On hypoellipticity for a certain operator with double characteristic

Dedicated to Professor Mutsuhide Matsumura on his 60 th birthday

By Toshihiko Hoshiro

(Received May 22, 1990)
(Revised Oct. 3, 1990)

§ 1. Introduction and result.

In this paper, we consider C^{∞}-hypoellipticity for the operator

$$
\begin{gather*}
P=D_{1}{ }^{2}+D_{2}{ }^{2}+D_{3}{ }^{2}+x_{3}{ }^{2} D_{4}{ }^{2}+\left(f\left(x_{1}\right)-1\right) D_{4}, \tag{1.1}\\
\left(D_{j}=-i \frac{\partial}{\partial x_{j}} \quad j=1,2,3,4\right)
\end{gather*}
$$

in neighborhoods ($\subset \boldsymbol{R}^{4}$) of the hypersurface $x_{1}=0$. Here we assume that the function $f\left(x_{1}\right)$ has the following properties:
(A.1) (i) $f(0)=0, \quad f\left(x_{1}\right)>0 \quad$ if $x_{1} \neq 0$.
(ii) $f\left(x_{1}\right)$ is monotone in the intervals $[0, \delta)$ and $(-\delta, 0]$ for some $\delta>0$.
Notice that the above operator (1.1) is a degenerate elliptic operator with double characteristic $\Sigma=\left\{(x, \xi) \in T^{*} R^{4} \backslash 0 ; \xi_{1}=\xi_{2}=\xi_{3}=x_{3}=0\right\}$. Also notice that the canonical symplectic form $\sigma=\sum_{j} d x_{j} \wedge d \xi_{j}$ is of constant rank (=2) on $T_{\rho} \Sigma$ for any point $\rho \in \Sigma$. A. Grigis [3] treated a class of such operators after the important work of L. Boutet de Monvel [1]. He has given a condition which is necessary and sufficient for them to be hypoelliptic with loss of one derivative. Roughly speaking, his condition is that Melin's invariant (=subprincipal symbol +positive trace/2) does not take non-positive (real) values on the characteristic manifold Σ. For the operator (1.1), it becomes $0<f\left(x_{1}\right)<2$ if $g_{m} f\left(x_{1}\right)=0$ (cf. the condition (b) of théorème 0.1 in [3]). So, under the assumption (i) of (A.1), the operator (1.1) does not satisfy the condition on the hypersurface $x_{1}=0$. Nevertheless, it has a possibility to be hypoelliptic with loss of more than one derivatives.

First, let us give a condition of non-hypoellipticity for the operator (1.1):
Theorem 1. In addition to the hypothesis (A.1), we assume that
(A.2) there exist positive numbers δ_{1} and ε such that

[^0]$$
\left|x_{1} \log f\left(x_{1}\right)\right| \geqq \varepsilon \quad \text { for } \quad 0<x_{1}<\delta_{1} .
$$

Then, the operator (1.1) is not hypoelliptic in any neighborhood of the hypersurface $x_{1}=0$.

We remark that there are the same conditions as (A.1) and (A.2) in the works of Y. Morimoto [12] and T. Hoshiro [9] where the hypoellipticity for infinitely degenerate elliptic operators is treated. The purpose of the present paper is to point out that the operator (1.1) has a similar structure as in them. Next we give a sufficient condition for the operator (1.1) to be hypoelliptic.

THEOREM 2. In addition to the hypothesis (A.1), we assume that

$$
\begin{equation*}
\lim _{x_{1} \rightarrow 0}\left|x_{1} \log f\left(x_{1}\right)\right|=0 \tag{A.3}
\end{equation*}
$$

Then, the operator (1.1) is hypoelliptic in some neighborhood of the hypersurface $x_{1}=0$.

As in the works [12], [8] and [9] the most significant example is the operator (1.1) with $f\left(x_{1}\right)=\exp \left(-1 /\left|x_{1}\right|^{\sigma}\right)(\sigma>0)$. It is hypoelliptic on $x_{1}=0$ if and only if $\sigma<1$. Also we remark here that, in view of our proof of Theorem 2, it would be obvious that the operator

$$
P_{1}=D_{1}{ }^{2}+D_{2}{ }^{2}+x_{2}{ }^{2} D_{3}{ }^{2}+\left(f\left(x_{1}\right)-1\right) D_{3}
$$

is hypoelliptic without the assumption (A.3). It is analogous to the fact that Fedii's operator is also hypoelliptic without the assumption (A.3) (see [9]). Such a difference of the conditions for hypoellipticity can be understood from propagation of singularities along double characteristic manifolds. Generally, the singularities can propagate along the leaves of foliations of $T_{\rho} \Sigma \wedge T_{\rho} \Sigma^{\sigma}$ for $\rho \in \Sigma$ (where $T_{\rho} \Sigma^{\sigma}$ is the orthogonal space of $T_{\rho} \Sigma$ with respect to the symplectic form σ). For the operator (1.1), Melin's invariant vanishes on $\Lambda=\sum \cap\left\{x_{1}=0\right.$, $\left.\xi_{4}>0\right\}$ (where it may not be hypoelliptic microlocally) and, for any $\rho \in \Lambda$, there is a vector $\left(=\partial_{x_{2}}\right) \in T_{\rho} \Sigma \cap T_{\rho} \Sigma^{\sigma}$ which is tangent to Λ. Thus on the operator (1.1), it is possible for singularities to propagate along Λ and so, such an assumption as (A.3) is necessary for the operator (1.1) to be hypoelliptic (it can be regarded as a condition for preventing the propagation of singularities). On the other hand, it can be easily observed that, for P_{1}, there is no vector playing the role as $\partial_{x_{2}}$ above.

