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1. Statement of results.

In this paper, we prove three theorems related to the homotopy theory of
the exceptional Lie groups $G_{2}$ and $F_{4}$ . These results will be useful in work of
the first author with Bendersky and Mimura, which seeks to calculate $v_{1}$ -periodic
homotopy groups of all exceptional Lie groups.

Our first result, which will be proved in Section 2, should be useful in
determining the homotopy groups of the homogeneous space $F_{4}/G_{2}$ , and conse-
quently in deducing information about $\pi_{*}(F_{4})_{(2)}$ from information about $\pi_{*}(G_{2})_{(2)}$ .

THEOREM 1.1. There is a 2-local fibration
$S^{15}arrow F_{4}/G_{2}arrow S^{23}$ .

Such a fibration is known to exist localized at primes $\geqq 5,$ $([21])$ and to not
exist at the prime 3. ([7])

Our second result is relevant to $F_{4}$ because of the equivalence $F_{4}/Spin(9)=$

$\Pi$ , where $\Pi$ denotes the Cayley projective plane ([6]).

THEOREM 1.2. There is a fibration
$S^{7}arrow\Omega\Pi-\Omega S^{23}$ .

This result, which will be proved in Section 3, might allow one to extend
the range of calculation of $\pi_{\star}(\Pi)$ begun in [20]. In particular, it implies both
upper- and lower-bounds for $P$ -exponents of $\Pi$ , which are defined by

$\exp_{p}(\prod)=\max$ { $e$ : $\pi_{*}(\Pi)$ has an elements of order $p^{e}$ } .

If $p\underline{>-}5$ , then it is known $(e. g., [20])$ that the fibration of our Theorem 1.2
exists as a product, and so $\exp_{p}(\Pi)=\exp_{p}(S^{23})=11$ , by [10]. Our theorem
implies that
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$\exp_{p}(\Pi)\leqq\exp_{p}(S^{7})+\exp_{p}(S^{23})\{\begin{array}{l}\leqq 22 i p=2=14 ifp=3\end{array}$

where we use [24] when $p=2$ and [10] when $p=3$ . A lower bound, conjectured
to be sharp, will be determined in the work with Bendersky and Mimura by
using the exact sequence of $v_{1}$-periodic homotopy groups associated to the fibra-
tion of 1.2 to determine completely $v_{1}^{-1}\pi_{*}(\Pi)$ , the maximal $P$-exponent of which
is a lower bound for the $P$-exponent of the space.

The third result is the complete calculation of the 2-primary $v_{1}$-periodic
homotopy groups of $G_{2}$ . The definition of these groups is completely analogous
to definitions given in [11] and [12]. $v1^{1}\pi_{k}(X)$ is a direct limit of $\pi_{K}(X)$ over
values of $K\equiv k$ mod some specific 2-power. The periodic grouP $v1^{1}z_{k}(X)$ is a
direct summand of $\pi_{K}(X)$ for $K$ sufficiently large.

THEOREM 1.3. The 2-primary $v_{1}$-periodic homotopy groups of $G_{2}$ are given by

$v_{1}^{-1}\pi_{i}(G_{2})=\{$

$Z/2^{\min(6.1+\nu(i-9))}\oplus Z_{2}$ if $i\equiv 1mod 8$

$Z/2^{\min(6.1+\nu(i-10))}$ if $i\equiv 2mod 8$

$0$ if $i=3,4mod 8$

$Z/8$ if $i\equiv 5mod 8$

$Z/8\oplus Z_{2}$ if $i\equiv 6mod 8$

$Z_{2}\oplus Z_{2}\oplus Z_{2}$ if $i\equiv 7,8mod 8$

where $\nu(-)$ denotes the exponent of 2.

This result generalizes work of [23]. In Section 4 we will prove this result
and give a picture of it in an Adams spectral sequence-type chart. The proof
of one of the differentials in this spectral sequence requires some delicate
homotopy theory, which is the reason for splitting this result off from the work
with Bendersky and Mimura mentioned above, which will be primarily algebraic.

