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Introduction.

Let $X^{\wedge}$ be a connected projective submanifold of $P_{C}$ and let $L^{\wedge}=O_{P_{C}}(1)_{x^{\wedge}}$ .
Studying the pair $(X^{\wedge}, L^{\wedge})$ adjunction theoretically leads to various classes of
varieties with special fibre structures, $e.g$ . scrolls and quadric fibrations. In
this article we study these special fibre structures and show that they are in
many cases even better behaved that might be expected. It is a blanket assump-
tionlin this paper that $\dim X^{\wedge}\geqq 3$ .

The adjoint bundle, $K_{X}\wedge+(n-1)L^{\wedge}$ , is nef and big except for the following
very special pairs (see [S2], [S7], [SV]):

a) $(X^{\wedge}, L^{\wedge})$ is either $(P^{n}, O_{pn}(1))$, a scroll over a curve, or a quadric $Q$ in
$P^{n+1}$ with $L_{Q}^{\wedge}=O_{P}n+1(1)_{Q}$ ,

b) $(X^{\wedge}, L^{\wedge})$ is a Del Pezzo variety, i.e. $K_{x^{\wedge}}\approx L^{\wedge}-(n-1)$

c) $(X^{\wedge}, L^{\wedge})$ is a quadric bundle over a smooth curve,
d) $(X^{\wedge}, L^{\wedge})$ is a scroll over a surface.

The definitions of scrolls and quadric bundles are given in (0.6).

Given such a pair with $K_{X}\wedge+(n-1)L^{\wedge}$ nef and big, there exists a new pair
(X, $L$ ), the reduction of $(X^{\wedge}, L^{\wedge})$ , where $X$ is smooth and $L$ is ample, and

2 there exists a morphism $\pi:X^{\wedge}arrow X$ expressing $X^{\wedge}$ as $X$ with a finite
set $B$ blown up, $L=(\pi_{*}L^{\wedge})^{**}$ ,

2 $L^{\wedge}\approx\pi^{*}L-[\pi^{-1}(B)]$ (equivalently $K_{X^{\wedge}}+(n-1)L^{\wedge}=\pi^{*}(K_{X}+(n-1)L)$),

2 $K_{X}+(n-1)L$ is ample (and in fact very ample by the main result of
[SV] $)$ .

Throughout this introduction $(X^{\wedge}, L^{\wedge})$ will always be a pair as above with
$a:reduction(X, L)$ . It further follows that $K_{X}+(n-2)L$ is nef and big except
for a small list of exceptional pairs (see [S7], [Fj]):

a) (X, $L$ ) $=(P^{4}, O_{p4}(2))$ or $(P^{3}, O_{p3}(3))$,
b) (X, $L$ ) $=(Q, O_{Q}(2))$ where $(Q, O_{Q}(1))$ is a quadric in $P^{4}$ ,
c) there is a holomorphic surjection $\phi:Xarrow C$ onto a smooth curve, $C$ ,

where $K_{X}^{2}\otimes L^{3}\approx\phi^{*}H$ for an ample line bundle $H$ on $C$ ; in particular the
general fibre of $\phi$ is $(P^{2}, O_{P2}(2))$ ,
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d) (X, $L$ ) is a Mukai variety, $i.e$ . $K_{X}=L^{-(n-2)}$ ,
e) (X, $L$ ) is a Del Pezzo fibration over a curve,
f) (X, $L$ ) is a quadric bundle over a surface,
g) (X, $L$ ) is a scroll of dimension $n\geqq 4$ over a threefold.

A Del Pezzo fibration over a curve is a pair (X, $L$ ) for which there exists a
surjective map $\phi:Xarrow Y$ with connected fibres onto a smooth curve $Y$, with
$K_{X}\otimes L^{n-2}=\phi^{*}(H)$ for an ample line bundle $H$ on $Y$.

In this paper we are interested in a number of results about these classes.
The first special class of varieties that we are interested in are Del Pezzo

fibrations over curves. In proposition (1.1) we show that the finite set $B$ in the
definition of the reduction meets a given fibre of $\phi$ in at most $f-3$ distinct
points where $f$ is the degree of a fibre of $\phi$ with respect to $L$ . We further
show that if $h^{0}(L^{\wedge})\leqq 6$ and $d^{\wedge}\geqq 9$ then $f\geqq 5$ ; this is used in [BSS] to classify
the smooth threefolds of degree 9 and 10 in $P^{5}$ .

A second special class of varieties are those pairs (X, $L$ ) with $n=3$ for
which there exists a surjective map $\phi:Xarrow C$ with connected fibres onto a
smooth curve, $C$ , with $K_{X}^{2}\otimes L^{8}=\phi^{*}(H)$ for an ample line bundle $H$ on $C$ . In
this case it is not hard to see that $(F, L_{F})=(P^{2},0_{P2}(2))$ where $F$ is the general
fibre of $\phi$ . Our main result about this class is proposition (1.2) which states
that $\phi$ is an algebraic fibre bundle. In (1.2.2) we state that for these smooth
threefolds $h^{0}(L^{\wedge})\geqq 7$ if $d^{\wedge}\neq 5$ .

Proposition (3.1) states that $(X^{\wedge}, L^{\wedge})\cong(X, L)$ if (X“, $L^{\wedge}$ ) is a scroll or if
$(X^{\wedge}, L^{\wedge})$ is a quadric bundle over a normal variety, $Y$, with $\dim X^{\wedge}\geqq\dim Y+2$ .
A weaker, but sharp result, is given for $\dim X^{\wedge}=\dim Y+1$ .

The main special class that we consider in this paper are the quadric bundles
over surfaces. Here $K_{X}\otimes L^{n-2}\approx\phi^{*}(H)$ for an ample line bundle $H$ on a normal
surface, $Y$. The general fibre of $\phi$ is a smooth quadric. Theorem (2.3) states
that $Y$ has at worst rational double points of type $A_{1}$ as singularities. Further
all fibres are of dimension $n-2$ if $n\geqq 4$ . If $n=3$ then a fibre, $F$, of $\phi$ is either
one dimensional, or it is isomorphic to either $F_{0}$ with $L_{F}\approx E+2f$ where $E$ and
$f$ are fibres of the two different rulings of $F_{0}$ , or to $F_{0}\cup F_{1}$ with $L_{F_{0}}\sim O_{F_{0}}(1,1)$,
and $L_{F_{1}}\sim E+2f$ . We conjecture in (3.2) that $K_{X}\otimes L^{n-2}\approx\phi^{*}(K_{Y}\otimes \mathcal{H})$ for an
ample line bundle $\mathcal{H}$ . As evidence we prove proposition (3.3) which states that
if the conjecture is true, then $(K_{X}\otimes L^{n-2})^{2}$ is spanned by global sections. It is
known that if $K_{X}\otimes L^{n-2}$ is nef and (X, $L$ ) is not a quadric bundle, then
$(K_{X}\otimes L^{n- 2})^{2}$ is spanned by global sections.

Building on proposition (3.1) it is shown in \S 4 that if $(X^{\wedge}, L^{\wedge})$ is a three-
fold in $P^{5}$ of degree $d\geqq 9$ , and $(X^{\wedge}, L^{\wedge})$ is a scroll over a smooth surface, then
$d\leqq 24$ and in fact there are only 6 possible choices of $d$ .

We are very grateful to the referee for a number of valuable suggestions.
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In particular the referee pointed out that we had left out the case $F_{0}\cup F_{1}$ as a
fibre in Theorem (2.3).

Both authors would like to thank the University of Genova and the Univer-
sity of Notre Dame for making their collaboration possible. The second author
would also like to thank the National Science Foundation (DMS 87-22330 and
DMS 89-21702).

\S 0. Background material.

We work over the complex field $C$ . By variety ( $n$-fold) we mean an irre-
ducible and reduced projective scheme $V$ of dimension $n$ . We denote its struc-
ture sheaf by $O_{V}$ . For any coherent sheaf $\mathscr{F}$ on $V,$ $h^{i}(\mathscr{F})$ denotes the complex
dimension of $H^{i}(V, \mathscr{F})$ .

If $V$ is normal, the dualizing sheaf, $K_{V}$ , is defined to be $j_{*}K_{Reg(V)}$ where
$j$ : Reg $(V)arrow V$ is the inclusion of the smooth points of $V$ and $K_{Reg^{(v)}}$ is the
canonical sheaf of holomorphic $n$-forms. Note that $K_{V}$ is a line bundle if $V$ is
Gorenstein.

Let $X$ be a line bundle on a normal variety V. $\mathcal{L}$ is said to be numerically

effective ($nef$, for short) if $X\cdot C\geqq 0$ for all effective curves $C$ on $V$ , and in this
case $\mathcal{L}$ is said to be big if $c_{1}(\mathcal{L})^{n}>0$ where $c_{1}(X)$ is the first Chern class of
$\mathcal{L}$ . We shall denote by $|X|$ the complete linear system associated to $X$ and
by $\Gamma(x)$ the space of the global sections. We say that $X$ is spanned if it is
spanned by $\Gamma(\mathcal{L})$ .

(0.1) We fix some more notation.

$\sim(respectively\approx)$ , the numerical (respectively linear) equivalence of line bundles;
$\chi(X)=\sum(-1)^{i}h^{i}(X)$ the Euler characteristic of a line bundle $X$ ;
$p_{a}(V)=(-1)^{n}(\chi(O_{V})-1)$, the arithmetic genus of $V;q(V)=h^{1}(O_{V})$ , the irregularity
of $V$ and $p_{g}(V)=h^{0}(K_{V})$ , the geometric genus, for $V$ smooth;
$\kappa(V)$ , the Kodaira dimension of $V$ ;
$e(V)=c_{n}(V)$ , the topological Euler characteristic of $V$ , for $V$ smooth, where
$c_{n}(V)$ is the $n^{th}$ Chern class of the tangent bundle of $V$ .

Abuses. Line bundles and divisors are used with little (or no) distinction.
Hence we shall freely switch from the multiplicative to the additive notation
and vice versa. Sometimes symbol ‘ of intersection of cycles is under-
stood.

(0.2) For a line bundle $\mathcal{L}$ on a normal variety $V$ , the sectional genus $g(\mathcal{L})$

of (V, $X$ ) is defined by

(0.2.1) $2g(\mathcal{L})-2=(K_{V}+(n-1)X)\cdot X^{n-1}$
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If there exist $n-1$ elements of $|X|$ whose intersection is a reduced, irre-
ducible curve $C,$ $g(\mathcal{L})$ is simply the arithmetic genus $p.(C)$ of $C$ .

(0.3) Assumption. Throughout this paper it will be assumed that $X^{\wedge}$ is a
smooth connected variety of dimension $n\geqq 2$ and $L^{\wedge}$ is a very ample line
bundle on $X^{\wedge}$ . Further if $n$ 1113, we denote by $S^{\wedge}$ a smooth surface obtained as
transverse intersection of $n-2$ general elements of $|L^{\wedge}|$ .

(0.4) Reduction. $([S7], (0.5))$ . Let $(X^{\wedge}, L^{\wedge})$ be as in (0.3). We say that a pair
(X, $L$ ) with $X$ smooth is a reduction of $(X^{\wedge}, L^{\wedge})$ if $L$ is ample and

(0.4.1) there exists a morphism $\pi:X^{\wedge}arrow X$ expressing $X^{\wedge}$ as $X$ with
a finite set $B$ blown up, $L=(\pi_{*}L^{\wedge})^{**};$

(0.4.2) $L^{\wedge}=\pi^{*}L-[\pi^{-1}(B)]$ (equivalently, $K_{X}^{\wedge}+(n-1)L^{\wedge}\approx\pi^{*}(K_{X}+(n-1)L)$).

(0.4.3) REMARK. Note that the positive dimensional fibres of $\pi$ are precisely
the linear $P^{n-1}\subset X^{\wedge}$ with normal bundle $O_{Pn- 1}(-1)$ . Furthermore by sending
each element of $|L|$ to its proper transform, we obtain a 1–1 correspondence
between the smooth divisors in $|L|$ that contain $B$ and the smooth elements of
$|L^{\wedge}|$ .

Recall also that if $K_{X}\wedge+(n-1)L^{\wedge}$ is nef and big, then there exists a reduc-
tion $\pi,$ $(X, L)$ of (X“, $L^{\wedge}$ ) and $K_{X}+(n-1)L$ is ample [S7], (4.5). Note that
in this case such a reduction, (X, $L$ ), is unique up to isomorphism. In this
paper we will refer to this reduction, (X, $L$ ), as the reduction of $(X^{\wedge}, L^{\wedge})$ . In-
deed, except for the explicit list (see the introduction) of well understood pairs
$(X^{\wedge}, L^{\wedge})$ where $K_{X^{\wedge}}+(n-1)L^{\wedge}$ is not nef and big, we can assume that the
reduction (X, $L$ ) of $(X^{\wedge}, L^{\wedge})$ exists. Besides [S1], [S2], [S7] and [SV] we
also refer to [BSS], \S $0$ where a number of general results on adjunction theory
we use are collected with the appropriate references.

(0.5) The adjunction map. The following theorem is an easy consequence of
[S1] and [V] (see also [SV], $(0.1)$).

(0.5.1) THEOREM. Let $(X^{\wedge}, L^{\wedge})$ be as in (0.3). Then $K_{x^{\wedge}}+(n-1)L^{\wedge}$ is sPanned
by global sections unless either

i) $(X^{\wedge}, L^{\wedge})\cong(P^{n}, O(1))$ or $(P^{2}, O(2))$ ;
ii) $(X^{\wedge}, L^{\wedge})\cong(Q, O_{Q}(1))$ where $Q$ is a smooth quadric in $P^{n+1}$ ;
iii) $X^{\wedge}$ is a $P^{n-1}$ bundle over a smooth curve and the restriction of $L^{\wedge}$ to a

fibre is $O_{pn-1}(1)$ . $\blacksquare$

NOW suppose $K_{X}\wedge+(n-1)L^{\wedge}$ to be spanned. Then we shall call the map
$\Phi$ : $X^{\wedge}arrow P^{m}$ determined by $K_{x^{\wedge}}+(n-1)L^{\wedge}$ the adjunction map. We shall write
$\Phi=s\circ r$ for the Remmert-Stein factorization of $\Phi$ , so $r:X^{\wedge}arrow Y$ is a morphism
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with connected fibres onto a normal variety $Y=r(X^{\wedge})$ and $s$ is a finite map.
Note that if $\dim\Phi(X^{\wedge})=n$ , then $r:X^{\wedge}arrow r(X^{\wedge}),$ $L=(r_{*}L^{\wedge})^{**}$ is the reduction

of $(X^{\wedge}, L^{\wedge})$ (see [SV], (0.3)). It should be also pointed out that if $K_{x^{\wedge}}+(n-2)L^{\wedge}$

is nef, n1113, then $(X^{\wedge}, L^{\wedge})$ coincides with its reduction (X, $L$ ). Indeed in this
case $K_{x^{\wedge}}+(n-1)L^{\wedge}$ is ample and hence spanned by (0.5.1). Therefore the pair
$X=r(X^{\wedge}),$ $L=(r_{*}L^{\wedge})^{**}$ is the reduction of $(X^{\wedge}, L^{\wedge})$ . Thus, either $r$ is an iso-
morphism or $K_{X}\wedge+(n-1)L^{\wedge}$ would be trivial on the positive dimensional fibres
of $r$ , a contradiction.

