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1. Introduction.

Let A be a regular local ring and p a prime ideal in A. We put R(p)=
Slazep™ta (here t denotes an indeterminate over A) and call it the symbolic
Rees algebra of p. Our purpose is to discuss when Ry(p) is a Gorenstein ring.

The problem when Ry(p) is Noetherian is, of course, more fundamental and
has been studied by many authors from several points of view (cf. [3, 4, 5, 10,
11, 12, 13, 14, 16, 19, 20, 21 and 22]). The finite generation problem on the A-
algebra R (p) was raised by R.C. Cowsik [3], showing that p is a set-theoretic
complete intersection in A if dim A/p=1 and if R (p) is a finitely generated A-
algebra. If A is not regular, there is no hope in general of R (p) being Noe-
therian (cf. e.g., [5, Sect. 5]), as was firstly noticed by D. Rees in his
construction of a counterexample to the Zariski problem. Nevertheless even
though A is regular the rings R (p) are not necessarily Noetherian. P. Roberts
gave such examples, passing to Nagata’s counterexamples to the 14-th
problem of Hilbert. And as far as we know, Cowsik’s problem seems still open
for general prime ideals p=p(n,, n,, n;) of A=k[[X,Y, Z]] (the formal power
series ring over a field k) defining space monomial curves X=¢"1, Y =¢"2 and
Z=t" with GCD(ny, n,, ng)=1.

We look now at a prime ideal p of height 2 in a 3-dimensional regular local
ring A with maximal ideal m. Then in his remarkable paper C. Huneke
gave the following criterion for R (p) to be a Noetherian ring:

(¥) If there exist f=p® and g<p™ with positive integers k, | such that
length (A/(f, g, x)A)=kl-length,(A/p+xA) for some xcm\p, then R(p) is
Noetherian. When the field A/m is infinite, the converse is also true.

With this criterion Huneke explored prime ideals p=p(n,, n,, ns) and guar-
anteed that R (p) is Noetherian, if min(n,, n,, ny)=4.

In the present paper we would like to succeed Huneke’s research, mainly
asking for similar practical criteria as his for Ry(p) to be Gorenstein. It might
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be worthy to be noted that R(p) is a Gorenstein ring once it is Cohen-Macaulay,
because it is a quasi-Gorenstein ring (cf. [22, Corollary 3.4]). The criterion
which we shall prove in this paper is based on Huneke’s condition (*) above
and can be summarized into the following

THEOREM (1.1). Let A be a regular local ring of dim A=3 and p a prime
ideal of A with dim A/p=1. Assume that there exist fEp*® and g=p satisfy-
ing Huneke’s condition (x). Then the following two conditions are equivalent.

(1) Ryp) is a Gorenstein ring.

(2) A/(f, g)+p™ are Cohen-Macaulay for all 1<n<k-[—2.

When this is the case, the A-algebra Ry(p) is gemerated by {p™t"} i n<piioa, [1°
and gt', and the rings A/fA+P™, A/gA+p™ and A/(f, g)+p™ are Cohen-
Macaulay for all n=1.

The condition (2) in (1.1) is naturally satisfied when £, [£2 and

as an immediate consequence of (1.1) and [12, Proof of Corollary (3.6)],
we have

COROLLARY (1.2). Let p be a prime ideal of a regular local ring A of

dim A=3. Then Ry(p) is a Gorenstein ring, if the multiplicity of A/p is equal
to 3.

Let us explain how to organize this paper. (1.1) will be proved
in Section 3. Section 2 is devoted to some preliminary step which we through-
out need. By means of (1.1) we are able to prove that R (p) are
Gorenstein for the space monomial curves p=9p(n,, n,, n;) with n,=4. However
as the proof is somewhat long, we shall postpone the detail to the subsequent
paper [6]. Instead we will explore some concrete examples to see how the
criterion (1.1) works. In Section 4 we will establish a criterion for R (p) to be
a Noetherian ring, which leads us to a certain class of space monomial curves
p=p(n,, n,, ns) with Gorenstein symbolic Rees algebras (cf. (4.1) and (4.7)).
Unfortunately R (p) are not necessarily Cohen-Macaulay even for the space
monomial curves p, although they are Noetherian. We will analyze one example
in Section b.

Throughout this paper let A be a Noetherian local ring with maximal ideal
m. For each prime ideal p of A we define

Rp)= 2p™rm,  Rip)= Ezp‘”’t” (=Rt ]
and  G(p) = Ri(p)/tT"Ri(D),

where ¢t stands for an indeterminate over A and p»=A for n<0. Similarly
we put, for arbitrary ideals I of A,
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RiI)= 21", R'U)= ZI"t" (=R[t']) and GU)= R'I)/t7'R'(I),

nzo0 neZ

where ["=A for n<0.
For each A-module M we denote by [4,(M) the length of M.