Theorem 1.3 yields as an immediate corollary that $\exp_{2}(G_{2})\geqq 6$ , and we
conjecture this to be sharp. The best upper bound easily derived is

$\exp_{2}(G_{2})\leqq\exp_{2}(S^{3})+\exp_{2}(V_{7,2})\leqq 14$ .

2. The fibration for $F_{4}/G_{2}$ .
In this section, we prove Theorem 1.1. It was proved in [7] that

$H^{*}(F_{4}/G_{2} ; Z_{2})$ is an exterior algebra on classes of degree 15 and 23. Thus,
after localizing at 2, $F_{4}/G_{2}$ has the homotopy type of a complex $X=S^{15}\cup e^{23}\cup e^{38}$ .
Let a denote the attaching map in the quotient space

$X/S^{15}=S^{23} \bigcup_{\alpha}S^{38}$ .

We will show that $\alpha$ is trivial, which implies that there is a pinch maP $P:X/S^{15}$
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$arrow S^{23}$ , and the fiber of the composite
$p$

$F_{4}/G_{2}\cong Xarrow X/S^{15}arrow S^{23}$

must be a cohomology 15-sphere by the Serre spectral sequence. This is our
desired fibration in the 2-local homotopy category.

The attaching map $\alpha\in\pi_{37}(S^{23})$ is in the stable range, and so it is the bottom
attaching map in the $S$-dual of $F_{4}/G_{2}$ . Now $F_{4}/G_{2}$ is a manifold, and by [2, 3.3]

the $S$-dual of a manifold is the Thom spectrum of its stable normal bundle.
By [1, 10.1], the bottom attaching map of the Thom spectrum of any stable

vector bundle over a manifold $M$, classified by a map $M^{\theta}arrow BO$ , is $J(\theta|S^{k})$ . Here
$S^{k}$ is the bottom cell of $M$, and $J$ : $\pi_{k}(BO)arrow\pi_{k-1}^{s}(S^{0})$ is the stable J-homomor-
phism. In our case, $k=15$ , and since $\pi_{15}(BO)=0$ , the map $\alpha$ must be trivial.

3. The fibration for $\Omega\Pi$ .
In this section, we prove Theorem 1.2. We thank Fred Cohen for suggesting

some of the ideas in this proof. We will prove

THEOREM 3.1. There is a homotopy equivalence

$\Sigma\Omega\Pi\cong S^{8}\bigcup_{\alpha}e^{23}\bigvee_{i\geqq 1}(S^{22i+8}S^{22\ell+23})$ ,

where the attaching map $\alpha\in\pi_{22}(S^{8})$ is an unstable element of order 24.

By “unstable”, we mean a map which stabilizes to $0$ .
The map $f$ : $\Omega\Piarrow\Omega S^{23}$ is obtained from the splitting of Theorem 3.1 by

adjointing the collapse $map\Sigma\Omega\Piarrow S^{23}$ . The Serre spectral sequence implies
that the integral cohomology algebras satisfy

$H^{*}(\Omega S^{23})=\Gamma_{22}$ , and $H^{*}(\Omega\Pi)\simeq\Lambda(y_{7})\otimes\Gamma_{22}$ ,

where $\Lambda(y_{7})$ is an exterior algebra on a 7-dimensional generator, and $\Gamma_{22}$ is a

divided polynomial algebra, with basis $\{\gamma_{i} : i\geqq 0\}$ satisfying $\gamma_{i}\gamma_{j}=(\begin{array}{l}i+]i\end{array})\gamma_{i+j}$ and

$|\gamma_{i}|=22i$ . (See, $e$ . $g$ . $[15].$ ) One readily verifies that $f^{*}$ is bijective in degree
22, and hence the cup product structure implies that it is bijective in degree
$22i$ for all $i$ . Now the Serre spectral sequence of the fibration $Farrow\Omega\Piarrow\Omega S^{23}$

implies that $H^{*}(F)$ : $H^{*}(S^{7})$ , and hence $F$ has the homotopy type of $S^{7}$ .