Note also that, if $n\geqq 3$ , for a smooth $A\in|L|$ , the restriction of $r$ to $A$ is
the adjunction map of the pair $(A, L_{A}^{\wedge})$ given by $\Gamma(K_{A}+(n-2)L_{A}^{\wedge})$ . To see
this note that from the Kodaira vanishing theorem it follows that $h^{1}(K_{X}\wedge+$

$(n-2)L^{\wedge})=0$, and therefore that the restriction $\Gamma(K_{X}\wedge+(n-1)L^{\wedge})arrow\Gamma(K_{A}+$

$(n-2)L_{A}^{\wedge})$ is onto.

(0.6) Some soecial varieties. Let $V$ be a $n$ -dimensional smooth connected
variety, $L$ a very ample line bundle on $V$ . We say that (V, $L$ ) is a scroll (re-

spectively a quadric bundle; respectively a $Del$ Pezzo fibration) over a normal
variety $Y$ of dimension $m$ if there exists a surjective morphism with connected
fibres $P$ : $Varrow Y$ , and an ample line bundle $\mathcal{L}$ on $Y$, such that $K_{V}+(n-m+1)L$

$\approx p^{*}\mathcal{L}$ (respectively $K_{V}+(n-m)L\underline{\sim}:p*x$ ; respectively $K_{V}+(n-m-1)L\sim\sim:p^{*}\mathcal{L}$ ).

Note that if (V, $L$ ) is a scroll over either a curve or a surface $Y$ then $Y$ is
smooth and (V, $L$ ) is a true $P^{k}$ bundle, $k=n-\dim Y$. That is all fibres $F$ of $P$

are $P^{k}$ and $L_{F}\cong O_{Pk}(1)$ , or equivalently (V, $L$ ) $\cong(P(\mathcal{E}), O_{P(\mathcal{E})}(1))$ for some ample
and spanned (since $L$ is very ample) locally free sheaf, $\mathcal{E}$ , of rank $k+1$ on $Y$.
This follows from a general result due to Sommese [S7], (3.3).

(0.6.1) LEMMA. Let (V, $L$ ) be either a scroll over $Y$ with $\dim Y>1$ , a quadric
bundle, or a $Del$ Pezzo fibration. Then $K_{V}+(n-1)L$ is spanned.

PROOF. In all the cases the adjoint bundle $K_{V}+(n-1)L\approx p^{*}\mathcal{L}$ is nef
since $\mathcal{L}$ is ample. Then either $K_{V}+(n-1)L$ is spanned or (V, $L$ ) is as in (0.5.1),

this contradicting the nefness of $K_{V}+(n-1)L$ . Q. E. D.

(0.6.2) PROPOSITION. Let (V, $L$ ) be a scroll over a smooth surface $Y$ and $S$

a smooth surface in $|L|$ . Denote by $L_{S}$ , Ps: $Sarrow Y$ the restriction to $S$ of
$L,$ $p:Varrow Y$ respectively and let $L_{Y}=(p_{S*}L_{S})^{**}$ . Then

$i)$ $(Y, L_{Y})$ is the reduction of $(S, L_{S})$ ;
ii) $L_{Y}$ is very amPle;
iii) $K_{Y}+L_{Y}$ is very ample.

PROOF. First, note that $K_{S}+L_{S}$ is nef and big since $K_{S}+L_{S}\approx p^{*}\mathcal{L}$ for
some ample line bundle $\mathcal{L}$ on $Y$. Furthermore $K_{S}+L_{S}$ is also spanned in view
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of (0.6.1). Now general results on adjunction theory (see (0.4.3), (0.5)) say that
there exists a reduction $(S’, L’),$ $\pi:Sarrow S’$ , of $(S, L_{S})$ and $K_{S^{t}}+L’$ is ample
since $L_{S}$ is very ample. Since $K_{S}+L_{S}$ is spanned and $p_{s^{*}}\mathcal{L}\approx K_{S}+L_{S}\approx$

$\pi^{*}(K_{S’}+L’)$ with $\mathcal{L}$ and $K_{S}+L’$ both ample, it thus follows that $p_{s}$ and $\pi$

coincide, up to isomorphisms, with the Remmert-Stein factorization of the
morphism associated to $\Gamma(K_{S}+L_{S})$ . So we conclude that $(Y, L_{Y})\cong(S’, L’)$

and i) is proved.
TO show ii), note that $L_{Y}$ is spanned except at a finite set of points, say

$y_{1},$ $\cdots$ , $y_{t}$ , where the fibres $f_{i}=p_{s^{-1}}(y_{i}),$ $i=1,$ $\cdots$ , $t$ , are positive dimensional,
since $L_{S}$ is very ample. Now by choosing a smooth $A\in|L|$ transverse to the
$f_{i}’ s$ , we can assume that the restriction $p_{A}$ : $Aarrow Y$ has positive dimensional
fibres at points $a_{1}$ , $\cdot$ .. , $a_{s}$ with $\{a_{j}|j=1, \cdot.. , s\}\cap\{y_{i}|i=1, \cdot.. , t\}=\emptyset$ . There-
fore $L_{Y}$ is spanned at $y_{1},$

$\cdots$ , $y_{t}$ too and hence it is spanned. Furthermore the
same argument above shows that $L_{Y}$ is very ample on a Zariski open set $U$

containing the points $y_{1},$ $\cdots$ , $y_{t}$ . Hence in particular $L_{Y}$ separates any two
Points, so it is very ample.

Finally, iii) is a direct consequence of [SV] and the general fact (0.6.3)

below. Indeed, in view of i) and ii), [SV] applies to say that $K_{Y}+L_{Y}$ is very
ample unless either:

a) $(Y, L_{Y})$ is a Del Pezzo surface with $L_{Y}\approx-3K_{Y},$ $K_{Y}\cdot K_{Y}=1$ ,
b) $(Y, L_{Y})$ is a Del Pezzo surface with $L_{Y}\approx-2K_{Y},$ $K_{Y}\cdot K_{Y}=2$, or
c) $Y$ is a $P^{1}$ bundle over an elliptic curve of invariant $e=-1,$ $L_{Y}\approx 3\zeta,$ $\zeta$

the tautological line bundle.
All the cases above are ruled out by Lemma (0.6.3) below. Let $V=P(\mathcal{E}),$ $\mathcal{E}$

locally free rank 2 vector bundle on $Y$. Note that $L_{Y}=\det \mathcal{E}$ . In case a), since
$K_{Y}^{-1}$ is ample with $K_{Y}\cdot K_{Y}=1$ , there exists a smooth elliptic curve $C\in|K_{Y}^{-1}|$ and
$\det \mathcal{E}\cdot C=L_{Y}\cdot C=3K_{Y}\cdot K_{Y}=3$ . In case b), $K_{Y}^{-1}$ is spanned since $K_{Y}^{-1}$ is ample
and $K_{Y}\cdot K_{Y}>1$ . Then we can choose again a smooth elliptic curve $C\in|K_{Y}^{-1}|$

and $\det \mathcal{E}\cdot C=L_{Y}\cdot C=2K_{Y}\cdot K_{Y}=4$ . In case c), let $C$ be a section of the $P^{1}$

bundle $Y$ with C. $C=-e=1$ . Hence $\det \mathcal{E}\cdot C=L_{Y}\cdot C=3\zeta\cdot C=3$ . Q. E. D.

(0.6.3) LEMMA. Let $Y$ be a smooth connected projective surface, $\mathcal{E}$ a locally

free rank 2 coherent sheaf on Y. Let $C$ be a smooth elliptic curve on Y. Assume
that the tautological line bundle $\zeta=O_{P(\mathcal{E}_{C})}(1)$ is very amPle on $P(\mathcal{E}_{C})$ . Then $\deg \mathcal{E}_{C}$

$=\det \mathcal{E}\cdot C\geqq 5$ with equality only if $P(\mathcal{E}_{C})$ is embedded by $\zeta$ as a degree 5 surface
in $P^{4}$ .

PROOF. First of all, $\mathcal{E}_{C}$ is not the direct sum of line bundles. Assume
otherwise that $\mathcal{E}_{C}=X\oplus \mathscr{M}$ is a direct sum of two line bundles $\mathcal{L},$ $\mathscr{M}$ of degrees
$l=\deg X,$ $m=\deg \mathscr{M}$ . Then 1, $m$ are both positive and $l=h^{0}(X),$ $m=h^{0}(\mathscr{M})$ by
the Riemann-Roch theorem. Therefore
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$h^{0}(\mathcal{E}_{C})=h^{0}(\mathcal{L})+h^{0}(\mathscr{M})=l+m$

If $\deg$ e=l+m$4, $\Gamma(\mathcal{E}_{C})\cong\Gamma(\zeta)$ embeds the $P^{1}$ bundle $P(\mathcal{E}_{C})$ over the elliptic
curve $C$ in $P^{3}$ , which is not possible. This shows that $e_{c}$ is given by an ex-
tension

$0arrow \mathcal{L}arrow \mathcal{E}_{C}-arrow \mathscr{M}arrow 0$

where $\mathcal{L},$ $\mathscr{M}$ are line bundles of degrees $l,$ $m$ with either $l=m$ if $\deg \mathcal{E}_{C}$ is even
or $1+l=m$ if $\deg \mathcal{E}_{C}$ is odd. Therefore a straightforward computation, by using
the Riemann-Roch theorem shows that $h^{0}(\mathcal{E}_{C})\leqq h^{0}(\mathcal{L})+h^{0}(\mathscr{M})\leqq 4$ whenever $\deg \mathcal{E}_{C}$

=l+m$4 and the same argument as above gives the result. Q. E. D.

(0.6.4) The Hirzebruch surfaces. By $F_{r}$ with $r\geqq 0$ we denote the $r^{th}$ Hirze-
bruch surface. $F_{r}$ is the unique holomorphic $P^{1}$ bundle over $P^{1}$ with a section
$E$ satisfying $E\cdot E=-r$ . Let $p:F_{r}arrow P^{1}$ denote the bundle projection. In the
case $r=0,$ $F_{0}$ is simply $P^{1}\cross P^{1}$ . In the case $r\geqq 1,$ $E$ is the unique irreducible
curve on $F_{r}$ with negative self-intersection. By F., with $r\geqq 1$ , we denote the
normal surface obtained from $F_{r}$ by contracting $E$ . In the case $r=1,\tilde{F}_{1}$ is $P^{2}$ .
We shall denote by $E,$ $f$ a basis for the second integral cohomology of $F_{r},$ $f$

a fibre of $p$ . A line bundle $aE+bf$ is ample if and only if it is very ample
and it is very ample if and only if $a>0$ and $b>ar$ .

(0.7) Castelnuovo’s bound. Let $(X^{\wedge}, L^{\wedge}),$ $S^{\wedge}$ be as in (0.3). Assume that
$|L^{\wedge}|$ embeds $X^{\wedge}$ in a projective space $P^{N},$ $N\geqq 4$, and let $d^{\wedge}=L^{\wedge}n$ . Then $g(C)$

$=g(L^{\wedge})$, where $C$ is a smooth curve obtained as transverse intersection of $n-1$

general members of $|L^{\wedge}|$ , and Castelnuovo’s Lemma (see e.g. [ACGH] or
[BSS], (0.11) $)$ says that

(0.7.1) $g(L^{\wedge}) \leqq[\frac{d^{\wedge}-2}{N-n}](d^{\wedge}-N+n-1-([\frac{d^{\wedge}-2}{N-n}]-1)\frac{N-n}{2})$

where $N=h^{0}(L^{\wedge})-1$ and $[x]$ means the greatest integer :El $x$ .
Note that if $g(L^{\wedge})$ does not reach the maximum with respect to (0.7.1) then

the stronger bound

(0.7.2) $g(L^{\wedge})\leqq d^{\wedge}(d^{\wedge}-3)/6+1$

holds true (see [GP]). $\blacksquare$

We need some results on codimension two varieties.

(0.8) LEMMA ([H], p. 434). Let $(X^{\wedge}, L^{\wedge}),$ $S^{\wedge}$ be as in (0.3). Assume that $|L^{\wedge}|$

embeds $X^{\wedge}$ in a projective space $P^{N}$ with $N=n+2$ and let $d^{\wedge}=L^{\wedge}n$ . Then

$d^{\wedge}2-5d^{\wedge}-10(g(L^{\wedge})-1)+12\chi(\mathcal{O}_{S^{\wedge}})=2K_{s^{\wedge}}\cdot K_{S^{\wedge}}$ .
(0.9) LEMMA. Let $(X^{\wedge}, L^{\wedge}),$ $S^{\wedge}$ be as in (0.3). Assume that $|L^{\wedge}|$ embeds
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$X^{\wedge}$ in a projective space $P^{N}$ with $N=n+2$ and let $d^{\wedge}=L^{\wedge}n\geqq 4$ . Then $K_{X^{\wedge}}+$

$(n-1)L^{\wedge}$ is spanned.

PROOF. Assume that $K_{X}\wedge+(n-1)L^{\wedge}$ is not spanned. By (0.5.1) it thus
follows that $X^{\wedge}$ is a $P^{1}$ bundle $p:Xarrow B$ over a smooth curve $B$ and $L_{f}^{\wedge}\cong$

$O_{p1}(1)$ for any fibre $f$ . Now, a standard consequence of the Barth-Lefschetz
Theorem implies that $q(X^{\wedge})=0$, therefore $B\cong P^{1}$ and hence $g(L^{\wedge})=g(B)=0$ .
Furthermore the restriction $p:S^{\wedge}arrow B$ is a $P^{1}$ bundle over $P^{1}$ so that $K_{s^{\wedge}}\cdot K_{s^{\wedge}}$

$=8$ and $\chi(0_{S}-)=1$ . Thus Lemma (0.8) gives $d^{\wedge}2-5d^{\wedge}+6=0$ , whence the con-
tradiction $d^{\wedge}=2,3$ . Q. E. D.

(0.10) Congruences for 3-folds in $P^{5}$ . Let $(X^{\wedge}, L^{\wedge})$ be as in (0.3) with $n=3$ .
Assume that $|L^{\wedge}|embedsX^{\wedge}$ in $P^{5}$ and let $d^{\wedge}=L^{\wedge}3$ Define

$d_{j}^{\wedge}=(K_{X}\wedge+L^{\wedge})^{j}\cdot L^{\wedge}\S-J$ $j=0,1,2,3,$ $d_{0}^{\wedge}=d^{\wedge}$

Simply as a consequence of the Riemann-Roch theorem one has for any given
value of $d^{\wedge}$ the following congruence (see [BSS], (0.17.5) and (3.7)).

(0.10.1) $11d^{\wedge}2-2d^{\wedge}-d^{\wedge}d_{1}^{\wedge}+16d_{1}"+7d_{2}^{\wedge}+d_{3}^{\wedge}\equiv 0(24)$ .