2. The depth of the ring R (p).

Let A be a regular local ring of dim A=3 and p a prime ideal of A with
dim A/p=1. In this section we assume that R (p) is a Noetherian ring. Hence
G,(p) is Noetherian as

G(p) = R(PLul/uR(plul.

where u=t"'. We consider R (p) and R{p)=Rp)[u] to be Z-graded rings
whose graduations {[Ry(p)]n}rez and {{Ry(p)1r}rez are given by [Ry(p)],=p ™"
for =20, [R(p)].=(0) for n<0 and [Ri(p)],=p™t" for all n=Z.

Let M=mPR(p)+ 1™ t" be the unique graded maximal ideal of R(p)
and we respectively denote by depth R (p) and depth Gy(p) the depth of the
local rings R (p)m and G«(p)m. The purpose is to prove the following

THEOREM (2.1). depth Ry (p)=depth G (p)+1.

REMARK (2.2). As dim R,(p)=4 and dim G(p)=3, by (2.1) we see
that Ry(p) is a Gorenstein ring if G (p) is Cohen-Macaulay (cf. [22, Corollary
3.47). Since G{(P)=Pnzop™p¢**? is an integral domain, u=t"' is a prime ele-
ment of Ry(p) with Ryp)lu"'J=A[t, ¢'] factorial. Hence Ri(p) is a factorial
ring by Nagata’s theorem so that R{(p) is a Gorenstein ring, if it is Cohen-
Macaulay (cf. [I7]). Thus G(p) is a Gorenstein ring, when it is Cohen-Macaulay.

We divide the proof of (2.1) into a few parts. First choose an
integer £>0 so that [p®]*=p*™ for all n=0 (this choice is possible, as R(p)
is Noetherian, cf. [1, Ch. 3, Sect. 1.3]).

PROPOSITION (2.3). R(p®°) is a Cohen-Macaulay ring.

PROOF. We many assume A/m to be infinite. Then depth A/[p*®>]*=1 for
any n=1 and so by Burch’s theorem there exist f, g=p® such that
[p® ]+ =(f, g)[p®]" for some r=0. Choose x=m\p and put B=A/xA, J=
(p*>+xA4)/xA. Let * denote the reduction mod x A. Then letting e=/[,4(A/p+xA),
we have

1B/ 77 = et (") o § Y1)

for all n=0 (cf. e.g., [12, Proof of Theorem 3.1]), whence J*=(f*, g*)] by
[12, Theorem 2.1]. Therefore G(J) is a Cohen-Macaulay ring by [23, Proposi-
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tion 3.1] so that R(J) is Cohen-Macaulay too (cf. [7, Remark (3.10)]). Because
xANP™=xp™ for all n=0, we get an isomorphism

R(p*)/x R(p*) = R(J)
of B-algebras which guarantees that R(p¢®?) is a Cohen-Macaulay ring.
Let H§(*) denote the i-th local cohomology functor of R (p) relative to M.
COROLLARY (2.4). [HEH(R:(1)]1en=(0) for all n=Z and i<3.

PROOF. Let S=3),.,p*™¢*" be the Veronesean subring of R (p) with order
k and let M denote the unique graded maximal ideal of S. Then we get iso-
morphisms

of A-modules for all n, i=Z (cf. [8, (3.1.1)]). Because S is, by (2.3), a Cohen-
Macaulay ring of dim S=4, we have the required vanishing.

Let I=31,50p™t" (=[R«(p)]+) and we have two exact sequences

(*) 0 I Ry(p) A 0
(*) 00— I(1) —> Ry(p) —> Gi(p) —> 0

of graded R(p)-modules, where I(1) stands for the graded module I shifted in
degree 1, i.e., [I(1)],=I,+, (nEZ).

Apply local cohomology functors Hi(*) to the exact sequence (¥) to get iso-
morphisms HE(1)=HE(R(p)) for /<2 as well as the embedding H},(I)SH(R(b)).
Then because Hi(Ry(p))=(0) for /<1 (recall that Ry(p) is normal, cf. [22, Lemma
2.5]), we have by the exact sequence (¥%) that H(G(p)ES[HH)ID=
[HEZ(R(p))](1), whence depth Ry(p)=2 if depth G4«(p)=1.

LEMMA (2.5). Suppose that depth Gy(p)=2. Then HZ(R,(p))=(0).

Proor. We have by the exact sequence (¥#) the embedding [H%(/)]J(1)E
HiH(R(p)) and so [HA(R(p)HIDESHA(R(D)), as Hi(I)=Hj(Ry(p)). Hence for each
neZ we get an embedding

[HA(R(p)]nsr © [HR(RS(9) ]

of A-modules so that the vanishing HZ(R(p))=(0) follows, because [HZ(R (b)) ]sn
=(0) for all n=Z (cf. (2.4)).