PROOF OF THEOREM 3.1. Let $X$ denote the 22-skeleton of $\Omega\Pi$ . By [20],
$X=S^{7} \bigcup_{\alpha}e^{22}$ , where $\alpha\in\pi_{21}(S^{7})$ is an unstable element of order 24. The first 2-
cell complex in Theorem 3.1 is $\Sigma X$. Let $f$ : $\Sigma X\Lambda X\cong X*Xarrow\Sigma\Omega\Pi$ be the map
obtained by applying the Hopf construction to the restriction to $X\cross X$ of the
multiplication of $\Omega\Pi$ .
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The restriction of $f$ to the bottom (15-) cell of $X*X$ is null homotopic. To
see this, we first note that this map can be viewed as the composite

$S^{15}\Sigma\Omega S^{8}\underline{H_{(\mu}’)}arrow\Sigma\Omega\Pi$

,

where the first map is obtained by applying the Hopf construction to the map

$\mu$ : $S^{7}\cross S^{7}arrow\Omega S^{8}\cross\Omega S^{8}arrow\Omega S^{8}m$

where $m$ is the loop multiplication, and the second map is obtained from the
inclusion of the bottom cell of $\Pi$ . Under the splitting

$\Sigma\Omega S^{8}\cong i\geqq 1S^{7i+1}$ ,

the first two components of $H(\mu)$ are homotopic to $*and1_{S^{15}}$ , respectively. To
see that the first component is null homotopic, we note that this map (which
is not the maP obtained by applying the HoPf construction to the Cayley multi-
plication of $S^{7}$ ) is

$S^{7}*S^{r}arrow\Sigma S^{7}$ , $[x, t, y]-\{$
$[2t, x]$ $0 \leqq t\leqq\frac{1}{2}$

$[2t-1, y]$ $\frac{1}{2}\leqq t\leqq 1$ ,

and the null homotopy sends

$([x, t, y], s)-\{$
$[2ts, x]$ $0 \leqq t\leqq\frac{1}{2}$

$[(2t-1)s, y]$ $\frac{1}{2}\leqq t\leqq 1$ .

Alternatively, it is the restriction to the bottom cell of tbe composite in the
fibration

$\Omega S^{8}*\Omega S^{8}arrow\Sigma\Omega S^{8}arrow S^{8}$

of [3], which is of course trivial as is every composite $Farrow Earrow B$ .
That the second component is $1_{S^{15}}$ follows from James’ construction ([16]).

This second component becomes irrelevant, however, since tbe 15-cell of $\Sigma\Omega S^{8}$

becomes a boundary in $\Sigma\Omega\Pi$ . This can be seen from the Serre spectral sequence
of either the fibration $\Omega\Piarrow*arrow\Pi$ or $\Omega\Pi*\Omega\Piarrow\Sigma\Omega\Piarrow\Pi$ .

Thus $f$ factors through a map $f’$ : $(\Sigma X\wedge X)/S^{15}arrow\Sigma\Omega\Pi$ . There is a splitting

$(\Sigma X\Lambda X)/S^{15}\cong S^{30}S^{30}S^{45}$ . (3.2)

TO see this, we note that the attaching maP of the toP cell is the 23-fold sus-
pension of the element $\alpha\in\pi_{21}(S^{7})$ which was the attaching map in $\Omega\Pi$ . As
already observed, the map $\alpha$ is unstable, and as $\pi_{44}(S^{30})$ is in the stable range,
$\Sigma^{23}\alpha$ null. Indeed, $\alpha$ was described in [20, 7.1] to be $\sigma’\sigma_{14}$ at the prime 2, and
$S^{-1}[[\iota_{8}, c_{8}],$ $c_{8}]$ at the prime 3.
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We note that, under tbe Pontryagin product, $H_{*}(\Omega\Pi;Z)$ is the tensor
product of an exterior algebra on a class $x_{7}$ and a polynomial algebra on a
class $x_{22}$ . We let $\sigma$ denote the homology suspension. Standard properties of
the Hopf construction guarantee that $\sigma x_{7}x_{22}$ and $\sigma x_{22}^{2}$ are in the image of $f_{*}’$ ,
and hence are spherical classes because of the splitting (3.2).