Note that $d_{1}"=K_{S^{\wedge}}\cdot L_{s^{\wedge}}$ and $d_{2}"=K_{S^{\wedge}}\cdot K_{s^{\wedge}}$ . In particular if there exists a re-
duction (X, $L$ ) of $(X^{\wedge}, L^{\wedge})$, let 7 be the number of points blown up and define
$d_{j}=(K_{X}+L)^{j}\cdot L^{3-j},$ $j=0,1,2,3$ . Then $d_{j}^{\wedge}=d_{j}-(-1)^{j}\gamma$ and the congruence
above becomes

(0.10.2) $11d^{\wedge}2-\gamma d^{\wedge}-2d^{\wedge}-d_{1}d^{\wedge}+16d_{1}+7d_{2}+d_{3}+10\gamma\equiv 0(24)$ . $\blacksquare$

Let us recall a standard general fact we use in the sequel, as well as the
Nakano’s contractibility criterion in the form we use over and over in \S 2.

(0.11) LEMMA. Let $\varphi:Xarrow Y$ be a surjective morphism of complex irreducible
Projective varieties. Let $\dim X=n$ and assume Pic $(X)\cong Z[L]$ , for some line
bundle $L$ on X. Then either $\dim\varphi(X)=0$ or $n$ . Furthermore $\varphi$ is finite to one
if $\dim\varphi(X)=n$ .

PROOF. Let $\dim Y=s$ , $l s<n$ . We can assume that $X$ is smooth. Let $H$

be an ample line bundle on $Y$ and let $\mathcal{L}=\varphi^{*}H$. Since $mH$ is very ample for
$m\gg O$ , the line bundle $\mathcal{L}$ is non trivial. Therefore $X=\alpha L$ for some integer $\alpha$ ,
$\alpha\neq 0$ . Thus $\alpha L\approx\varphi^{*}H$ would be trivial on the fibres of $\varphi$ , a contradiction. The
same argument shows that $\varphi$ is finite to one if $\dim\varphi(X)=n$ . Q. E. D.

(0.12) THEOREM (Nakano’s contractibility criterion [N]). Let $X$ be a smooth
projective variety and let $Z\subset X$ be a subvariety of $X$ which is a $P^{k}$ bundle
$p:Zarrow Z’$ over a variety $Z’$ . Let $F\cong P^{k}$ be a fiber of $p$ . If $\Re_{Z1F}^{X}\cong O_{pk}(a)$ with
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$a<0$ there exists a holomorphic map $p$ , an analytic variety $X’$ and a commutative
diagram

$Z-X$
$p\downarrow$ $\downarrow\beta$

$Z’-X’$
such that $p$ induces a biholomorphism $X\backslash Z\cong X’\backslash Z’$ . Furthermore $X’$ is smooth
if $a=-1$ . $\blacksquare$

For any further background material we refer to [S5], [S7] and [BSS].

\S 1. The Del Pezzo fibrations and the “special” $P^{2}$ bundle cases.

Let $X^{\wedge}$ be a smooth connected 3-fold and let $L^{\wedge}$ be a very ample line
bundle on $X^{\wedge}$ such that $\Gamma(L^{\wedge})$ embeds $X^{\wedge}$ in a $P^{N}$ . In this section we deal
with two sPecial cases when $K_{x^{\wedge}}+2L^{\wedge}$ is nef and big and $(X^{\wedge}, L^{\wedge})$ admits as
the reduction (X, $L$ ) either a Del Pezzo fibration or a “special” $P^{2}$ bundle as in
Proposition (1.2) below (compare with [S7], \S 5). We prove here some new
properties of such special varieties. We also find a lower bound for $h^{0}(L^{\wedge})$

which essentially shows that such a reduction, (X, $L$ ), cannot lie in $P^{5}$ , except
for a few possible cases. Some of the following results are needed in [BSS],

\S 4.

(1.1) PROPOSITION. Let $X^{\wedge}$ be a smooth connected threefold, $L^{\wedge}$ a very ample
line bundle on $X^{\wedge}$ such that $\Gamma(L^{\wedge})$ embeds $X^{\wedge}$ in $P^{N}$ . Let (X, $L$ ) be the reduc-
tion of (X“, $L^{\wedge}$ ). Assume that (X, $L$ ) is a $Del$ Pezzo fibration $\varphi:Xarrow B$ over a
smooth curve $B$ .
(1.1.1) Let $F$ be the general fiber of $\varphi$ and let $\deg F=K_{F}\cdot K_{F}=f$. Then there

are no fibers of $\varphi$ containing more than $f-3$ distinct points blown up
under $r:X^{\wedge}arrow X$ . (Hence in particular $X^{\wedge}\cong X$ if $f=3.$ )

(1.1.2) One has $N\geqq 6$ if $f<5$ and $d^{\wedge}=L^{\wedge}3\geqq 9$ .

$P$ROOF. Assume that there exists a fiber $F$ of $\varphi$ containing $x_{1},$
$\cdots$

$x_{f-2}$

distinct points of $X$ blown up under $r$ . Write $b=\varphi(F),$ $P_{i}^{2}=r^{-1}(x_{i}),$ $i=1,$ $\cdots$

$f-2$ and let $p=\varphi\circ r$ . Then

$p^{-1}(b)=R\cup P_{1}^{2}\cup\cdots\cup P_{f-2}^{2}$

where $R$ is a surface in $X^{\wedge}$ . Since $\deg F=f$ and $r$ is an isomorphism outside
of a finite number of points, $R$ is a (possibly singular, reducible or not reduced)

quadric. If $R$ is a smooth quadric, then the intersection $P_{i}^{2}\cap R$ is a curve on
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$R$ which contracts to a point $x_{i},$ $i=1,$ $\cdots$ $f-2$ and this is not possible. In all
the other cases either $R$ , a component $P^{2}$ of $R$ or $R_{red}$ meets one the $P_{i}^{2}’ s$ in
a curve which again contracts to a point $x_{i}$ . On the other hand, since Pic $(R)$

$\cong Pic(P^{2})\cong Pic(R_{red})\cong Z$, the restriction of $r$ to either $R,$ $P^{2}$ , or $R_{red}$ is finite
to one by Lemma (0.11), this leading to a contradiction.

TO prove (1.1.2), first recall that $3\leqq f\leqq 9$ by general results on classification.
Furthermore note that $N\geqq 5$ , since otherwise $X^{\wedge}$ would have Kodaira dimension
$\kappa(X^{\wedge})=3$ . Assume $N=5$ and $f\leqq 4$ . Then $q(X^{\wedge})=0$ since $X^{\wedge}$ is simply con-
nected by the Barth-Lefschetz Theorem and hence $B\cong P^{1}$ . Let us denote by $F$

a general fibre of the composition $p=\varphi\circ r$ (note that general fibers of $P$ and $\varphi$

are isomorphic) and look at the restriction $L_{F}^{\wedge}$ of $L^{\wedge}$ to $F$. The Riemann-
Roch theorem gives us $h^{0}(L_{F}^{\wedge})=f+1\leqq 5$ . Therefore the standard exact sequence

$0arrow L^{\wedge}\otimes O_{X^{\wedge}}(-F)arrow L^{\wedge}-arrow L_{F}^{\wedge}arrow 0$

shows that $h^{0}(L^{\wedge}\otimes O_{X^{\wedge}}(-F))\geqq 1$ . Now the following Claim leads to a contra-
diction which gives the result.

CLAIM. If $N=5,$ $h^{0}(L^{\wedge}\otimes O_{X^{\wedge}}(-F))=0$ for any $f\geqq 3$ .

PROOF. Let $D$ be an effective divisor in $|L^{\wedge}-F|$ . Since $L^{\wedge}-D\approx F=$

$p^{*}O_{p1}(1)$ we have $h^{0}(L^{\wedge}-D)=2$ which means that $D$ is contained in a $P^{3}$ of $P^{5}$

given by the transverse intersection of two elements of $|L^{\wedge}|$ . Hence in parti-
cular $\deg D=D\cdot L^{\wedge}\cdot L^{\wedge}$ in $P^{3}=L^{\wedge}\cdot L^{\wedge}$ so that

$K_{D}\approx O_{D}(L^{\wedge}\cdot L^{\wedge}\cdot D-4)$ .
We also have

$K_{D}\approx(K_{X}\wedge+D)_{1D}\approx(K_{X}\wedge+L^{\wedge}-F)_{1D}$

which shows that $K_{D}$ is trivial on the fibres of the restriction $Darrow P^{1}$ . Thus

$L^{\wedge}\cdot L^{\wedge}\cdot D-4=L^{\wedge}\cdot L^{\wedge}\cdot(L^{\wedge}-F)-4=0$

that ls $d^{\wedge}=f+4\leqq 8$ , a contradiction. Q. E. D.

(1.2) PROPOSITION. Let $X^{\wedge}$ be a smooth connected threefold, $L^{\wedge}$ a very
ample line bundle on $X^{\wedge}$ such that $\Gamma(L^{\wedge})$ embeds $X^{\wedge}$ in $P^{N}$ . Let (X, $L$ ) be the
reduction of $(X^{\wedge}, L^{\wedge})$ . Assume that there is a holomorPhic surjection with con-
nected fibres $\varphi:Xarrow B$ onto a nonsingular curve $B$ , whose general fibre is $(P^{2}$ ,
$O_{P2}(2))$ and $K_{X}\otimes L^{3}\approx\varphi^{*}\mathcal{L}$ for some ample line bundle $\mathcal{L}$ on B. Then we have
$\langle$ 1.2.1) $(F, L_{F})\cong(P^{2}, O_{P2}(2))$ for any fibre $F$ of $\varphi$ ;

(1.2.2) N216 if $d^{\wedge}=L^{\wedge s}\neq 5$ .
PROOF. By (0.5.1), $K_{x^{\wedge}}+2L^{\wedge}$ is spanned, and hence so is $H:=K_{X}+2L$ . $H$
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is ample since $2H\approx(2K_{X}+3L)+L=\varphi^{*}\mathcal{L}+L$ . The restriction of $H$ to any
general fibre $(\cong P^{2})$ is $\mathcal{O}_{P}$2(1). So $H^{2}\cdot F=1$ for any fibre $F$. Hence $(F, H_{F})\cong$

$(P^{2}, H_{F})$ since $H$ is ample and spanned. This implies (1.2.1).

TO prove (1.2.2), assume $N=5$ . Then the results of [BSS], \S 4 (see proof
of (4.3), (4.3.2), (4.3.8) $)$ apply to say that the sectional genus $g(L)$ of (X, $L$ ) is
odd and

(1.2.3) $12(g(L)-1)=2d^{\wedge}(d^{\wedge}-3)+24-7d^{\wedge}+\gamma$ ,

(1.2.4) $54\langle g(L)-1)=4d^{\wedge z}-43d^{\wedge}+17\gamma+168$ ,

where $\gamma$ denotes the points of $X$ blown up under $r:X^{\wedge}arrow X$ . Thus from (1.2.3),
(1.2.4) we find

(1.2.5) $\gamma=(10d^{\wedge}2-31d^{\wedge}-120)/\ ^{\ulcorner}$ .

NOW elther $g(L)=(d^{\wedge z}+3)/4-d^{\wedge}$ or $g(L)\leqq d^{\wedge}(d^{\wedge}-3)/6+1$ by (0.7). In the first
case, by using (1.2.3) and (1.2.5) we find an equation in $d^{\wedge}$ with no integer
solutions. In the second case we easily see from (1.2.3) that $7d^{\wedge}\geqq 24+\gamma$ and
hence we get from (1.2.5)

$5d^{\wedge}2-103d^{\wedge}+240\leqq 0$

which implies that $d^{\wedge}\leqq 17$ . A straightforward check shows that only $d^{\wedge}=5$

satisfies the congruence $10d^{2^{\wedge}}-31d-120\equiv 0(25)$ which comes out from (1.2.5).

This completes the proof. Q. E. D.

\S 2. The quadric bundle case.

Let $X^{\wedge}$ be a smooth connected $n$ -fold and let $L^{\wedge}$ be a very ample line
bundle on $X^{\wedge}$ . Through this section we consider the case when $K_{x^{\wedge}}+(n-1)L^{\wedge}$

is nef and big and the reduction (X, $L$ ) of (X“, $L^{\wedge}$ ) exists. Let $r:X^{\wedge}arrow X$ be
the reduction map. Assume further that for $t\gg O,$ $\Gamma(t(K_{X}+(n-2)L))$ gives a
morphism $\varphi$ down to a surface. Note that, if $s\circ\phi$ is the Remmert-Stein fac-
torization of $\varphi$ , one has $K_{X}+(n-2)L\approx\phi^{*}\mathcal{L}$ for some ample line bundle $X$ ,
which means that (X, $L$ ) is a quadric bundle over a normal surface via $\phi$ .

Let us recall the following standard facts we use over and over. The main
reference in this section is [S5] (see also [F]).

(2.1) LEMMA. With the notation as above, let $D$ be an irreducible reduced
divisor such that $\dim\varphi(D)=0$ . Then there are no locally complete intersection,
irreducible, reduced curves $C$ with $\dim\varphi(C)=0$ such that su5 is spanned by global
sections, $h^{1}(\Re_{C}^{X})=0$ and $D\cdot C>0$ . In particular there exist no locally complete
intersection, irreducible, reduced curves $C$ on $D$ such that $\Re_{C}^{X}$ is spanned by global
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sections, $h^{1}(\Re_{C}^{X})=0$ and $\deg(\Re_{1C}^{X})>0$ .

PROOF. Since $\varphi(C)$ is a point, by the rigidity property of proper maps there
exists a tubular neighborhood $U_{C}$ of $C$ such that $\varphi(U_{C})$ is contained in an affine
neighborhood $V_{C}$ of $\varphi(C)$ . Now, since $\Re_{C}^{X}$ is spanned and $h^{1}(\Re_{C}^{X})=0$ , Kodaira-
Spencer deformation theory applies to say that deformations of $C$ exist to fill
up a neighborhood $\sigma r_{c}$ of $C$ (see also [B1]). Therefore, since $V_{C}$ contains no
compact subvarieties, $\varphi(C’)=0$ for all $C’\in U_{C}\cap\sigma\tau_{c}$ . But $D\cdot C>0$ and hence $\varphi(C’)$

$=\varphi(C)$ for all $C’\in U_{C}Ag_{C}$ . It thus follows that $\dim\varphi(U_{C})(=\dim\varphi(X))=0$ , a
contradiction. Q.E.D.

(2.2) LEMMA $([S5], (0.5.3))$ . With the notation as above, let $B$ be the finite
set of points of $X$ blown up to get $X^{\wedge}$ and let $C$ be an effective curve on $X$ such
that $L\cdot C=1$ . Then $C$ is a smooth rational curve and $C\cap B=\emptyset$ .

PROOF. Since $L$ is ample, $L\cdot C=1$ implies that $C$ is irreducible and reduced.
Let $C’$ be the proper transform of $C$ under $r$ . If $C$ meets $B$ then $C’$ would
meet $r^{-1}(B)$ . This would imply that

$L^{\wedge}\cdot C’=(r^{*}L-r^{-1}(B))\cdot C’=L\cdot C-r^{-1}(B)\cdot C’\leqq 1-1=0$ .
Since $L$ is ample we conclude that $C\cap B=\emptyset$ . Therefore $C’\cong C$ and $L^{\wedge}\cdot C’=1$ .
Since $L^{\wedge}$ is spanned by global sections, this implies that $C’$ and hence $C$ is a
smooth rational curve. Q. E. D.

