J. Math. Soc. Japan Vol. 43, No. 3, 1991

On hypoellipticity for a certain operator with double characteristic

Dedicated to Professor Mutsuhide Matsumura on his 60th birthday

By Toshihiko HOSHIRO

(Received May 22, 1990) (Revised Oct. 3, 1990)

§1. Introduction and result.

In this paper, we consider C^{∞} -hypoellipticity for the operator

(1.1)
$$P = D_1^2 + D_2^2 + D_3^2 + x_3^2 D_4^2 + (f(x_1) - 1)D_4,$$
$$\left(D_j = -i\frac{\partial}{\partial x_j} \qquad j = 1, 2, 3, 4\right)$$

in neighborhoods ($\subset \mathbf{R}^4$) of the hypersurface $x_1=0$. Here we assume that the function $f(x_1)$ has the following properties:

(A.1) (i) f(0) = 0, $f(x_1) > 0$ if $x_1 \neq 0$. (ii) $f(x_1)$ is monotone in the intervals $[0, \delta)$ and $(-\delta, 0]$ for some $\delta > 0$.

Notice that the above operator (1.1) is a degenerate elliptic operator with double characteristic $\Sigma = \{(x, \xi) \in T^* \mathbb{R}^4 \setminus 0; \xi_1 = \xi_2 = \xi_3 = x_3 = 0\}$. Also notice that the canonical symplectic form $\sigma = \sum_j dx_j \wedge d\xi_j$ is of constant rank (=2) on $T_{\rho}\Sigma$ for any point $\rho \in \Sigma$. A. Grigis [3] treated a class of such operators after the important work of L. Boutet de Monvel [1]. He has given a condition which is necessary and sufficient for them to be hypoelliptic with loss of one derivative. Roughly speaking, his condition is that Melin's invariant (=subprincipal symbol +positive trace/2) does not take non-positive (real) values on the characteristic manifold Σ . For the operator (1.1), it becomes $0 < f(x_1) < 2$ if $\mathcal{G}_m f(x_1) = 0$ (*cf.* the condition (b) of théorème 0.1 in [3]). So, under the assumption (i) of (A.1), the operator (1.1) does not satisfy the condition on the hypersurface $x_1=0$. Nevertheless, it has a possibility to be hypoelliptic with loss of more than one derivatives.

First, let us give a condition of non-hypoellipticity for the operator (1.1):

THEOREM 1. In addition to the hypothesis (A.1), we assume that (A.2) there exist positive numbers δ_1 and ε such that

This research was partially supported by Grant-in-Aid for Scientific Research (No. 03740070), Ministry of Education, Science and Culture.

$$|x_1 \log f(x_1)| \geq \varepsilon$$
 for $0 < x_1 < \delta_1$.

Then, the operator (1.1) is not hypoelliptic in any neighborhood of the hypersurface $x_1=0$.

We remark that there are the same conditions as (A.1) and (A.2) in the works of Y. Morimoto [12] and T. Hoshiro [9] where the hypoellipticity for infinitely degenerate elliptic operators is treated. The purpose of the present paper is to point out that the operator (1.1) has a similar structure as in them. Next we give a sufficient condition for the operator (1.1) to be hypoelliptic.

THEOREM 2. In addition to the hypothesis (A.1), we assume that

(A.3)
$$\lim_{x_1 \to 0} |x_1 \log f(x_1)| = 0.$$

Then, the operator (1.1) is hypoelliptic in some neighborhood of the hypersurface $x_1=0$.

As in the works [12], [8] and [9] the most significant example is the operator (1.1) with $f(x_1) = \exp(-1/|x_1|^{\sigma})$ ($\sigma > 0$). It is hypoelliptic on $x_1 = 0$ if and only if $\sigma < 1$. Also we remark here that, in view of our proof of Theorem 2, it would be obvious that the operator