PROOF OF THEOREM (2.1). If depth G4(p)=2, then HE(R(p)=(0) ((<2) by
(2.5) and we get depth R,(p)=3 because of the embedding H2(G(p)) S [H3(R(p)1(1)
that follows from the exact sequences (¥) and (¥%).

Assume depth G¢(p)=3. We must show that H{(Ry(p)=(0). Let a(G4(p)=
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max{n< Z|[HH(Gs«p)],#(0)}. Then we have a(Gsp))=—2 by [8, (3.1.6)] and
[15, Proposition (1.10)], because A,Q.G:(p)=G(pA,) is a polynomial ring with
two variables over the field A,/pA,. Therefore from the exact sequence (*¥) it
follows that [H3}(/)],+ =[H&H(R:(¥))]. for all n=-—1, while we have by the
exact sequence (¥) the embedding [H(1)1, S[H}(Rs«(p))], for each n=Z. Hence

[HR(R:(p)]a S [HR(R(P))]nss

for n=—1 which guarantees [H(R(p))],=(0) for n=—1, because [H3(R(p))].
=(0) for all n>0.

Let n< -2 be an integer. Then we have by the exact sequence (¥#) that
[H&a()1. S[HH(R()].-1. On the other hand we see by the exact sequence (¥)
[H&U )] = [HR(R(p)]1, as H{(A)=[HH(A)J,. Hence

[HR(R(p)]n & [HR(R (D) ]n-1,

which yields by (2.4) that [H§(R(p))1.=(0) for all n<—2. "Thus H}(R))=(0)
and depth R (p)=4, which completes the proof of (2.1).

3. Proof of Theorem (1.1).

Let A be a regular local ring of dim A=3 and p a prime ideal of A with
dim A/p=1. The purpose of this section is to prove [Theorem| (1.1). Let fep®
and g=p© (k, [>0) such that [4,(A/(f, g, x))=Fkl-l4(A/p+xA) for some x =m\p.

We begin with the following

ProposiTION (3.1) (cf. [12]). (1) (f, g) is a p-primary ideal of A.
(2) [GypI+=Rad ((ft*, gt")G(p)).
(3) ft*, gt* forms a G(pA,)-regular sequence.

PROOF. Passing to the elements f*, g* of p¢*", we may assume that k=/.
We put B=A/xA and J=(p®*>+xA)/xA and let * denote the reduction mod xA.
Then by [12, Proof of Theorem 3.1] we get [p®>]*=p*™ and the equality

I(B/J™+) = ekz(n;%)*e( ’; )<n+1)

for all n=0 (here e={4(A/p+x4)). Therefore by [12, Theorem 2.1] we have
Je=(f*, g9)], that is [p™S(f, @p*+xA, whence we get [p0]=(f, g)p®
+x[p®7% because [p®?=p® and xe&p. Thus [P =(f, g)p® by Naka-
yama’s lemma so that p=Rad ((f, g)), whence we have the assertion (1). The
assertions (2) and (3) follow from the equality [p®]*=(f, g)p‘®>, too.

Let M be the unique graded maximal ideal of Gy(p), i.e., M=mG(p)+
[Gs«p)]+. Then by (3.1) we get M=Rad ((ft?, gt', x)G,(p)) and so ft¥, gt', x
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mod uRy(p) forms a homogeneous system of parameters for the graded ring
Gy(p). Therefore we have

COROLLARY (3.2). G(p) is a Cohen-Macaulay ring if and only if ft*, gt*, x
forms a Gyp)-regular sequence.

COROLLARY (3.3). fANY™=fp""® for all n=Z.

ProoF. Since ft*, gt' is a regular sequence for G(pA,), we have fA,Np"A,
=fp"*A, (cf., e.g., [23]) so that FANP™SfANSP" *A,=fp*~*. Hence the
assertion.

PROPOSITION (3.4). p*+"DE(f, g) but pE+2&(f, g).

Proor. We put a=max{ncZ|[GpA,)/(ft*, gt")G(pA,)],#(0)}. Then as
G(pA,) is a polynomial ring, we have by (3.1) (3) and [8, (3.1.6)] that a=£k+(—2,
ie., p**'TAC(f, @A, and pFHITAE(f, g)A, which yields the assertion be-
cause (f, g) is p-primary by (3.1) (1).

LEMMA (3.5). (f, @)N\p™P=fp""B L agp™D for each n<k+I.

Proor. Let o=(f, g)N\p‘™ and write o=fa+gb with a, b A. Then since
(f, NP E(S, @ AN Ay=fp" " *A,+gp" "' A, by (3.1) (3), we have p=fa+gf
for some asp"*A, and Bep tA,. Choose s=A\p so that sa=p * and
sBep™D. Then sp=fsa+gsf=fsa+gsb, whence sb—sf<=fA because f, g is
an A-regular sequence (cf. (3.1) (1)). Therefore we have sb=fA+p"~" so that
bep® b, because f&pm D (recall that n—[<k) and s¢p. Similarly we get
a=p~®, which proves ¢ fp" # 4-gp" b as required.