The following is the main result of this section. The proof of the first part
of the statement consists of a sequence of several Lemmas which take up the
rest of the section.

(2.3) THEOREM. Let (X, $L$ ) be the reduction of an $n$-dimensional polarized
pair $(X^{\wedge}, L^{\wedge})$ with $X^{\wedge}$ smooth and $L^{\wedge}$ very ample. Assume that, for all $t\gg O$ ,
$\Gamma(t(K_{X}+(n-2)L))$ gives a morphism $\varphi$ onto a normal surface $Y$.
(2.3.1) Either $\varphi$ has equal dimensional fibres or $n=3$ and the only divisorial

fibres are
a) isomorphic to $F_{0}$ with $L_{F_{0}}\sim O_{F_{0}}(1,2)$ , or
b) isomorphic to $F_{0}\cup F_{1}$ with $L_{F_{0}}\sim O_{F_{0}}(1,1),$ $L_{F_{1}}\sim E+2f$. In this case $\varphi$ is

described in Lemma (2.6).

(2.3.2) The surface $Y$ has at worst Gorenstein rational singular points, $y$ , of type
$A_{1}$ , such that $\varphi^{-1}(y)$ is $a$ 1-dimensional, non-reduced fibre.

PROOF. By taking $t$ large enough, we can assume that $Y$ is normal, $\varphi$ does
not depend on $t$ , and $\varphi$ has connected fibres.
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First, assume $n=3$ . If a fibre $F$ has a two dimensional irreducible com-
ponent then all irreducible components of $F$ are two dimensional. To see this
assume otherwise. Then there is an irreducible one dimensional component $C$

on $F$ and an irreducible two dimensional component $D$ such that $D\cdot C>0$ . Let
$C’$ be the proper transform of $C$ under the reduction map $r:Xarrow X$ . Since the
general fibre of the composition of $r:X^{\wedge}arrow X$ and $\varphi$ is a curve of degree 2
relative to $L^{\wedge}$ , it follows that the intersection of an element $A$ of $|L^{\wedge}|$ and
$r^{-1}(F)$ has at most two connected components. From this and the fact that $L^{\wedge}$

is very ample it follows that $L^{\wedge}\cdot C’$ :$2. Therefore $C’$ is smooth rational. Note
that for small deformations $r’$ of the restriction map, $r_{C},,$ $r’(C’)$ is in the same
homology class as $C$ and therefore $r’(C’)\cdot D>0$ and $\varphi(r’(C’))=\varphi(F)$ . Noting that
$\deg(r_{C’}^{*}T_{X})=\deg(r_{C\prime}^{*}K_{X}^{-1})=L\cdot C\geqq 1$ , it follows ($e.g$ . from Proposition 3 of [M])

that there is at least a 4-dimensional connected family of deformations $r’$ of the
map $r_{C’}$ . Since $\dim$ Aut $(P^{1})=3$ it follows that there is at least a one dimen-
sional non-trivial family of curves near $C$ that go to $\varphi(C)$ . This contradicts the
assertion that $C$ is an irreducible one dimensional component of $F$.

Let $F’$ be a 2-dimensional fibre of $\varphi$ . Let $F=F_{red}’= \bigcup_{i=1}^{s}D_{i}$ where the $D_{i}’ s$

denote the irreducible components of $F$. By [S5], (0.5.2) a general smooth sur-
face $S\in|L|$ meets each $D_{i}$ along an irreducible reduced curve $C_{i},$ $i=1$ , , $s$ .
One has

$K_{S}\cdot C_{i}=(K_{XIS}+L_{S})\cdot C_{i}=(K_{X}+L)\cdot C_{i}=0$

and hence $C_{i}^{2}<0$ by the Hodge index theorem. Therefore $C_{i}^{2}=-2$ and $C_{i}$ is a
$-2$ smooth rational curve, $i=1,$ $\cdots$ , $s$ . The intersection, $S\cap D_{i}$ , is of dimension
1 and is smooth. This shows that $S$ meets D transversely along a smooth $P^{1}$

contained in the smooth points of $D_{i}$ . Then by [S3], (0.6.2), $D_{i}$ is either lii2,
$P^{2}$ , or $F_{r}$ for some $r\geqq 0,$ $i=1,$ $\cdots$ , $s$ .

Note that there are no 3 distinct components, $D_{1},$ $D_{2},$ $D_{3}$ , of $F$ with non-
empty intersection $D_{1}\cap D_{2}\cap D_{3}$ . Otherwise, let $x\in D_{1}\cap D_{2}\cap D_{3}$ and choose a
smooth $S\in|L|$ that contains $x$ . Slicing with $S$ we see that $S$ contains a con-
figuration of at least three $-2$ rational curves meeting at $x$ . This is not pos-
sible (see [S5], (0.7)).

After Lemma (2.6) it will be shown that there are at most 2 distinct irre-
ducible components of a two dimensional fibre of $\varphi$ .

The proof of (2.3.1) runs now parallel to that of Theorem (1.0.1) of [S5].

It will be a consequence of the following lemmas where a case by case analysis
of all possible configurations of the $D_{i}’ s$ is carried out. Recall that we are as-
suming $\dim X=3$ . The notation is as above.

(2.4) LEMMA. Let $D_{1}$ and $D_{2}$ be two irreducible reduced surfaces on $X$ such
that $D_{1}\cap D_{2}$ is non-empty and $\dim\varphi(D_{i})=0$ for $i=1,2$ . Then neither $D_{1}$ nor $D_{2}$
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are isomorphic to $\tilde{F}_{2}$ . Also $D_{1}$ and $D_{2}$ meet transversely in a smooth rational curve
$C$ satisfying $L\cdot C=1$ .

$P$ROOF. Let $C$ be the curve intersection of $D_{1}$ and $D_{2}$ . As above, by [S5],

(0.5.2), we can choose a general $S\in|L|$ which is smooth and meets $D_{1}$ and $D_{2}$

in irreducible reduced curves $C_{1},$ $C_{2}$ respectively; furthermore $C_{1},$ $C_{2}$ are $-2$

smooth rational curves and (compare with [S5], (0.7)) they meet transversely in
a single point $x$ . Therefore

$C_{1}\cdot C_{2}=L_{D_{1}}\cdot D_{2ID_{1}}=L\cdot D_{1}\cdot D_{2}=1$ .

Since only even numbers arise as intersections of Cartier divisors on $\tilde{F}_{f}$ we
also conclude that neither $D_{1}$ nor $D_{2}$ are isomorphic to $\tilde{F}_{s}$ . Hence each $D_{i}$ is
isomorphic to either $F_{r}$ with $r\underline{2\geq}0$ or $P^{2}$ . Since $L\cdot D_{1}\cdot D_{2}=L\cdot C=1$ we conclude
from Lemma (2.2) that $C$ is a smooth rational curve. Therefore the same argu-
ment as in the proof of (1.2) shows that the intersection of $D_{1}$ and $D_{2}$ is trans-
verse. Q.E.D.

(2.5) LEMMA. Let $F’$ be a divisorial fibre of $\varphi:Xarrow Y$ and let $F=F_{red}^{f}$ .
Then there are no irreducible components $D$ of $F$ such that $D\cong P^{2}$ . (In particular
$F$ cannot be isomorphic to $P^{2}.$ )

PROOF. Let $D_{1},$ $D_{2},$ $C=D_{1}\cap D_{2}$ be as in (2.4) and assume $D_{1}\cong P^{2}$ . The
normal bundle $\Re_{C}^{X}$ of $C$ in $X$ is of the form $\Re_{C}^{X}\cong X_{1}\oplus\Re_{2}$ where $\Re_{i}$ denotes the
normal bundle of $C$ in $D_{i},$ $i=1,2$ . Since $(K_{X}\otimes L)_{1C}\sim O_{C}$ and $L\cdot C=1$ one has
$K_{X}\cdot C=-1$ . Therefore from the adjunction formula $K_{C}\approx K_{X1C}\otimes det(\Re_{C}^{X})$ , it fol-
lows that

(2.5.1) $\deg\Re_{C}^{X}=\deg X_{1}+\deg\Re_{2}=-1$ .

Then both $D_{1}$ and $D_{2}$ cannot be isomorphic to $P^{2}$ . Otherwise, since $L\cdot C=1$ it
would follow that they meet in a line and we would have $\deg\Re_{1}=\deg\Re_{2}=1$ ,
contradicting (2.5.1).

Thus, recalling (2.4), $D_{2}$ is isomorphic to $F_{r}$ for some $r\geqq 0$ . Note that
$L_{F_{r}}\sim E+bf,$ $b\geqq 1$ . Indeed we know by the above that $L_{p_{r}}$ is a $-2$ smooth
rational curve. Therefore from the classification of polarized surfaces carrying
an ample line bundle of sectional genus zero it turns out that $L_{F_{r}}\cdot f=1$ , and
hence $L_{F_{\gamma}}\sim E+bf$ with $b\geqq r+1$ by ampleness.

(2.5.2) CLAIM. One has $r=2,$ $C\sim E$ and $L_{F_{2}}\sim E+3f$ on $F_{g}$ .

PROOF. Write $C\sim\alpha E+\beta f$ and suppose $C\neq E,$ $f$. Then $C\cdot E\geqq 0$ and $C\cdot f>0$

lead to $\beta\geqq\alpha r,$ $\alpha>0$ . Hence from

$L_{F_{r}}\cdot C=(E+bf)\cdot(\alpha E+\beta f)=1$ ,
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and $b\geqq r+1$ , we find $\alpha(r+1)\leqq 1$ . Since $\alpha>0$ , one has $\alpha=1,$ $r=0$ . Then by
interchanging the role of $E$ and $f$ we get $\beta>0$ whence the contradiction $L_{F}{}_{0}C$

$=b+\beta=1$ .
Thus either $C\sim E$ or $C\sim f$ on $F_{r}$ . From $C\cong P^{1}$ and $L\cdot C=L_{p2}\cdot C=1$ , it

easily follows that $C$ is a line on $D_{1}\cong P^{2}$ . If $C\sim f$ one has $\Re_{C}^{X}\approx \mathcal{O}_{P1}(1)\oplus O_{P^{1}}$ ,
which contradicts (2.5.1). Therefore $C\sim E$ and $\Re_{C}^{X}\approx O_{P1}(1)\oplus O_{P1}(-r)$ leads to
$r=2$ . NOW from $L_{F_{2}}\cdot C=(E+bf)\cdot E=1$ we find $b=3$ . $\blacksquare$

Thus $D_{1}\cong P^{2},$ $D_{2}\cong F_{2}$ . We claim that there are no more components of $F$.
Indeed, suppose there exists a more component $D_{3}$ . Then by the above we
know that either $D_{3}\cong P^{2}$ or $D_{3}\cong F_{r},$ $r\geqq 0$ ; further if $D_{3}\cong P^{2}$ one has $D_{3}\cap D_{1}$

$=\emptyset$ and $D_{3}$ meets $F_{2}$ along $E(=P^{2}\cap F_{2})$ , which is a contradiction. Hence
$D_{3}\cong F.$ . Note that if $D_{3}$ meets $P^{2}$ along a curve, say 7, then $\gamma\cap E\mp\emptyset$ and
therefore $D_{3}$ meets $F_{2}$ along a curve $C’$ too. Hence claim (2.5.2) aPPlies to say
that either $C’\sim E$ or $C’\sim f$ . In both the cases, by slicing with a generic smooth
$S\in|L|$ we find three $-2$ smooth rational curves meeting in a point and this
configuration is not possible (compare again with [S5], (0.7)).

NOW we have on $D_{2}\equiv F_{2}$ :

$K_{X1F_{2}}\sim-L_{F_{2}}\sim-E-3f;x_{F_{2}}^{X}\sim-E-f$ .

Then $X_{F_{2}1f}^{X}\cong O_{f}(-1)$ so that the Nakano’s contractibility criterion (0.12) ap-
plies to say that we can smoothly contract $F_{2}$ along $f$ to get an analytic mani-
fold $X’$ and a proper holomorphic modification $q:Xarrow X’$ . By denoting $D_{1}’=$

$q(D_{1})\cong P^{2}$ on $X’$ , the standard exact sequence

$0arrow\Re 5^{2}\cong \mathcal{O}_{P1}(1)arrow yl_{C}^{X}\cong \mathcal{O}_{P1}(1)\oplus O_{P1}(-2)arrow yl_{P}^{X}2|Carrow 0$

gives $y\iota_{P^{2}IC}^{X}\cong O_{P1}(-2)$ , whence $\Re_{P^{2}}^{X}\cong O_{P2}(-2)$ . Since $f$ meets $D_{1}\cong P^{2}$ on $X$ in a
point it thus follows that $\Re_{D_{1’}}^{X^{l}}\cong O_{P2}(-1)$ . Then $D_{1}’\cong P^{2}$ smoothly contracts to
a point $P$ of a smooth birational analytic model $X’’$ of $X’$ . Let $q^{\prime\prime_{O}}q’$ : $Xarrow X’’$

be the contraction. Since $F$ is a fibre of $\varphi$ , there exists a morphism $\sigma$ : $X’’arrow Y$

which makes the following diagram commute

$x \frac{q^{\nu_{o}}q’}{\backslash _{Y}}\varphi\gamma_{\sigma}^{X’’}$

Note that the fibre $\sigma^{-1}(\varphi(F))=p$ is $0$-dimensional while the general fibres of $\sigma$

are 1-dimensional, which is a contradiction. This proves that the case $D_{1}\cong P^{2}$ ,
$D_{2}\cong F_{2}$ does not occur.

In particular the arguments above show that the fibre $F$ is irreducible. Let
us consider the remaining case $F\cong P^{2}$ . Let $\Re_{F}^{X}\cong O_{p2}(a),$ $a\in Z$ be the normal
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bundle of $F$ in $X$ .
If $a<0$ the general Grauert’s contractibility criterion [Gr] applies to give

an analytic variety and a proper holomorphic modification $q:Xarrow X’$ such that
$q(F)$ is a possibly singular point on $X’$ . Again, since $F$ is a fibre of $\varphi$ , there
exists a morphism $\beta:X’arrow Y$ such that $\varphi=\beta\circ q$ and one has the same contradic-
tion as above.

If $a\geqq 0,$ $\Gamma(\Re_{P^{2}}^{X})$ spans $y\iota_{P^{2}}^{X}$ and $h^{1}(\Re_{P^{2}}^{X})=0$ . Then the Kodaira-Spencer theory
says that the union of smooth deformations of $P^{2}$ fills up a neighborhood $U$ of
$P^{2}$ in $X$ such that $\varphi(U)$ is contained is some open affine neighborhood $V$ of
$\varphi(P^{2})$ . Since $V$ does not contain any compact subvariety one sees that all
smooth deformations of $P^{2}$ in $U$ are fibres of $\varphi$ . Then we have the contradic-
tion that there exists a family of dimension $\geqq 1$ of 2-dimensional fibres of $\varphi$ .
This completes the proof of (2.5). Q. E. D.