$$P_1 = D_1^2 + D_2^2 + x_2^2 D_3^2 + (f(x_1) - 1)D_3$$

is hypoelliptic without the assumption (A.3). It is analogous to the fact that Fedii's operator is also hypoelliptic without the assumption (A.3) (see [9]). Such a difference of the conditions for hypoellipticity can be understood from propagation of singularities along double characteristic manifolds. Generally, the singularities can propagate along the leaves of foliations of $T_{\rho} \sum \cap T_{\rho} \sum^{\sigma}$ for $\rho \in \sum$ (where $T_{\rho} \sum^{\sigma}$ is the orthogonal space of $T_{\rho} \sum$ with respect to the symplectic form σ). For the operator (1.1), Melin's invariant vanishes on $A = \sum \cap \{x_1=0, \xi_4>0\}$ (where it may not be hypoelliptic microlocally) and, for any $\rho \in A$, there is a vector $(=\partial_{x_2}) \in T_{\rho} \sum \cap T_{\rho} \sum^{\sigma}$ which is tangent to A. Thus on the operator (1.1), it is possible for singularities to propagate along A and so, such an assumption as (A.3) is necessary for the operator (1.1) to be hypoelliptic (it can be regarded as a condition for preventing the propagation of singularities). On the other hand, it can be easily observed that, for P_1 , there is no vector playing the role as ∂_{x_2} above.

There have been several works in the cases where the above mentioned L. Boutet de Monvel-A. Grigis' condition is violated. See for example, V.V. Grušin [5], K. Taira [14], B. Helffer [6] E.M. Stein [13], A. Grigis-L.P. Rothschild [4] and K.H. Kwon [11]. We do not explain here their works. However we note that their situations and ours are different to each other. Also our result

seems to be extended to a certain class of operators characterized geometrically. The author wants to consider it in a future paper.

ACKNOWLEDGEMENT. The author wants to express his hearty thanks to the refree for his helpful criticism and suggestions.

§2. Preliminaries.

In the present section, we recall some techniques due to L. Boutet de Monvel [1]. They are necessary for a reduction in our proof of Theorem 2.

First let us denote by $h_j(t)$ the *j*-th Hermite function, i.e.,

$$h_j(t) = \pi^{-1/4} (2^j j!)^{-1/2} \left(\frac{d}{dt} - t \right)^j \exp\left(-\frac{t^2}{2} \right).$$

Choosing a function $\phi(t) \in C^{\infty}(\mathbf{R})$ so that (i) $0 \leq \phi(t) \leq 1$, (ii) $\phi(t) \equiv 0$ for $|t| \leq 1$, (iii) $\phi(t) \equiv 1$ for $|t| \geq 2$, we introduce a sequence of operators H_j , $j=0, 1, 2, \cdots$ in such a way that

(2.1)
$$H_{j}: v(x_{1}, x_{2}, x_{4}) \longrightarrow (H_{j}v)(x_{1}, x_{2}, x_{3}, x_{4})$$
$$= (2\pi)^{-1} \int e^{i x_{4} \hat{\xi}_{4}} \phi(\xi_{4}) |\xi_{4}|^{1/4} h_{j}(x_{3}|\xi_{4}|^{1/2}) \hat{v}(x_{1}, x_{2}, \xi_{4}) d\xi_{4},$$

where \hat{v} denotes the partial Fourier transform of v w.r.t. x_4 . Notice that the adjoint of H_j is defined by

(2.2)
$$H_{j}^{*}: u(x_{1}, x_{2}, x_{3}, x_{4}) \longrightarrow (H_{j}^{*}u)(x_{1}, x_{2}, x_{4})$$
$$= (2\pi)^{-1} \iint e^{ix_{4}\xi_{4}} \phi(\xi_{4}) |\xi_{4}|^{1/4} h_{j}(y_{3}|\xi_{4}|^{1/2}) \hat{u}(x_{1}, x_{2}, y_{3}, \xi_{4}) dy_{3} d\xi_{4}.$$

We set now $\Pi_j = H_j H_j^*$ and, in addition we denote by Π_{00} a pseudodifferential operator with symbol $1 - \phi(\xi_4)^2$ which is of class $OPS_{\lambda,1,0}^0$ with $\lambda = (1 + \xi_4^2)^{1/2}$. Here we adopt the notation from H. Kumano-go [10] Chapter 7.

We consider here some properties of these operators related to our operator (1.1), (cf. A. Grigis [3] Section III.3).

PROPOSITION 1. (i) Π_j , $j=0, 1, 2, \cdots$ are pseudodifferential operators of class $OPS_{\lambda,1/2,1/2}^0$ with $\lambda = (1+\xi_4^2)^{1/2}$.

(ii) For any $u \in L^2(\mathbb{R}^4)$,

$$u = \Pi_{00}u + \sum_{j=0}^{\infty} \Pi_j u$$
 ,

with the right hand side being convergent in $L^2(\mathbf{R}^4)$.