COROLLARY (3.6). A/fA-+p*+'"Y 4s a Cohen-Macaulay ring.
PrROOF. Consider the exact sequence

0__,fA+:p<k+L—1)_~_*>(f’ g)——>(f, g)/fA+p<k+"1>——> 0

of A-modules and notice that fA-+p*+"D=f A+ gp*"D by (3.4) and (3.5). Then

as
(f, O/ fA+PEHD =(f, g)/fA+gp* ™D = gA/fgA+gpt—D

= A/fA+p*0 = A/p*0,

we have depth,(f, g)/fA+p*+' " >1 so that depth, fA-+p ¥+~ =2 by the above
exact sequence, because depthu(f, g)=2. Thus depthsA/fA+p*+' =1 and
A/fA+DE+D is Cohen-Macaulay.

Our proof of (1.1) is based on the next

PROPOSITION (3.7). Suppose that the ring A/fA-+p™ is Cohen-Macaulay for
each 1=n<k+[—2. Then we have the following assertions.
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(1) The ring A/fA+9™ is Cohen-Macaulay for any n=1.
@2) (f, NP =fp B gp "D for all nsZ.

(3) ft*, gt* forms a Gy(p)-regular sequence.

@) Ry(p)=A[{p™t "} 1cnzrria, f15, gt'].

PROOF. As the assertions (3) and (4) immediately follow from the assertion
(2) (cf. (3.3) and (3.4)), it is enough to see the assertions (1) and (2). We will
prove them by induction on n. By (3.5) and (3.6) we may assume that n=>k-/
and that the assertions (1) and (2) are true for all smaller n. Hence A/fA-+p"~b
is a Cohen-Macaulay ring. Let us consider the exact sequence

(!) 0> fp"=0 —> fp T4 gpTh —> fpTB 4 gy D/ fp T — 0
of A-modules and recall the isomorphisms
fPrTR 4 gp T/ fp B = gp D/ fph TR gphTh = gpTh /fgpenhoh
= pTh/fpn D = pTh/fANpTE L (by (3.3))
Then we see by the exact sequence
0 —> P D/fANPD —> A/fA —> A/fA+D —> 0

that depthfp® ®4-gp»~Y/fp» #=2 and so we get by the sequence (¥)
depth[ fp<* = 4 gp»~D]=2, because depth,fp" * =depthp""#>=2. Hence the
ideal J=fp" B 4gp» b is p-primary so that J2(f, &/Np™ as JA,=
(f, 9)A,Np"A, by 3.1)(3). Thus J=(f, g)Np*™, which proves the assertion (2).
Notice that p™=Fp 04 gp*~b as (f, g)2p™ by (3.4).

To see the assertion (1) consider the exact sequence

OéfA_{"p(n) - (f) g) —_—> (f; g)/fA+p(n) I 0'

Then because p™=fp*~® 4 gp™ Y by (2), similarly as in the proof of (3.6) we
have

(fs @)/ FA+Y™ = A/fA+p~D

so that depth,fA+p™ =2, which yields A/fA+p™ is a Cohen-Macaulay ring.
This completes the proof of 3.7).

COROLLARY (3.8). Suppose that k=1 or k=2=<[. Then depth Ry(p)=3 and
Rs(p> = A[{p(n)tn}lgngtj .

PROOF. Because gA+p™=p" for 1=<n=<Fk+4(—2, the second assertion
follows from (3.7) (4). See (2.1) and (3.7) (3) for the first assertion.

We are now ready to prove (1.1).

PROOF OF THEOREM (1.1).
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First assume that R, (p) is a Gorenstein ring. Then Gyp) is a Cohen-
Macaulay ring so that fi*, gt', x forms a G(p)-regular sequence (cf. (2.1) and
(3.2)). Hence (f, g@)Np™=fp" ® 4 gp»~v for all nZ. Recall the canonical
isomorphisms

[G(0)/(ft?, gtVG(9)]n = p™/(fp=F 4 gpn=b 4 pn+Dd)
= pM/[(f, g)+prrINpm

of : A-modules and we find x is a non-zerodivisor on P /[(f, g)-+p*+]1Np<™,

whence
depthp™/[(f, 2)+p P ]1Np™ =1

for each n=0. Therefore considering the exact sequence
0— p™/[(f, )+pPINp™ — A/(f, @)+ — A/(f, g)+p™ —0,

we see by induction on #z that the local rings A/(f, g)+p¢™ are Cohen-Macaulay
for all n=1.

Conversely assume that A/(f, g)+p‘™ is a Cohen-Maculay ring for any
1€n<k+(—2. We need the following

CrLaM. The rings A/fA-+p™ and A/gA+p™ are Cohen-Macaulay for all
1<n<k+1-2.

