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\S 1. Introduction and result.

In this paper, we consider $C^{\infty}$-hypoellipticity for the operator

(1.1) $P=D_{1}^{2}+D_{2}^{2}+D_{3}^{2}+x_{3}^{2}D_{4}^{2}+(f(x_{1})-1)D_{4}$ ,

$(D_{j}=-i \frac{\partial}{\partial x_{j}}$ $j=1,2,3,4)$

in neighborhoods $(\subset R^{4})$ of the hypersurface $x_{1}=0$ . Here we assume that the
function $f(x_{1})$ has the following properties:
(A. 1) (i) $f(O)=0$ , $f(x_{1})>0$ if $x_{1}\neq 0$ .

(ii) $f(x_{1})$ is monotone in the intervals $[0, \delta)$ and $(-\delta, 0]$ for some
$\delta>0$ .

Notice that the above operator (1.1) is a degenerate elliptic operator with
double characteristic $\Sigma=\{(x, \xi)\in T^{*}R^{4}\backslash 0;\xi_{1}=\xi_{2}=\xi_{3}=x_{3}=0\}$ . Also notice that
the canonical symplectic form $\sigma=\sum_{j}dx_{j}\wedge d\xi_{j}$ is of constant rank $(=2)$ on $T_{\rho}\Sigma$

for any point $\rho\in\Sigma$ . A. Grigis [3] treated a class of such operators after the
important work of L. Boutet de Monvel [1]. He has given a condition which
is necessary and sufficient for them to be hypoelliptic with loss of one derivative.
Roughly speaking, his condition is that Melin’s invariant ( $=subprincipal$ symbol
$+positivetrace/2)$ does not take non-positive (real) values on the characteristic
manifold $\Sigma$ . For the operator (1.1), it becomes $0<f(x_{1})<2$ if $\mathscr{I}_{m}f(x_{1})=0$

(cf. the condition (b) of th\’eor\‘eme 0.1 in [3]). So, under the assumption (i)

of (A. 1), the operator (1.1) does not satisfy the condition on the hypersurface
$x_{1}=0$ . Nevertheless, it has a possibility to be hypoelliptic with loss of more
than one derivatives.

First, let us give a condition of non-hypoellipticity for the operator (1.1):

THEOREM 1. In addition to the hypothesis (A. 1), we assume that
(A.2) there exist positive numbers $\delta_{1}$ and $\epsilon$ such that
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$|x_{1}\log f(x_{1})|$ $)$ $\epsilon$ for $0<x_{1}<\delta_{1}$ .

Then, the operator (1.1) is not hypoelliptic in any neighborhood of the hypersur-
face $x_{1}=0$ .

We remark that there are the same conditions as (A. 1) and (A.2) in the
works of Y. Morimoto [12] and T. Hoshiro [9] where the hypoellipticity for
infinitely degenerate elliptic operators is treated. The purpose of the present
paper is to point out that the operator (1.1) has a similar structure as in them.
Next we give a sufficient condition for the operator (1.1) to be hypoelliptic.

THEOREM 2. In addition to the hypothesis (A.1), we assume that

$\langle$A.3) $Iimx_{1}arrow 0|x_{1}\log f(x_{1})|=0$ .

Then, the operator (1.1) is hypoelliptic in some neighborhood of the hypersurface
$x_{1}=0$ .

AS in the works [12], [8] and [9] the most significant example is the operator
(1.1) with $f(x_{1})=\exp(-1/|x_{1}|^{\sigma})(\sigma>0)$ . It is hypoelliptic on $x_{1}=0$ if and only if
$\sigma<1$ . Also we remark here that, in view of our proof of Theorem 2, it would
be obvious that the operator

