On the mod p cohomology of the spaces of free loops on the Grassman and Stiefel manifolds

By Katsuhiko KURIBAYASHI

(Received June 7, 1989) (Revised June 18, 1990)

§ 0. Introduction.

Let ΩX be a space of loops on X and ΛX a space of free loops on X. We will call a fibration $\Omega X \hookrightarrow \Lambda X \xrightarrow{\pi} X$ a free loop fibration on X where $\pi(w) = w(1)$ for $w \in \Lambda X$. Let K_p be a field of characteristic p. When is ΩX totally non-homologous to zero in ΛX with respect to a field K_p ?

We call a commutative algebra $A(y_1, \dots, y_l) \otimes K_p[x_1, \dots, x_n]/(\rho_1, \dots, \rho_m)$ over a field K_p is GCI algebra if ρ_1, \dots, ρ_m is a regular sequence (see [4; p. 95]) or m=0 where deg y_i is odd and deg x_i is even if $p \neq 2$. (see [5; Definition, p. 893].) In [5], L. Smith has proved the following.

THEOREM 1 ([5; Theorem 4.1]). Let X be a simply connected space such that $H^*(X; \mathbf{K}_0)$ is a GCI algebra. Then ΩX is totally non-homologous to zero in ΛX with respect to \mathbf{K}_0 if and only if $H^*(X; \mathbf{K}_0)$ is a free commutative algebra, in which case $H^*(\Lambda X; \mathbf{K}_0) \cong H^*(X; \mathbf{K}_0) \otimes H^*(\Omega X; \mathbf{K}_0)$ as an algebra.

In this paper, using methods which L. Smith has given in [5], we will examine whether ΩX is totally non-homologous to zero in ΛX with respect to K_p for cases where $X=U(m+n)/U(m)\times U(n)$, $Sp(m+n)/Sp(m)\times Sp(n)$, Sp(n)/U(n), SO(m+n)/SO(n), SU(m+n)/SU(n), Sp(m+n)/Sp(n), CP(2) and $p\geq 2$.

In order to obtain our results, we will consider the Eilenberg-Moore spectral sequence of a fibre square

$$\begin{array}{ccc}
\Lambda X & \longrightarrow X \\
 & \downarrow \Delta & \text{(see [5])}, \\
 & X & \longrightarrow X \times X
\end{array}$$

where Δ is a diagonal map. Throughout this paper, $\mathcal{F}(X)$ means the above fibre square.

For a space X, let T(X) denote a set of prime numbers p such that QX is totally non-homologous to zero in AX with respect to K_p .

Our results are stated as follows.

THEOREM 2.

- (1) $p \in T(\mathbb{C}P(n))$ iff $n+1 \equiv 0 \mod p$.
- (2) $p \in T(\mathbf{H}P(n))$ iff $n+1 \equiv 0 \mod p$.
- (3) $p \in T(\mathfrak{C}P(2))$ iff p = 3.
- (4) If $m, n \ge 2$, then $p \notin T(U(m+n)/U(m) \times U(n))$ for any prime p.
- (5) If $m, n \ge 2$, then $p \notin T(Sp(m+n)/Sp(m) \times Sp(n))$ for any prime p.
- (6) $p \in T(Sp(n)/U(n))$ iff p=2.
- (7) If n is even, then $p \notin T(SO(m+n)/SO(n))$ for any odd prime p.
- (8) If n is odd, then $p \in T(SO(m+n)/SO(n))$ for any odd prime p.
- (9) $p \in T(SU(m+n)/SU(n))$ for any prime p.
- (10) $p \in T(Sp(m+n)/Sp(n))$ for any prime p.

The problem whether the prime 2 is contained to T(SU(m+n)/SU(n)) for any m and n is not expected to be easy. We will consider the problem for some m and n. Before we state the results, we recall the mod 2 cohomology of the real Stiefel manifold and the action of the squaring operations on it.

