian submersion. Next we show that
$I_{M},$ $J_{M},$ $K_{H}$ are parallel with respect to the Levi-Civita connection $\nabla^{M}$ on $M$.

Let $\nabla^{Y}$ (resp., $\nabla^{\mu^{-1}(\zeta)}$ ) be the Levi-Civita connection of $Y$ (resp., the sub-
manifold $\mu^{-1}(\zeta)\subset Y)$ and $\Pi$ the second fundamental form of $\mu^{-1}(\zeta)$ . We denote
by $\tilde{v}$ the horizontal lift of $v\in T_{m}M$ to $\mu^{-1}(\zeta)$ and $w^{v}$ the $T_{y}(G(y))$-component of
a tangent vector $w\in T_{y}Y$ . Then by O’Neill’s formula for Riemannian sub-
mersions (see e.g., [1], p. 240), we have

$\nabla_{v_{v}}^{M}\sim_{w=\nabla_{\sim}^{\mu^{-1}(\zeta)}\tilde{w}-\frac{1}{2}[\iota\gamma},\tilde{w}]^{v}=\nabla_{v}^{Y}\sim\tilde{w}-\Pi(\partial,\tilde{w})-\frac{1}{2}[\tilde{v},\tilde{w}]^{v}$ ,

where $[\tilde{v},\tilde{w}]^{v}$ is the vertical component of $[\tilde{v},\tilde{w}]$ . Hence

$\nabla_{v}^{Y}\sim l\tilde{w}=(\nabla_{v}^{M}I_{M}w)+\Pi(\tilde{v}\sim, I\tilde{w})+\frac{1}{2}[\tilde{v}, I\tilde{w}]^{v}$ .

On the other hand, since $I$ is parallel with respect to $\nabla^{Y}$ , this equals to

$N_{v}^{Y} \sim\tilde{w}=(l_{M}\nabla_{v}^{M}w)+I\prod(\tilde{v}\sim,\tilde{w})+\frac{1}{2}1[i),\tilde{w}]^{v}$ .

Comparing $H_{y}$ -component and $T_{y}G(y)$-component of the above equations, we have
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(1.5) $(I_{M}\nabla_{v}^{M}w)=(\nabla_{v}^{M}I_{M}w)\sim\sim$, $\frac{1}{2}[i)I\tilde{w}]^{v}=(I\Pi(\tilde{v},\tilde{w}))$“.

(Note that $I[\tilde{v},\tilde{w}]^{v}\in(T_{y}\mu^{-1}(\zeta))^{\perp}$ ). The first equation shows that $I_{M}$ is parallel
with respect to $\nabla^{M}$ . The same holds for $J_{M}$ and $K_{M}$ , hence $(M,$ $g_{M},$ $I_{M},$ $J_{M}$ ,
$K_{M})$ is a hyper-K\"ahler manifold.

According to the decomposition (1.4), we can write $\Pi(\tilde{v},\tilde{w})$ as

$\Pi(\tilde{v},\tilde{w})=I\Pi_{I}+J\Pi_{J}+K\Pi_{K}$ ,

where $\Pi_{I},$ $\Pi_{J}$ and $\Pi_{K}\in T_{y}(G(y))$ . Substituting this into the second equality
in (1.5), we find

$\nabla_{v}^{M}w=\nabla_{v}^{Y}\sim\tilde{w}-\frac{1}{2}([\tilde{v}\sim,\tilde{w}]^{v}+I[I\tilde{v},\tilde{w}]^{v}+J[J\tilde{v},\tilde{w}]^{v}+K[K\tilde{v},\tilde{w}]^{v})$ .

This implies

(1.6) $g([Ii\}\tilde{w}]^{v}, \xi^{*})=g(I[Ii),\tilde{w}]^{v},$ $I\xi^{*})=-2\langle\xi, D^{2}\mu_{I}(i),\tilde{w})\rangle$ ,

where $D^{2}\mu_{I}$ is the hessian of $\mu_{I}$ . This formula is useful when we estimate
the curvature of the natural connection.