Hereafter we denote $\Pi_* = I - \Pi_{00} - \Pi_0 (= \sum_{j=1}^{\infty} \Pi_j).$

(iii) For any $j, k=0, 1, 2, \cdots$

$$H_j^*H_k = \delta_{jk} \cdot \phi(D_4)^2.$$

T. HOSHIRO

(iv) For any $j=0, 1, 2, \cdots$ it holds

$$PH_j = H_jP_j$$
 and $H_j^*P = P_jH_j^*$,

where $P_j = D_1^2 + D_2^2 + (2j+1)|D_4| + (f(x_1)-1)D_4$.

(v) Let us set $y=(x_1, x_2, x_4)$ and $\eta=(\xi_1, \xi_2, \xi_4)$. Then the following inclusions hold:

$$WF(H_0^*u) \subset \{(y, \eta) \in T^* \mathbb{R}^3 \setminus 0; (x_1, x_2, 0, x_4; \xi_1, \xi_2, 0, \xi_4) \in WF(u)\}$$

and

$$WF(H_0v) \subset \{(x_1, x_2, 0, x_4; \xi_1, \xi_2, 0, \xi_4) \in T^* \mathbb{R}^4 \setminus 0; (y, \eta) \in WF(v)\}.$$

REMARK. In view of (iv), it is obvious that the operators Π_j , $j=0, 1, 2, \cdots$ commute with our operator P.

PROOF. (i) First observe that the integral operator with kernel $K(t, s) = h(t)\overline{h(s)}$ $(h \in \mathcal{S}(\mathbf{R}))$ can be regarded as a pseudodifferential operator with symbol $e^{-it\tau}h(t)\overline{h(\tau)}$. Indeed, from Plancherel's formula, it follows that

$$h(t) \int \overline{h(s)} f(s) ds = (2\pi)^{-1} h(t) \int \overline{\hat{h}(\tau)} \hat{f}(\tau) d\tau \,.$$

So, with aid of the property $\hat{h}_j(\tau) = (-i)^j h_j(\tau)$, Π_j can be regarded as a pseudodifferential operator with symbol

(2.3)
$$i^{j} \cdot \phi(\xi_{4})^{2} \cdot e^{-i x_{3} \xi_{3}} h_{j}(x_{3} | \xi_{4} |^{1/2}) h_{j}(\xi_{3} / | \xi_{4} |^{1/2}).$$

This immediately yields the assertion (i).

The properties (ii) and (iii) are direct consequences of the fact that the sequence of the Hermite functions $\{h_j\}_{j=0}^{\infty}$ is an orthonormal basis in $L^2(\mathbf{R})$.

The properties in (iv) immediately follow from the fact that $h_j(t)$, j=0, 1, 2, ... are the eigenfunctions of the Hermite operator, i.e.,

(2.4)
$$\left(-\frac{d^2}{dt^2} + t^2\right)h_j(t) = (2j+1)h_j(t).$$

The assertions in (v) are consequences of the fact that the distribution kernels of the operators H_0 and H_0^* have respectively the following integral expressions:

$$(2\pi)^{-1}\pi^{-1/4}\int \exp\{i(x_4-y_4)\xi_4-x_3^2|\xi_4|/2\}\phi(\xi_4)|\xi_4|^{1/4}d\xi_4,$$

and

$$(2\pi)^{-1}\pi^{-1/4}\int \exp\{i(x_4-y_4)\xi_4-y_3^2|\xi_4|/2\}\phi(\xi_4)|\xi_4|^{1/4}d\xi_4$$

The stationary phase method enables us to compute the wave front set of these

On hypoellipticity

kernels (see L. Hörmander [5] Theorem 8.1.9), and this yields (v) (see Theorem 8.2.13 of [5]). ■

§3. Proof of non-hypoellipticity.

The proof of Theorem 1 is almost identical to that of Theorem 1 in [9]. We start by considering the following eigenvalue problem (with real parameter ξ):

(3.1)
$$\begin{cases} \left(-\frac{d^2}{dt^2} + f(t) |\xi| \right) v(t) = \lambda v(t), \quad -a < t < a \\ v(a) = v(-a) = 0. \end{cases}$$

Denote by $\lambda_1(\xi)$ the smallest eigenvalue and by $v(t;\xi)$ the corresponding eigenfunction normalized so that $\int_a^a |v(t;\xi)|^2 dt = 1$. Let us now recall (see Section 2 of [9]) that our assumptions (A.1) and (A.2) imply that