(0.1)
$$H^*(SO(m+n)/SO(n); \mathbb{Z}/2) \cong \Delta(x_n, x_{n+1}, \dots, x_{m+n-1})$$
$$\cong \bigotimes_{j \in J \cup J'} \mathbb{Z}/2[x_j]/(x_j^{2^{\tau_j}}),$$

where $J = \{j = 2t + 1 \mid n \le j < m + n\}$, $J' = \{j = 2t \mid n \le j < \min(2n, m + n)\}$, $j \cdot 2^{r_{j-1}} < m + n \le j \cdot 2^{r_j}$ and $Sq^j x_i = \binom{i}{j} x_{i+j}$; $x_{i+j} = 0$ if $i+j \ge m+n$.

L. Smith has proved the following collapse theorem, making use of the k-stage Postnikov system given by D. Kraines [3].

THEOREM 3 ([6; Theorem]). Let X be a simply connected space, and suppose that Sq^1 vanishes on $H^*(X; \mathbb{Z}/2)$ and $H^*(X; \mathbb{Z}/2) \cong \mathbb{Z}/2[x_1, \dots, x_t]/(x_t^{2^T 1}, \dots, x_t^{2^T t})$. Then the mod 2 Eilenberg-Moore spectral sequence of the fibre square $\mathfrak{F}(X)$ collapses at the E_2 -term.

The fact (0.1) implies that Theorem 3 can not be applied in the case where X=SO(m+n)/SO(n). Examining the argument in the proof of Theorem 3, we see that the theorem holds if the action of Sq^1 is trivial on certain important degrees of the cohomology groups of X. Taking notice of this fact, we have the following.

Theorem 4. Suppose that the vector space
$$V:=\bigoplus_{\substack{s=j\cdot 2^r \ j+k-2\,k+1+2\\j\in J\cup J',\,k\geq 1}} (\operatorname{Im} Sq^1)^s$$
 is

zero or, for any non-zero element $\rho \in V$, there exists an integer j such that $(\partial \pi^* \rho / \partial x_j) \neq 0$ in $H^*(\operatorname{Spin}(m+n); \mathbb{Z}/2)$. Then $2 \in T(SO(m+n)/SO(n))$, where

 $\pi: \mathrm{Spin}(m+n) \xrightarrow{\tilde{\pi}} SO(m+n) \xrightarrow{\tilde{p}} SO(m+n)/SO(n); \tilde{\pi} \text{ is the universal covering and } \tilde{p}$ is the natural projection.

In consequence, we get:

COROLLARY 5. (1) If $m \le 4$, then $2 \in T(SO(m+n)/SO(n))$. (2) If $n \ge m$ and

$$\{s = j \cdot 2^{k+1} - 2^{k+1} + 2 \mid j \in J \cup J', k \ge 1\} \cap \{j_1 + \dots + j_t \mid j_1 < \dots < j_t, j_t \in J'\} = \emptyset,$$

then $2 \in T(SO(m+n)/SO(n))$. In particular, when $1 \le m \le 8$ and $n \ge 43$, $2 \in T(SO(m+n)/SO(n))$.

The author wishes to thank Akira Kono for helpful conversation.

§ 1. Preliminaries.

In order to study the cohomology of the space of free loops on a simply connected space X, we use the Eilenberg-Moore spectral sequence of the fibre square $\mathcal{F}(X)$. When we use this method, we must computes $\mathrm{Tor}_{A\otimes A}^{**}(A,A)$, where $A=H^*(X;\mathbf{K}_p)$. In [5], L. Smith has given a differential bigraded algebra to compute $\mathrm{Tor}_{A\otimes A}^{**}(A,A)$ when the field is of characteristic zero. In general, when the field is of characteristic $p\geq 0$, considering the methods of the proofs of [5; Lemma 3.2], [5; Lemma 3.3], [5; Lemma 3.4] and [5; Proposition 3.5], we can obtain the following:

PROPOSITION 1.1 ([5; Proposition 3.5]). Let Λ be a GCI algebra $\Lambda(y_1, \dots, y_l) \otimes K_p[x_1, \dots, x_n]/(\rho_1, \dots, \rho_m)$ over K_p , where each ρ_i is decomposable, deg y_i is odd and deg x_j is even if $p \neq 2$. Then there exists the following proper projective resolution $\mathcal{F} \to \Lambda \to 0$ of Λ as a left $\Lambda \otimes \Lambda$ -module:

$$\mathcal{F} := \Lambda \otimes \Lambda \otimes \Gamma[\nu_1, \cdots, \nu_l] \otimes \Lambda(u_1, \cdots, u_n) \otimes \Gamma[w_1, \cdots, w_m],$$

 $d(\Lambda \otimes \Lambda) = 0, \quad d(\nu_i) = y_i \otimes 1 - 1 \otimes y_i, \quad d(u_j) = x_j \otimes 1 - 1 \otimes x_j, \quad d(\gamma_r(w_i)) = (\sum_{j=1}^n \zeta_{ij} u_j) \otimes \gamma_{r-1}(w_i) \quad \text{and} \quad \varphi \quad \text{is the multiplication of } \Lambda, \quad \text{where bideg } \lambda = (0, \deg \lambda); \quad \lambda \in \Lambda \otimes \Lambda, \\ \text{bideg } \nu_i = (-1, \deg y_i), \quad \text{bideg } u_j = (-1, \deg x_j), \quad \text{bideg } w_i = (-2, \deg \rho_i) \quad \text{and} \quad \zeta_{ij} \in \mathbf{K}_p[x_1, \cdots, x_n] \otimes \mathbf{K}_p[x_1, \cdots, x_n$

$$\mathcal{E} := \Lambda \otimes \Gamma[\nu_1, \cdots, \nu_l] \otimes \Lambda(u_1, \cdots, u_n) \otimes \Gamma[w_1, \cdots, w_m],$$

where $d(\lambda)=d(\nu_i)=d(\nu_i)=0$; $\lambda \in \Lambda$, $i=1,\dots,l$, $j=1,\dots,n$, and

$$d(w_i) = \sum_{j=1}^n \frac{\partial \rho_i}{\partial x_j} u_j$$
 for any $i=1, \dots, m$,

computes $\operatorname{Tor}_{\Lambda \otimes \Lambda}^{**}(\Lambda, \Lambda)$.

Let Λ be GCI algebra in Proposition 1.1. We can compute $\operatorname{Tor}_{\Lambda}^{**}(K_p, K_p)$ as follows by making use of $[7; \S 3]$. Theorem 2] in the spirit of $[7; \S 2]$ and [5; Lemma 3.3].

PROPOSITION 1.2 ([5; Lemma 3.1]). There exists the following Koszul resolution $\mathcal{K} \xrightarrow{\varepsilon} \mathbf{K}_{p} \to 0$ of \mathbf{K}_{p} as a left Λ -module:

$$\mathcal{K} := \Lambda \otimes \Gamma[s^{-1}y_1, \cdots, s^{-1}y_t] \otimes \Lambda(s^{-1}x_1, \cdots, s^{-1}x_n) \otimes \Gamma[\tau \rho_1, \cdots, \tau \rho_m],$$

$$d(s^{-1}y_i) = y_i, \quad d(s^{-1}x_j) = x_j, \quad d(\gamma_r(\tau \rho_i)) = \xi_i \otimes \gamma_{r-1}(\tau \rho_i), \quad \text{where bideg } s^{-1}y_i = (-1, \deg y_i), \text{ bideg } s^{-1}x_j = (-1, \deg x_j), \text{ bideg } \tau \rho_i = (-2, \deg \rho_i) \text{ and } \xi_i \in \Lambda \otimes \Lambda(s^{-1}x_1, \cdots, s^{-1}x_n) \text{ satisfies that } d(\xi_i) = \rho_i. \quad \text{Hence}$$

$$\operatorname{Tor}_{A}^{**}(\boldsymbol{K}_{p},\,\boldsymbol{K}_{p})\cong\varGamma[s^{-1}y_{1},\,\cdots,\,s^{-1}y_{l}]\otimes\varLambda(s^{-1}x_{1},\,\cdots,\,s^{-1}x_{n})\otimes\varGamma[\tau\rho_{1},\,\cdots,\,\tau\rho_{m}]$$
 as an algebra.