Since the right hand side of the second equality in (1.5) is symmetric with
respect to $v$ and $w$ , we have

(1.7) $[\tilde{v}, I\tilde{w}]^{v}=[\tilde{w}, I\tilde{v}]^{v}=-[Ii)\tilde{w}]^{v}$ .
The curvature $R_{A}$ of the natural connection on the principal bundle $\mu^{-1}(\zeta)arrow M$

is given by

$R_{A}(v, w)=-\omega([\tilde{v},\tilde{w}]^{v})$ ,

where $\omega:T\mu^{-1}(\zeta)arrow \mathfrak{g}$ is the connection form defined by

$\omega|H_{y}\equiv 0$ , $\omega(\xi^{*})=\xi$ for $\xi\in \mathfrak{g}$ .

Hence (1.7) implies

(1.8) $R_{A}(I_{M}v, I_{M}w)=R_{A}(v, w)$ .

Replacing $I$ by $J,$ $K\ln(1.7)$, we have

(1.9) $R_{A}(J_{M}v, J_{M}w)=R_{A}(K_{M}v, K_{M}w)=R_{A}(v, w)$ .

NOW we check that $A$ is an Einstein-Hermitian connection. The equation
(1.8) means that $R_{A}$ is of type (1.1). The equation (1.9) implies

$R_{A}(v, I_{M}v)+R_{A}(J_{M}v, K_{M}v)=0$ .

A local orthonormal unitary frame for the tangent bundle $TM$ is given by
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$\{v_{i}, I_{M}v_{i}, J_{M}v_{i}, K_{M}v_{i}\}_{i=1\ldots..n}$ $(n= \frac{1}{4}\dim_{R}M)$

for some local vector fields $v_{1},$
$\cdots$ , $v_{n}$ . Then a direct calculation shows that $A$

is an Einstein-Hermitian connection with zero Einstein constant.

REMARKS. 1) The above proof also shows that a K\"ahler quotient $M$ has
a natural K\"ahler structure and the curvature $R_{A}$ of the natural connection $A$

is of type $(1, 1)$ . (See [6] for the definition of K\"ahler quotients.)
2) After this work was done, Nitta pointed out that a similar result holds

for quaternionic K\"ahler quotients [12] (see [4] for the definition of quaternionic
K\"ahler quotients). He proved the result by adapting our proof to the case of
quaternionic K\"ahler quotients, but it follows directly from our results by using
Swann’s “twistor like” fibration [14] as follows:

Swann defined a hyper-K\"ahler structure (the metric maybe indefinite) on
the fundamental quaternionic line bundle $c_{U(M)}$ (with the zero-section removed)

of a quaternionic K\"ahler manifold $M$. If a Lie group $G$ acts on $M$ freely and
preserving the quaternionic structure, then the action lifts to a free, isometric
and triholomorphic action on $c_{U(M)}$ And the (pseudo) hyper-K\"ahler quotient
of $c_{U(M)}$ is the fundamental quaternionic line bundle of the quaternionic
quotient $M’$ of $M$ by $G$ . The quaternionic quotient construction, as in the
hyper-Kahler quotient case, induces naturally a principal bundle with a connec-
tion. Its pull-back to $c_{U(M’)}$ is come from the hyper-K\"ahler quotient construc-
tion of $c_{U(M’)}$ . Our result (the signature of the metric is not essential in our
proof) shows that this connection satisfies the equations (1.8), (1.9), which implies
the connection on $M’$ is a $B_{2}$-connection.

2. Examples.

We give a couple of examples of applications of Theorem 1.3.
The first example is ALE hyper-K\"ahler 4-manifolds constructed by Kron-

heimer [8]. Since tbe general case is hard to explain without long preparation
of notation, we only treat the easiest case, the Iguchi-Hanson space, which is
a hyper-K\"ahler structure on the holomorphic cotangent bundle of the projective
line.

Let $Y$ be a quaternion vector space

$Y=H^{2}=C^{2}\cross C^{2}$ .
The Lie group $G=U(1)$ acts on $Y$ by

$Y\ni(z_{1}, Z_{2}, W_{1}, w_{2})-\geq(e^{i\theta}z_{1}, e^{\iota\theta}z_{2}, e^{-i\theta}w_{1}, e^{-i\theta}w_{2})$ .
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This action preserves both the hyper-K\"ahler structure and the metric. Let $\mu$

be the unique hyper-K\"ahler moment map which vanishes at the origin. The
vector space $Z\subset g^{*}$ is identified with the set of pure imaginaries. If we take
a non-zero $\zeta\in Z$ , the hyper-K\"ahler quotient $M=\mu^{-1}(\zeta)/G$ is a (non-singular)

complete hyper-Kahler 4-manifold. Moreover the metric is asymptotically locally
Iuclidean (ALE) which means it approximates the Euclidean metric on $R^{4}/\Gamma$

for some finite subgroup $\Gamma\subset SO(4)$ (in this example $\Gamma=\{\pm 1\}$ ).