There have been several works in the cases where the above mentioned L. Boutet de Monvel-A. Grigis' condition is violated. See for example, V. V. Grušin [5], K. Taira [14], B. Helffer [6] E. M. Stein [13], A. Grigis-L. P. Rothschild [4] and K.H. Kwon [11]. We do not explain here their works. However we note that their situations and ours are different to each other. Also our result
seems to be extended to a certain class of operators characterized geometrically. The author wants to consider it in a future paper.

Acknowledgement. The author wants to express his hearty thanks to the refree for his helpful criticism and suggestions.

§ 2. Preliminaries.

In the present section, we recall some techniques due to L. Boutet de Monvel [1]. They are necessary for a reduction in our proof of Theorem 2.

First let us denote by $h_{j}(t)$ the j-th Hermite function, i.e.,

$$
h_{j}(t)=\pi^{-1 / 4}\left(2^{j} j!\right)^{-1 / 2}\left(\frac{d}{d t}-t\right)^{j} \exp \left(-\frac{t^{2}}{2}\right) .
$$

Choosing a function $\phi(t) \in C^{\infty}(\boldsymbol{R})$ so that (i) $0 \leqq \phi(t) \leqq 1$, (ii) $\phi(t) \equiv 0$ for $|t| \leqq 1$, (iii) $\phi(t) \equiv 1$ for $|t| \geqq 2$, we introduce a sequence of operators $H_{j}, j=0,1,2, \cdots$ in such a way that

$$
\begin{align*}
H_{j}: & v\left(x_{1}, x_{2}, x_{4}\right) \longrightarrow\left(H_{j} v\right)\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \tag{2.1}\\
& =(2 \pi)^{-1} \int e^{i x_{4} \xi_{4}} \phi\left(\xi_{4}\right)\left|\xi_{4}\right|^{1 / 4} h_{j}\left(x_{3}\left|\xi_{4}\right|^{1 / 2}\right) \hat{v}\left(x_{1}, x_{2}, \xi_{4}\right) d \xi_{4},
\end{align*}
$$

where \hat{v} denotes the partial Fourier transform of v w.r.t. x_{4}. Notice that the adjoint of H_{j} is defined by

$$
\begin{align*}
H_{j}^{*} & : u\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \longrightarrow\left(H_{j}^{*} u\right)\left(x_{1}, x_{2}, x_{4}\right) \tag{2.2}\\
& =(2 \pi)^{-1} \iint e^{i x_{4} \hat{\xi}_{4}} \phi\left(\xi_{4}\right)\left|\xi_{4}\right|^{1 / 4} h_{j}\left(y_{3}\left|\xi_{4}\right|^{1 / 2}\right) \hat{u}\left(x_{1}, x_{2}, y_{3}, \xi_{4}\right) d y_{3} d \xi_{4} .
\end{align*}
$$

We set now $\Pi_{j}=H_{j} H_{j}^{*}$ and, in addition we denote by Π_{00} a pseudodifferential operator with symbol $1-\phi\left(\xi_{4}\right)^{2}$ which is of class $O P S_{i, 1,0}{ }^{0}$ with $\lambda=$ $\left(1+\xi_{4}^{2}\right)^{1 / 2}$. Here we adopt the notation from H. Kumano-go [10] Chapter 7.

We consider here some properties of these operators related to our operator (1.1), (cf. A. Grigis [3] Section III.3).

Proposition 1. (i) $\Pi_{j}, j=0,1,2, \cdots$ are pseudodifferential operators of class $O P S_{\lambda, 1 / 2,1 / 2}^{0}$ with $\lambda=\left(1+\xi_{4}^{2}\right)^{1 / 2}$.
(ii) For any $u \in L^{2}\left(\boldsymbol{R}^{4}\right)$,

$$
u=\Pi_{00} u+\sum_{j=0}^{\infty} \Pi_{j} u,
$$

with the right hand side being convergent in $L^{2}\left(\boldsymbol{R}^{4}\right)$.
Hereafter we denote $\Pi_{*}=I-\Pi_{00}-\Pi_{0}\left(=\sum_{j=1}^{\infty} \Pi_{j}\right)$.
(iii) For any $j, k=0,1,2, \cdots$

$$
H_{j}^{*} H_{k}=\delta_{j_{k}} \cdot \dot{\phi}\left(D_{4}\right)^{2} .
$$

(iv) For any $j=0,1,2, \cdots$ it holds

$$
P H_{j}=H_{j} P_{j} \quad \text { and } \quad H_{j}^{*} P=P_{j} H_{j}^{*},
$$

where $P_{j}=D_{1}{ }^{2}+D_{2}{ }^{2}+(2 j+1)\left|D_{4}\right|+\left(f\left(x_{1}\right)-1\right) D_{4}$.
(v) Let us set $y=\left(x_{1}, x_{2}, x_{4}\right)$ and $\eta=\left(\xi_{1}, \xi_{2}, \xi_{4}\right)$. Then the following inclusions hold:

$$
W F\left(H_{0}^{*} u\right) \subset\left\{(y, \eta) \in T^{*} \boldsymbol{R}^{3} \backslash 0 ;\left(x_{1}, x_{2}, 0, x_{4} ; \xi_{1}, \xi_{2}, 0, \xi_{4}\right) \in W F(u)\right\}
$$

and
$W F\left(H_{0} v\right) \subset\left\{\left(x_{1}, x_{2}, 0, x_{4} ; \xi_{1}, \xi_{2}, 0, \xi_{4}\right) \in T^{*} \boldsymbol{R}^{4} \backslash 0 ;(y, \eta) \in W F(v)\right\}$.
Remark. In view of (iv), it is obvious that the operators $\Pi_{j}, j=0,1,2, \cdots$ commute with our operator P.

Proof. (i) First observe that the integral operator with kernel $K(t, s)=$ $h(t) \overline{h(s)}(h \in \mathcal{S}(\boldsymbol{R}))$ can be regarded as a pseudodifferential operator with symbol $e^{-i t \tau} h(t) \overline{\hat{h}(\tau)}$. Indeed, from Plancherel's formula, it follows that

$$
h(t) \int \overline{h(s)} f(s) d s=(2 \pi)^{-1} h(t) \int \overline{\hat{h}(\tau)} \hat{f}(\tau) d \tau
$$

So, with aid of the property $\hat{h}_{j}(\tau)=(-i)^{j} h_{j}(\tau), \Pi_{j}$ can be regarded as a pseudodifferential operator with symbol

$$
\begin{equation*}
i^{j} \cdot \phi\left(\xi_{4}\right)^{2} \cdot e^{-i x_{3} \xi^{3}} h_{j}\left(x_{3}\left|\xi_{4}\right|^{1 / 2}\right) h_{j}\left(\xi_{3} /\left|\xi_{4}\right|^{1 / 2}\right) \tag{2.3}
\end{equation*}
$$

This immediately yields the assertion (i).
The properties (ii) and (iii) are direct consequences of the fact that the sequence of the Hermite functions $\left\{h_{j}\right\}_{j=0}^{\infty}$ is an orthonormal basis in $L^{2}(\boldsymbol{R})$.

The properties in (iv) immediately follow from the fact that $h_{j}(t), j=0,1$, $2, \cdots$ are the eigenfunctions of the Hermite operator, i.e.,

$$
\begin{equation*}
\left(-\frac{d^{2}}{d t^{2}}+t^{2}\right) h_{j}(t)=(2 j+1) h_{j}(t) . \tag{2.4}
\end{equation*}
$$

The assertions in (v) are consequences of the fact that the distribution kernels of the operators H_{0} and H_{0}^{*} have respectively the following integral expressions:

$$
(2 \pi)^{-1} \pi^{-1 / 4} \int \exp \left\{i\left(x_{4}-y_{4}\right) \xi_{4}-x_{3}^{2}\left|\xi_{4}\right| / 2\right\} \phi\left(\xi_{4}\right)\left|\xi_{4}\right|^{1 / 4} d \xi_{4}
$$

and

$$
(2 \pi)^{-1} \pi^{-1 / 4} \int \exp \left\{i\left(x_{4}-y_{4}\right) \xi_{4}-y_{3}^{2}\left|\xi_{4}\right| / 2\right\} \phi\left(\xi_{4}\right)\left|\xi_{4}\right|^{1 / 4} d \xi_{4}
$$

The stationary phase method enables us to compute the wave front set of these
kernels (see L. Hörmander [5] Theorem 8.1.9), and this yields (v) (see Theorem 8.2.13 of [5]].

§ 3. Proof of non-hypoellipticity.

The proof of Theorem 1 is almost identical to that of Theorem 1 in [9]. We start by considering the following eigenvalue problem (with real parameter ξ):

$$
\left\{\begin{array}{l}
\left(-\frac{d^{2}}{d t^{2}}+f(t)|\xi|\right) v(t)=\lambda v(t), \quad-a<t<a \tag{3.1}\\
v(a)=v(-a)=0 .
\end{array}\right.
$$

Denote by $\lambda_{1}(\xi)$ the smallest eigenvalue and by $v(t ; \xi)$ the corresponding eigenfunction normalized so that $\int_{a}^{a}|v(t ; \xi)|^{2} d t=1$. Let us now recall (see Section 2 of [9]) that our assumptions (A.1) and (A.2) imply that
(3.2) there exists a positive constant C such that

$$
\lambda_{1}(\xi) \leqq(C \log |\xi|)^{2} \quad \text { for }|\xi| \text { sufficiently large, }
$$

and
(3.3) for any positive number a^{\prime} satisfying $0<a^{\prime}<a$,

$$
\int_{-a^{\prime}}^{a^{\prime}}|v(t ; \xi)|^{2} d t \longrightarrow 1 \text { as }|\xi| \rightarrow \infty .
$$

Set now

$$
\begin{equation*}
u_{\xi}(x)=\exp \left(\sqrt{\lambda_{1}(\xi)} \cdot x_{2}+i|\xi| x_{4}\right) v\left(x_{1} ; \xi\right) h_{0}\left(x_{3}|\xi|^{1 / 2}\right) \tag{3.4}
\end{equation*}
$$

We are going to show that the one parameter family of the functions (3.4) with properties (3.2) and (3.3) contradicts hypoellipticity for the operator (1.1).