(2.6) LEMMA. Let $F’$ be a divzsorial fibre of $\varphi:Xarrow Y$ and let $F=F_{red}’$ . Let
$D_{1},$ $D_{2}$ be irreducible components of $F$ such that the intersection $D_{1}\cap D_{2}$ is non-
empty. Then after renaming, $D_{1}$ is isomorphic to $F_{1}$ and $D_{2}$ is isomorphic to $F_{0}$ ,
$D_{1},$ $D_{2}$ meet along a section $E$ of $F_{1}$ , and $L_{F_{0}}\sim O_{F_{0}}(1,1),$ $L_{F_{1}}\sim E+2f$. The fibre
$F’$ is reduced, i.e. $F=F_{red}’$ , and $\varphi(F)$ is a smooth Point of Y. Furthermore $\varphi$

factors, $\varphi=\rho\circ q’\circ q’$ , where $q’$ : $Xarrow W$ is the smooth contraction of $F_{0}$ along the
fibres $f’=E$ , and $q’$ : $Warrow Z$ is the blowing uP at a smooth Point of Z. The map

fr $\rho$ is locally a Product Projection in an inverse image $\rho^{-1}(^{c}U)$ of a neighborhood
$c_{U}$ of $\varphi(F)$ .

$P$ROOF. Assume that $D_{1}$ is isomorphic to $F_{a}$ and $D_{2}$ is isomorphic to $F_{b}$ .
Let $E,$ $f$ denote the basis for $H_{2}(F_{a}, Z)$ and let $E’,$ $f’$ denote the corresponding
basis for $H_{2}(F_{b}, Z)$ . From Lemma (2.4) we know that $D_{1},$ $D_{2}$ meet along a
smooth rational curve $C$ and $L\cdot C=1$ . Further we know that $\Re_{C}^{X}\cong\Re_{a}\oplus yl_{b}$ where
$\Re_{a},$ $yl_{b}$ denote the normal bundles of $C$ in $F_{a},$ $F_{b}$ respectively and, as in the
proof of (2.5), we have

$\deg\Re_{C}^{X}=deg\Re_{a}+\deg\Re_{b}=-1$ .

NOW the same argument as in the proof of claim (2.5.2) shows that either $C\sim E$

or $C\sim f$ on $F_{a}$ and either $C\sim E’$ or $C\sim f’$ on $F_{b}$ .
If $C\sim f$ on $F_{a}$ and $C\sim f’$ on $F_{b}$ one has $\Re_{C}^{X}\cong \mathcal{O}_{P1}\oplus O_{p1}$ , contradicting $\deg$ su5

$=-1$ . In particular by noting that the role of $E$ and $f$ can be switched on $F_{0}$ ,
it folIows that not both $a$ and $b$ can be zero. Therefore, after possibly renum-
bering, it can be assumed without loss of generality that $a>0$ .

If $C\sim E$ on $F_{a}$ and $C\sim E’$ on $F_{b}$ one has $X_{C}^{X}\simeq \mathcal{O}_{P1}(-a)\oplus \mathcal{O}_{P1}(-b)$ and hence
$a+b=1$ . Since $a>0$ , we get $a=1,$ $b=0$ . So, by switching the roles of $E’$ and
$f’$ on $F_{b}$ we fall in the remaining case when $C\sim E$ on $F_{a}$ and $C\sim f’$ on $F_{b}$ .
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In this case from $L\cdot C=L_{F_{a}}\cdot E=1$ we find $L_{F_{a}}\sim E+(a+1)f$ . Since – $L_{p_{a}}\sim$

$K_{X1F_{a}}$ the adjunction formula yields $\Re_{F_{a}}^{X}\sim-E-f$ .
(2.6.1) CLAIM. We have $L_{F_{b}}\sim E’+(b+1)f’$ and $\Re_{F_{b}}^{X}=-E’-f’$ .

PROOF. Since $L\cdot C=L_{F_{b}}\cdot f’=1,$ $L_{F_{b}}\sim E’+kf’$ with $k\geqq b+1$ by ampleness.
Then, as above,

$7l_{F_{b}}^{X}=K_{F_{b}}+L_{p_{b}}\sim-E’-(2+b-k)f’$

If $k>b+1$ we have $\Re_{F_{b}}^{X}\cdot(E’-+bf’)=k-b-2\geqq 0$ . Note that $|E’+bf’|$ is sPanned
(see (0.6.4)) and take a smooth $\Gamma\in|E’+bf’$ . Note also that $\Gamma$ is a rational
curve. Therefore from the exact sequence

$*)$ $0arrow\Re_{\Gamma^{b}}^{F}\cong \mathcal{O}_{P^{1}}(b)arrow\Re_{\Gamma}^{X}arrow\Re_{F_{b}1\Gamma}^{X}=\mathcal{O}_{P1}(x)arrow 0$

where $x=k-b-2\geqq 0$ we infer that $H^{0}(yl_{\Gamma}^{X})$ spans $7l_{\Gamma}^{X}$ and $h^{1}(\Re_{\Gamma}^{X})=0$ . Lemma
(2.1) applies to give a contradiction. To see this note that the curve $\Gamma$ meets
$F_{a}$ since $\Gamma\cdot C=\Gamma\cdot f’=1$ on $F_{b}$ . $\blacksquare$

Since $\deg^{y}l_{F_{a}}^{X}\cdot f=-1$ we apply Nakano’s criterion (0.12) to have a proper
holomorphic smooth modification $q:Xarrow X’$ where $F_{a}$ contracts along the fibres
$f$ . Note that, since $\dim\varphi(F_{a})=0$ , there is a morphism $\sigma:X’arrow Y$ such that $\varphi=$

$\sigma\circ q$ . From $\Re_{F_{b}}^{X}\sim-E’-f’$ and since $f$ meets $F_{b}$ in a point we infer that $\mathcal{J}l_{F_{b}}^{X’}\sim$

$-E’$ on $X’$ . Now the same argument as in the proof of (2.6.1) applies. Let
$\Gamma’\in|E’+bf’|$ be a smooth rational curve on $F_{b}$ in $X’$ . One has $X_{p_{b}}^{X’}\cdot(E’+bf’)$

$=-E’\cdot(E’+bf’)=0$ . Therefore the exact sequence $*$ ) on $X’$ leads to

$**)$ $0arrow O_{P^{1}}(b)arrow\Re_{\Gamma’}^{X’}arrow O_{P^{1}}arrow 0$

so that $\Re_{\Gamma’}^{X’}$ is sPanned and $h^{1}(X_{\Gamma}^{X’},)=0$ . Hence we see that all smooth deforma-
tions of $\Gamma’$ are general fibres of $\sigma$ . This implies that $\Gamma’$ has a 2-dimensional
family of deformations. On the other hand the sequence $**$ ) yields

$h^{0}(\Re_{\Gamma’}^{X},)=h^{0}(O_{P^{1}}(b)\oplus O_{p1})=b+2$

and hence $b+2=2$ that is $b=0$ . Thus $D_{2}\cong F_{0}$ . Since

$7l_{F_{0}}^{X}\cdot f’=(-E’-f’)\cdot f’=-1$ ,

then Nakano’s criterion applies again to smoothly contract $F_{0}$ along $f’(=E)$ to $\underline{\tau}$

a smooth curve $\gamma$ . Let $q’$ : $Xarrow W$ be the contraction. Since $W$ is smooth and
$q’(F_{a})$ has an isolated singularity, $q’(F_{a})$ is normal, $i.e$ . it is isomorphic to $F_{a}$ .
Thus either $a=2$ or $a=1$ (see again [S3], (0.6.2)). Note that $|E+af|$ is base-
point free and take a smooth curve $9\in|E+af|$ on $F_{a}$ . Since 9 $\cdot E=0$ , we
have $9\cap E=\emptyset$ and hence we can identify 9 with its image in $W$ . Let $p=$

$q’(E)$ on $W$ . Assume $a=2$ and compute
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$\Re_{\tilde{p}_{2}}^{W}\cdot 9=\Re_{\overline{F}_{2}-p}^{W-p}\cdot 9=X_{F_{2}-E}^{X-E}\cdot 9=X_{F_{2}}^{X}\cdot 9=-1$ .

This is absurd since 9 is a Cartier divisor on $\tilde{F}_{2}$ and only even numbers arise
as intersections of Cartier divisors on $\tilde{F}_{2}$ .

Thus we conclude that $D_{1}\cong F_{1},$ $D_{2}\cong F_{0}$ on $X$ and $q’(D_{1})\cong P^{2}$ on $W$ . Further-
more $L_{F_{0}}\sim E^{f}\lambda f’,$ $L_{F_{1}}\sim E+2f$. Note that $y\iota_{P^{2}}^{W}\equiv O_{P_{2}}(-1)$ since $yl_{p2}^{W}\cdot 9=\Re_{F_{1}}^{X}\cdot 9$

$=-1$ . Then Grauert’s contractibility criterion applies to give an analytic variety
and a proper holomorphic modification $q’’$ : $Warrow Z$ such that $q’’(P^{2})$ is a smooth
point on $Z$. Let $\rho$ : $Zarrow Y$ be the morphism such that $\varphi=\rho\circ q’’\circ q’$ . Let $\xi=q’(\gamma)$

on $Z$. Since
$\Re_{\gamma}^{w}\cong\Re_{F_{0}1f’}^{X}\oplus\Re_{F_{0}If’}^{X}\cong O_{P^{1}}(-1)\oplus O_{P1}(-1)$

we infer that $\Re_{\xi}^{Z}\cong O_{\xi}\oplus O_{\xi}$ . Therefore general results from deformation theory
imply that there exists a neighborhood of $\xi$ of the form $\xi\cross B$ where $B$ is an
open set in $C^{2}$ . From this it follows that there exists a neighborhood, $B$ , of
$y=\varphi(F)$ with $\rho^{-1}(B)\cong\xi\cross B$ . It thus follows that the germs of holomorphic
functions defined in some complex neighborhood of $F$ that vanish on $F$, define
$F$. Since $\varphi_{*}(O_{X})\cong O_{Y}$ this is enough to conclude that $F’$ is reduced, $i$ . $e$ . $F’=F$.
It also follows that the image of $F$ in $Y$ is a smooth point of $Y$. Q. E. D.

Note that there are at most two distinct irreducible components of a two
dimensional fibre $F’$ of $\varphi$ . To see this assume otherwise. Let $D_{1},$ $D_{2},$ $D_{3}$ be
three irreducible components of $F=F_{red}’$ . The case when they have non-empty
intersection is dealt with before Lemma (2.4). Therefore we can assume with-
out loss of generality that the intersection of $D_{1}\cap D_{2}\cap D_{3}$ is empty. Since $F$ is
connected it can be further assumed that $D_{1}\cap D_{2}$ is non-empty and $D_{2}\cap D_{3}$ is
non-empty. $D_{1}\cap D_{3}$ is empty. If not we could intersect with a smooth $S\in|L|$

to obtain a configuration of three $-2$ rational curves $C_{1},$ $C_{2},$ $C_{3}$ on $S$ with

$(C_{1}+C_{2}+C_{3})^{2}=C_{1}^{2}+C_{2}^{2}+C_{3}^{2}+2(C_{1}\cdot C_{2}-\vdash C_{2}\cdot C_{3}+C_{3}\cdot C_{1})\geqq-6+2(1+1+1)=0$

in contradiction to the Hodge index theorem. Note that by Lemma (2.6) either

$D_{1}\equiv F_{0}$ , $D_{2}\equiv F_{1}$ and $D_{3}\cong F_{0}$

or
$D_{1}\cong F_{1}$ , $D_{2}\equiv F_{0}$ and $D_{3}\cong F_{1}$ .

The first case is not possible. This follows by a further use of Lemma
(2.6) to see that $D_{3}$ and $D_{1}$ both meet $D_{2}$ in the unique section, $E$ , on $F_{1}$ with
$E\cdot E=-1$ . This contradicts the fact that $D_{1}\cap D_{2}\cap D_{3}$ is empty.

NOW consider the second case. Contract $D_{1}$ and $D_{3}$ along their rulings,
$\alpha:Xarrow\Omega$ . The map $\varphi$ factors as $\beta\circ\alpha$ . Note that the image, $\alpha(D_{2})$ , is isomorphic
to $F_{0}$ and the normal bundle in $\Omega$ of $F_{0}$ is isomorphic to $-E’+f’$ where $E’$
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and $f’$ denote the rulings of $\alpha(D_{2})$ . By the usual deformation argument, we
see that $E’$ deforms to fill out a neighborhood of $E’$ on $\Omega$ . Since $E’\cdot\alpha(D_{2})=$

$(-E’+f’)\cdot E’>0$ , we conclude that $\beta$ is the constant map. This contradiction
gives the desired conclusion.

By combining Lemmas (2.4), (2.5), (2.6) we see that, if $n=3$ , all possible
divisorial fibres $F’$ of $\varphi:Xarrow Y$ are either

a) irreducible with $F(=F_{red}’)\cong F_{r},$ $r\geqq 0$ , or $F\cong\tilde{F}_{2}$ , or
b) reducible and reduced, $i$ . $e$ . $F’=F$, and $F=F_{0}\cup F_{1}$ .

We can prove more.

(2.7) LEMMA. Let (X, $L$ ), $\varphi$ : $Xarrow Y$ be as in (2.3) with $n=3$ and let $F’$ be an
irreducible divisorial fibre of $\varphi$ . Let $F=F_{red}’$ . Then the case $F\cong\tilde{F}_{2}$ does not
occur and the only Possible cases are $F\equiv F_{0}$ with $L_{F}\sim E+2f$ , or $F\cong F.,$ $r>0$ ,

and $L_{F_{r}}\sim E+(r+1)f$.

PROOF. First, let us assume $F\equiv\tilde{F}_{2}$ . Note that $\Re_{F}^{X}\equiv O_{F}(a)$ for some integer
$a$ since Pic $(F)\equiv Z$ . If $a<0$ , the Grauert contractibility criterion applies to give
a contradiction as in the proof of (2.5). If $a\geqq 0$ , since $\tilde{F}_{2}$ is locally complete
intersection we use [B1] to conclude that deformations of $\tilde{F}_{g}$ exist and fill up
a neighborhood $U$ of $\tilde{F}_{2}$ in $X$ such that $\varphi(U)$ is contained in some open affine
neighborhood of $\varphi(\tilde{F}_{2})$ . The same argument as at the end of the proof of (2.5)

applies again to give the usual contradiction.
Thus we can assume that all divisorial fibres $F$ of $\varphi:Xarrow Y$ are isomorphic

to $F_{r}$ with $r\geqq 0$ .

(2.7.1.) CLAIM. With the notation as above, either $F\cong F_{0}$ with $L_{F}\sim E+2f$

or $r>0$ with $L_{F_{r}}\sim E+(r+1)f$ and $x_{F_{r}}^{X}\approx-E-f$ .

PROOF. We know that $L_{F_{\gamma}}\cdot f=1$ , so $L_{F_{\gamma}}\sim E+bf$ where $b\geqq r+1$ by ample-
ness. Write $b=r+1+x$ for some $x\geqq 0$ . Then

$x_{F_{r}}^{X}=K_{F_{\gamma}}+L_{F_{r}}\sim-E+(x-1)f$ .