By Theorem 1.3 there exists a natural $U(1)$-bundle $P$ and an anti-self-dual
connection $A$ on $M$. One can show that $A$ has finite action. Moreover $A$ has
a very special property and is used to obtain the ADHM description for anti-
self-dual connections on $M$.

These and other properties will be studied in [9].

In the second example, the hyper-K\"ahler quotient $M$ is the moduli space
of anti-self-dual connection, where the old hyper-K\"ahler manifold $Y$ is the space
of all connections on a principal bundle over an ALE hyper-K\"ahler 4-manifold
and the Lie group $G$ is the gauge group (cf. [5]). Although $Y$ and $G$ are
infinite-dimensional, the proof of Theorem 1.3 works in this case since we can
shows that $\mu^{-1}(0)$ is a submanifold and a slice for the action exists. We need
to introduce the weighted Sobolev spaces in order to argue rigorously, but we
omit the analytic details for the sake of brevity. See [11], [3] for detail.

Let (X, $g$ ) be an ALE Riemannian 4-manifold with a hyper-Kahler structure
$(l_{X}, J_{X}, K_{X})$ and $E$ a (complex) vector bundle over it of rank $r$ . Let $AdE$

denote the adjoint bundle associated with $E$ (i. e. the vector bundle of skew
endomorphisms of $E$ ). We take a representation $R_{\infty}$ : $\Gammaarrow U(r)$ which will be
identified with a flat connection on the ALE end which is diffeormophic to
$(R, \infty)\cross S^{3}/\Gamma$ . We assume that $E$ has a connection $A_{0}$ which is equal to $A_{0}$

on the ALE end.
Let $Y$ be the space of connections $A$ on $E$ such that

$|\nabla_{A_{0}}^{(l)}(A-A_{0})|=O(t^{-3-l})$ ,

where $t$ is the Euclidean distance on the ALE end of $X$. The map $Aarrow A-A_{0}$

gives an identification between $Y$ and the vector space of $AdE$ -valued l-forms
whose differentials decay in suitable orders. The $L^{2}$-inner product defines a
Riemannian metric on $Y$ . A hyper-K\"ahler structure $(I_{X}, J_{X}, K_{X})$ which are
endomorphisms of the tangent bundle $TX$ naturally induces endomorphisms of
the cotangent bundle $T^{*}X$ by

$(I_{X}\alpha)(v)=-\alpha(I_{X}v),$ $e$ . $t$ . $c.$ , for $\alpha\in T^{*}X$, $v\in TX$ .

These give endomorphisms (denoted by $I_{Y},$ $J_{Y}$ and $K_{Y}$ ) of $TY$ which are clearly

parallel. Then $(Y, g_{Y}, I_{Y}, J_{Y}, K_{Y})$ is an infinite dimensional hyper-K\"ahler manifold.
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Let $G$ be the group of automorphisms of $E$ converging to the identity at
infinity. If we take a completion of $G$ under the suitable weighted Sobolev
norm, $G$ becomes an infinite dimensional Lie group with the Lie algebra $\mathfrak{g}$ . It
acts on $Y$ by pulling back the connection. This action preserves both $g_{Y}$ and
$(I_{Y}, J_{Y}, K_{Y})$ . We define a map $\mu=(\mu_{I}, \mu_{J}, \mu_{K}):Yarrow R^{3}\otimes \mathfrak{g}^{*}$ by

$\langle\xi, \mu_{I}(A)\rangle=\int_{X}tr(\xi R_{\Lambda})\Lambda\omega_{I}$ for $\xi\in g,$ $e$ . $t$ . $c.$ ,

where $R_{A}$ is the curvature of the connection $A$ . It is easy to check that $\mu$ is
a hyper-K\"ahler moment map.