(3.2) there exists a positive constant C such that

 $\lambda_1(\xi) \leq (C \log |\xi|)^2$ for $|\xi|$ sufficiently large,

and

(3.3) for any positive number a' satisfying 0 < a' < a,

$$\int_{-a'}^{a'} |v(t; \xi)|^2 dt \longrightarrow 1 \quad \text{as} \quad |\xi| \to \infty \,.$$

Set now

(3.4)
$$u_{\xi}(x) = \exp(\sqrt{\lambda_1(\xi)} \cdot x_2 + i |\xi| x_4) v(x_1; \xi) h_0(x_3 |\xi|^{1/2}).$$

We are going to show that the one parameter family of the functions (3.4) with properties (3.2) and (3.3) contradicts hypoellipticity for the operator (1.1).

First observe that, if the operator P is hypoelliptic, then it holds the following inequality: For any integer k>0 and for any open sets $\omega' \equiv \omega$, there exist an integer k' and a constant C_1 such that

$$(3.5) ||D_4^k u||_{L^2(\omega')} \leq C_1 \{ \sum_{|\alpha| \leq k'} ||D^{\alpha} P u||_{L^2(\omega)} + ||u||_{L^2(\omega)} \},$$

for any $u \in C^{\infty}(\overline{\omega}).$

In the above inequality, (3.5), let us set $\omega = \{x \in \mathbb{R}^4; |x_1| < a, 0 < x_2 < a, |x_3| < a, 0 < x_4 < a\}$ and $\omega' = \{x \in \mathbb{R}^4; |x_1| < a', a'/2 < x_2 < a', |x_3| < a', a'/2 < x_4 < a'\}$ with sufficiently small constants a and a' satisfying 0 < a' < a (recall that P does not depend on the variables (x_2, x_4)).

Now, notice that $u_{\xi}(x)$ is a solution of the equation $Pu_{\xi}(x)\equiv 0$ in ω for arbitrary $\xi > 0$. This easily follows from the property (2.4) and the definition of $v(t; \xi)$. So, if one substitutes $u_{\xi}(x)$ to (3.5), then the first term of the right hand side vanishes.

T. Hoshiro

On the other hand, it could be seen that the property (3.2) yields the estimate

(3.6) $||u_{\xi}||_{L^{2}(\omega)} \leq C_{2} \cdot |\xi|^{c}$ for $|\xi|$ sufficiently large,

with some constant C_2 , and that the property (3.3) guarantees the inequality

(3.7)
$$\|D_4^k u_{\xi}\|_{L^2(\omega')} \ge C_3 \cdot |\xi|^k \quad \text{for } |\xi| \text{ sufficiently large,}$$

with another positive constant C_3 .

Finally we can easily see that there is a contradiction among (3.5), (3.6) and (3.7) taking a positive integer k so that k > C. This finishes the proof.

§4. Proof of hypoellipticity.

Since we consider the hypoellipticity in a small neighborhood of hypersurface $x_1=0$, we can modify $f(x_1)$ outside some neighborhood of $x_1=0$. So we assume that $f(x_1) \in C^{\infty}(\mathbf{R})$ satisfies $0 \leq f(x_1) < 1$ preserving the properties (A.1) and (A.3). At first, let us explain the plan of our proof. In order to show hypoellipticity of P, one can consider it, by dividing P into three parts: $P\Pi_{00}$, $P\Pi_0$ and $P\Pi_*$. More precisely, since $u=\Pi_{00}u+\Pi_0u+\Pi_*u$, the smoothness of u comes from those of all terms in the right hand side. Also notice that the operators Π_{00} , Π_0 and Π_* commute with P. So, if we show the hypoellipticity of the equations $P\Pi_{00}u=\Pi_{00}f$, $P\Pi_0u=\Pi_0f$ and $P\Pi_*u=\Pi_*f$ (i.e., the smoothness of f implies those of $\Pi_{00}u$, Π_0u and Π_*u), then our proof would be completed.