Assume by induction that we have constructed a map $f_{i}$ : $S^{22i+1}arrow\Sigma\Omega\Pi$ such
that $\sigma x_{22}^{i}\in im(f_{i*})$ . Then the composite

$c_{i+1}$ : $S^{22i+8}\vee S^{22(i+1)+1}\equiv S^{22i+1}\Lambda Xarrow\Sigma\Omega\Pi\wedge\Omega\Piarrow\Sigma\Omega\Pi$

extends the induction and shows that $\sigma x_{7}x_{22}^{i}$ is also spherical. Here the first
splitting is due again to the fact that the attaching map $\alpha$ is unstable, the
middle map is the product cf $f_{i}$ with the inclusion of $X$, and the last map is
the Hopf construction on the multiplication of $\Omega\Pi$ . The map of Theorem 3.1
is obtained as the wedge of all these maps $c_{i}$ together with the inclusion of
the bottom two cells.

4. 2-primary $v_{1}$-periodic homotopy groups of $G_{2}$ .
In this section, we prove Theorem 1.3. The proof is very similar to the

calculations of [12], except for one delicate calculation of a differential. In
particular, we use charts which are not, strictly speaking, Adams spectral
sequence charts, but have the same form. Dots represent nonzero elements,
vertical lines multiplication by 2, positively sloping lines multiplication by $\eta\in$

$\pi_{1}(S^{0})$ , and negatively sloping lines differentials, or, more properly, boundary
morpbisms in exact sequences. At any rate, elements connected by negatively
sloping lines do not yield homotopy classes. The group $v_{1}^{-1}\pi_{i}(-)$ appears in
horizontal coordinate $i$ , and we use the term $d_{\tau}$ -differential for one going non-
trivially from position $(i, s)$ to $(i-1, s+r)$ . We hope the reader will find the
following restatement of Theorem 1.3 more illuminating.

THEOREM 4.1. The 2-primary $v_{1}$ -periodic homotopy groups of $G_{2}$ are given
by the follozc$ing$ chart, $n$) $xth$

$d=\{$

$d_{2}$ if $k$ is odd
$d_{3}$ if $k\equiv 2mod 4$

$0$ if $k\equiv 0mod 4$
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$i=8k+$ 6 10

We calculate $v_{1}^{-1}\pi_{*}(G_{2})$ by using the exact sequences in $v_{1}^{-1}\pi_{*}(-)$ of the
following three fibrations.

$S^{3}arrow G_{2}arrow V_{7.2}$

$S^{5}arrow V_{7,2}arrow S^{6}$ (4.2)

$S^{5}arrow\Omega S^{6}arrow\Omega S^{11}$ (4.3)

For the first, see [7]. The second could be thought of as

$SO(6)/SO(5)arrow SO(7)/SO(5)arrow SO(7)/SO(6)$ ,

and the third yields the EHP sequence. In [13], the calculation of $v_{1}^{-1}\pi_{*}(S^{2n+1})$

as $v_{1}^{-1}J_{*}(\Sigma 2n+1P^{2n})$ was discussed, and this method was applied in [12]. These
$J_{*}(-)$-charts consist of a $bo$-part and a $bsp$-part, which equals the $bo$-part shifted
by $(-1, -2)$ units. There is a boundary morphism from the bo-part to the
$bsp$-part, which is represented by a differential in the chart. We will use the
above fibrations to combine the charts for $S^{3}$ , two $S^{5}’ s$ , and $S^{11}$ , suitably
positioned, to obtain a chart for $G_{2}$ . Boundary morphisms in the exact sequences
will be represented as differentials in the chart. For simPlicity, our first com-
bining will include only the bo-part of the relevant charts. The differentials
within the $bsp$-parts are exactly the same as those within the $bo$-parts. We
will then study the differentials from the $bo$-part to the $bsp$-part.