K\"ahler forms $\omega_{I},$ $\omega_{J}$ and $\omega_{K}$ are global parallel sections of $\Lambda^{+}$ and give a
basis of $\Lambda^{+}$ at each point. Hence $\mu(A)$ is identified with $-R_{A}$ , the self-dual
part of the curvature form. Then the hyper-K\"abler quotient $M=\mu^{-1}(0)/G$ is
the (framed) moduli space of anti-self-dual connections. Note that the action
is free since we consider the “reduced” gauge group (i. e., the group of auto-
morphisms converging to the identity at infinity). This is the main difference
from the case when the base manifold is compact. By Theorem 1.3 $\pi$ : $\mu^{-1}(0)$

$arrow M$ is the principal $G$-bundle with a natural Einstein-Hermitian connection $\tilde{A}$ .
Our connection $\tilde{A}$ relates to the universal connection. The gauge group $G$

acts on the product $E\cross\mu^{-1}(0)$ and gives a vector bundle

$E=E\cross_{G}\mu^{-1}(0)arrow X\cross M$

by taking quotient. This bundle is called the universal bundle. For a point
$x\in X$, the restriction $E|\{x\}\cross M$ is isomorphic to the bundle $\mu^{-1}(0)\cross_{G}E_{x}$ as-
sociated with the principal bundle $\mu^{-1}(0)arrow M$ by the action of $G$ on $E_{x}$ . Hence
it has a connection induced from $\tilde{A}$ . On the other hand, for $\pi(A)\in M$, if we
fix $A\in\mu^{-1}(0)$ , the restriction $E|X\cross\{\pi(A)\}$ is isomorphic to $Earrow X$ via the map

$E|X\cross\{\pi(A)\}\ni G(e, A)-\geq e\in E$ .

(Remark that this map depends on the choice of $A$ ). Pulling back the connec-
tion $A$ by this map, we have a connection on $E|X\cross\{\pi(A)\}$ which depends only

on the gauge equivalence class $\pi(A)$ . Combining the above two connections,
we have a natural connection $A$ on $E$ which we call the universal connection.
If we introduce the product metric on $X\cross M$, we have

PROPOSITION 2.1. The universal connection $A$ on the universal bundle $E=$

$E\cross_{G\}^{t^{-1}}}(0)$ over $X\cross M$ is an Einstein-Hermitian connection with zero Einstein
constant.

The corresponding result is shown by Itoh [7] by a different method when
the base manifold is a compact hyper-K\"ahler 4-manifold ( $i$ . $e$ . a torus or a K3
surface). But we only have a PU$(r)=U(r)/U(1)$-bundle as a universal bundle
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since we must take a quotient group $G/U(1)$ to make the action free.
Proposition 2.1 has an interesting corollary. We can define a Fourier trans-

form (or Nahm’s transform) of anti-self-dual connections as in Mukai [10],

Schenk [13], Braam and van Baal [2] :
Let $F$ be a vector bundle with an anti-self-dual connection $A$ over $X$. For

each $m\in M$ defines a vector space $\hat{F}_{m}$ by

$F_{m}=L^{2}$-kernel of $D_{A_{m}}^{-}$ : $\Gamma(S^{-}\otimes F\otimes E|_{Xxtm\}})arrow\Gamma(S^{+}\otimes F\otimes E|_{X\cross tm\}})$ ,

where $D_{A_{m}}^{-}$ is the Dirac operator (in the $X$-direction) twisted by the connection
$A_{m}$ induced by $A$ and $A|_{X\cross tm1}$ ). As $m$ varies in $M,$ $F$ forms a smooth vector
bundle over $M$. Moreover it is a subbundle of a vector bundle (of infinite rank)

whose fiber at $m$ is $\Gamma(S^{-}\otimes F\otimes E|_{X\cross tmI})$ and inherits a natural connection as a
subbundle. The similar calculation as in [2] shows this connection is also
Einstein-Hermitian with zero constant. (Here we use Proposition 2.1.) If the
moduli space $M$ is also an ALE hyper-K\"ahler 4-manifold (may be different from
$X)$ , we can define a similar transform from an anti-self-dual connection on $M$

to one on $X$, reversing the roles of $X$ and $M$. But in contrast with the torus
case, the square of the transforms is not necessarily the identity. Note that
in [10], [13], [2] $X$ is a flat torus and $M$ is its dual torus which is the moduli
space of anti-self-dual connections on the trivial line bundle.

We have many other examples ($e.g$ . the Taub-NUT space, the moduli space
of monopoles, the moduli space of solutions of Nahm equations, $e$ . $t$ . $c.$ ) of spaces
described as hyper-Kahler quotients. The above examples make an appeal to
the importance of the natural connections, but we do not know their meaning
in other examples yet.
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