$P_{1}=D_{1}^{2}+D_{2}^{2}+x_{2}^{2}D_{3}^{2}+(f(x_{1})-1)D_{3}$

is hypoelliptic without the assumption (A.3). It is analogous to the fact that
$Fedii’ s\vee$ operator is also hypoelliptic without the assumption (A.3) (see [9]).
Such a difference of the conditions for hypoellipticity can be understood from
propagation of singularities along double characteristic manifolds. Generally,
the singularities can propagate along the leaves of foliations of $T_{\rho} \sum\cap T_{\rho}\sum^{\sigma}$ for
$\rho\in\sum$ (where $T_{\rho} \sum^{\sigma}$ is the orthogonal space of $T_{\rho}\Sigma$ with respect to the symplectic
form $\sigma$ ). For the operator(1.1), Melin’s invariant vanishes on $\Lambda=\sum\cap\{x_{1}=0$ ,
$\xi_{4}>0\}$ (where it may not be hypoelliptic microlocally) and, for any $\rho\in\Lambda$ , there
is a vector $(=\partial_{x_{2}})\in T_{p}\Sigma\cap T_{\rho}\Sigma^{\sigma}$ which is tangent to $\Lambda$ . Thus on the operator
(1.1), it is possible for singularities to propagate along $\Lambda$ and so, such an as-
sumption as (A.3) is necessary for the operator (1.1) to be hypoelliptic (it can
be regarded as a condition for preventing the propagation of singularities).

On the other hand, it can be easily observed that, for $P_{1}$ , there is no vector
playing the role as $\partial_{x_{2}}$ above.

There have been several works in the cases where the above mentioned L.
Boutet de Monvel-A. Grigis’ condition is violated. See for example, V. V. Grusin
[5], K. Taira [14], B. Helffer [6] E.M. Stein [13], A. Grigis-L.P. Rothschild
[4] and K. H. Kwon [11]. We do not explain here their works. However we
note that their situations and ours are different to each other. Also our result



On hyPoelliPticf $ty$ 595

seems to be extended to a certain class of operators characterized geometrically.
The author wants to consider it in a future paper.

ACKNOWLEDGEMENT. The author wants to exPress his hearty thanks to the
refree for his helpful criticism and suggestions.

\S 2. Preliminaries.

In the present section, we recall some techniques due to L. Boutet de
MIonvel [1]. They are necessary for a reduction in our proof of Theorem 2.

First let us denote by $h_{j}(t)$ the j-th Hermite function, $i$ . $e.$ ,

$h_{j}(t)= \pi^{-1/4}(2^{j}j!)^{-1/2}(\frac{d}{dt}-t)^{j}\exp(-\frac{t^{2}}{2})$ .

Choosing a function $\phi(t)\in C^{\infty}(R)$ so that (i) OS\mbox{\boldmath $\phi$}(t)$l, (ii) $\phi(t)\equiv 0$ for $|t|\leqq 1$ ,
(iii) $\varphi’(t)\equiv 1$ for $|t|\geqq 2$ , we introduce a sequence of operators $H_{j},$ $j=0,1,2$ ,

in such a way that

(2. 1) $H_{j}$ : $v(x_{1}, x_{2}, x_{4})arrow(H_{j}v)(x_{1}, x_{2}, x_{3}, x_{4})$

$=(2 \pi)^{-1}\int e^{ix_{44}^{\xi}}\phi(\xi_{4})|\xi_{4}|^{1/4}h_{j}(x_{3}|\xi_{4}|^{1/2})0(x_{1}, x_{2}, \xi_{4})d\xi_{4}$ ,

where $\hat{v}$ denotes the partial Fourier transform of $vw$ . $r$ . t. $x_{4}$ . Notice that the
adjoint of $H_{j}$ is defined by

(2.2) $H_{j}^{*}$ : $u(x_{1}, x_{2}, x_{3}, x_{4})arrow(H_{j}^{*}u)(x_{1}, x_{2}, x_{4})$

$=(2 \pi)^{-1}\int\int e^{lx_{44}^{\xi}}\phi(\xi_{4})|\xi_{4}|^{1/4}h_{f}(y_{3}|\xi_{4}|^{1/2})\text{\^{u}}(x_{1}, X_{2}, y_{3}, \xi_{4})dy_{3}d\xi_{4}$ .

We set now $\Pi_{j}=H_{j}H_{j}^{*}$ and, in addition we denote by $\Pi_{00}$ a pseudodif-
ferential operator with symbol $1-\phi(\xi_{4})^{2}$ which is of class $OPS_{\lambda^{0},1.0}$ with $\lambda=$

$(1+\xi_{4}^{2})^{1/2}$ . Here we adopt the notation from H. Kumano-go [10] Chapter 7.
We consider here some properties of these operators related to our operator

(1.1), (cf. A. Grigis [3] Section III.3).

PROPOSITION 1. (i) $\prod_{j},$ $]=0,1,2,$ $\cdots$ are Pseudodifferential oPerators of
class $OPS_{\lambda^{0}.1/2.1/2}$ with $\lambda=(1+\xi_{4}^{2})^{1/2}$ .