In the chart below, classes from $S^{3}$ are represented by s’s, those from the
$S^{5}$ which maps into $V_{7,2}$ by $x’ s$ , those from the $S^{5}$ which maps into $\Omega S^{6}$ by
$o’ s$ , and those from $S^{11}$ by $\bullet s$ .
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$8k+$ 6 10

The differentials from $0$ to $\chi$ are due to the fact that the bottom cells of
$V_{7.2}$ are attached by .2. The differentials from $x$ to $s$ are due to the fact that
in $G_{2}$ the 5-cell is attached to the 3-cell by $\eta$ . The differentials from $0$ to $s$

are a consequence of the above differentials and the fact that if one formed
the chart for $V_{7,2}$ , there would be an $\eta$ -extension from the $0$ in $8k+5$ to the
$x$ in $8k+6$ and a 2 from the $0$ in $8k+7$ to the $x$ in $8k+7$ . These extensions
are derivable by easy Toda bracket relations similar to those used in [12].

The lower of the two extensions in $8k+10$ indicated by dashed lines is implied
by the argument involving [12, 2.2]; if $\alpha$ and $\beta$ denote the classes involved,
then $\delta(\langle\alpha, 2, \eta\rangle)=\beta\eta$ , and this implies $2\alpha=\beta$ . The upper of the two extensions
follows from the lowest differential from $8k+9$ to $8k+8$ by [22, 2.1] ; see [5,

\S 3] for a similar application.
After these differentials and extensions are taken into account, and the

$bsp$-part is inserted, the chart of Theorem 4.1 is obtained. It remains to justify
the differentials in this chart. The $d_{1}’ s$ from $8k+6$ to $8k+5$ are present because
they are present in the chart for $S^{11}$ ; in effect, it is because $\nu(8k+6-11+1)=2$ .
The $d_{2}$ from $8k+10$ to $8k+9$ when $k$ is odd involves classes in $S^{6}$ , where the
differential was established in [12, \S 4] by comparison of the chart for $S^{6}$ ob-
tained from (4.3) with that obtained from the fibration

$S^{6}arrow\Omega S^{7}arrow\Omega S^{13}$ . (4.4)

It remains to determine whether there is a $d_{3}$ when $k$ is even; this is where
the argument is somewhat more delicate.

We will prove

PROPOSITION 4.5. The cOmPosite
$P$ $\partial$

$v_{1}^{-1}\pi_{43}(\Omega S^{13})arrow v_{1}^{-1}\pi_{42}(S^{6})arrow v_{1}^{-1}\pi_{41}(S^{5})$

is zero, where $P$ is the boundary map in the exact sequence of (4.4), and $\partial$ is the
boundary map in the exact sequence of (4.2).
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Because of the comparison of the two ways of computing $v_{1}^{-1}\pi_{*}(S^{6})$ (from

(4.3) and (4.4) $)$ , this proposition implies that the differential from 42 to 41 in
Theorem 4.1 is zero. That it is zero in all $32k+10$ follows from this by appli-
cation of the period-32 Adams map of the $mod 64$ Moore space ([1]). Equi-
valently, one may use Toda brackets to promulgate elements of order 64 with
period32. See [23] or [12, \S 2] for a similar argument. That the differential
is nonzero on $32k+26$ now follows since, by [18], the generator of the height-6
tower in $32k+25$ is obtained from the generator of the height-6 tower in $32k+$

$10$ by composing with the generator $\rho_{15}$ of the image of the stable J-homomor-
phism in the 15-stem, and since $32\rho_{15}=0$ , the top element of the tower in $32k+$

$25$ must be killed by a differential.
We complete the argument by proving Proposition 4.5. We will prove the

following result at the end of this section.