For the rest of this paper, let X be a simply connected space whose cohomology with coefficients in the field K_p is isomorphic to a GCI algebra over $K_p: H^*(X; K_p) \cong \Lambda(y_1, \cdots, y_l) \otimes K_p[x_1, \cdots, x_n]/(\rho_1, \cdots, \rho_m)$, where $\deg x_j$ is even and $\deg y_i$ is odd if $p \neq 2$, and ρ_i is decomposable. Let $\{E_r, d_r\}$, $\{\hat{E}_r, \hat{d}_r\}$ and $\{\bar{E}_r, \bar{d}_r\}$ (or $\{E_r(X), d_r(X)\}$, $\{\hat{E}_r(X), \hat{d}_r(X)\}$ and $\{\bar{E}_r(X), \bar{d}_r(X)\}$) be the Eilenberg-Moore spectral sequences of the fibre square $\mathcal{F}(X)$, of the path-loop fibration $\mathcal{Q}X \hookrightarrow \mathcal{P}X \to X$, and the Leray-Serre spectral sequence of the free loop fibration $\mathcal{Q}X \hookrightarrow \mathcal{A}X \to X$ respectively.

We need the following lemma in order to consider relations between the above three spectral sequences.

LEMMA 1.3. There exists a morphism of spectral sequences

$$\{f_r\}: \{E_r, d_r\} \longrightarrow \{\hat{E}_r, \hat{d}_r\}$$

such that

(1.1)
$$f_2(\lambda) = 0$$
 if $\lambda \in \Lambda$ and $\deg \lambda > 0$, $f_2(\lambda) = \lambda$ if $\lambda \in \Lambda$ and $\deg \lambda = 0$, $f_2(\nu_i) = s^{-1}\nu_i$ $(1 \le i \le l)$, $f_2(u_j) = s^{-1}x_j$ $(1 \le j \le n)$ and $f_2(\gamma_r(w_i)) = \gamma_r(\tau \rho_i)$ $(1 \le i \le m)$ if $\gamma_r(w_i)$ is defined in $\operatorname{Tor}_{A \otimes A}^{**}(\Lambda, \Lambda)$, where $\Lambda = H^*(X; \mathbf{K}_p)$. (For notations, see Proposition 1.1 and 1.2.)

PROOF. The morphism of fibre squares

where i(x)=(x, *), yields a morphism of spectral sequences. It remains to examine the stated behavior on E_2^{**} . It suffices to show that there exists a morphism of resolutions

(1.2)
$$\Psi = \{ \psi_{-n} \}_{n \ge 0} : \downarrow \qquad \qquad \downarrow t$$

$$\mathcal{K} \xrightarrow{\mu} \mathbf{K}_{p} \longrightarrow 0$$

which induces the trivial map t such that ψ_{-n} is an i^* -morphism for any n, $\psi_{-1}(\nu_i)=s^{-1}y_i$, $\psi_{-1}(u_j)=s^{-1}x_j$ and $\psi_{-r}(\gamma_r(w_i))=\gamma_r(\tau\rho_i)$. In fact the following diagram

$$E_{2}^{**} \cong \operatorname{Tor}_{\Lambda \otimes \Lambda}^{**}(\Lambda, \Lambda) \cong H(\Lambda \otimes_{\Lambda \otimes \Lambda} \mathcal{F}')$$

$$f_{2} \downarrow \qquad \qquad \downarrow \operatorname{Tor}_{i*} \qquad \qquad \downarrow H(t \otimes_{i*} \Psi)$$

$$\hat{E}_{2} \cong \operatorname{Tor}_{\Lambda}^{**}(K_{p}, K_{p}) \cong H(K_{p} \otimes_{\Lambda} \mathcal{K}')$$

is commutative.