Note that $|E+rf|$ is base point free and take a smooth curve $\Gamma\in|E+rf|$ .
Note also that $\Gamma$ is a rational curve. Therefore if $x\geqq 1$ , the exact sequence

$0arrow$ su$F\Gamma^{r}0O_{P1}(r)-\Re_{\Gamma}^{X}arrow yl_{F_{r}1\Gamma}^{X}\equiv O_{P1}(x-1)arrow 0$

says that $H^{0}(\Re_{\Gamma}^{X})$ spans $\Re_{\Gamma}^{X}$ and $h^{1}(\Re_{\Gamma}^{X})=0$ . If $x\geqq 2$ , Lemma (2.1) leads to a con-
tradiction. So let $x=1$ . Note that $L\cdot\Gamma=2$ . Indeed, from the proof of Lemma
(2.1) it follows that all smooth deformations of $\Gamma$ are general fibres of $\varphi$ since
$F$ is isolated. Then $L\cdot\Gamma=2$ since (X, $L$ ) a conic bundle. Then $L\cdot\Gamma=$

$(E+(r+2)f)\cdot(E+rf)=2$ leads to $r=0$ . Thus either we are done or $x=0$ . But
in this case $yl_{F}^{X}$ is negative and $F$ can be contracted to a point. This contradicts
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the upper semi-continuity of dimensions of fibres. This proves the claim and
hence Lemma (2.7). Q. E. D.

Conclusion of the proof of (2.3.1.). Recall that we are assuming $n=3$ . If
$F’$ is reducible, the $n=3$ statement follows from Lemma (2.6). So we can as-
sume that $F’$ is irreducible. First we show that the case $F(=F_{red}’)\cong F_{r}$ with
$r>0$ does not occur. After this it will follow by Lemma (2.7) that $F\cong F_{0}$ .

Assume that $F\cong F_{r}$ . Note that there exists a sequence of (smooth) fibres
$f_{i}’ s$ of $\varphi$ such that the points $\varphi(f_{i})$ are in the flat locus and the curve $C$ defined
as the limit of the $f_{i}’ s$ in Hilbert scheme of the $f_{i}’ s$ is contained in $F$. Let
$C\sim aE+bf$ with $a,$

$b$ both non-negative. Clearly

$L\cdot C=L_{F_{T}}\cdot C=(E+(r+1)f)\cdot(aE+bf)=2$

since (X, $L$ ) is a conic bundle. Then we find $a+b=2$ so that either $a=0,$ $b=2$ ,
$a=b=1$ or $a=2,$ $b=0$ .

Let $a=0,$ $b=2$ . We have $\Re_{F_{\mathcal{T}}}^{X}\approx-E-f$ and $X_{F_{r}}^{X}\cdot f=-1$ . Then by Nakano’s
contractibility criterion there exists a smooth analytic contraction $q:Xarrow X’$ such
that $q(F_{r})=P^{1}$ in $X’$ . Now $C\sim 2f$ is a fibre of $q_{F_{r}}$ : $F_{r}arrow P^{1}$ . Thus there exists
a neighborhood $U$ of $q(C)$ with no compact subvarieties but points. Therefore
$C$ cannot be obtained as limit of the $f_{i}’ s$ , otherwise we have the contradiction
that infinitely many of the $q(f_{t})s$ are one dimensional and fall in $U$ .

Let $a=2,$ $b=0$ . Take a point $x\in F_{r},$ $x\not\in E$ . One can choose a sequence
of smooth one dimensional fibres $f_{j}’ s$ of $\varphi$ in such a way that the curve $C’$ ,

defined as the limit of the $f_{j}’ s$ , contains $x$ . Note that $C\sim C’$ on $F_{r}$ . Indeed,
clearly $C$ and $C’$ are homologous on $X$ and by the above either $C’\sim 2E$ or
$C’\sim E+f$. Since $C\sim 2E$ we have to rule out the case $C’\sim E+f$. If $C’\sim E+f$ ,
then $E$ would be homologous to $f$ on $X$ and hence $\deg^{\Re_{F_{\gamma}1E}^{X}}=deg\Re_{F_{\gamma^{1}}’f}^{X}$ that
is $(-E-f)\cdot E=(-E-f)\cdot f$ on $F_{r}$ , whence the contradiction $r=0$ . Thus
$C’(\sim C\sim 2E)$ does not move on $F_{r}$ since $yl_{c^{r}}^{F}\approx O_{C}(-4r)$ has negative degree.
Therefore the fact that $x\not\in E,$ $x\in C’$ leads again to a contradiction.

Let $a=b=1$ . First, we need the following rather general argument to show
that $r=2$ . Since $\Re_{F_{r}1f}^{X}\approx O_{f}(-1)$ we aPPly once again the Nakano’s criterion to
get a proper analytic modification $X’$ of $X$ such that $F_{r}$ contracts along $f$ to
a smooth curve $\gamma$ on $X’$ . Let $q:Xarrow X’$ be the contraction. As usual there is
a morphism $\sigma$ : $X’arrow Y$ such that $\varphi=\sigma\circ q$ . Now

$\Re_{\gamma}^{X’}\cong\Re_{F_{\gamma}\mathfrak{l}E}^{X}\oplus y\iota_{F_{r}1\Gamma}^{X}\cong O_{P^{1}}(r-1)\oplus O_{p1}(-1)$

where $\Gamma\in|E+rf|$ . Then $h^{0}(\Re_{\gamma}^{X’})=r,$ $h^{1}(\Re_{\gamma}^{X’})=0$ . It thus follows that there
exists a $r$-dimensional family of deformations of 7, further, since $\dim\sigma(\gamma)=0$ ,

the usual rigidity argument says that deformations of $\gamma$ are contained in nearby
fibres $\Lambda$ of $\sigma$ and by the semi-continuity of the dimension of fibres we have
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$1=\dim\gamma\geqq\dim\Lambda\geqq 1$

that is $\dim\Lambda=1$ . Therefore one has in $X’$ a $r$-dimensional family $\tau_{r}$ of l-dimen-
sional fibres of $\sigma$ and hence it has to be $r=2$ . Now, let $U\subseteqq C^{2}$ be the neigh-
borhood parameterizing $\tau_{2}$ . Then by the above we get a holomorphic map
$\theta$ : $Uarrow Y$. Since the curves in $\tau_{2}$ go to different curves in $X’$ , we see that $\theta$

must be generically one to one. Since $Y$ is normal, the Zariski Main Theorem
applies to say that $\theta$ : $U_{arrow}^{\sim}V$ is a biholomorphism onto some neighborhood $V$ of
$\sigma(\gamma)$ in $Y$. Thus $\tau_{2}=\sigma^{-1}(V)$ and hence $\Re_{\gamma^{2}}^{\tau}\cong\Re_{\gamma}^{X’}\cong O_{P1}(-1)\oplus O_{P^{1}}(1)$ . On the other
hand, 7 is a fibre on which $\tau_{2}arrow U$ is of maximal rank, and therefore $X_{\gamma^{2}}^{\tau}\cong O_{\gamma}\oplus O_{\gamma}$,

which leads to a contradiction.
Thus we conclude that $F\cong F_{0}$ . To see that $F’$ is reduced, $i.e$ . $F’=F$, note

that since $\varphi_{*}(O_{X})\cong O_{Y}$ , it suffices to show that the germs of holomorphic func-
tions defined in some complex neighborhood of $F$ that vanish on $F$, define $F$.
TO see this note that from claim (2.7.1) it follows that the normal bundle of $F$

is linearly equivalent to $-E$ . From this it follows that $X$ is the blow up,
$\rho:Xarrow X’$ , of a smooth manifold $X’$ along a smooth rational curve, $C$ , with
$\rho^{-1}(C)=F$. Note that the normal bundle of $C$ is $O_{C}\oplus \mathcal{O}_{C}$ . From this it follows
that there is a complex neighborhood of $C$ of the form $\Delta\cross C$ where $\Delta$ is an
open set in $C^{2}$ . From this it follows that the germs of holomorphic functions
defined in some complex neighborhood of $F$ that vanish on $F$, define $F$. It also
follows that

e) the image of $F$ in $Y$ is a smooth point of $Y$.

TO conclude the proof of (2.3.1) it remains to show that all the fibres of
$\varphi:Xarrow Y$ are equal dimensional if $X$ has dimension $n\geqq 4$ . Let $D$ be a $(n-1)-$

dimensional fiber of $\varphi:Xarrow Y$. By slicing down with smooth elements of $|L|$

corresponding to smooth members of $|L^{\wedge}|$ we can assume $n=4$ . Let $A$ be a
smooth element in $|L|$ . Then $A$ meets transversely $D$ in a 2-dimensional fiber,
say $F$, of the restriction $\varphi_{A}$ : $Aarrow Y$. By the above we know that either $F\cong F_{0}$

or $F=F_{0}\cup F_{1}$ .
Let $F=F_{0}$ . Since $F$ is smooth $D$ is irreducible, reduced with isolated Goren-

stein singularities. From [S7], (0.22) we know that the number of isolated non-
rational singular points of $D$ is bounded by $h^{0}(K_{D}+L_{D})$ . Now, $K_{D}+L_{D}$ has no
sections since the restriction $(K_{D}+L_{D})_{F}\cong K_{F_{0}}$ has no sections. Hence $D$ has
only (isolated, Gorenstein) rational singularities. Then general results (see [S6],

\S 0) apply to say that $K_{D}+3L_{D}$ is spanned unless $D\cong P^{3}$ and $L_{D}\cong O_{p3}(1)$ . This
exception is impossible since $L_{D1F_{0}}\approx L_{F_{0}}\sim E+2f$ on $F_{0}$ . Thus we conclude that
$K_{D}+3L_{D}$ gives a morphism, say $\alpha$ . Since

$(K_{D}+3L_{D})_{F_{0}}\approx K_{F_{0}}\perp 2L_{F_{0}}\sim 2f$
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we see that $\alpha(F_{0})$ is 1-dimensional and hence $\alpha(F_{0})=P^{1}$ . Therefore $\alpha(D)=P^{1}$

in view of [S7], (0.3.2) and $\alpha:Darrow P^{1}$ is in fact a $P^{2}$ bundle since $K_{D}+3L_{D}=$

$\alpha^{*}O(1)$ (see (0.6)). Let $P^{2}$ be a fiber of $\alpha$ . Clearly, $yl_{D|P2}^{X}\approx \mathcal{O}_{P^{2}}(b)$ for some
integer $b$ and hence $\Re_{D|p2_{\cap}A}^{X}=O_{C}(b)$ where $P^{2}\cap A=C\cong P^{1}$ is a fiber of $F_{0}$ .
Furthermore since all the intersections are transverse we have

$(yl_{D1P2}^{X})_{C}\approx(\Re_{D\cap^{A}}^{A})_{C}\approx 7l_{F_{0}1C}^{A}$ .

Therefore we find $O_{C}(b)\approx O_{C}(-1)$ which gives $b=-1$ . Thus by the Nakano
contractibility criterion there exists an analytic variety and a proper holomorphic
modification $q:Xarrow X’$ such that $D$ smoothly contracts along the $P^{2}’ s$ and $q(D)$

$=P^{1}$ . Since $D$ is a fibre of $\varphi:Xarrow Y$, there exists a morphism $\sigma$ : $X’arrow Y$ such
that $\varphi=\sigma\circ q$ , whence the usual contradiction that $\sigma^{-1}(\varphi(D))$ is l-dimensional
while the general fibres of $\sigma$ are 2-dimensional.

Let $F=F_{0}\subset$) $F_{1}$ . Then $D=D_{0}\cup D_{1}$ . Exactly the same argument as above
shows that $D_{0},$ $D_{1}$ are irreducible, reduced with only isolated, rational singu-
larities. Furthermore $K_{D_{i}}+3L_{D_{i}}$ is spanned unless $(D_{i}, L_{D_{i}})\cong(P^{3}, O_{P^{3}}(1)),$ $i=0,1$ .
But this exception is impossible since neither $F_{0}$ nor $F_{1}$ can be a member of
$|L_{D_{t}}|=|O_{P3}(1)|$ . Therefore $K_{D_{i}}+3L_{D_{i}}$ is spanned for $i=0,1$ . Since $L_{F_{0}}\sim E+f$

we have
$(K_{D_{0}}+3L_{D_{0}})_{F_{0}}\approx K_{F_{0}}+2L_{F_{0}}\approx O_{F_{0}}$ .

It thus follows that $K_{D_{0}}+3L_{D_{0}}\approx O_{D_{0}}$ , i.e. $(D_{0}, L_{D_{0}})$ is a hyperquadric in $P^{4}$ .
Therefore $\Re_{D_{0}}^{X}\approx K_{D_{0}}-K_{X1D_{0}}\approx-L_{D_{0}}$ , so that $D_{0}$ can be contracted to a point.
Let $\alpha$ be the morphism given by $\Gamma(K_{D_{1}}+3L_{D_{1}})$ . Since

$(K_{D_{1}}+3L_{D_{1}})_{F_{1}}\approx K_{F_{1}}+2L_{F_{1}}\sim f$ ,

we see that $\alpha(F_{1})$ is 1-dimensional and hence $\alpha(F_{1})=P^{1}$ . Therefore the same
argument as above shows that $\alpha:D_{1}arrow P^{1}$ is a $P^{2}$ bundle. The divisors, $D_{0}$ and
$D_{1}$ , meet since $F_{0}$ and $F_{1}$ meet along a section. Hence there is at least one
fibre $P^{2}$ of $\alpha:D_{1}arrow P^{1}$ which meets $D_{0}$ in a curve and doesn’t belong to $D_{0}$ .
Tben, since $D_{0}$ contracts to a point, $D_{0}\cap P^{2}$ would be a curve on $P^{2}$ which
contracts to a point. This absurdity completes the proof of (2.3.1). Q.E.D.

Proof of (2.3.2). By taking general hyperplane sections we can assume
$n=\dim X=3$ . The fact that $Y$ is smooth at the points corresponding to the
divisorial fibres follows from Lemma (2.6) and the consequence $\bullet$) above in the
proof of (2.3.1). Let $S^{\wedge}$ be a general member of $|L^{\wedge}|$ and let $S\in|L|$ be the
corresponding smooth surface on $X$ . Let $f_{y}$ be a 1-dmensional fibre over a point
$y$ of $Y$. Then $S$ intersects $f_{y}$ in two, possibly coincident, points. If $S\cap f_{y}$

consists of two distinct points, $Y$ is smooth at $y$ . Note that if $f=f_{1}\cup f_{2}$ is the
disjoint union of two $P^{1}’ s$ meeting in a point, say $p$ , one easily sees that it
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cannot be $S\cap f_{y}=p$ . Otherwise, denoting by $f_{1}’$ the proper transform of $f_{1}$

under $r:X^{\wedge}arrow X$ we would have the contradiction $L^{\wedge}\cdot f_{1}’=0$ . If $S\cap f_{y}$ consists
of a point $x$ of multiplicity 2, let $V$ be a complex neighborhood of $\varphi(x)$ such
that $V-\varphi(x)$ is smooth and the restriction, $\varphi_{U}$ , is finite where $U=\varphi^{-1}(V)\cap S$ .
Then there exists an involution $i:Uarrow U$ leaving $x$ fixed with $V=U/\langle i\rangle$ where
$\langle i\rangle=\mu_{2}$ is the cyclic group of the $s$quare roots of 1. This shows that $V$ has
2-Gorenstein rational singularities at worst. General results on singularities for
which we refer to [D], in particular \S 5 and Appendix II, apply to give the
result. Q.E. D.