PROPOSITION 4.6. Let $(S^{5})_{K}$ denote the $K$-theory localizatio $n$ as constructed
in [19]. There is a map $\Omega^{\infty}(\Sigma 5P^{4}\Lambda J)arrow(S^{5})_{K}$ which induces an isomorphism in
$\pi_{i}(-)$ for $i\geqq 10$ .

The composite in Proposition 4.5 may be thought of as the morphism in
$v_{1}^{-1}\pi_{41}(-)$ induced by a certain map $\Omega^{3}S^{13}arrow S^{5}$ . By Proposition 4.6, the composi-
tion of this map followed by $S^{5}arrow(S^{5})_{K}$ lifts to a map

$\Omega^{3}S^{13}arrow\Omega^{\infty}\Sigma 5P^{4}\Lambda J$ . (4.7)

For $i\geqq 10$ , there is an isomorphism $v_{1}^{-1}\pi_{i}(S^{5})\simeq\pi_{i}(\Omega^{\infty}\Sigma 5P^{4}\wedge J)$ , and so Proposition
4.5 will follow from showing that the morphism in $\pi_{41}(-)$ induced by (4.7) is
$0$ on a $Z/2^{6}$-summand which localizes isomorphically to $v_{1}^{-1}\pi_{41}(\Omega^{3}S^{13})$ .

After adjointing (4.7), we obtain a question of stable homotopy theory.
There is a stable splitting through dimension 42 ([25])

$\Sigma^{\infty}\Omega^{3}S^{13}\cong\Sigma^{\infty}(S^{10}K_{2}\vee K_{3}\vee K_{4})$ ,

where
$K_{i}=(S^{10t}S^{10i+1}) \bigcup_{\eta.2}e^{10t+2}$ . (4.8)

The key part of the argument–the part that distinguishes the differential in 41
from that in $25$–is the following result.

PROPOSITION 4.9. If $G\in\pi_{41}(\Omega^{3}S^{13})$ passes to a generator of $v_{1}^{-1}\pi_{41}(\Omega^{3}S^{13})$ ,

then the comPonent of the comPosite below which passes through $\pi_{41}^{s}(S^{10})$ sends $G$

to $0$ .
$\pi_{41}(\Omega^{3}S^{13})arrow\pi_{41}^{s}(\Omega^{3}S^{13})\approx\pi_{41}^{s}(S^{i0})\oplus\oplus\pi_{41}^{s}(K_{i})arrow\pi_{41}(\Sigma 5P^{4}\Lambda J)$

PROOF. The $Z/2^{6}$ in $\pi_{41}(\Omega^{3}S^{13})$ injects into $Z/2^{7}$ in $\pi_{41}^{s}(S^{10})$ , and so the
image of $G$ is a multiple of 2. Since $\pi_{41}(\Sigma^{s}P^{4}\Lambda J)=Z_{2}\oplus Z_{2}$ , the image of $G$
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through the $\pi_{41}^{s}(S^{10})$-component is $0$ . This calculation of $\pi.(\Sigma 5P^{4}AJ)$ is done,
$e$ . $g.$ , by the method of [17]. A chart aPPears at the end of this section. $\blacksquare$

Proposition 4.5 is a consequence of 4.9 and the following result, which
implies that the components through the $K_{i}$-summands are $0$ .

PROPOSITION 4.10. There is an element of $\pi_{41}(\Omega^{3}S^{13})$ of Adams filtration 12
which passes to a generator of $v_{1}^{-\iota}\pi_{41}(\Omega^{3}S^{13})$ . For $2\leqq i\leqq 4,$ $\pi_{41}^{s}(K_{i})co$nsists entirely

of elements of Adams filtration less than 12.