In addition, let us remark that it suffices to show the smoothness of the solution u with respect to the variable x_4 , since P is non-characteristic with respect to the other variables. To be more precise, we now introduce the following Sobolev space:

DEFINITION. We denote by $H^{k,l}(k, l \in \mathbb{R})$ the space of all distributions $u \in S'(\mathbb{R}^4)$ satisfying

$$\int |\hat{u}(\xi_1, \xi_2, \xi_3, \xi_4)|^2 (1 + \xi_1^2 + \xi_2^2 + \xi_3^2)^k (1 + \xi_4^2)^l d\xi < \infty.$$

In the present section, we are going to prove that, if f is C^{∞} (w.r.t. all variables) in a neighborhood of a certain point on $x_1=0$, then the solution $u \in H^{0,-\infty}(=\bigcup_l H^{0,l})$ belongs to $H^{0,\infty}(=\bigcap_l H^{0,l})$ there. It may be seen that one can easily show that the smoothness of the solution u w.r.t. the variables (x_1, x_2, x_3) , by writing the equation Pu=f as

$$(D_1^2 + D_2^2 + D_3^2)u = -\{x_3^2 D_4^2 + (f(x_1) - 1)D_4\}u + f$$

and observing recursively that the right hand side belongs to $H^{2k,\infty}$, $k=0, 1, 2, \cdots$. For the precise discussion, *cf*. the first part of Section 4 of [9].

I. It would be quite obvious that $\Pi_{00} u \in H^{0,\infty}$ since Π_{00} is a pseudodifferential operator with symbol $1-\phi(\xi_4)^2$.

II. Next we consider the equation $P\Pi_* u = \Pi_* f$. We shall show that for any positive integer k, one can construct a parametrix Q so that $QP\Pi_* \equiv \Pi_*$ $\operatorname{mod} OPS_{\lambda,1/2,1/2}^{-k}$ with $\lambda = (1 + \xi_4^2)^{1/2}$. (Note that $K \in OPS_{\lambda,1/2,1/2}^{-k}$ is a regularizer of order k with respect to the variable x_4 , cf. Theorem 1.6 in Chap. 7 of [10].) The argument below is essentially due to L. Boutet de Monvel [1] and A. Grigis [3]. Roughly speaking, their idea is that, since P_j is semi-elliptic for $j \ge 1$, one can build the parametrix Q. In order to make this section readable, we shall show this explicitly.

(1). Let us choose now functions $\psi_j \in C_0^{\infty}(\mathbf{R})$, j=1, 2, 3 so that $\psi_1(t) \equiv 1$ for $|t| \leq 1/8$, $\psi_3(t) \equiv 0$ for $|t| \geq 1/4$ and $\psi_1 \equiv \psi_2 \equiv \psi_3$. (Here $\psi_1 \equiv \psi_2$ means that, in the support of ψ_1, ψ_2 is identically equal to 1.) Further we choose $\phi_j \in C^{\infty}(\mathbf{R})$, j=1, 2, 3 so that $\phi \equiv \phi_1 \equiv \phi_2 \equiv \phi_3$ (where ϕ is the same one in Section 2) and $\phi_3(t) \equiv 0$ for $|t| \leq 1/2$. Denote by φ_j , j=1, 2, 3 pseudodifferential operators with symbols $\varphi_j(\xi_1, \xi_2, \xi_4) = \psi_j(|\xi_4|/(\xi_1^2 + \xi_2^2))\phi_j(\xi_4)$, j=1, 2, 3, respectively.

Now notice that, in the support of $\psi_3(|\xi_4|/(\xi_1^2+\xi_2^2))$, it holds

$$\xi_1^2 + \xi_2^2 + \xi_3^2 + x_3^2 \xi_4^2 + (f(x_1) - 1)\xi_4 \ge (\xi_1^2 + \xi_2^2 + \xi_3^2 + |\xi_4|)/4.$$

Denote by Q_1 a pseudodifferential operator with symbol

 $\sigma(Q_1) = \{\xi_1^2 + \xi_2^2 + \xi_3^2 + x_3^2 \xi_4^2 + (f(x_1) - 1)\xi_4\}^{-1} \varphi_3(\xi_1, \xi_2, \xi_4).$

Then the symbol calculus of class $S_{\lambda,1/2,0}$ gives that

 $Q_1P = \varphi_3 - K$ with $K \in OPS_{\lambda, 1/2, 0}^{-1/2}$.