PROOF OF THE CLAIM. We may only discuss A/fA+p™. It suffices to
check that depth,A/fA+p™=1. Consider the exact sequence

0 —> fA+Y™ —> (f, @)+p™ —> (f, g)+p™/fA+p™ —> 0.
Then because

(f, @)+P™/fAFI™ = (F, ©)/fA+(f, N9 = (f, g)/fA+gpD
(by (3.5))
= gA/fgA+gp D = A/fA+pTb = A/ph,

we have depth(f, g)+p™/fA+p™ =1 and so depthafA+p™ =2 as depth,(f, g)

+p™=2 by our assumption; hence A/fA+p™ is Cohen-Macaulay.
By this claim and (3.7) (3) we get ft*, gt* is a Gy(p)-regular

sequence. Because
LG(0)/(ft*, gt )Gs(p)]n = P/ ™8 gpm=b fptn+D

for all =0 and because (f, g)NP™P=fp* B4 gp- for all n=Z by (3.7) (2),

we have
E+l-2

Gp)/(ft*, gtYGpy = D p™/(f, g)+p*)Np™

=0

S
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as A-modules (cf. (3.4)). Consequently x is Gy(p)/(ft*, gt")Gy(p)-regular, as the
A-module p™/((f, g)+p*+t)Np™ is a submodule of A/(f, g)+p**" and as x
is, by our assumption, A/(f, g)+p"*V-regular for any 0<n<k-+[—2 (cf. (3.6)
too). Thus ft*, gt', x is a Gy(p)-regular sequence, whence by (2.1) and (3.2)
Ry(p) is a Gorenstein ring. As the last assertions now follow from (3.7), this
completes the proof of (L.1).

The rings A/(f, g)+p™ is obviously Cohen-Macaulay for any 1<n<k+[—2,
if k2, (<L2. Hence we immediately have

COROLLARY (3.9). Ry(Y) is a Gorenstein ring, if k, [L2.

PROOF OF COROLLARY (1.2).

We may assume A/m to be infinite so that there exist f, gep® with
[a(A/(f, g, x))=12 for some x=m\p (cf. [12, Proof of Corollary 3.6]) and the
assertion follows from (3.9).

4. The Gorensteinness of R (p) for certain space monomial curves p.

Let A be a regular local ring of dim A=3 and 9 a prime ideal of A with
dim A/p=1. In this section we assume that p is generated by the maximal
minors of the matrix

[X“ Y ZT'jl
Y?# zr  X*

where X, Y, Z is a regular system of parameters for A and a, 8,7, &', B, 1’
are positive integers. The purpose is to prove the following

THEOREM (4.1). Suppose that a'=a, B'=mpB and y'=Zmy with mcZ. Then
" Ry(p) is a Gorenstein ring.

Let a=Z+"" —X*Y#, b=X*« Y 3Zr' ¢=Y?*# _X*Z7 and assume that
a'za, B'=mpP and y'zmy with meZ. We begin with the following
PROPOSITION (4.2). There exist d,=p™ (1=n<m-+1) with dy=—a such that
Xed, =Y mormbipn p (e ZT s (g Tie
YPd, = d, b+(—1)PX*-aZr~(r-brgn=2c?
Z'd, = —dq,a—X @ "0y (monebBpnoie
for any 2=<n<m-+1.

ProoF. First notice that X%a+Y™¥p+Z"¢=0 and Y?a+Z7b+X* ¢=0.
We assume 1<n<m and that the choice of {d;}i<cizm+: is already done within
n. Then because X%d,=Y M n+DEprp(—1)»+1Z7" ~(»=Drgn-1, (this is true for
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n=1 too, as d;=—a and as X%a+Y™?h+27" ¢=0), we have
Xod,a = Yay n=mbpr 4 (—1y+izZr -n-brgng
= (—ZTb—X ()Y mmBpny (—1yr+iZr =bigng

so that X¢(—d,a—X* oY m mbpne)=7Z1(Y (m-mfpr+ip(—1)*+2 721" ~mig”¢). Hence
Xd =Y mbpret p(—1)n+2Zr migne and  Z7dpe=—d,a—X "0y mmmEpne
for some d,+;Ep**. Because

jfﬁadni—l = ('_Zrb'—Xa’c>dn+1
=Z"dpii(—=b)+ X p i (=X %)
= (d b (=11 X @ -agr-nrgn-ie2yq

we get YAd, . =d b+(—1)"*1 X "aZr " mrgn~1c? ) too.

LEMMA (4.3). d,=(—D"Z™"" mod(c, X) for 1<n<m-+1.

PROOF. As d,=X*Y™P -7+ we get the assertion for n=1. Let 1<n<m
and assume that d,=(—1)"Z"*"" mod (¢, X). Then by (4.2) we see

Zdpi = —dpa = (1) Z2%++01 mod (¢, X).
Hence we get d,.,=(—1)"*'Z7++01r hecause ¢, X, Z7 is an A-regular sequence.