First observe that, if the operator P is hypoelliptic, then it holds the following inequality: For any integer $k>0$ and for any open sets $\omega^{\prime} \Subset \omega$, there exist an integer k^{\prime} and a constant C_{1} such that

$$
\begin{gather*}
\left\|D_{4}{ }^{k} u\right\|_{L^{2}\left(\omega^{\prime}\right)} \leqq C_{1}\left\{\sum_{|\alpha| \leq k^{\prime}}\left\|D^{\alpha} P u\right\|_{L^{2}(\omega)}+\|u\|_{L^{2}(\omega)}\right\}, \tag{3.5}\\
\text { for any } u \in C^{\infty}(\bar{\omega}) .
\end{gather*}
$$

In the above inequality, (3.5), let us set $\omega=\left\{x \in \boldsymbol{R}^{4} ;\left|x_{1}\right|<a, 0<x_{2}<a,\left|x_{3}\right|<a\right.$, $\left.0<x_{4}<a\right\}$ and $\omega^{\prime}=\left\{x \in \boldsymbol{R}^{4} ;\left|x_{1}\right|<a^{\prime}, a^{\prime} / 2<x_{2}<a^{\prime},\left|x_{3}\right|<a^{\prime}, a^{\prime} / 2<x_{4}<a^{\prime}\right\}$ with sufficiently small constants a and a^{\prime} satisfying $0<a^{\prime}<a$ (recall that P does not depend on the variables ($\left.x_{2}, x_{4}\right)$).

Now, notice that $u_{\xi}(x)$ is a solution of the equation $P u_{\xi}(x) \equiv 0$ in ω for arbitrary $\xi>0$. This easily follows from the property (2.4) and the definition of $v(t ; \xi)$. So, if one substitutes $u_{\xi}(x)$ to (3.5), then the first term of the right hand side vanishes.

On the other hand, it could be seen that the property (3.2) yields the estimate

$$
\begin{equation*}
\left\|u_{\xi}\right\|_{L^{2}(\omega)} \leqq C_{2} \cdot|\xi|^{C} \quad \text { for }|\xi| \text { sufficiently large, } \tag{3.6}
\end{equation*}
$$

with some constant C_{2}, and that the property (3.3) guarantees the inequality

$$
\begin{equation*}
\left\|D_{4}^{k} u_{\xi}\right\|_{L^{2}\left(\omega^{\prime}\right)} \geqq C_{3} \cdot|\xi|^{k} \quad \text { for }|\xi| \text { sufficiently large } \tag{3.7}
\end{equation*}
$$

with another positive constant C_{3}.
Finally we can easily see that there is a contradiction among (3.5), (3.6) and (3.7) taking a positive integer k so that $k>C$. This finishes the proof.

§4. Proof of hypoellipticity.

Since we consider the hypoellipticity in a small neighborhood of hypersurface $x_{1}=0$, we can modify $f\left(x_{1}\right)$ outside some neighborhood of $x_{1}=0$. So we assume that $f\left(x_{1}\right) \in C^{\infty}(\boldsymbol{R})$ satisfies $0 \leqq f\left(x_{1}\right)<1$ preserving the properties (A.1) and (A.3). At first, let us explain the plan of our proof. In order to show hypoellipticity of P, one can consider it, by dividing P into three parts: $P \Pi_{00}, P \Pi_{0}$ and $P \Pi_{*}$. More precisely, since $u=\Pi_{00} u+\Pi_{0} u+\Pi_{*} u$, the smoothness of u comes from those of all terms in the right hand side. Also notice that the operators Π_{00}, Π_{0} and Π_{*} commute with P. So, if we show the hypoellipticity of the equations $P \Pi_{00} u=\Pi_{00} f, P \Pi_{0} u=\Pi_{0} f$ and $P \Pi_{*} u=\Pi_{*} f$ (i.e., the smoothness of f implies those of $\Pi_{00} u, \Pi_{0} u$ and $\Pi_{*} u$), then our proof would be completed.

In addition, let us remark that it suffices to show the smoothness of the solution u with respect to the variable x_{4}, since P is non-characteristic with respect to the other variables. To be more precise, we now introduce the following Sobolev space:

Definition. We denote by $H^{k, l}(k, l \in \boldsymbol{R})$ the space of all distributions $u \in$ $\mathcal{S}^{\prime}\left(\boldsymbol{R}^{4}\right)$ satisfying

$$
\int\left|\hat{u}\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)\right|^{2}\left(1+\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}\right)^{k}\left(1+\xi_{4}^{2}\right)^{l} d \xi<\infty .
$$