This immediately implies that

$$Q_1 P \varphi_2 = (I - K) \varphi_2.$$

Moreover we now use the Neumann series expansion. Set

$$Q_2 = (I + K + K^2 + \dots + K^{2k-1})Q_1.$$

Then it is clear that

(4.1)
$$\varphi_1 Q_2 P \equiv \varphi_1 Q_2 P \varphi_2 \mod OPS_{\lambda}^{-\infty}$$
$$= \varphi_1 + K_1 \quad \text{with} \quad K_1 \in OPS_{\lambda,1/2,0}^{-k}.$$

(2). In the region complimentary to the one considered in (1), we shall construct the parametrix in the following way. First let us write the symbol $\sigma(P_j^N)$ (where N will be chosen later sufficiently large) by the sum of semi-homogenous parts:

T. HOSHIRO

$$\sigma(P_j^N) = p_{2N,j} + p_{2N-1,j} + \cdots + p_{0,j},$$

with each $p_{k,j}$ having the property that

$$p_{k,j}(x_1; \lambda \xi_1, \lambda \xi_2, \lambda^2 \xi_4) = \lambda^k p_{k,j}(x_1; \xi_1, \xi_2, \xi_4), \quad for \quad \lambda > 0.$$

In order to make $(r_{-2N,j}+r_{-2N-1,j}+\cdots)\circ\sigma(P_j^N)\sim 1$, we collect the terms by the degree of the semi-homogeneity:

$$\begin{cases} r_{-2N,j} \cdot p_{2N,j} = 1, \\ r_{-2N-\nu,j} \cdot p_{2N,j} + \sum_{\substack{l < \nu \\ l + \alpha_1 + m = \nu}} \partial_{\xi_1}^{\alpha_1} r_{-2N-l,j} \cdot D_{x_1}^{\alpha_1} p_{2N-m,j} / \alpha_1! = 0, \\ \text{for } \nu = 1, 2, \cdots. \end{cases}$$

(Here notice that $p_{2N,j} = \{\xi_1^2 + \xi_2^2 + (2j+1) | \xi_4 | + (f(x_1) - 1)\xi_4\}^N$ is semi-elliptic for $j \ge 1$.)

Choose functions $\psi_j \in C_0^{\infty}(\mathbf{R})$, j=4, 5, so that $\psi_5(t) \equiv 1$ for $|t| \leq 1/10, 1-\psi_5 \equiv 1-\psi_4 \equiv 1-\psi_1$ and set

$$q_{3,j} = (r_{-2N,j} + r_{-2N-1,j} + \dots + r_{-2N-2k+1,j}) \\ \times \{1 - \phi_5(j | \xi_4| / (\xi_1^2 + \xi_2^2))\} \phi_3(\xi_4).$$

Also, we denote by $Q_{3,j}$ and $(1-\psi_4)\phi_2$ pseudodifferential operators with symbols $q_{3,j}$ and $\{1-\psi_4(|\xi_4|/(\xi_1^2+\xi_2^2))\}\phi_2(\xi_4)$, respectively.

Observe now that, in the support of $1-\psi_5(j|\xi_4|/(\xi_1^2+\xi_2^2))$, it holds

 $|\partial_{\xi}^{\alpha}\partial_{x_{1}}^{\beta_{1}}p_{k,j}| \leq C_{1}(j+1)^{k/2}(1+|\xi_{4}|)^{(k-\alpha_{1}-\alpha_{2})/2-\alpha_{4}},$

with a positive constant C_1 independent of j. Hence, by induction, we can obtain the following inequalities: In the support of $\{1-\phi_5(j|\xi_4|/(\xi_1^2+\xi_2^2))\}\phi_3(\xi_4)$,

$$|\partial_{\xi}^{\alpha}\partial_{x_{1}}^{\beta_{1}}r_{-2N-\nu,j}| \leq C_{2}(j+1)^{-N-(\nu+\alpha_{1}+\alpha_{2})/2}(1+|\xi_{4}|)^{-N-(\nu+\alpha_{1}+\alpha_{2})/2-\alpha_{4}}$$

and

$$|\partial_{\xi}^{\alpha}\partial_{x_{1}}^{\beta_{1}}q_{3,j}| \leq C_{3}(j+1)^{-N-(\alpha_{1}+\alpha_{2})/2}(1+|\xi_{4}|)^{-N-(\alpha_{1}+\alpha_{2})/2-\alpha_{4}}$$

with some positive constants C_2 and C_3 independent of j.

We now remark that the symbol $\sigma(H_jQ_{3,j}H_j^*)$ is equal to

$$q_{3,j}(x_1; \xi_1, \xi_2, \xi_4)h_j(x_3|\xi_4|^{1/2})h_j(\xi_3/|\xi_4|^{1/2}) \cdot i^j \cdot e^{-ix_3\xi_3} \cdot \phi(\xi_4)^2,$$

and that the Hermite functions have the property:

$$\left|t^{\alpha}\frac{d^{\beta}}{dt^{\beta}}h_{j}(t)\right| \leq C_{\alpha\beta}(j+1)^{(1+\alpha+\beta)/2},$$

with some positive constant $C_{\alpha\beta}$ independent of j. (See G. Folland [2] page 54.)