COROLLARY (4.4). R(p) s a Noetherian ring.

PROOF. Since (4(A/(¢, dms1, X)=14(A/(X, Y m+DE Zremebdr )=(m+1)B{r+
(m+1r’} and [L(A/p+(X)) = B{r+(m+1)1’}, we have [(4(A/(¢, dms1, X))=
1-m+1)-la(A/p+XA) so that R(p) is Noetherian by Huneke’s criterion.

PROPOSITION (4.5). Ry(p) is a Gorenstein ring and p™ =p"+(c"*d;|2<i<n)
for 1<n<m+1. Hence we have

Rs<p> = A[pt: {dntn}Zgngmﬂ] .

PROOF. Because the multiplicity ex.s(A/cA+p‘™) of the ring A/cA+p™
relative to the parameter X is equal to n8{r-+(m-+1)7’}, we have the inequalities

La(A/(e, X, du)+D0") = [4(A/(c, X)+Dp™)
= exa(A/cA+D™) = nB{r+Om+1r'}.
On the other hand, as (¢, X, d,)+p"=(X, Ym+02 yrbznr  Zi+my (cf. (4.3)), we
have [4(A/(¢c, X, du)+p")=nB{r+(m-+1)r’}. Therefore we get that (¢, X)+p™
=(¢, X, d,)+p" and that the ring A/cA+p‘™ is Cohen-Macaulay for each 1<

n<m+1. Hence R (p) is a Gorenstein ring by (l.1) and so we have p® =
dn AP +cpm P4 Xp™, because (¢, X)NP W =cp P4+ Xp™ (recall that ct,
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dnait™*, X is a Gy(p)-regular sequence by (3.2)). Thus we get by Nakayama’s
lemma p™=d,A+p"+cp* P for 1<n<m-+1, which implies p™=p"+(c""*d;|
2=<i<n) as required. This completes the proof of (4.5) as well as that of

(4.1).

Let A=F[[X,Y, Z]] and S=~[[t]] be formal power series ring over a
field 2 and let n,, n,, n, be positive integers with GCD(n,, n,, n;)=1. We de-
note by p=p(n,, ns, n;) the kernel of the k-algebra map f: A—S with f(X)=t"s,
f¥)=t" and f(Z)=t"s. Thus p is the defining ideal of the space monomial
curve X=t", Y=¢" and Z=t" and as is well known (cf. [9]), p is either a
complete intersection in A or generated by the maximal minors of a matrix of
the form

X« YEB Zr
e 2z xel
where a, 8, 7, &', B’ and 7’ are positive integers.

COROLLARY (4.6). Let m=1 be an integer. Then Ry(p)is a Gorenstein ring,
if p=p(m, m+1, m+3).

ProOF. We write m=3n-+¢q with 0=¢<3. If ¢=0, then p=(X""'-Z7,
Y:*—X?®Z) which is a complete intersection in A so that R (p)=R(p). Hence
R{(p)=A[T,, T,]/fA[T,, T;] as A-algebras, where A[T,, T,] is a polynomial
ring and 0+ f€A[T,, T»]. Thus R«p) is Gorenstein.

(1) (¢g=1) We may assume n=1 and so p is generated by the maximal
minors of the matrix

X? Yy AL

[Y Z X "] )
Hence our assertion follows from (4.1), if n=2. When n=1, notice that p is
generated by the maximal minors of the matrix

Z X Y?

[X Y Z ] )

(2) (¢g=2) We may assume n=1 so that p is generated by the maximal

minors of the matrix

Z y: Xo+

[Y X? A ]
whence the assertion follows from (4.1), if n=3. If n=1, then p=p5. 6, 8} is
generated by the maximal minors of the matrix

[X 2 Z Yz]
Z Y X2l

and so again by (4.1) we get that R (p) is Gorenstein.
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Now assume n=2, i.e., p=p(8, 9, 11). Then p is generated by the maximal
minors of the matrix

[Xz Y ZZ]
Yy Zz X3

Let ¢=2°—X?%Y, b=X°-Y?2% and ¢=Y?*—X*Z. Then as X?a+Yb+Z%=
Y?a+2b+X3c=0, we get

Y0 =(—X?a—2%)b = —X?ab—2%c = —X?ab+cZ(Y*a+X3c)

whence ! Y(0*—acYZ)=X*(—ab+c*XZ) so that X%d,=b*—acYZ and Yd,=
—ab+c*XZ for some d,=p®. Because

