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Introduction

Let a,, ai, ---, a,_, be integers satisfying 0<a,<a,< -- <a,_,<g—1. Then
a=(a,, a;, -*-, a,_,) is called a Schubert index of genus g. Moreover, we call
> a; the weight of a, which is denoted by w(a). We denote by H(a) the
complement of the set {a;+7+1|7=0, 1, ---, g—1} in N where N is the additive
semigroup of non-negative integers. If H(a) becomes a subsemigroup of N,
then it is said that a satisfies the semigroup condition. Let C be a complete
non-singular 1-dimensional algebraic variety over the field C of complex num-
bers (which is called a smooth curve) of genus g. For any point P of C, a
non-negative integer » is called a gap at P if

h*(C, 0c((n—1)P)) = h*(C, Oc(nP)),

i.e., there exists a holomorphic differential form on C vanishing to order n—1
at P. Then the number of gaps at P is equal to g. Let m;<m,< --- <m, be
the gaps at P. If we set a;_(P)=m;—: for =1, 2, ---, g, then a(P)=(a.P),
-, tty_4(P)) is a Schubert index of genus g satisfying the semigroup condition.

Recall that Schubert indices of genus g are partially ordered by a=<pf if
a; =By, ¢=0,1, -, g—1 where a=(ay, a;, -, a,_,) and B=(Bo, B1, ==, Be-1)-
We say that a Schubert index a is primitive if every Schubert index S with
B=a satisfies the semigroup condition. Let %, , be the moduli space of pointed
smooth curves of genus g. For any Schubert index « of genus g we may
define a locally closed subset of M, , by C.={(C, P) e M, |la(P)=a}. Then
the weight w(a) of a gives an upper bound for the codimension of any com-
ponent of C,. To simplify the discussion a point x=(C, P)e M, , is said to be
dimensionally proper if C .y has codimension w(a(P)) in a neighborhood of x.
Then Eisenbud-Harris showed that for any primitive Schubert index « of
genus g and weight <g—2 there exists a dimensionally proper point with
Schubert index a. In this paper we will show the following :

MAIN THEOREM. For any primitive Schubert index a of genus g and weight
g—1 there exists a dimensionally proper point with Schubert index a.
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We show in §1 that using the result of Eisenbud-Harris Main Theorem
is reduced to the following:

For any odd integer g there exists a dimensionally proper point with Schubert
index a(g) where we set a(g)=(08+1/2 2(8-112)

Let ¢,:C[X,, -+, Xgevre]l —> C[t"]nemcacyy be the C-algebra homomor-
phism defined by ¢, (X;)=t"" where {a,<@,< - <@¢+1y2} is the minimal set
of generators for the semigroup H(a(g)) determined by the Schubert index a(g).
In §2 we determine the generators for the ideal Ker¢,. Combining it with
Corollary 4.9 in Komeda it is proved that C.»# @. Moreover, it follows
from Coppens that if Cacr# @, any point of C.(.» is dimensionally proper.

The author would like to thank Dr. S. Tsuyumine for writing TURBO C
program useful for calculating examples of Schubert indices with a fixed weight.

§1. Reduction to the Schubert indices (06172, 2¢£-1/2)

First we give a few properties of primitive Schubert indices. Let a=
(ay, ay, -+, a,_,) be a Schubert index of genus g with ay=a,= - =a,_,=0 and
a;>0. Then we say that 741 is the first non-gap of a and that g+a,_, is the
last gap of . By Proposition 1.1 in [2], a is primitive if and only if twice
its first non-gap is larger than its last gap.

LEMMA 1. Let a=(0%, a,, -, a,) be a primitive Schubert index of genus
p+q with a,>0, and let B= (07", B,, ---, Bq) be a Schubert index of genus p+q—+1.
If B, is equal to a, or ag+1, then B is primitive.

Proor. The first non-gap and the last gap of a are equal to p+1 and
p+qg+a, respectively. Since a is primitive, we have 2(p+1)>p+4g+a, Hence
we get

2p+2)—(p+1+49+) = 2(p+1)—(p+g+ag)+1+(a;— ) > 0,

which implies that 8 is primitive. Q.E.D.
LEMMA 2. If a=(0?, a,, a,, ---, a,) is a primitive Schubert index with a,>0,
then so is B=(07, as, -, a,).

PRrROOF. Since a is primitive, we have 2(p+1)>p+¢g+a, Hence we get
2p+1)—(p+g—14ay)>1, which implies that 8 is primitive. Q.E.D.

Eisenbud and Harris (Theorem 5.4 in [2]) showed the following, which was
a key lemma to prove that for any Schubert index a of genus g and weight
<g—2 there exists a dimensionally proper point with Schubert index a.