(ii) For any $u\in L^{2}(R^{4})$ ,

$u= \Pi_{00}u+\sum_{j=0}^{\infty}\Pi_{f}u$ ,

with the right hand side being convergent in $L^{2}(R^{4})$ .
Hereafter we denote $\Pi_{*}=I-\prod_{00}-\Pi_{0}(=\sum_{J=}^{\infty}\prod)$ .
(iii) For any $j,$ $k=0,1,2,$ $\cdots$

$H_{j}^{*}H_{k}=\delta_{jk}\cdot\varphi’(D_{4})^{2}$ .
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(iv) For any $j=0,1,2,$ $\cdots$ it holds

$PH_{j}=H_{j}P_{j}$ and $H_{j}^{*}P=P_{j}H_{j}^{*}$ ,

where $P_{j}=D_{1}^{2}+D_{2}^{2}+(2]+1)|D_{4}|+(f(x_{1})-1)D_{4}$ .
(v) Let us set $y=(x_{1}, x_{2}, x_{4})$ and $\eta=(\xi_{1}, \xi_{2}, \xi_{4})$ . Then the following in-

clusions hold:

$WF(H_{0^{*}}u)\subset\{(y, \eta)\in T^{*}R^{3}\backslash 0;(x_{1}, x_{2},0, x_{4} ; \xi_{1}, \xi_{2},0, \xi_{4})\in WF(u)\}$

and

$WF(H_{0}v)\subset\{(x_{1}, x_{2},0, x_{4} ; \xi_{1}, \xi_{2},0, \xi_{4})\in T^{*}R^{4}\backslash 0;(y, \eta)\in WF(v)\}$ .

REMARK. In view of (iv), it is obvious that the operators $\Pi_{j},$ $j=0,1,2,$ $\cdots$

commute with our operator $P$.

PROOF. (i) First observe that the integral operator with kernel $K(t, s)=$

$h(t)\overline{h(s})\underline{(h}\in S(R))$ can be regarded as a pseudodifferential operator with symbol
$e^{-it\tau}h(t)\hat{h}(\tau)$ . Indeed, from Plancherel’s formula, it follows that

$h(t) \int\overline{h(s)}f(s)ds=(2\pi)^{-1}h(t)\int\overline{h(\tau)}f(\tau)d\tau$ .

So, with aid of the property $\hat{h}_{j}(\tau)=(-i)^{j}h_{j}(\tau),$ $\Pi_{j}$ can be regarded as a pseudo-
differential operator with symbol

(2.3) $i^{j}\cdot\phi(\xi_{4})^{2}\cdot e^{-ix_{33}^{\xi}}h_{j}(x_{3}|\xi_{4}|^{1/2})h_{j}(\xi_{3}/|\xi_{4}|^{1/2})$ .

This immediately yields the assertion (i).

The properties (ii) and (iii) are direct consequences of the fact that the
sequence of the Hermite functions $\{h_{j}\}_{j=0}^{\infty}$ is an orthonormal basis in $L^{2}(R)$ .

The properties in (iv) immediately follow from the fact that $h_{j}(t),$ $j=0,1$ ,

2, $\cdots$ are the eigenfunctions of the Hermite operator, $i$ . $e.$ ,

(2.4) $(- \frac{d^{2}}{dt^{2}}+t^{2})h_{j}(t)=(2_{J}+1)h_{j}(t)$ .

The assertions in (v) are consequences of the fact that the distribution
kernels of the operators $H_{0}$ and $H_{0}^{*}$ have respectively the following integral
expressions:

$(2 \pi)^{-1}\pi^{-1/4}\int\exp\{i(x_{4}-y_{4})\xi_{4}-x_{3}^{2}|\xi_{4}|/2\}\phi(\xi_{4})|\xi_{4}|^{1/4}d\xi_{4}$ ,

and

$(2 \pi)^{-1}\pi^{-1/4}\int\exp\{i(x_{4}-y_{4})\xi_{4}-y_{s^{2}}|\xi_{4}|/2\}\phi(\xi_{4})|\xi_{4}|^{1/4}d\xi_{4}$ .

The stationary phase method enables us to compute the wave front set of these
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kernels (see L. Hormander [5] Theorem 8.1.9), and this yields (v) (see Theorem
8.2.13 of [5] $)$ . $\blacksquare$

\S 3. Proof of non-hypoellipticity.