The first part of this proposition is read off from the chart for the unstable
Adams spectral sequence of $S^{13}$ in [4]. A chart for the stable Adams spectral
sequence (ASS) of $K_{i}$ is formed by combining charts of the ASS’s for stable
homotopy groups of spheres, suspended by $10i,$ $10i+1$ , and $10i+2$ dimensions,
and inserting differentials to correspond to the attaching maps. In particular,
all elements of $\pi_{41}(K_{i})$ will be represented by those elements of the ASS for
$S^{0}$ in stems $39-10i,$ $40-10i$, and $41-10i$ which are not involved in differentials.
Since the first positive-stem element of the ASS of $S^{0}$ in filtration $\geqq 12$ occurs
in the 23-stem, the proposition is proved.

We note, for possible future generalization and application, that we have
also determined the $v_{1}$-periodic homotopy groups of $V_{7,2}$ .

THEOREM 4.11. There is an isomorphism

$v_{1}^{-1}\pi_{*}(V_{7.2})\approx v_{1}^{-1}\pi_{*}(G_{2})\oplus v_{1}^{-1}\pi_{*-1}(S^{3})$ ,

where $v_{1}^{-1}\pi_{*}(G_{2})$ is as in Theorem 1.3 or Theorem 4.1, and $v_{1}^{-1}\pi_{*}(S^{3})$ is as described
in [13, 4.4, 4.1].

We close by proving Proposition 4.6. We recall that it was shown in [19]

that the universal cover of the fiber $G$ of the Snaith map ([25])

$(QS^{5})_{K}arrow(Q\Sigma 5P_{5})_{K}$

serves as the localization $(S^{5})_{K}$ . Here $Q(-)=\Omega^{\infty}\Sigma^{\infty}(-)$ , and the localizations
$(QX)_{K}$ are as described in [9]. Our desired map will be obtained by construct-
ing a commutative diagram of fiber sequences as below, taking the induced
map of the indicated fibers, and lifting it to the universal cover of $G$ , which
is $(S^{6})_{K}$ .

$\Omega^{\infty}(\Sigma 5P^{4}AJ)arrow\Omega^{\infty}(\Sigma 5P\Lambda J)arrow\Omega^{\infty}(\Sigma 5P_{5}\Lambda J)$

$G-(QS^{5})_{K}-(Q\Sigma P_{5})_{K}\downarrow\iota_{5}$
(4.12)

By [19] and [14], $\pi_{*}((S^{5})_{K})$ agrees, for $*>5$ , with $vT^{1}x_{*}$ ( $\Sigma 5P^{4}$ A $J$ ), which agrees
with $\pi_{*}(\Sigma 5P^{4}\Lambda J)for*\geqq 10$ . Indeed, $\pi_{*}(\Sigma 5P^{4}\wedge J)$ begins as in tbe chart below,
and $v_{1}^{-1}\pi_{*}(\Sigma 5P^{4}\Lambda J)$ is the periodified version of this chart, without the circled dot.
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The diagram (4.12) is obtained by first noting that, by [9], there is a
maPH from the bottom 2/3 row of (4.12) into

$\Omega^{\infty}(\Sigma^{\infty}S^{5})_{K}arrow\Omega^{\infty}(\Sigma^{\infty}\Sigma 5P_{5})_{K}$ (4.13)

which induces isomorphisms in $x_{i}(-)$ for $i>2$ . Here of course we mean the
underlying infinite loop space of the $K$-localization of the susPension sPectrum,

as defined in [8]. Then we note from [14] that there is a maP $F$ from the top
2/3 row of (4.12) to (4.13) which induces a surjection in $\pi_{*}(-)$ for *11;10. This
is because it is shown in [14] that the mapping telescope of $v_{1}^{4}$-maps of stunted
real projective spaces is equivalent to the telescope obtained after applying $\Lambda J$

to all spectra, and these are $K_{*}$-local. Elementary obstruction theory yields
the lifting over $H$ of the map $F$ to obtain the diagram (4.12).
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