If a=(a, a, -+, a,_) is a Schubert index of genus g—1 such that C,C
M, _1,1 contains a dimensionally proper point, then so does CsC My, if the Schu-
bert index B=(B, B1, -+, Be 1) satisfies one of the following:
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1 Bo=0, Bi=ai., =1, -+, g—1),
2) for some 0<j=g—1, B,=0, B;=a;.,+], Bi=ai, (=1, -, g—1,i+))
and B satisfies the semigroup condition.

We note that the case j=g—1 in 2) is excluded from Theorem 5.4 in [2],
but its proof shows that this case is also O.K.

For any odd integer g=3 we denote by a(g) the Schubert index (0¢4+V72,
208172,

PROPOSITION 1. If for any odd integer 823, CaceyC M, , contains a dimen-

sionally proper point, then for any primitive Schubert index B of genus h and
weight h—1, so does Cyg.

Proor. Let B=(0""", B8,, ---, B.) be a primitive Schubert index of genus h
and weight 1—1 with 8,>0. First we suppose that 8,=2. Then we have a
sequence

7® = a@@n+1) = (0"*, 27) — 7 = (0"*%, 271, 3) —> @

=(0"*3, 277, 4) —> oo ——> BT = (07t 271 By — D

= (0"+F, 2772, 3, fa) —> -+ —> pPurfnad

— (0n+ﬁn+ﬁn—1"3, 2”"2, ﬁn—l; ,Bn) e e — T(h—Zn‘l)

:<Oh n: 131; ) ﬁn) = ﬂ s
where w(r*+N=w(y®)+1 for =0, 1, ---, h—2n—2, and all Schubert indices in
the above are primitive because of Lemma 1. It follows from the above result

of [2] and the assumption that CzCH,., contains a dimensionally proper point.

Next we suppose that 8,=---=f;=1 and B;.,=2 for some 1=/<n-—1.
Then we have a sequence

0=09=0"", Brys, +, Ba) —> 0P =(0""", 1, Biyr, -+, Bu) —> 0
=" 1,1, ﬂm, . 5n>—‘" > §O = (0*7 11, ﬁz+1, . 5n) = ‘B,

where w(0“?)=w(d?)+1 for /=0, 1, ---, /[—1. Since 8 is primitive, it follows
from that all Schubert indices in the above are primitive. By the
above C;C M., contains a dimensionally proper point, which implies that so

does Cj. Q.E.D.

§2. On the Schubert indices a(g)=(0¢e+1/2 2¢e-1/2)

Let H=H(g)=H(a(g)) be the subsemigroup of N defined by a(g). Then
the minimal set of generators for H is

{a, = p+1, a,=p+2, a;=g+6, a.=g+7, -, a, = g+3+p},
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where we set p=(g+1)/2.

Let Y be the fine moduli space of the smooth curves of genus g with a
level v-structure for some fixed v=3 and p: X,—MS the associated smooth
family of curves. For any positive integers n and » which are relatively prime,
we set

G, = {x=2X,|n is the first non-gap of x on p~'(p(x)) and
n-+r is the first non-gap of x relatively prime to »n and
h(p~Y(p(x)), (n+7r)x) = h-+2 where n+r = hn+e with 0<e<n}.

Then Coppens showed that if G, ,#+ @, then G, , is equidimensional of
dimension g—4+2n-+r—h. To prove that C.c,,CM,,, contains a dimensionally
proper point it suffices to show that C,(,y# @, because applying the above Cop-
pens’ result to our case n=(g+1)/2+1 and r=1 we get

dim Cacgry = dim G(g+l)/2+1,l = g—4+2((g+1)/2+1)+1-1 = 2g—1

and we know that any irreducible component of C,(, has dimension larger

than or equal to
3g—2—w(a(g) =3g—2—(g—1)=2g-1.

Let ¢ be the C-algebra homomorphism from C[X;, X,, -+, X;] to C[t"]sen
sending X; to ¢*. Then we have the following:

PROPOSITION 2. The ideal I=Ker ¢ is generated by
X§—X, X5, XoX;—X X5 B=7=p-1),
X Xp—X14, X X;—X3X,4, BZj<p—1),
X Xp—X3XY, XoX;— X X dsisp—1,i5/<p—1),
XiXp,— X, X1 4=isp).
Proor. We consider the set
{a:<a,, 2a,<a,+a,<2a,<a,<a,< - <ap<3a,}.
Then we have
a, = a,+1, a3 =2a,+1, a, = a,+1, as = a,+1, -, ap = a1 +1,
3a,=a,+1.
Hence the ideal /=Ker ¢ contains
X X3—X X, XoX;—X, X1 BZ/£p-1),
XoXp—X . X3, XoX;—X35X ;4 BZ5<p-1),
XoXp—X3X1, XoX;— X Xy U=i=p—1,i2j=p—-D),
XiXp—Xi. X1 U<i<)).
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Let J be the ideal generated by the above elements. Let 3</<7. If i+7<p+1,