The proof of Theorem 1 is almost identical to that of Theorem 1 in [9].
We start by considering the following eigenvalue problem (with real parameter $\xi$):

(3.1) $\{$

$(- \frac{d^{2}}{dt^{2}}+f(t)|\xi|)v(t)=\lambda v(t)$ , $-a<t<a$

$v(a)=v(-a)=0$ .

Denote by $\lambda_{1}(\xi)$ the smallest eigenvalue and by $v(t;\xi)$ the corresponding eigen-
function normalized so that $\int_{a}^{a}|v(t;\xi)|^{2}dt=1$ . Let us now recall (see Section
2 of [9] $)$ that our assumptions (A. 1) and (A.2) imply that

(3.2) there exists a positive constant $C$ such that
$\lambda_{1}(\xi)$ $ $(C\log|\xi|)^{2}$ for $|\xi|$ sufficiently large,

and

(3.3) for any positive number $a’$ satisfying $0<a’<a$ ,

$\int_{-a}^{a’},$ $|v(t;\xi)|^{2}dtarrow 1$ as $|\xi|arrow\infty$ .

Set now
(3.4) $u_{\xi}(x)=\exp(\sqrt{\lambda_{1}(\xi)}\cdot x_{2}+i|\xi|x_{4})v(x_{1} ; \xi)h_{0}(x_{3}|\xi|^{1/2})$ .

We are going to show that the one parameter family of the functions (3.4)

with properties (3.2) and (3.3) contradicts hypoellipticity for the operator (1.1).

First observe that, if the operator $P$ is hypoelliptic, then it holds the follow-
ing inequality: For any integer $k>0$ and for any open sets $\omega’\subset\subset\omega$ , there exist
an integer $k’$ and a constant $C_{1}$ such that

(3.5) $||D_{4}^{k}u||_{L2(\omega’)}\leqq C_{1}$
$\{ \sum_{|\alpha|\leqq k’}||D^{\alpha}Pu||_{L2(\omega)}+||u||_{L2(\omega)}\}$ ,

for any $u\in C^{\infty}(\overline{\omega})$ .
In the above inequality, (3.5), let us set $\omega=\{x\in R^{4}$ ; $|x_{1}|<a,$ $0<x_{2}<a,$ $|x_{3}|<a$ ,
$0<x_{4}<a\}$ and $\omega’=\{x\in R^{4} ; |x_{1}|<a’, a’/2<x_{2}<a’, |x_{3}|<a’, a’/2<x_{4}<a’\}$ with
sufficiently small constants $a$ and $a’$ satisfying $0<a’<a$ (recall that $P$ does not
depend on tbe variables $(x_{2}, x_{4}))$ .

NOW, notice that $u_{\xi}(x)$ is a solution of the equation $Pu_{\xi}(x)\equiv 0$ in $\omega$ for
arbitrary $\xi>0$ . This easily follows from the property (2.4) and the definition
of $v(t;\xi)$ . So, if one substitutes $u_{\xi}(x)$ to (3.5), then the first term of the right
hand side vanishes.
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On the other hand, it could be seen that the property (3.2) yields the estimate

(3.6) $||u_{\xi}||_{L^{2}(\omega)}$ $ $C_{2}\cdot|\xi|^{c}$ for $|\xi|$ sufficiently large,

with some constant $C_{2}$ , and that the property (3.3) guarantees the inequality

(3.7) $||D_{4}^{k}u_{\xi}||_{L^{2_{(\omega’)}}}\geqq C_{3}\cdot|\xi|^{k}$ for $|\xi|$ sufficiently large,

with another positive constant $C_{3}$ .
Finally we can easily see that there is a contradiction among (3.5), (3.6)

and (3.7) taking a positive integer $k$ so that $k>C$ . This finishes the proof.

\S 4. Proof of hypoellipticity.

Since we consider the hypoellipticity in a small neighborhood of hypersurface
$x_{1}=0$ , we can modify $f(x_{1})$ outside some neighborhood of $x_{1}=0$ . So we assume
that $f(x_{1})\in C^{\infty}(R)$ satisfies og $f(x_{1})<1$ preserving the properties (A. 1) and (A.3).