In the present section, we are going to prove that, if f is C^{∞} (w.r.t. all variables) in a neighborhood of a certain point on $x_{1}=0$, then the solution $u \in$ $H^{0,-\infty}\left(=\cup_{l} H^{0, l}\right)$ belongs to $H^{0, \infty}\left(=\bigcap_{l} H^{0, l}\right)$ there. It may be seen that one can easily show that the smoothness of the solution u w.r.t. the variables (x_{1}, x_{2}, x_{3}), by writing the equation $P u=f$ as

$$
\left(D_{1}{ }^{2}+D_{2}{ }^{2}+D_{3}{ }^{2}\right) u=-\left\{x_{3}{ }^{2} D_{4}{ }^{2}+\left(f\left(x_{1}\right)-1\right) D_{4}\right\} u+f
$$

and observing recursively that the right hand side belongs to $H^{2 k, \infty}, k=0,1,2, \cdots$. For the precise discussion, $c f$. the first part of Section 4 of [9].
I. It would be quite obvious that $\Pi_{00} u \in H^{0, \infty}$ since Π_{00} is a pseudodifferential operator with symbol $1-\phi\left(\xi_{4}\right)^{2}$.
II. Next we consider the equation $P \Pi_{*} u=\Pi_{*} f$. We shall show that for any positive integer k, one can construct a parametrix Q so that $Q P \Pi_{*} \equiv \Pi_{*}$ $\bmod O P S_{\lambda, 1 / 2,1 / 2}^{\bar{k}}$ with $\lambda=\left(1+\xi_{4}^{2}\right)^{1 / 2}$. (Note that $K \in O P S_{\bar{\lambda}, 1 / 2,1 / 2}^{-k}$ is a regularizer of order k with respect to the variable $x_{4}, c f$. Theorem 1.6 in Chap. 7 of [10].) The argument below is essentially due to L. Boutet de Monvel [1] and A. Grigis [3]. Roughly speaking, their idea is that, since P_{j} is semi-elliptic for $j \geqq 1$, one can build the parametrix Q. In order to make this section readable, we shall show this explicitly.
(1). Let us choose now functions $\psi_{j} \in C_{0}^{\infty}(\boldsymbol{R}), j=1,2,3$ so that $\psi_{1}(t) \equiv 1$ for $|t| \leqq 1 / 8, \psi_{3}(t) \equiv 0$ for $|t| \geqq 1 / 4$ and $\psi_{1} \Subset \psi_{2} \Subset \psi_{3}$. (Here $\phi_{1} \Subset \psi_{2}$ means that, in the support of ψ_{1}, ψ_{2} is identically equal to 1.) Further we choose $\phi_{j} \in C^{\infty}(\boldsymbol{R}), j=$ $1,2,3$ so that $\phi \Subset \phi_{1} \Subset \phi_{2} \Subset \phi_{3}$ (where ϕ is the same one in Section 2) and $\phi_{3}(t) \equiv$ 0 for $|t| \leqq 1 / 2$. Denote by $\varphi_{j}, j=1,2,3$ pseudodifferential operators with symbols $\varphi_{j}\left(\xi_{1}, \xi_{2}, \xi_{4}\right)=\psi_{j}\left(\left|\xi_{4}\right| /\left(\xi_{1}{ }^{2}+\xi_{2}{ }^{2}\right)\right) \phi_{j}\left(\xi_{4}\right), j=1,2,3$, respectively.

Now notice that, in the support of $\psi_{3}\left(\left|\xi_{4}\right| /\left(\xi_{1}{ }^{2}+\xi_{2}{ }^{2}\right)\right)$, it holds

$$
\xi_{1}{ }^{2}+\xi_{2}{ }^{2}+\xi_{3}{ }^{2}+x_{3}{ }^{2} \xi_{4}{ }^{2}+\left(f\left(x_{1}\right)-1\right) \xi_{4} \geqq\left(\xi_{1}{ }^{2}+\xi_{2}{ }^{2}+\xi_{3}{ }^{2}+\left|\xi_{4}\right|\right) / 4
$$

Denote by Q_{1} a pseudodifferential operator with symbol

$$
\sigma\left(Q_{1}\right)=\left\{\xi_{1}{ }^{2}+\xi_{2}{ }^{2}+\xi_{3}{ }^{2}+x_{3}{ }^{2} \xi_{4}{ }^{2}+\left(f\left(x_{1}\right)-1\right) \xi_{4}\right\}{ }^{-1} \varphi_{3}\left(\xi_{1}, \xi_{2}, \xi_{4}\right) .
$$

Then the symbol calculus of class $S_{2,1 / 2,0}$ gives that

$$
Q_{1} P=\varphi_{3}-K \quad \text { with } \quad K \in O P S_{\lambda, 1 / 2,0}^{-1 / 2}
$$

This immediately implies that

$$
Q_{1} P \varphi_{2}=(I-K) \varphi_{2}
$$

Moreover we now use the Neumann series expansion. Set

$$
Q_{2}=\left(I+K+K^{2}+\cdots+K^{2 k-1}\right) Q_{1} .
$$

Then it is clear that

$$
\begin{align*}
\varphi_{1} Q_{2} P & \equiv \varphi_{1} Q_{2} P \varphi_{2} \bmod O P S_{2}^{-\infty} \tag{4.1}\\
& =\varphi_{1}+K_{1} \quad \text { with } \quad K_{1} \in O P S \bar{\lambda}_{, 12,0}^{k} .
\end{align*}
$$