(dyZ)b = do(—Y?a—X3¢) = (—aY)-Yd,+(—cX)-X?d,
= a’Yb—0'cX = a*(—X?a—Z%)—b*cX,
we havelZ(bd,+a?cZ)=X(—a*X—b*c) whence Xd,=bd,~+a*cZ and Zd,=—a*X—b*c
with d;=p®. Finally because
Ydo)b = d(—X?a—2%) = (—aX) Xds+(—cZ)-Zd3; = —abd, X+b**Z,

we get Yd;= —ad, X+bc*Z = —ad,X—c*Y?a+X3c) whence Y(d;+ac’Y)=
X(—ady,—c*X?). Thus Ydsy=ad,+c*X? for some d,/<p®. As Yd,=Y?Z°
mod XA, we get d,=YZ® mod XA. Hence Yd,/=YZ® mod XA and so d,/=2°
mod XA. Consequently we see

[4(A/(c, df, X)) =1-3-[4(A/p+XA)=24
and R (p) is Noetherian. Because
La(A/(c, dsy X)+9*) = exu(A/cA+p®) =16,

the ring A/cA+p® is Cohen-Macaulay so that R (p) is Gorenstein by (1.1).

REMARK (4.7). Similarly as (4.6) one can prove that R p) is a Gorenstein
ring for p=p(m, m+1, m+2) (m=1).

We close this section with the following

EXAMPLE (4.8). Ry (p) is a Gorenstein ring for p=p{4, 7, 13).

ProOOF. The ideal p is generated by the maximal minors of the matrix
[Xz Y: Z :‘
Y Z X3
Let a=2°—X®Y? b=X°-YZ and c¢=Y*—X?Z. Then X?a+4Y?h+Zc=
Ya+Zb+X%c=0. As (—X?a—Zc)a=Y?ab=(—2Zb—X3c)Yb, we have X*(a*—bcXY)
=7(b*Y—ac) so that X2d,=b*Y —ac and Zd,=—bcXY +a® with d,=p®. Notice
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that Yd,=c*X—ab, because
aY-d, = (—b)-Zd:+(—cX) - X?%d, = a(c*X—ab).

Then (B*Y—X°dy)b=abc=(c*X—Yd,)c whence X(bd,X+c*)=Y(b*+cd,) so that
Xds=b’+cd, and Yd;=bd,X+c* with d,=p®. Because d,=7Z°mod XA and
d,=Y®*mod XA, we get

L(A/(X, ds, dy) =2-3-[4(A/p+XA)=24.

Hence R (p) is Noetherian. As [(4(A/(X, do)+p*)=exs(A/p®)=12 and as
La(A/(X, do)+dop+9®) = exa(A/p®) =24, we see p® =d,A+p* and p® =
d.p+dsA+p’. Therefore d,A+9®=(d,, ds)+(bc?, b*c) and

La(A/(X, do)+-9) = exa(A/d A+D®) = 20
so that A/d,A+p® is Cohen-Macaulay and Ry (p) is by (1.1) a Gorenstein ring.

5. Example of non-Cohen-Macaulay symbolic Rees algebras.

Unfortunately symbolic Rees algebras are not necessarily Cohen-Macaulay
even for the space monomial curves. We will explore the following

ExAaMPLE (5.1). Let p=p(7, 9, 10) and suppose that ch £=2. Then depth R(p)
=3 and Ry(p) is not a Cohen-Macaulay ring.

PROOF. The ideal p is generated by the maximal minors of the matrix

X Y Z

ez x)
Let ¢=2*—-X?®Y, b=X*-Y2Z and ¢=Y*—-XZ? Then Xa+Yb+Zc=0 and
Y2a+2°b+X3c=0. Because

Z(—Xa—Yb) = Z*bc = (=Y a—X"¢),

we have X(¢*X?—abZ)=Y (b®*Z--acY)and so Xd,=b*Z—acY and Yd,=c*X*—abZ
with d,=p®. Hence

c(Xdy+acY) = ¢-b*Z = b*(—Xa—Yb)

which implies X(cd.+ab*)=Y(—ac®—0b*) so that Yd;=cd,+ab* with d,c=p®.
Notice that Yd,=-—abZ mod X*A and we get d.=YZ°mod X2A. Hence

Yd; = Y*—-XZ2)YZ+ 23 —-Y* 2y = 2Y*Z2°—XYZ" = —XYZ" mod X*A4,

because ch k=2 by our assumption. Thus d;=Xe, for some e;=p®. Obviously
e;=—7" mod XA and so we have
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L(A/(c, e5, X)) =1-3-14(A/p+XA) =21,

whence R (p) is Noetherian.

To see that R (p) is not Cohen-Macaulay, it suffices to check that A/cA+p®
is not a Cohen-Macaulay ring (cf. (1.1)). We put J=d,A+p*. Then because
XA+ ]=XA+(Y, Z)°, we have [,(A/ XA+ ])=21, while

LAA/X A+p®) = exa(A/p®) = T- LA/ A,) = 21,

Thus XA+ ]J=XA+p®, whence p*®=d,A+p* by Nakayama’s lemma. Con-
sequently (¢, X)+p®=(Z° YZ° Y*Z* Y*)+XA so that [4(A/(c, X)+p*)=15,
while

exa(A/(cA+p®) = 7[44,,(‘4»/0*49"{‘132‘4») =14.