At first, let us explain the plan of our proof. In order to show hypoellipticity
of $P$, one can consider it, by dividing $P$ into three parts: $P\Pi_{00},$ $P\Pi_{0}$ and $P\Pi_{*}$ .
More precisely, since $u=\Pi_{00}u+\Pi_{0}u+\Pi_{*}u$ , the smoothness of $u$ comes from
those of all terms in the right hand side. Also notice that the operators $\Pi_{00}$ ,
$\Pi_{0}$ and $\Pi_{*}$ commute with $P$. So, if we show the hypoellipticity of the equa-
tions $P\Pi_{00}u=\Pi_{00}f,$ $P\Pi_{0}u=\Pi_{0}f$ and $P\Pi_{*}u=\Pi_{*}f(i$ . $e.$ , the smoothness of $f$

implies those of $\Pi_{00}u,$ $\Pi_{0}u$ and $\Pi_{*}u$ ), then our proof would be completed.
In addition, let us remark that it suffices to show the smoothness of the

solution $u$ with respect to the variable $x_{4}$ , since $P$ is non-characteristic with
respect to the other variables. To be more precise, we now introduce the fol-
lowing Sobolev space:

DEFINITION. We denote by $H^{k.l}(k, l\in R)$ the space of all distributions $u\in$

$S^{f}(R^{4})$ satisfying

$\int|\text{\^{u}}(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4})|^{2}(1+\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2})^{k}(1+\xi_{4}^{2})^{l}d\xi<\infty$ .

In tbe present section, we are going to prove that, if $f$ is $C^{\infty}(w$ . $r$ . $t$ . all
variables) in a neighborhood of a certain point on $x_{1}=0$ , then the solution $u\in$

$H^{0,-\infty}(=U_{\iota}H^{0.l})$ belongs to $H^{0.\infty}(=\cap {}_{\iota}H^{0.l})$ there. It may be seen that one can
easily show that the smoothness of the solution $uw$ . $r$ . $t$ . the variables $(x_{1}, x_{2}, x_{3})$ ,
by writing the equation $Pu=f$ as

$(D_{1}^{2}+D_{2}^{2}+D_{3}^{2})u=-\{x_{3}^{2}D_{4}^{2}+(f(x_{1})-1)D_{4}\}u+f$

and observing recursively that the right hand side belongs to $H^{2k,\infty},$ $k=0,1,2,$ $\cdots$

For the precise discussion, cf. the first part of Section 4 of [9].
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I. $Itwouldbequiteobviousthat\Pi_{00}u\in H^{0.\infty}since\Pi_{00}$ isapseudodifferential
operator with symbol $1-\phi(\xi_{4})^{2}$ .

II. Next we consider the equation $P\Pi_{*}u=\Pi_{*}f$ . We shall show that for
any positive integer $k$ , one can construct a parametrix $Q$ so that $QP\Pi_{*}\equiv\Pi_{*}$

$mod OPS_{\lambda.1/2.1/2}^{-k}$ with $\lambda=(1+\xi_{4}^{2})^{1/2}$ . (Note that $K\in OPS_{\overline{\lambda}^{k}1/2.1/2}$ is a regularizer
of order $k$ with respect to the variable $X_{4}$ , cf. Theorem 1.6 in Chap. 7 of $[10].\rangle$

The argument below is essentially due to L. Boutet de Monvel [1] and A.
Grigis [3]. Roughly speaking, their idea is that, since $P_{j}$ is semi-elliptic for
$j\geqq 1$ , one can build the parametrix $Q$ . In order to make this section readable,
we shall show this explicitly.

(1). Let us choose now functions $\psi_{J}\in C_{0}^{\infty}(R),$ $J^{=1},2,3$ so that $\psi_{1}(t)\equiv 1$ for
$|t|\leqq 1/8,$ $\psi_{3}(t)\equiv 0$ for $|t|\geqq 1/4$ and $\psi_{1}\subset\subset\psi_{2}\Subset\psi_{3}$ . (Here $\psi_{1}\Subset\psi_{2}$ means that, in the
support of $\psi_{1},$ $\psi_{2}$ is identically equal to 1.) Further we choose $\dot{\varphi}_{j}\in C^{\infty}(R),$ $j=$

$1,2,3$ so that $\phi\subset\subset\phi_{1}\subset\subset\phi_{2}\subset\subset\phi_{3}$ (where $\phi$ is the same one in Section 2) and $\phi_{3}(t)\equiv$

$0$ for $|t|\leqq 1/2$ . Denote by $\varphi_{j},$ $j=1,2,3$ pseudodifferential operators with symbols
$\varphi_{j}(\xi_{1}, \xi_{2}, \xi_{4})=\psi_{j}(|\xi_{4}|/(\xi_{1}^{2}+\xi_{2}^{2}))\phi_{J}(\xi_{4}),$ $j=1,2,3$ , respectively.