(2). In the region complimentary to the one considered in (1), we shall construct the parametrix in the following way. First let us write the symbol $\sigma\left(P_{j}^{N}\right)$ (where N will be chosen later sufficiently large) by the sum of semihomogenous parts:

$$
\sigma\left(P_{j}^{N}\right)=p_{2 N, j}+p_{2 N-1, j}+\cdots+p_{0, j},
$$

with each $p_{k, j}$ having the property that

$$
p_{k, j}\left(x_{1} ; \lambda \xi_{1}, \lambda \xi_{2}, \lambda^{2} \xi_{4}\right)=\lambda^{k} p_{k, j}\left(x_{1} ; \xi_{1}, \xi_{2}, \xi_{4}\right), \quad \text { for } \quad \lambda>0 .
$$

In order to make $\left(r_{-2 N, j}+r_{-2 N-1, j}+\cdots\right) \circ \sigma\left(P_{j}^{N}\right) \sim 1$, we collect the terms by the degree of the semi-homogeneity:

$$
\left\{\begin{array}{l}
r_{-2 N, j} \cdot p_{2 N, j}=1, \\
r_{-2 N-\nu, j} \cdot p_{2 N, j}+\sum_{l+\alpha_{1}+m=\nu} \partial_{\xi_{1}}^{\alpha_{1} r_{-2 N-l, j} \cdot D_{x 1}^{\alpha_{1}} p_{2 N-m, j} / \alpha_{1}!=0,} \\
\text { for } \nu=1,2, \cdots .
\end{array}\right.
$$

(Here notice that $p_{2 N, j}=\left\{\xi_{1}{ }^{2}+\xi_{2}{ }^{2}+(2 j+1)\left|\xi_{4}\right|+\left(f\left(x_{1}\right)-1\right) \xi_{4}\right\}^{N}$ is semi-elliptic for $j \geqq 1$.)

Choose functions $\psi_{j} \in C_{0}^{\infty}(\boldsymbol{R}), j=4,5$, so that $\psi_{5}(t) \equiv 1$ for $|t| \leqq 1 / 10,1-\psi_{5} \supseteq$ $1-\psi_{4} \supseteq 1-\psi_{1}$ and set

$$
\begin{aligned}
q_{3, j}= & \left(r_{-2 N, j}+r_{-2 N-1, j}+\cdots+r_{-2 N-2 k+1, j}\right) \\
& \times\left\{1-\psi_{5}\left(j\left|\xi_{4}\right| /\left(\xi_{1}{ }^{2}+\xi_{2}{ }^{2}\right)\right)\right\} \phi_{3}\left(\xi_{4}\right) .
\end{aligned}
$$

Also, we denote by $Q_{3, j}$ and $\left(1-\psi_{4}\right) \phi_{2}$ pseudodifferential operators with symbols $q_{3, j}$ and $\left\{1-\phi_{4}\left(\left|\xi_{4}\right| /\left(\xi_{1}^{2}+\xi_{2}^{2}\right)\right)\right\} \phi_{2}\left(\xi_{4}\right)$, respectively.

Observe now that, in the support of $1-\psi_{5}\left(j\left|\xi_{4}\right| /\left(\xi_{1}{ }^{2}+\xi_{2}{ }^{2}\right)\right)$, it holds

$$
\left|\partial_{\xi}^{\alpha} \partial_{x_{1}}^{\beta_{1}} p_{k, j}\right| \leqq C_{1}(j+1)^{k / 2}\left(1+\left|\xi_{4}\right|\right)^{\left(k-\alpha_{1}-\alpha_{2}\right) / 2-\alpha_{4}},
$$

with a positive constant C_{1} independent of j. Hence, by induction, we can obtain the following inequalities: In the support of $\left\{1-\psi_{5}\left(j\left|\xi_{4}\right| /\left(\xi_{1}{ }^{2}+\xi_{2}{ }^{2}\right)\right)\right\} \phi_{3}\left(\xi_{4}\right)$,

$$
\left|\partial_{\xi}^{\alpha} \partial_{x}^{\alpha} \beta_{1}^{1} r_{-2 N-\nu, j}\right| \leqq C_{2}(j+1)^{-N-\left(\nu+\alpha_{1}+\alpha_{2}\right) / 2}\left(1+\left|\xi_{4}\right|\right)^{-N-\left(\nu+\alpha_{1}+\alpha_{2}\right) / 2-\alpha_{4}}
$$

and

$$
\left|\partial_{\xi}^{\alpha} \partial_{x_{1}}^{\beta_{1}} q_{3, j}\right| \leqq C_{3}(j+1)^{-N-\left(\alpha_{1}+\alpha_{2}\right) / 2}\left(1+\left|\xi_{4}\right|\right)^{-N-\left(\alpha_{1}+\alpha_{2}\right) / 2-\alpha_{4}}
$$

with some positive constants C_{2} and C_{3} independent of j.
We now remark that the symbol $\sigma\left(H_{j} Q_{3, j} H_{j}^{*}\right)$ is equal to

$$
q_{3, j}\left(x_{1} ; \xi_{1}, \xi_{2}, \xi_{4}\right) h_{j}\left(x_{3}\left|\xi_{4}\right|^{1 / 2}\right) h_{j}\left(\xi_{3} /\left|\xi_{4}\right|^{1 / 2}\right) \cdot i^{j} \cdot e^{-i x_{3} \xi_{3}} \cdot \phi\left(\xi_{4}\right)^{2},
$$