(2.8) EXAMPLE-REMARK. Let (X, $L$ ) and $\varphi:Xarrow Y$ be as in (2.3) with $\dim X$

$=3$ . The case of a divisorial fibre $F\cong F_{0}$ of $\varphi:Xarrow Y$ really occurs. Indeed, let
$X=P^{2}\cross P^{1}$ . Let $p$ : $X \frac{>}{}P^{2}$ be the projection and $\pi$ : $P^{2^{\wedge}}arrow P^{2}$ be the blowing
up of $P^{2}$ at a point $y$ . Look at the base change diagram

$X^{\wedge}-X=P^{2}\cross P^{1}$

$p\wedge\downarrow$ $\downarrow p$

$P^{2\wedge}-P^{2}$

Let $q:X^{\wedge}arrow P^{1}$ be the canonical projection over $P^{1}$ . Then $K_{x^{\wedge}}\approx P^{\wedge}*K_{p2}\wedge\otimes q^{*}K_{p1}$ .
Let $E=\pi^{-1}(y)$ and define $\mathcal{L}=p^{\wedge}*(\pi^{*}O_{p2}(4)-E)\otimes q^{*}O_{p1}(2)$ . Thus $\mathcal{L}$ is very ample
and, since $K_{P2^{\wedge}}\approx\pi^{*}K_{p_{2}}+E$ ,

$K_{x^{\wedge}}\otimes \mathcal{L}\approx p^{\wedge}*(\pi^{*}(K_{P2}\otimes \mathcal{O}_{P^{2}}(4))\approx p^{\wedge}*_{\pi^{*}O_{P2}(1)}$

which shows that $(X^{\wedge}, X)$ is a quadric bundle over $P^{2}$ , with the only divisorial
fibre $F_{0}=(\pi\circ p^{\wedge})^{-1}(y)$ over $y$ .

Let (X, $L$ ), $\varphi:Xarrow Y$ be as in (2.3) with $\dim X=3$ and assume that there
exists a unique divisorial fibre $F\cong F_{0}$ of $\varphi$ . Let $\sigma$ : $Y’arrow Y$ be the blow up of $Y$

at $\varphi(F)$ . Then there is a morphism $\varphi’$ : $Xarrow Y’$ such that $\varphi=\sigma\circ\varphi’$ and all the
fibres of $\varphi’$ are 1-dimensional since $\varphi^{\prime-1}(s)\equiv P^{1}$ for any $s\in\sigma^{-1}(\varphi(F))$ . Further-
more $K_{X}\otimes L\approx\varphi^{\prime*}\sigma^{*}\mathcal{L}$ where $\mathcal{L}$ is an ample line bundle on $Y$ such that $K_{X}\otimes L$

$\approx\varphi^{*}\mathcal{L}$ . Therefore $\varphi’$ expresses (X, $L$ ) as a quadric bundle over $Y’$ except for
the fact that $\sigma^{*}\mathcal{L}$ is merely nef.

\S 3. Some further results.

The first result we prove in this section is a general property of scrolls and
quadric bundles.

$-(3.1)$ PROPOSITION. Let $X^{\wedge}$ be a smooth connected $n$-fold with $n\geqq 3$ and $L^{\wedge}$

a very ample line bundle on $X^{\wedge}$ . Assume that $(X^{\wedge}, L^{\wedge})$ admits a reduction (X, $L$ ),
$r:Xarrow X$ .
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(3.1.1) If (X, $L$ ) is a scroll, then $(X^{\wedge}, L^{\wedge})\cong(X, L)$ ;

(3.1.2) Let (X, $L$ ) be a quadric bundle $\phi$ : $Xarrow Y$ over a normal variety Y. If
$n-\dim Y\geqq 2$ , then $(X^{\wedge}, L^{\wedge})\cong(X, L)$ . If $n-\dim Y=1$ , the Points blown uP
under $r$ lie either on divisorial fibers of $\phi$ or on smooth l-dimensional
fibres. Furthermore any smooth 1-dimensional fibre contains at most one
Point blown uP. In Particular if $n=3$ , there are no Points blown up under
$r$ on divisorial fibres.

$P$ROOF. It is enough to prove (3.1.2). Indeed a slight and easier modifica-
tion of the argument below gives the scroll statement.

Let $\phi:Xarrow Y$ be a quadric bundle and assume $n-\dim$ Y1112. Let $x\in X$ be a
point blown up under $r$ . We can choose a sequence $F_{i}$ of general fibres of $\phi$

such that the point $x$ is contained in the limit of the $F_{i}’ s$ . Let $F$ be the limit
of the $F_{i}’ s$ in the Hilbert scheme of the $F_{i}’ s$ . The fibres $F_{i}$ are smooth qua-
drics of dimension 12 and hence $F$ is a (possibly singular) quadric of dimension
1112. Therefore there exists a line $C$ on $F$ passing through $x$ and such that
$L\cdot C=1$ . Denote by $C’$ the proper transform of $C$ under $r$ . Then

$L^{\wedge}C’\leqq r^{*}L\cdot C’-r^{-1}(x)\cdot C’=L\cdot C-r^{-1}(x)\cdot C’=0$

contradicting the ampleness of $L^{\wedge}$ . It thus follows that $(X^{\wedge}, L^{\wedge})\cong(X, L)$ .
Assume now $n-\dim Y=1$ and let $x\in X$ be a point blown up under $r$ . The

same argument as above shows that $x$ lies either on a divisorial fibre or on a
smooth 1-dimensional fibre $f$, otherwise we contradict again the ampleness of
$L^{\wedge}$ . If $x\in f$, let $f’$ be the proper transform of $f$ under $r$ and compute

$L\cdot f’\leqq r^{*}L\cdot f’-r^{-1}(x)\cdot f’=L\cdot f-r^{-1}(x)\cdot f’=2-r^{-1}(x)\cdot f’\leqq 1$ .
This shows that at most one point blown up under $r$ can lie on $f$.

If $n=3$ we know from Theorem (2.3) that all divisorial fibres $F$ of $\phi$ are
isomorphic to either $F_{0}$ or $F_{0}\cup F_{1}$ . If a point $x$ blown up under $r$ lies on $F$,
by using Lemmas (2.6), (2.7), we can find a line $C$ on $F$ passing through $x$ and
such that $L\cdot C=1$ . Then the usual argument leads to a contradiction. Q.E.D.

Examples we have looked and the above structure theorem (2.3) suggest the
following conjecture.

(3.2) CONJECTURE. Let (X, $L$ ) be a quadric bundle of dimension $n$ over a normal
surface $Y$ and let $\phi:Xarrow Y$ be the quadric bundle projection. Then $K_{X}+(n-2)L$

$\approx\phi^{*}\mathcal{L}$ where $\mathcal{L}$ is of the form $\mathcal{L}\approx K_{Y}+H$ and both $\mathcal{L}$ and $H$ are ample line
bundles on $Y$.

TO make this conjecture plausible, first note that $Y$ is Gorenstein by Theorem
(2.3) and thus $H:=X\otimes K_{Y}^{-1}$ is a line bundle. Furthermore, assume $n=3$ and let
$C$ be a smooth curve on $Y$ with $\phi^{-1}(C)$ smooth. Then $H\cdot C>0$ . This follows
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by noting that the same argument as in [S1], \S 2 yields

$(K_{X}\otimes L\otimes\phi^{*}O_{Y})_{\phi^{-1}(C)}\approx K_{\phi^{-1}(C)}\otimes L_{\phi^{-1}(C)}\approx\phi^{*}(K_{c}\otimes M)$

for some ample line bundle $M$ on $C$ . Therefore we have

$\phi^{*}(K_{Y}\otimes H\otimes O_{Y}(C))_{\phi-1_{(C)}}\approx\phi^{*}(K_{C}\otimes M)$

and hence $(K_{Y}\otimes H\otimes O_{Y}(C))_{C}\approx K_{C}\otimes M$ which leads to $H_{C}\approx M$.
The above conjecture has the following nice consequence. Let $X^{\wedge}$ be a

smooth connected 3-fold and let $L$ be a very ample line bundle on $X^{\wedge}$ . Assume
that $K_{X}\wedge+(n-1)L^{\wedge}$ is nef and big and the reduction (X, $L$ ) of $(X^{\wedge}, L^{\wedge})$ exists.
Define $\mathscr{K}_{X}=K_{X}+L$ . Then assuming the conjecture true we can prove the
general result that $2\mathscr{K}_{X}$ is always spanned by its global sections except for 4
very well understood cases where $\mathscr{K}_{X}$ is not nef (see [S7]). Note that the proof
below shows that $2\mathscr{K}_{X}$ is always spanned if $\mathscr{K}_{X}$ is nef, unless (X, $L$ ) is a
quadric bundle.

(3.3) PROPOSITION. Let (X, $L$ ) be as above and let $\mathscr{K}_{X}=K_{X}+L$ . Assume that
$\mathscr{K}_{X}$ is $nef$ and that conjecture (3.2) is true. Then $2\mathscr{K}_{X}$ is spanned by its global
sections.

PROOF. The result is already known when (X, $L$ ) is of $\log$-general type,
$i.e$ . when $\mathscr{K}_{X}$ is nef and big. Indeed in this case it was previously proved in
[BBS], (0.8.1), (2.1), by lifting to $X$ Bombieri’s results on a smooth $S\in|L|$ ,

that $5\mathscr{K}_{X}$ is spanned as well as $3\mathscr{K}_{X}$ is spanned whenever $K_{S}\cdot K_{S}\geqq 3$ . Note that
$S$ is a minimal surface of general type since $K_{S}=\mathscr{K}_{X1S}$ . Then in the note
added in proof to [S8], the stronger result, that $2\mathscr{K}_{X}$ is spanned by its global
sections, is shown.

Thus we can assume that $\mathscr{K}_{X}$ is nef and not big. Then from [S7], we
know that either

i) $K_{X}=-L$ ,
ii) (X, $L$ ) is a Del Pezzo fibration over a smooth curve, or
iii) (X, $L$ ) is a quadric bundle over a surface.
In case i), $2\mathscr{K}_{X}\approx O_{X}$ is clearly spanned. So let us assume that $p$ : $Xarrow C$ is

a Del Pezzo fibration over a smooth curve $C$ . From [S8], (0.5) we know that
$\mathscr{K}_{X}\approx p^{*}\mathcal{L}$ for some ample line bundle $\mathcal{L}$ on $C$ of degree $\deg X=2q(S)-2+\chi(O_{S})$ .
Define $H=\mathcal{L}-K_{C}$ . Then $degH=x(\mathcal{O}_{S})\geqq 0$ since $K_{S}\approx p^{*}\mathcal{L}$ is nef. If $deg(K_{C}+2H)$

$\geqq 2$ , one has
$\deg 2\mathcal{L}=\deg(2K_{C}+2H)\geqq 2q(S)$

so that $2\mathcal{L}$ is spanned and hence $2\mathscr{K}_{X}$ is spanned too. Therefore we only have
to rule out the case when $\deg(K_{C}+2H)=2q(S)-2+2\chi(O_{S})\leqq 1$ . This implies
$q(S)+\chi(O_{S})\leqq 1$ . Then either $q(S)=x(\mathcal{O}_{S})=0,$ $q(S)=1,$ $\chi(\mathcal{O}_{S})=0$ , or $q(S)=0,$ $\chi(\mathcal{O}_{S})$
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$=1$ ; each of these cases contradicts the ampleness condition $\deg \mathcal{L}>0$ . This
shows that $2\mathscr{K}_{X}$ is spanned in case ii) (compare with [S8], (0.5.1)).

Thus it remains to consider the quadric bundle case iii). Let $\phi:Xarrow Y$ be
the quadric bundle projection. By the assumptions made we know that $\mathscr{K}_{X}=$

$\phi^{*}X$ where $\mathcal{L}\approx K_{Y}+H$ for some ample line bundIe $H$ on $Y$ . Let $\sigma$ : $\tilde{Y}arrow Y$ be
the minimal desingularization of $Y$. Now $\sigma^{*}K_{Y}\sim\sim:K_{\overline{Y}}$ since $Y$ has only rational
singularities by Theorem (2.3). Write $I=\sigma^{*}\mathcal{L},\tilde{H}=\sigma^{*}H$ and assume $(\tilde{H}+\overline{\mathcal{L}})^{2}$

15. Then a well known result of Reider states that $K-+\tilde{H}+\vee\overline{C}=2_{-}\overline{C}$ is spanned
by its global sections unless there exists an effective divisor $D$ such that

$(\tilde{H}+\overline{X})\cdot D-1\leqq D\cdot D<(\tilde{H}+\tilde{\mathcal{L}})\cdot D/2<1$

which leads to either $D\cdot(\tilde{H}+I)=0,$ $D\cdot D=1$ or $D\cdot(\tilde{H}+\overline{\mathcal{L}})=1,$ $D\cdot D=0$ . In the
former case, we have $\sigma_{*}D\cdot(H-\vdash \mathcal{L})=0$ so $a_{*}D$ is a point and hence $D$ is con-
tained in the set of the $-2$ curves, that is $D= \sum\lambda_{t}E_{i},$ $E_{i}^{2}=-2$ which contradicts
$D\cdot D-1$ . In the latter case, $\sigma_{*}D$ is a curve and $\sigma_{*}D\cdot(H+\mathcal{L})=1$ which contra-
dicts the ampleness of $H$ and $\mathcal{L}$ . Therefore 21 is spanned, and hence $2\mathscr{K}_{X}$ is
also, Provided that $(\tilde{H}+t)^{2}\geqq 5$ . Now comPute $(\tilde{H}+\overline{\mathcal{L}})^{2}=(H+\mathcal{L})^{2}=H^{2}+2H\cdot X+X^{2}$

Z4. Then either we are done or $(H+\mathcal{L})^{2}=4$ with $H^{2}=\mathcal{L}^{2}=H\cdot \mathcal{L}=1$ . But in
this case $H\sim \mathcal{L}$ by the Hodge index theorem so that $K_{Y}$ is numerically trivial
and $H^{2}$ is even by the genus formula, a contradiction. Q. E. D.

\S 4. $P^{1}$ bundles in $P^{5}$ .

Let $X$ be a smooth threefold and let $L$ be a very ample line bundle on $X$ .
Assume that (X, $L$ ) is a $P^{1}$ bundle over a smooth surface $S’,$ $i.e$ . there exists
a morphism $p:Xarrow S’$ such that any fibre $f$ is a linear $P^{1}$ and $L\cdot f=1$ . Note
that a scroll over a surface in the sense of (0.6) is a $P^{1}$ bundle in this sense.
Furthermore assume that $\Gamma(L)$ embeds $X$ in $P^{5}$ . Let $d=L^{3}$ be the degree of
(X, $L$ ). The complete classification of smooth threefolds in $P^{5}$ of degree $8

was previously worked out by Ionescu [I1], [I2], [I3] and Okonek [01], [02];

therefore we shall assume that $d\geqq 9$ . Indeed also the degree $d=9,10$ cases are
covered in the more recent paper [BSS]. Then in particular the adjoint bundle
$K_{X}+2L$ is spanned in view of (0.9). Let $g(L)$ be the sectional genus of (X, $L$ )

and let $\#=e(S)-e(S’)$ denote the number of positive dimensional fibres of the
restriction $p:Sarrow S’$ , where $S$ is a general smooth element of $|L|$ . Recall that
$\langle$ $S’,$ $L’)$ , where $L’=(p_{s*}L_{S})^{**}$ , is the reduction of $(S, L)$ . Also recall that $L’$

and $K_{S},$ $+L’$ are very ample (see (0.6.2)). In this section we show that only six
possible 3-tuples $(d, g(L),$ $\#)$ can occur for $d\geqq 9$ . We also refer to [BSS], \S 1.