NOW notice that, in tbe support of $\psi_{3}(|\xi_{4}|/(\xi_{1}^{2}+\xi_{2}^{2}))$ , it holds

$\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}+x_{3}^{2}\xi_{4}^{2}+(f(x_{1})-1)\xi_{4}\geqq(\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}+|\xi_{4}|)/4$ .

Denote by $Q_{1}$ a pseudodifferential operator with symbol

$\sigma(Q_{1})=\{\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}+x_{3}^{2}\xi_{4}^{2}+(f(x_{1})-1)\xi_{4}\}^{-1}\varphi_{3}(\xi_{1}, \xi_{2}, \xi_{4})$ .

Then the symbol calculus of class $S_{\lambda.1/2.0}$ gives that

$Q_{1}P=\varphi_{3}-K$ with $K\in OPS_{\lambda.1/2.0}^{-1/2}$ .

This immediately implies that

$Q_{1}P\varphi_{2}=(I-K)\varphi_{2}$ .

Moreover we now use the Neumann series expansion. Set

$Q_{2}=(I+K+K^{2}+\cdots+K^{2k-1})Q_{1}$ .

Then it is clear that

(4.1) $\varphi_{1}Q_{2}P\equiv\varphi_{1}Q_{2}P\varphi_{2}mod OPS_{\lambda}^{-\infty}$

$=\varphi_{1}+K_{1}$ with $K_{1}\in OPS_{\lambda.1/2.0}^{-k}$ .
(2). In the region complimentary to the one considered in (1), we shall

construct the parametrix in the following way. First let us write the symbol
$\sigma(P_{j}^{N})$ (where $N$ will be chosen later sufficiently large) by the sum of semi-
homogenous parts:
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$\sigma(P_{j}^{N})=p_{2N.j}+p_{2N-1.j}+\cdots+p_{0,j}$ ,

with each $p_{k.j}$ having tbe property that

$p_{k.j}(x_{1} ; \lambda\xi_{1}, \lambda\xi_{2}, \lambda^{2}\xi_{4})=\lambda^{k}p_{k,j}(x_{1} ; \xi_{1}, \xi_{2}, \xi_{4})$ , for $\lambda>0$ .

In order to make $(r_{-2N.j}+r_{-2N-1,j}+\cdots)\circ\sigma(P_{j}^{N})\sim 1$ , we collect the terms by
the degree of the semi-homogeneity:

$\{$

$r_{-2N}.{}_{J}P_{2N.f}=1$ ,
$r_{-2N-\nu.j}\cdot p_{2N.j}+$

$\sum_{l<\nu,l+\alpha_{1}+m=\nu}\partial_{\xi_{1}}^{\alpha_{1}}r_{-2N-l.j}\cdot D_{x_{1}^{1}}^{\alpha}p_{2N-m.j/\alpha_{1}!}=0$
,

for $\nu=1,2,$ $\cdots$

(Here notice that $p_{2N,j}=\{\xi_{1}^{2}+\xi_{2}^{2}+(2]+1)|\xi_{4}|+(f(x_{1})-1)\xi_{4}\}^{N}$ is semi-elliptic
for $j\geqq 1.$ )

Choose functions $\psi_{j}\in C_{0}^{\infty}(R),$ $j=4,5$ , so that $\psi_{5}(t)\equiv 1$ for $|t|\leqq 1/10,1-\psi_{5}\Supset$

$1-\psi_{4}\supset\supset 1-\psi_{1}$ and set

$q_{3,j}=(r_{-2N.j}-\vdash r_{-2N-1.j}+\cdots+r_{-2N-2k+1.f})$

$\cross\{1-\psi_{5}(_{J}|\xi_{4}|/(\xi_{1}^{2}+\xi_{2}^{2}))\}\phi_{3}(\xi_{4})$ .

Also, we denote by $Q_{3.j}$ and $(1-\psi_{4})\phi_{2}$ pseudodifferential operators with symbols
$q_{s.j}$ and $\{1-\psi_{4}(|\xi_{4}|/(\xi_{1}^{2}+\xi_{z^{2}}))\}\phi_{2}(\xi_{4}),$ resPectively.