and that the Hermite functions have the property:

$$
\left|t^{\alpha} \frac{d^{\beta}}{d t^{\beta}} h_{j}(t)\right| \leqq C_{\alpha \beta}(j+1)^{(1+\alpha+\beta) / 2},
$$

with some positive constant $C_{\alpha \beta}$ independent of j. (See G. Folland [2] page 54.)
Finally we obtain the following inequality:

$$
\begin{align*}
& \left|\partial_{\bar{\xi}}^{\alpha} \partial_{x}^{\beta} \sigma\left(H_{j} Q_{3, j} H_{j}^{*}\right)\right| \tag{4.2}\\
& \quad \leqq C_{\alpha \beta}^{\prime}(j+1)^{1-N+|\alpha|+\left|\beta^{\prime}\right|}\left(1+\left|\xi_{4}\right|\right)^{-N+\left(\beta_{3}-\alpha_{1}-\alpha_{2}-\alpha_{3}\right) / 2-\alpha_{4}},
\end{align*}
$$

where $C_{\alpha \beta}^{\prime}$ is a positive constant independent of j. This immediately implies that the series $Q_{3}=\sum_{j=1}^{\infty} H_{j} Q_{3, j} H_{j}^{*}$ converges with respect to the semi-norms in $S_{\bar{\lambda}, 1 / 2,1 / 2}^{N}$ up to degree $N-3$. Moreover, since $1-\varphi_{1} \Subset\left\{1-\phi_{4}\left(\left|\xi_{4}\right| /\left(\xi_{1}{ }^{2}+\xi_{2}{ }^{2}\right)\right)\right\} \phi_{2}\left(\xi_{4}\right)$ $\Subset\left\{1-\psi_{5}\left(j\left|\xi_{4}\right| /\left(\xi_{1}^{2}+\xi_{2}{ }^{2}\right)\right)\right\} \phi_{3}\left(\xi_{4}\right)$ in the support of $\phi\left(\xi_{4}\right)$, we have

$$
\begin{align*}
& \left(1-\varphi_{1}\right) Q_{3} P^{N} \Pi_{*} \tag{4.3}\\
& \quad \equiv\left(1-\varphi_{1}\right) \sum_{j=1}^{\infty} H_{j} Q_{3, j} H_{j}^{*} P^{N}\left(1-\psi_{4}\right) \phi_{2} \Pi_{*} \bmod O P S_{\grave{\imath}}^{-\infty} \\
& \quad=\left(1-\varphi_{1}\right) \sum_{j=1}^{\infty} H_{j} Q_{3, j} P_{j}^{N}\left(1-\psi_{4}\right) \phi_{2} H_{j}^{*} \cdot \phi\left(D_{4}\right)^{2} \\
& \quad=\left(1-\varphi_{1}\right) \sum_{j=1}^{\infty} H_{j}\left(I+K_{3, j}\right) H_{j}^{*} \cdot \phi\left(D_{4}\right)^{2} \\
& \quad=\left(1-\varphi_{1}\right) \Pi_{*}+K_{3},
\end{align*}
$$

with K_{3} being of class $O P S_{\bar{\lambda}, 1 / 2,1 / 2}^{-k}$ (note that the series $\sum_{j=1}^{\infty} H_{j} K_{3, j} H_{j}^{*}$ converges w.r.t. the semi-norms in $S_{\lambda, 1 / 2,1 / 2}^{k}$ up to degree $k-3$).

So, from (4.1) and (4.3), we can conclude that the operator $Q=\varphi_{1} Q_{2}+$ $\left(1-\varphi_{1}\right) Q_{3} P^{N-1}$ has the property mentioned above (notice that $S_{\bar{\lambda}}^{-k}{ }_{1 / 2,0} \subset$ $\left.S_{\hat{\lambda}, 1 / 2,1 / 2}^{-k}\right)$.

Remark. In the above construction of the parametrix, we have to choose N sufficiently large depending the order of the regularity (i.e., the exponent l of $\left.H^{0, l}\right)$. The reason is that one needs the information of the semi-norms of $\sigma\left(Q_{3}\right)$ more and more as one considers the smoothness (w.r.t. x_{4}) of the solution u of higher order.
III. Finally let us consider the equation $P \Pi_{0} u=\Pi_{0} f$. We are going to show that, if f is smooth in a neighborhood of a certain point, then $\Pi_{0} u$ is also smooth there. First recall (v) of Proposition 1. In order to prove $\Pi_{0} u=$ $H_{0} H_{0}^{*} u$ is smooth, it suffices to show that $W F\left(H_{0}^{*} u\right)=\varnothing$. Next let us multiply the operator H_{0}^{*} from the left to the both sides of the equation $P \Pi_{0} u=\Pi_{0} f$. Then, from (iii) and (iv) of Proposition 1, it follows

$$
P_{0} H_{0}^{*} u=H_{0}^{*} f .
$$

Therefore one can easily conclude that it suffices to show the micro-local hypoellipticity of $P_{0}\left(\right.$ in $\left.\boldsymbol{R}^{3}\right)$, since it is known that $W F\left(H_{0}^{*} f\right)=\varnothing$ (recall (v) of Proposition 1). Also this would be shown by the method of the previous papers [8] and [9]. In fact, the assumptions (A.1) and (A.3) imply the following inequalities:

$$
\begin{equation*}
\left\|D_{1} v\right\|^{2}+\left\|D_{2} v\right\|^{2} \leqq\left(P_{0} v, v\right), \quad \text { for any } \quad v \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right) \tag{4.4}
\end{equation*}
$$

and
(4.5) given any $\varepsilon>0$, there exists a positive constant C_{ε} such that

$$
\left\|\log \left\langle D_{4}\right\rangle v\right\|^{2} \leqq \varepsilon\left(P_{0} v, v\right)+C_{\varepsilon}\|v\|^{2}, \quad \text { for any } \quad v \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)
$$