then
Xin = Xi-lXj+1 = Xi-sz+z = = X«ijﬂ' = X3Xj+i-3

= XiXhi2 = Xo XXy = XiXo X400 mod J.
If i+j=p+2, then
XX, =X Xjn==X5X0, = XX, = X,X1= XX, mod J.
If i4+j=p-+3, then
XiX; =X Xj= =X Xj = XX, = X5X3 = X3X5 mod J .
If i+7=p+4, then
XX, =X Xy, ==X X o= XXy = X, X4
= X3iX3= XX} mod J.
If i+7=p+5, then
XX;i=XiXjn = =Xy pXp = Xigjp X3 = Xy jop o XX
= X3X,Xi4j_p_o mod J .
Therefore, if 3<7/<7, we have

.Xi)(j = XleM mod j s

where M is a monomial.
We may take as generators for the ideal /=Ker ¢ the following type:

F=TIX7—T1X%", wip;=0  for all 7.

We set L=I[;X; and R=JI[;X%:. Then we may assume that F is one of the
following types:

(1) L=X,L, and R=X,X,R,, 3=<i<j, where R, contains neither X, nor X,.

(2) L=X,L, and R=X,X,R,, 3<i<j, where R, contains neither X, nor X,.

3) L=X,L, and R=X,R,, where L, (resp. R, does not contain X,
(resp. X,).

(4) Both L and R contain neither X, nor X,.

If R=X,X,;R,, 3=<:/<j, then by the above we have R=X,X,MR, mod J,
where M is a monomial. Hence in the case (1) (resp. (2)), we may decrease
the weighted degree of F= L —R, where the weighted degree on C[ X, X,, ---, X, ]
is defined by the following: For any 7, the weighted degree of X, is a; and
for any non-zero element ¢ of C, the weighted degree of ¢ is zero. In the case

(4) we also have
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L=XX,MmodJ and R=X,X,N modJ,

where M and N are monomials. Hence we may decrease the weighted degree
of F. Lastly we consider the case (3). If R,=X3iM, then we have

R=XiM= XXM mod J.
If Ro,=X,M and M does not contain X,, then we must have M=X,M, for some
7=3, which implies that
XX X1 M, mod J if i<p—1
X, X4{M, modJ if i=p.
If R, does not contain X,, then for some /=3 we have
X XipaM mod J  if i<p—1
X4M mod J  if i=p,

where M is a monomial. Hence we may decrease the weighted degree of F.
Therefore we get Ker ¢o=]. Q.E.D.

R = XM= XXM, = {

R:&&Mz{

DEFINITION. A subsemigroup S of Z™ is said to be saturated if the con-
dition nr<S, where n is a positive integer and » is an element of Z™, implies
reS.

Let S be a subsemigroup of Z?*' generated by b;=¢; for 1<i<p+1, byy=
e,te,—e; and bpi;=este—e, for 3</<p, where for any 1</<p-+1, e; de-
notes the vector whose 7-th component is equal to 1 and whose j-th component
is equal to 0 if j=i.

PROPOSITION 3. S s saturated.

Proor. It is sufficient to show that

g+1

+1
S R.bNZPH = 3 Nb, = S
i=1 i=1

where R, denotes the set of non-negative real numbers. Let us take y=
etlsb,e ZP* with s;=R.. Then we may assume that for any 7, 0<s,<l.
If we set y:(.yh Voy vy yp+1)y then

V1= 81T Sp1s, Vo= 32+3p+2'—(5p+3+ +32p> ’

Vs = 33—5p+2+(3p+3+ o +S5p) and y; = Si+Sp+i-t for any 4<i<p+1.
Hence we have y,=p—2, p—3, -, 1,0. If y;=p—2, then we get
SsSpas - S2p ¥ 0 and ¥, = S3—ys+S3 = —p+2+455+5,,

which imply that y,=—(p—3) and y,=1 for any 4</<p-+1. Hence we may
assume that
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y :<09 —_(IJ)_—B)’ p—zy 1) Tty 1))
which implies that
g+1

Y =bpistbprst - Fbop+by € ENbi-

If y,=k<p—3, then y,=s,—y;+S;=—Fk-+s,+s;, which implies that y,=—#~ or
—k+1, and at least b elements of the set {s,.s, ---, S2p} are non-zero. Hence
we may assume that
y =0, —k, k, 1%, QP 2°%),
which implies that
g+1

y == bp+3+bp+4+ A +bp+k+2 &= ENbl . Q.E. D.