Observe now that, in the support of $1-\psi_{5}(]|\xi_{4}|/(\xi_{1}^{2}+\xi_{2}^{2}))$ , it holds

$|\partial_{\xi}^{\alpha}\partial_{x_{1}}^{\beta_{1}}p_{k.j}|\leqq C_{1}(j+1)^{k}/2(1+|\xi_{4}|)^{(k-\alpha_{1}-\alpha_{2})/2-\alpha_{4}}$ ,

with a positive constant $C_{1}$ independent of $j$ . Hence, by induction, we can
obtain the following inequalities: In the support of $\{1-\psi_{5}(]|\xi_{4}|/(\xi_{1}^{2}+\xi_{2}^{2}))\}\phi_{3}(\xi_{4})$ ,

$|\partial^{a}\partial_{x_{1}}^{\beta_{1}}r_{-2N-\nu,j}|\leqq C_{2}(+1)^{-N-(\nu+\alpha_{1}+\alpha_{2})/2}(1+|\xi_{4}|)^{-N-(\nu+a_{1}+\alpha_{2})/2-\alpha_{4}}$

and
$|\partial_{\xi}^{\alpha}\partial_{x_{1}}^{\beta_{1}}q_{3.j}|\leqq C_{3}(_{J}+1)^{-N-(\alpha_{1}+\alpha_{2})/2}(1+|\xi_{4}|)^{-N-(\alpha_{1}+\alpha_{2})/2-\alpha_{4}}$

with some positive constants $C_{2}$ and $C_{3}$ independent of $j$ .
We now remark that the symbol $a(H_{j}Q_{3},{}_{J}Hj*)$ is equal to

$q_{3.j}(x_{1} ; \xi_{1}, \xi_{2}, \xi_{4})h_{j}\langle x_{3}|\xi_{4}|^{1/2})h_{j}(\xi_{3}/|\xi_{4}|^{1/2})\cdot i^{j}\cdot e^{-ix_{3}\xi_{3}}\cdot\phi(\xi_{4})^{2}$ ,

and that the Hermite functions have the property:

$|t^{\alpha} \frac{d^{\beta}}{dt^{\beta}}h_{j}(t)|\leqq C_{\alpha\beta}(]+1)^{(1+\alpha+\beta)/2}$ ,

with some posltive constant $C_{\alpha\beta}$ independent of $j$ . (See G. Folland [2] page 54.)

Finally we obtain the following inequality:
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(4.2) $|\partial_{\xi}^{\alpha}\partial_{x}^{\beta}a(H_{j}Q_{3}.{}_{J}H_{j}^{*})|$

$\leqq C_{a\beta}’(j+1)^{1-N+|\alpha|+|\beta|}(1+|\xi_{4}|)^{-N+\mathfrak{c}\beta_{3}-\alpha_{1}-\alpha_{2}-\alpha_{3})/2-\alpha_{4}}$ ,

where $C_{\alpha\beta}’$ is a positive constant independent of $j$ . This immediately implies
that the series $Q_{3}=\Sigma_{j=1}^{\infty}H_{j}Q_{3}.{}_{j}H_{j}^{*}$ converges with respect to the semi-norms in
$S_{\lambda.1/2.1/2}^{-N}$ up to degree $N-3$ . Moreover, since $1-\varphi_{1}\Subset\{1-\psi_{4}(|\xi_{4}|/(\xi_{1}^{2}+\xi_{2}^{2}))\}\phi_{2}(\xi_{4})$

$\subset\subset\{1-\psi_{5}(j|\xi_{4}|/(\xi_{1}^{2}+\xi_{2}^{2}))\}\phi_{3}(\xi_{4})$ in the support of $\phi(\xi_{4})$ , we have

(4.3) $(1-\varphi_{1})Q_{3}P^{N}\Pi_{*}$

$\equiv(1-\varphi_{1})\sum_{j=1}^{\infty}H_{j}Q_{3},{}_{j}H_{j}^{*}P^{N}(1-\psi_{4})\phi_{2}\Pi_{*}mod OPS_{\overline{\lambda}}^{\infty}$

$=(1- \varphi_{1})\sum_{j=1}^{\infty}H_{j}Q_{3},{}_{j}P_{j}^{N}(1-\psi_{4})\phi_{2}H_{j}^{*}\cdot\phi(D_{4})^{2}$

$=(1- \varphi_{1})\sum_{j=1}^{\infty}H_{J}(I+K_{3,j})H_{j}^{*}\cdot\phi(D_{4})^{2}$

$=(1-\varphi_{1})\Pi_{*}+K_{3}$ ,

with $K_{3}$ being of class $OPS_{\lambda,1/2.1/2}^{-k}$ (note that the series $\Sigma_{j=1}^{\infty}H_{j}K_{3}.{}_{j}H_{j}^{*}$ converges
$w.r.t$ . the semi-norms in $S_{\lambda.1/2.1/2}^{-k}$ uP to degree $k-3$).