To obtain these estimates, we use partial Fourier transform w.r.t. $\ddot{\varkappa}_{4}$. Let

$$
\begin{aligned}
\hat{P}_{0} & =D_{1}^{2}+D_{2}^{2}+\left|\xi_{4}\right|+\left(f\left(x_{1}\right)-1\right) \xi_{4} \\
& =D_{1}^{2}+D_{2}^{2}+F\left(x_{1} ; \xi_{4}\right)
\end{aligned}
$$

Then, it is clear that

$$
F\left(x_{1} ; \xi_{4}\right) \begin{cases}=f\left(x_{1}\right)\left|\xi_{4}\right| & \text { if } \quad \xi_{4}>0 \tag{4.6}\\ \geqq\left|\xi_{4}\right| & \text { if } \quad \xi_{4}<0\end{cases}
$$

Thus, the inequality (4.4) is trivial. Moreover, let us recall that, ${ }_{\pi}^{2}$ by "sew together argument" one can prove from (A.1) and (A.3) the following inequality:

Given any $\varepsilon>0$, there exists a constant C_{ε}^{\prime} such that

$$
\begin{align*}
& \int\left|\log \left\langle\xi_{4}\right\rangle w\left(x_{1}\right)\right|^{2} d x_{1} \leqq \varepsilon \int\left\{\left|D_{1} w\left(x_{1}\right)\right|^{2}+f\left(x_{1}\right)\left|\xi_{4}\right|\left|w\left(x_{1}\right)\right|^{2}\right\} d x_{1} \tag{4.7}\\
&+C_{\varepsilon}^{\prime} \int\left|w\left(x_{1}\right)\right|^{2} d x_{1} \\
& \text { for any } w \in C_{0}^{\infty}(\boldsymbol{R})
\end{align*}
$$

(For detail, cf. Section 3 of [9].) Thus the inequalities (4.4), (4.6) and (4.7) yield (4.5). Finally, it could be obvious that our assertion follows from the estimates (4.4) and (4.5). ($C f$. Theorem 1 and its corollary in T. Hoshiro [8] or Theorem 1 in Y. Morimoto [12].)

References

[1] L. Boutet de Monvel, Hypoelliptic operators with double characteristics and related pseudodifferential operators, Comm. Pure and Appl. Math., 27 (1974), 585-639.
[2] G. B. Folland, Harmonic analysis in phase space, Ann. of Math. Studies 122, Princeton Univ. Press, 1989.
[3] A. Grigis, Hypoellipticité et parametrixes pour des opérateurs pseudodifférentiels à caracteristiques doubles, Astérisque, 34-35 (1976), 183-205.
[4] A. Grigis and L.P. Rothschild, A criterion for analytic hypoellipticity of a class of differential operators with polynomial coefficients, Ann. of Math., 118 (1983), 443460.
[5] V.V. Grušin, On a class of hypoelliptic operators degenerating on a manifold, Math. USSR Sb., 13 (1971), 155-185.
[6] B. Helffer, Sur l'hypoellipticité des opérateurs pseudodifférentiels à caractéristiques multiples (perte de $3 / 2$ dérivées), Bull. Soc. Math. France mémoire, 51-52 (1977), 13-61.
[7] L. Hörmander, The analysis of linear partial differential operators I, Springer, 1983.
[8] T. Hoshiro, Micro-local energy method of Mizohata and hypoellipticity, J. Math. Kyoto Univ., 28 (1988), 1-12.
[9] T. Hoshiro, Hypoellipticity for infinitely degenerate elliptic and parabolic operators of second order, J. Math. Kyoto Univ., 28 (1988), 615-632.
[10] H. Kumano-go, Pseudo-differential operators, MIT Press, 1981.
[11] K. H. Kwon, Hypoellipticity and local solvability of operators with double characteristics, Comm. P. D. E., 10 (1985), 525-542.
[12] Y. Morimoto, Criteria for hypoellipticity of differential operators, Publ. Res. Inst. Math. Sci. Kyoto Univ., 22 (1986), 1129-1154.
[13] E.M. Stein, An example on the Heisenberg group related to the Lewy operator, Invent. Math., 69 (1982), 209-216.
[14] K. Taira, Hypoelliptic differential operators with double characteristics, Proc. Japan Acad., 50 (1974), 124-126.

Toshihiko Hoshiro
Institute of Mathematics
University of Tsukuba
Tsukuba-shi, Ibaraki 305
Japan

[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 03740070), Ministry of Education, Science and Culture.