Hence A/cA+p® is not Cohen-Macaulay. As depth G(p)=2 by (3.7)3), we
have depth Ry(p)=3 by (2.1).

REMARK (5.2). This example shows that the assumption %, (<2 in
(3.9) is the best possible. In her master thesis M. Morimoto provided numerous
examples of prime ideals p=p(n,, n,, n;) whose symbolic Rees algebras R(p)
are Noetherian but non-Cohen-Macaulay. The example (5.1) was chosen among
her construction.

Appendix by Mayumi Morimoto.

The following example was posed by Moh and shown to be Noetherian by
Huneke [12, Example 3.7]. The ideal p is minimally generated by four ele-
ments so that it is not a monomial curve.

PROPOSITION. Let A=C[[X, Y, Z]] and S=C[[t]] be formal power series
rings and let p denote the kernel of the C-algebra map f: A—S with f(X)=t°,
JY)=t"+1" and f(Z)=t5. Then Ryp) is a Gorenstein ring.

ProOOF. Let
a =2X7*-3X*YZ-2X'+Y*—-XYZ,
b=XZ-2YZ?+XY*-X*Z,
c=X2"-2X°Y+Y*Z—-XZ* and
d=X'-2°.
Then p=(a, b, ¢, d) (cf. [12, Example 3.7]). Let
e =4X3—4X"—AX?YZ—-AX*'Y Z-5X 23 4+4X°Y?
+6X* 20— X736 XY P4 2XY P+ 8X Y2 Y Z,
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F=10X°Y2-2XY*4-2X°7—4X°Z+2X"7-2XY*Z
—10X?Y3Z4-X?YZ2?+ 14X Y2~ 15X Y Z*—2Y*Z?
+10XY?Z3+2XZ2*—4X?Z*+2X°Z*+Y®  and

g=—-8XY+XV*-2X*Y?*Z46X*Y* Z+XZ*—6X*Z*?
+5X°Z2—AY 2P HAXY 2P+ AXPYZP 425 —AX 75 .

Then e, f, g=p®, because

Xe = 2ad—bc+4d°X,
Xf =2c4-ab+2bdX and
Xg =b+4cd.

As bf*+2ae®+geb=0 mod (X), we get Xh=0f?+2ae*-+geb for some hep®.
CLAIM.  p®=(e, f, g)+1°, pP=pp®, pP=(e, f, g/ +pp and p=(h)+pp*.
Proor orF THE CLAIM. Notice that

e=—-Y*Z,

f=Ys-2Y2°,

g=42°-Y*Z%) and

h=Y"*-68Y5Z°+136Y°Z%—64Y2Z" mod (X).
Then as (X)+p=(X)+(Y, 2, we see (X)+(e, f, g)+p*=X)+(Y, Zy°+(Y*Z, Z°
—Y3Z2, Y3-2Y?Z%) so that (4(A/(X)+(e, f, g)+9p*)<18. Therefore by the in-

equality
[4(A/(X)He, [, @)+9*) = [4(A/(X)+pP) = exa(A/p®) = 18

we get (X)+p®=(X)+(e, f, g)+p* whence p®P=(e, f, g)+p* by Nakayama’s
lemma. Consequently (X)+pp®=(X)+(Y, Z)® so that [(A/(X)+pp®)=36=
exa(A/p®) whence P =pp®.  As (X)+(e, f, gP+pp® = (X)+(Y, 2+
(Yeze, Y, Y Z-2Y Z4, Y*Z° Y 7%, 3Y®2Z°-2Y2Z%, Z?-2Y3*Z"+Y*Z*), we have
[A(A/(X)+(e, [, g)+pp®)<60=ex(A/p*). Hence p*=(e, f, g)*+pp® so that
p®=(h)+pp®, because (X)+(h)+pp®=(X)+(Y, Z)*H(Y*).

As [(A/(g, h, X)=2-5-1,(A/(X)+p)=60, we have R p) to be Noetherian
(cf. [12, 3.7]). To see Ry(p) is Gorenstein, by (1.1) it suffices to show that
AJ(g)+p™ is Cohen-Macaulay for n=3, 4 and 5, or equivalently [,(A/(X, g)+
+p ™M) <exs(A/(g)+p™). These inequalities are directly checked, because

exas(A/(g)+p™) =30 (n=3),
=42 (n=4),
=54 (n=5)
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and because by the claim we have already known p™ explicitly. Thus R(p)
is a Gorenstein ring.

COROLLARY. Ry(p)=A[at, bt, ct, dt, et?, ft?, gi?, ht*].
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