Finally we obtain the following inequality:

On hypoellipticity

(4.2)
$$|\partial_{\xi}^{\alpha}\partial_{x}^{\beta}\sigma(H_{j}Q_{3,j}H_{j}^{*})| \leq C_{\alpha\beta}'(j+1)^{1-N+|\alpha|+|\beta|}(1+|\xi_{4}|)^{-N+(\beta_{3}-\alpha_{1}-\alpha_{2}-\alpha_{3})/2-\alpha_{4}},$$

where $C'_{\alpha\beta}$ is a positive constant independent of j. This immediately implies that the series $Q_3 = \sum_{j=1}^{\infty} H_j Q_{3,j} H_j^*$ converges with respect to the semi-norms in $S_{\overline{\lambda},1/2,1/2}^{-N}$ up to degree N-3. Moreover, since $1-\varphi_1 \equiv \{1-\psi_4(|\xi_4|/(\xi_1^2+\xi_2^2))\}\phi_2(\xi_4)$ $\equiv \{1-\psi_5(j|\xi_4|/(\xi_1^2+\xi_2^2))\}\phi_3(\xi_4)$ in the support of $\phi(\xi_4)$, we have

(4.3)

$$(1-\varphi_{1})Q_{3}P^{N}\Pi_{*}$$

$$\equiv (1-\varphi_{1})\sum_{j=1}^{\infty}H_{j}Q_{3,j}H_{j}^{*}P^{N}(1-\psi_{4})\phi_{2}\Pi_{*} \mod OPS_{\lambda}^{-\infty}$$

$$= (1-\varphi_{1})\sum_{j=1}^{\infty}H_{j}Q_{3,j}P_{j}^{N}(1-\psi_{4})\phi_{2}H_{j}^{*}\cdot\phi(D_{4})^{2}$$

$$= (1-\varphi_{1})\sum_{j=1}^{\infty}H_{j}(I+K_{3,j})H_{j}^{*}\cdot\phi(D_{4})^{2}$$

$$= (1-\varphi_{1})\Pi_{*}+K_{3},$$

with K_3 being of class $OPS_{\lambda,1/2,1/2}^{-k}$ (note that the series $\sum_{j=1}^{\infty} H_j K_{3,j} H_j^*$ converges w.r.t. the semi-norms in $S_{\lambda,1/2,1/2}^{-k}$ up to degree k-3).

So, from (4.1) and (4.3), we can conclude that the operator $Q = \varphi_1 Q_2 + (1-\varphi_1)Q_3P^{N-1}$ has the property mentioned above (notice that $S_{\lambda}^{-k}{}_{1/2,0} \subset S_{\lambda}^{-k}{}_{1/2,1/2}$).

REMARK. In the above construction of the parametrix, we have to choose N sufficiently large depending the order of the regularity (i.e., the exponent l of $H^{0,l}$). The reason is that one needs the information of the semi-norms of $\sigma(Q_3)$ more and more as one considers the smoothness (w.r.t. x_4) of the solution u of higher order.

III. Finally let us consider the equation $P\Pi_0 u = \Pi_0 f$. We are going to show that, if f is smooth in a neighborhood of a certain point, then $\Pi_0 u$ is also smooth there. First recall (v) of Proposition 1. In order to prove $\Pi_0 u =$ $H_0 H_0^* u$ is smooth, it suffices to show that $WF(H_0^* u) = \emptyset$. Next let us multiply the operator H_0^* from the left to the both sides of the equation $P\Pi_0 u = \Pi_0 f$. Then, from (iii) and (iv) of Proposition 1, it follows

$$P_0 H_0^* u = H_0^* f$$

Therefore one can easily conclude that it suffices to show the micro-local hypoellipticity of $P_0(\text{in } \mathbb{R}^3)$, since it is known that $WF(H_0^*f) = \emptyset$ (recall (v) of Proposition 1). Also this would be shown by the method of the previous papers [8] and [9]. In fact, the assumptions (A.1) and (A.3) imply the following inequalities:

$$(4.4) ||D_1v||^2 + ||D_2v||^2 \leq (P_0v, v), for any v \in C_0^{\infty}(\mathbf{R}^3),$$