So, from (4.1) and (4.3), we can conclude that the operator $Q=\varphi_{1}Q_{2}+$

$(1-\varphi_{1})Q{}_{s}P^{N-1}$ has the property mentioned above (notice that $S_{\lambda 1/2,0}^{-k}\subset$

$S_{\lambda.1/2,1/2}^{-k})$ .

REMARK. In the above construction of the parametrix, we have to choose
$N$ sufficiently large depending the order of the regularity ( $i$ . $e.$ , the exponent $l$

of $H^{0.l}$ ). The reason is that one needs the information of the semi-norms of
$\sigma(Q_{3})$ more and more as one considers the smoothness ($w.r$ . t. $x_{4}$ ) of the solution
$u$ of higher order.

III. Finally let us consider the equation $P\Pi_{0}u=\Pi_{0}f$ . We are going to
show that, if $f$ is smooth in a neighborhood of a certain point, then $\Pi_{0}u$ is
also smooth there. First recall (v) of Proposition 1. In order to prove $\Pi_{0}u=$

$H_{0}H_{0}^{*}u$ is smooth, it suffices to show that $WF(H_{0}^{*}u)=\emptyset$ . Next let us multiply
the operator $H_{0}^{*}$ from the left to the both sides of the equation $P\Pi_{0}u=\Pi_{0}f$ .
Then, from (iii) and (iv) of Proposition 1, it follows

$P_{0}H_{0}^{*}u=H_{0}^{*}f$ .
Therefore one can easily conclude that it suffices to show the micro-local
hypoellipticity of $P_{0}$ (in $R^{3}$ ), since it is known that $WF(H_{0}^{*}f)=\emptyset$ (recall (v) of
Proposition 1). Also this would be shown by the method of the previous papers
[8] and [9]. In fact, the assumptions (A.1) and (A.3) imply the following
inequalities:

(4.4) $||D_{1}v||^{2}+||D_{2}v||^{2}$ $ $(P_{0}v, v)$ , for any $v\in C_{0}^{\infty}(R^{3})$ ,
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and

(4.5) given any $\epsilon>0$ , there exists a positive constant $C_{\epsilon}$ such that

$||\log\langle D_{4}\rangle v||^{2}\leqq\epsilon(P_{0}\iota)v)+C_{\epsilon}||v||^{2}$ , for any $v\in C_{0}^{\infty}(R^{3})$ .

TO obtain these estimates, we use partial Fourier transform $w$ . $r$ . $t.\hat{A}4$ . Let

$P_{0}=D_{1}^{2}+D_{2}^{2}+|\xi_{4}|+(f(x_{1})-1)\xi_{4}$

$=D_{1}^{2}+D_{2}^{2}+F(x_{1} ; \xi_{4})$ .
Then, it is clear that

(4.6) $F(x_{1} ; \xi_{4})\{\begin{array}{l}=f(x_{1})|\xi_{4}| if \xi_{4}>0,\geqq|\xi_{4}| if \xi_{4}<0.\end{array}$

Thus, the inequality (4.4) is trivial. Moreover, let us recall that, $-E$ by “sew
together argument” one can prove from (A. 1) and (A.3) the following inequality:

(4.7) Given any $\epsilon>0$ , there exists a constant C’ such that

$\int|\log\langle\xi_{4}\rangle w(x_{1})|^{2}dx_{1}\leqq\epsilon\int\{|D_{1}w(x_{1})|^{2}+f(x_{1})|\xi_{4}||w(x_{1})|^{2}\}dx_{1}$

$+C_{\epsilon}’ \int|w(x_{1})|^{2}dx_{1}$ ,

for any $w\in C_{0}^{\infty}(R)$ .
(For detail, cf. Section 3 of [9].) Thus the inequalities (4.4), (4.6) and (4.7)

yield (4.5). Finally, it could be obvious that our assertion follows from the
estimates (4.4) and (4.5). (Cf. Theorem 1 and its corollary in T. Hoshiro [8]

or Theorem 1 in Y. Morimoto [12].)
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