First note that

(4.0) $\#>0$ .
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This was previously proved by Sommese in [S4], (1.3). Indeed the condition
$L\cdot f=1$ implies that $S$ is a meromorphic section of $X$ over $S’$ . The fact that
$S$ cannot be a holomorphic section follows from the general fact that there are
no connected manifolds $V$ of dimension $\geqq 3$ carrying an ample divisor $A$ with
a continuous map $\tau:Varrow A$ and such that $\tau_{A}$ : $Aarrow A$ is $a$ homotopy equivalence
(see also [FS], (0.11)). Furthermore, from [BSS], (1.9) we know that

(4.1) $\#=11(g(L)-1)-2(d^{2}-5d)$ .

Then (4.0), (4.1) lead to

(4.2) $g(L)>1+2(d^{2}-5d)/11$ .
Note also that, since $K_{S}+L_{S}$ is spanned, the same argument as in [S6], \S 3
applies to give

(4.3) $(K_{S}+L_{S})^{2}\geqq p_{g}(S)+g(L)-2$ ,

and, if $p_{g}(S)>0$ ,

(4.3) $(K_{S}+L_{S})^{2}\geqq 2(p_{g}(S)+g(L)-2)$ .
A strong numerical constraint is given by the followlng congruence.

(4.4) PROPOSITION. Let (X, $L$ ) be a $P^{1}$ bundle embedded by $\Gamma(L)$ in $P^{\overline{0}}$ as
above. Then the invariants $d,$ $g(L)$ satisfy the congruence

$7d^{2}-(g(L)-1)(d+21)-d\equiv 0(12)$ .

PROOF. Note that $(K_{X}+2L)^{3}=0$ since $(K_{X}+2L)\cdot f=0$ for any fibre $f$ of
$p:Xarrow S’$ . Then we have $d_{3}=-3d_{2}-3d_{1}-d$ where the invariants $d_{i}’ s$ are de-
fined as in (0.10) and hence the general congruence (0.10.1) for threefolds in $P^{5}$

becomes
$11d^{2}-d_{1}(d+11)-3d+4d_{2}\equiv 0(24)$ .

Therefore, since $d_{1}=2g(L)-2-d$ , we find

(4.4.1) $12d^{2}-(g(L)-1)(2d+22)+8d+4d_{2}\equiv 0(24)$ .

NOW Lemma (0.8) yields

(4.4.2) $4d_{2}=2d^{2}-10d-20(g(L)-1)+24\chi(O_{S})$ .

Thus, by combining (4.4.1), (4.4.2) we get the result. Q. E. D.

TO go on, we first rule out the case when (X, $L$ ) is a Castelnuovo variety.

(4.5) PROPOSITION. With the notations as above, let $KX,$ $L$ ) be a $P^{1}$ bundle
on a smooth surface $S’$ embedded by $\Gamma(L)$ in $P^{5}$ . Then the sectional genus $g(L)$

does not reach the maximum with resPect to the Castelnuovo’s bound (0.7).
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PROOF. Let $d’=L^{;2}$ . Since $(K_{S}+L_{S})=\pi^{*}(K_{S}, +L’)$ by (0.6.2) one has
$(K_{S’}+L’)^{2}=(K_{S}+L_{s})^{2}$ so that the inequality (4.3) holds on $S’$ too. Then by
using the genus formula we find

(4.5.1) $K_{S’}\cdot K_{S’}+3g(L)-2\geqq d’$

Let $d$ be even. Then $g(L)=(d-2)^{2}/4$ so that (4.1) yields $\#=3d^{2}/4-d$ and hence
$d’=3d^{2}/4>3g(L)$ . Therefore $K_{S},$ . $L’<0$ by th $e$ genus formula, so that $S’$ is a
ruled surface and $K_{s},$ $\cdot K_{S}$ , S9. Thus by (4.5.1), $d’\leqq 3g(L)+7$ which leads to th$e$

contradiction $3d^{2}\leqq 3(d-2)^{2}+28$ . Let $d$ be odd. Then $g(L)=(d^{2}-4d+3)/4$ so
(4.1) yields $\#=(3d^{2}-11)/4-d$ and hence $d’=(3d^{2}-11)/4>2g(L)-2$ . Therefore
$K_{S’}\cdot L’<0$ and the same argument as above gives a contradiction. Q. E. D.

Thus, from now on, we can assume that (see (0.7))

(4.6) $g(L)\leqq d(d-3)/6+1$

which combined with (4.1) leads to $d^{2}-27$d-V1$0, i.e. d$26.
Next step is to rule out the case when the surface $S$ has geometric genus

$p_{g}(S)=0$ .

(4.7) PROPOSITION. With the notation as above. Let (X, $L$ ) be a $P^{1}$ bundle
on a surface $S’$ embedded by $\Gamma(L)$ in $P^{5}$ . Then $p_{g}(S)>0$ for a smooth $S\in|L|$ .

PROOF. A systematic use of all the previous relations (4.0), (4.1), (4.2), (4.4),

(4.6), together with the Hodge inequality

$d’(K_{S’}\cdot K_{S},)=(d+\#)(K_{S}\cdot K_{S}+\#)\leqq(K_{S}\cdot L_{S}-\#)^{2}=(K_{S’}\cdot L’)^{2}$

and Lemma (0.8) gives us, for $d\leqq 26$ , the following list of numerical invariants.
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We have carried these computations out using a simple Pascal program.
NOW, we know that both $L’$ and $K_{S’}-+L’$ are very ample by (0.6.2). On

the other hand, since $(2K_{S^{t}}+L’)^{2}<0$ by the table, we conclude that $2K_{S}+L’$

is not spanned. Therefore by (0.5.1) we know that $(S’, K_{S’}+L’)$ is either
$(P^{2}, O_{P2}(1)),$ $(P^{2}, O_{P2}(2)),$ $(Q, O_{Q}(1))$ where $Q$ is a smooth quadric in $P^{3}$ , or a $P^{1}$

bundle over $a$ smooth curve. Thus the values of either $(K_{S’}+L’)^{2}$ or $K_{s}\cdot K_{S}$ ,

given in the table lead to numerical contradictions. Q. E. D.

From now on we can assume $p_{g}(S)>0$ . Look at the map $\pi$ : $S’arrow Y$ onto
the minimal model $Y$ of $S’$ . Then by the above, $\kappa(S’)=\kappa(Y)\geqq 0$ and hence
$K_{Y}\cdot K_{Y}\geqq 0$ . Denote by $\nu=K_{y}\cdot K_{y}-K_{S’}\cdot K_{s’}$ the number of points blown up under
$\pi$ and by $E$ the union of the exceptional curves on $S’$ . Now, since $K_{S’}=$

$\pi^{*}K_{Y}+E$ and $K_{S’}+L’$ is ample we find

$(K_{S’}+L’)\cdot K_{S’}=(K_{S’}+L’)\cdot E+(\pi^{*}K_{Y}+L’+E)\cdot\pi^{*}K_{Y}$

$\geqq\nu+K_{Y}\cdot K_{Y}+\pi^{*}K_{Y}\cdot L’=2K_{Y}\cdot K_{Y}-K_{S’}\cdot K_{S’}+\pi^{*}K_{Y}\cdot L’$

Hence from the Hodge index relation $d’K_{Y}\cdot K_{Y}\leqq(\pi^{*}K_{Y}\cdot L’)^{2}$ we infer that

(4.8) 2$K_{S’}\cdot K_{s’}+K_{S’}\cdot L’\geqq 2K_{Y}\cdot K_{Y}+(d’K_{Y}\cdot K_{Y})^{1/2}$

The above relations become stronger and more useful when $K_{S’}\cdot K_{S’}<0$ and
$K_{Y}\cdot K_{Y}>0$ .

If $K_{Y}\cdot K_{Y}=0$ , the following special arguments give us further numerical
conditions.

(4.9) LEMMA. With the notation as above, let (X, $L$ ) be a $P^{1}$ bundle on a
surface $S’$ embedded by $\Gamma(L)$ in $P^{6}$ . Let $\pi:S’arrow Y$ be the map onto the mmimal
model $Y$ of $S’$ . Assume that $Y$ is an elliptic surface of Kodaira dimension 1 ad-
mitting a surjective morphism $\alpha:Yarrow P^{1}$ whose general fibre is an elliptic curve.
Let $f’=\pi^{-1}(f)$ be the pullback to $S’$ of a general fibre $f$ of $\alpha$ . If $f$ contains
no points blown up under $\pi$ then $L’\cdot f’\geqq 5$ .

PROOF. We can choose $a$ smooth $S\in|L|$ such that the restriction $p_{s}$ : $Sarrow S’$

of $p:Xarrow S’$ has $a$ positive dimensional fibre over $a$ point $x\in f’$ . Let $B$ be the
proper transform of $f’$ under Ps: $Sarrow S’$ . Since $B\cong f$ is an elliptic curve and $L$

is very ample we have $L\cdot B\geqq 3$ and hence $L’\cdot f’=1+L_{S}\cdot B\geqq 4$ .
NOW, let $A=p^{-1}(\pi^{-1}(f))$ . Then $A$ is a scroll over $f’$ . Note that $\chi(O_{A})=0$

since $q(A)=1$ and also $L\cdot L\cdot A=L_{A}\cdot L_{A}=L’\cdot f’$ . Assume $L’\cdot f’=4$ and look at
the exact sequence

$0arrow O_{A}arrow L_{A}arrow L_{C}arrow 0$

for a smooth $C\in|L|$ . Since $1=(L\cdot f)_{X}=(L_{A}\cdot f_{A})=(C\cdot f)_{A}$ we see that $C$ is $a$

section of $p:Aarrow f’$ . Therefore $C$ is an elliptic curve of degree $L\cdot C=L’\cdot f’=4$ .
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It thus follows that $h^{0}(L_{C})=4$ and hence $h^{0}(L_{A})\leqq 5$ , Clearly $h^{0}(L_{A})>4$ other-
wise $A$ would be embedded by $\Gamma(L)$ in $P^{3}$ , which contradicts $q(A)=1$ . Then
$h^{0}(L_{A})=5$ and Lemma (0.8) applies to give the numerical contradiction
$4-10(g(L_{A})-1)=0$ . Therefore $L’\cdot f’$ 1115 and we are done. Q. E. D.

(4.10) PROPOSITION. Let (X, $L$ ) be a $P^{1}$ bundle on a surface $S’$ embedded by
$\Gamma(L)$ in $P^{5}$ as in (4.9). Assume that $p_{g}(S)>0$ for a smooth $S\in|L|$ and let $Y$

be the minimal model of $S’$ . Furthermore, assume $K_{Y}\cdot K_{Y}=0$ . Then either $Z(0_{S})$

S2 or $K_{S’}\cdot L’+2K_{S’}\cdot K_{S’}\geqq 5(\chi(O_{S})-2)$ .

PROOF. Recall that $q(S)=q(Y)=0$ and $\kappa(Y)\geqq 0$ since $p_{g}(S)=p_{g}(Y)>0$ . The
assumption $K_{Y}\cdot K_{Y}=0$ implies that either $Y$ is $a$ $K3$ surface and $\chi(O_{S})=x(O_{Y})\leqq 2$

or $Y$ is an elliptic surface with $\kappa(Y)=1$ .
Let $\chi(O_{S})>2$ . Then there exists a surjective morphism $\alpha:Yarrow B$ onto a

smooth curve $B$ whose general fibre $f$ is an elliptic curve. Furthermore, for
some integer $N>0$ ,

$NK_{Y}=\Sigma m_{i}f_{b_{i}}$ , $m_{i}\in N,$ $b_{i}\in B$

and $\chi(O_{Y})=2\chi(O_{B})$ (see e.g. [Bv], IX, [BPV], V, (12.3)). It thus follows that
$B\cong P^{1}$ and $NK_{Y}\approx\alpha^{*}O_{p1}(m)$ where $m= \sum m_{i}$ . Now from $h^{0}(O_{p_{1}}(m))=h^{0}(NK_{Y})\geqq$

$N(h^{0}(K_{Y})-1)+1$ , we infer that $m\geqq N(\chi(\mathcal{O}_{S})-2)$ . For a general fiber $f$ of
$\alpha:Yarrow P^{1}$ , let $f’$ be the pull back under $\pi:S’arrow Y$ of $f$ . Then $L’\cdot f’\geqq 5$ by
lemma (4.9). We compute

(4.10.1) $L’\cdot\pi^{*}K_{Y}=(L’\cdot\pi^{*}NK_{Y})/N=(L’\cdot\pi^{*}\alpha^{*}O_{p1}(m))/N$

$=(L’\cdot mf’)/N\geqq 5m/N\geqq 5(\chi(O_{S})-2)$ .

Since $(S’, L’)$ is the reduction of $(S, L_{S})$ , for any irreducible $-1$ curve $C\subset E$

one has $L’\cdot C$ lli12 so that $L’\cdot E\geqq 2\nu=-K_{S’}\cdot K_{S’}$ . Therefore, since $L’\cdot K_{S’}=$

$\pi^{*}K_{Y}\cdot L’+L’\cdot E$ , (4.10.1) gives the result. Q. E. D.

For simplicity, let us first consider low values of $d$ . $A$ revised version of
the program used to prove Proposition (4.7), running now for $p_{g}(S)>0$ , gives
us the following list of possible invariants for $9\leqq d\leqq 12$ . Here $d’=L’\cdot L’,$ $d_{1}’=$

$K_{S’}\cdot L’,$ $d_{2}’=K_{S’}\cdot K_{S’}$ and the constant $c$ is defined as the biggest value of
$K_{Y}\cdot K_{Y}$ which still satisfies the inequality (4.8).
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The first two cases with $d=12$ do not occur. Indeed, if $d_{2}’=-6$ , use (4.8).

If $d_{z’}=c=0$ one has $Y\cong S’,$ $K_{Y}\cdot K_{Y}=0$ . Then, $\sin$ce $\chi(O_{S})>2$ , Propositon (4.10)

applies to give a contradiction. Note also that the degree $d=9$ case really
occurs (see [BSS]). To conclude, by taking also into account the numerical
conditions (4.8) and (4.10) it is a purely mechanical procedure to get the follow-
ing final list of all possible cases for scrolls over surfaces in $P^{5}$ of degree $\geqq 9$ .

We have carried these computations out using a Pascal program, which we
don’t include here but which is available on $re$quest.

It should be noted that the inequality (4.8) reduces from 14 to 8 the number
of possible cases with degree $d=15$ . In particular it rules out three cases with
either $g(L)=30$ or 31, which we had previously shown to be the only possible
cases with $d=15$ and $g(L)\neq 29$ .
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