T. HOSHIRO

and

(4.5) given any $\varepsilon > 0$, there exists a positive constant C_{ε} such that

$$\|\log \langle D_4 \rangle v\|^2 \leq \varepsilon(P_0 v, v) + C_{\varepsilon} \|v\|^2, \quad \text{for any} \quad v \in C_0^{\infty}(\mathbf{R}^3).$$

To obtain these estimates, we use partial Fourier transform w.r.t. x_4 . Let

$$\hat{P}_0 = D_1^2 + D_2^2 + |\xi_4| + (f(x_1) - 1)\xi_4$$
$$= D_1^2 + D_2^2 + F(x_1; \xi_4).$$

Then, it is clear that

(4.6)
$$F(x_1; \xi_4) \begin{cases} = f(x_1) |\xi_4| & \text{if } \xi_4 > 0, \\ \ge |\xi_4| & \text{if } \xi_4 < 0. \end{cases}$$

Thus, the inequality (4.4) is trivial. Moreover, let us recall that, $\frac{\pi}{x}$ by "sew together argument" one can prove from (A.1) and (A.3) the following inequality:

(4.7) Given any
$$\varepsilon > 0$$
, there exists a constant C'_{ε} such that

$$\begin{split} \int |\log \langle \xi_4 \rangle w(x_1)|^2 dx_1 &\leq \varepsilon \int \{ |D_1 w(x_1)|^2 + f(x_1)|\xi_4| |w(x_1)|^2 \} dx_1 \\ &+ C'_{\varepsilon} \int |w(x_1)|^2 dx_1, \\ \text{for any } w \in C^{\infty}_0(\mathbf{R}). \end{split}$$

(For detail, *cf*. Section 3 of [9].) Thus the inequalities (4.4), (4.6) and (4.7) yield (4.5). Finally, it could be obvious that our assertion follows from the estimates (4.4) and (4.5). (*Cf*. Theorem 1 and its corollary in T. Hoshiro [8] or Theorem 1 in Y. Morimoto [12].)

References

- [1] L. Boutet de Monvel, Hypoelliptic operators with double characteristics and related pseudodifferential operators, Comm. Pure and Appl. Math., 27 (1974), 585-639.
- [2] G.B. Folland, Harmonic analysis in phase space, Ann. of Math. Studies 122, Princeton Univ. Press, 1989.
- [3] A. Grigis, Hypoellipticité et parametrixes pour des opérateurs pseudodifférentiels à caracteristiques doubles, Astérisque, 34-35 (1976), 183-205.
- [4] A. Grigis and L.P. Rothschild, A criterion for analytic hypoellipticity of a class of differential operators with polynomial coefficients, Ann. of Math., 118 (1983), 443-460.
- [5] V.V. Grušin, On a class of hypoelliptic operators degenerating on a manifold, Math. USSR Sb., 13 (1971), 155-185.
- [6] B. Helffer, Sur l'hypoellipticité des opérateurs pseudodifférentiels à caractéristiques multiples (perte de 3/2 dérivées), Bull. Soc. Math. France mémoire, 51-52 (1977), 13-61.

On hypoellipticity

- [7] L. Hörmander, The analysis of linear partial differential operators I, Springer, 1983.
- [8] T. Hoshiro, Micro-local energy method of Mizohata and hypoellipticity, J. Math. Kyoto Univ., 28 (1988), 1-12.
- [9] T. Hoshiro, Hypoellipticity for infinitely degenerate elliptic and parabolic operators of second order, J. Math. Kyoto Univ., 28 (1988), 615-632.
- [10] H. Kumano-go, Pseudo-differential operators, MIT Press, 1981.
- [11] K.H.Kwon, Hypoellipticity and local solvability of operators with double characteristics, Comm. P.D.E., 10 (1985), 525-542.
- [12] Y. Morimoto, Criteria for hypoellipticity of differential operators, Publ. Res. Inst. Math. Sci. Kyoto Univ., 22 (1986), 1129-1154.
- [13] E. M. Stein, An example on the Heisenberg group related to the Lewy operator, Invent. Math., 69 (1982), 209-216.
- [14] K. Taira, Hypoelliptic differential operators with double characteristics, Proc. Japan Acad., 50 (1974), 124-126.

Toshihiko HOSHIRO Institute of Mathematics University of Tsukuba Tsukuba-shi, Ibaraki 305 Japan