We set g,=X3, g.=X,, g:=X,, g.=X3, g;=X:_» for any 5Z/<p+2 and
8p+24;=Xjy, for any 1=<;<p—2. Let m:C[Y]=CLY,, -+, Yyp]=C[T lies=
CLt5t -+ 185 Doy s pepes (reSp. 71 C[Y]-CLX]=CLX,, -, X,]) be the C-alge-
bra homomorphism defined by (Y ;)=T" (resp. p(Y:)=g:).

PROPOSITION 4. The ideal I=Ker ¢ is generated by the elements of n(Ker x).

Proor. Let {:C[t,, -, tps,]2C[t"Jpex=C[H] be the C-algebra homo-
morphism defined by

C(tl) - t3al’ C(t2> = tals C(tS) - ta27 C(t4) = t2a2 and
{@) =1t*-2 for any b</i<p-+1.
Let £’ be the extension of { to C[T°];es. Then
L(TP+2) = L, )L(t)C(ty) ! = o2 = t» = C[H],
L(TP?+%) = {(t)C(t)E(te) ™ = to2¥2%e a1 =% = C[H], and
TP+ = Lt )t )L(t) ™t = to2¥i-1mer = 1% = C[H]

for any 4<i<p. Hence we obtain {'(C[T*],es)SC[H]. We have a commuta-
tive diagram:

ClY] CLX]
AR
ClT*lses —> CLH]

which implies that z(Ker z)SKer ¢=I. Hence it suffices to show that the
generators for [ as in [Proposition Jis contained in the ideal (n(Ker x)) generated
by the elements of n(Ker ). Now we have the following:
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(Y, Y,— Y, Y, ) = TP —TP%%p+3 =0 and

(Y Y= YoYp1s) = 8:84—828p+s = X3—X X,

7YY 5= Yo Yprjar) = T08¥0is2—TP2+p+js1 = 0 and

N(YsYio— Yo Ypije) = 858ir2—828prir1 = XoX;— X1 X4y for 3=7<p—1.

7(Y,Ypi— Y 1Y) =0 and 9(YsYp—Y1Ys) = gogpe—818: = Xo X, — X1

(Y pssYiso—YiVpiisr) =0 and

N YpusYine—YaYpiji1) = 8pisQive—8u&p+in1 = XoX;—X3X ;4 for 3s7=p—1.

7(YpisYpso— YY) =0, because bpi3+bpie = e;+e, = b, 40, and

N YpssYpra—Y1Y1) = gprs8pra—8181 = XX —X1X3.

T(Ypsi Vo= Yir1 Ypiju) =0 and  9(Yp4i Yo~ Yir1 Ypisin)

= Gp+ifj2—Gir18p+jt1 = XeX;—Xi 1 Xj41 for 4<i<p—1 and /<j<p—L

2(YpeiVpro—Yirr Y1) =0, because bppi+bpss = eis1te, = bipy+b;, and

N Y Ypra—Yins Y1) = gpri€pro—LGinr81 = XoXp— X X1 for 45i<p.
Q.E.D.

By Propositions 3 and 4, we may apply Corollary 4.9 in [3] to our case.
Hence we get the following :

THEOREM. For any odd integer g=3, we have Cqpy# @D.

COROLLARY. For any odd integer §=3, CacgyC M,.1 contains a dimensionally
proper point. In this case, any point of Cacyy 1S dimensionally proper.

Proor. The proof is given at the top of this section. Q.E.D.

Combining Corollary with Proposition 1, we get the main result in this
paper.

MAIN THEOREM. Let g be a positive integer. Then for any primitive Schu-
bert index « of genus g and weight g—1, there exists a dimensionally proper
point with Schubert index a.

Let [, (resp. m,, resp. n,) be the number of Schubert indices of genus g
satisfying the semigroup condition (resp. Schubert indices of genus g and weight
g—1 satisfying the semigroup condition, resp. primitive Schubert indices of
genus g and weight g—1). Then we have the following table:
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g lg My Ng
1 1 1 1
2 2 1 1
3 4 1 1
4 7 1 1
5 12 3 2
6 23 3 2
7 39 6 4
8 67 9 5
9 118 12 8
10 204 18 11
11 343 27 17
12 592 36 23
13 1001 51 34
14 1693 69 46
15 2857 95 65
16 4806 126 88

For example the primitive Schubert indices of genus 9 and weight 8 are
the following :

(0°, 29, (0%, 2, 3, 3), (0%, 2,2,4), (05, 1, 3, 4), (07, 4, 4),
(07, 3, 5), (07, 2, 6), (0, 8).
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