First let us choose the elements ζ_{ij} and ξ_i for any i. In the case where ρ_i is a monomial, suppose that $\rho_i = \lambda x_1^{m_1} \cdots x_n^{m_n}$. Let J mean a set $\{j_1, \dots, j_t | 1 \le j_1 < \dots < j_t \le n, m_{j_i} \ge 1 \text{ for any } i\}$. Put $\zeta_{ij} = 0$ if $j \notin J$,

$$\zeta_{ij_1} = \lambda x_{j_1}^{m_{j_1-1}} x_{j_2}^{m_{j_2}} \cdots x_{j_t}^{m_{j_t}} \otimes 1 + \lambda x_{j_1}^{m_{j_1-2}} x_{j_2}^{m_{j_2}} \cdots x_{j_t}^{m_{j_t}} \otimes x_{j_1} \\ + \cdots + \lambda x_{j_2}^{m_{j_2}} \cdots x_{j_t}^{m_{j_t}} \otimes x_{j_1}^{m_{j_1-1}},$$

$$\zeta_{ij_2} = \lambda x_{j_2}^{m_{j_2-1}} \cdots x_{j_t}^{m_{j_t}} \otimes x_{j_1}^{m_{j_1}} + \cdots + \lambda x_{j_3}^{m_{j_3}} \cdots x_{j_t}^{m_{j_t}} \otimes x_{j_1}^{m_{j_1}} x_{j_2}^{m_{j_2-1}},$$
 and
$$\zeta_{ij_t} = \lambda x_{j_t}^{m_{j_t-1}} \otimes x_{j_1}^{m_{j_1}} \cdots x_{j_{t-1}}^{m_{j_t-1}} + \cdots + \lambda 1 \otimes x_{j_1}^{m_{j_1}} \cdots x_{j_t}^{m_{j_t-1}}$$

(see [5; Lemma 3.4]). Then it follows that $\partial \rho_i/\partial x_j = \mu(\zeta_{ij})$ for any i and j. Put $\xi_i = \lambda x_{j_1}^{m_{j_1-1}} x_{j_2}^{m_{j_2}} \cdots x_{j_t}^{m_{j_t}} \otimes s^{-1} x_{j_1}$. Define a morphism of resolution Ψ as follows: $\psi_{-1}(\nu_i) = s^{-1} y_i$, $\psi_{-1}(u_j) = s^{-1} x_j$ and $\psi_{-r}(\gamma_r(w_i)) = \gamma_r(\tau \rho_i)$. We can show that $\psi_{-r+1} d(\gamma_r(w_i)) = d\psi_{-r}(\gamma_r(\omega_i))$.

In the general case where $\rho_i = \sum \lambda_k x_1^{m_{k_1}} \cdots x_n^{m_{k_n}}$, we can choose elements $(\zeta_{ij})_k$ and $(\xi_i)_k$ as the above for any k. Put $\zeta_{ij} = \sum (\zeta_{ij})_k$ and $\xi_i = \sum (\xi_i)_k$, then $\psi_{-r+1}d(\gamma_r(w_i)) = d\psi_{-r}(\gamma_r(w_i))$. We obtain the required morphism of resolutions.

q.e.d.

Applying the same argument as above, we have:

LEMMA 1.4. Suppose $H^*(X; \mathbf{K}_p) \cong \Lambda(y) \otimes \mathbf{K}_p[x]/(x^{p^s}) \otimes (GCI\text{-}alg)$, $H^*(Y; \mathbf{K}_p) \cong \Lambda(y') \otimes \mathbf{K}_p[x']/(x'^{p^s}) \otimes (GCI\text{-}alg)$ and there exists a map $f: Y \to X$ such that $f^*(x) = x'$ ($f^*(y) = y'$). Then the map f induces a morphism of spectral sequences $\{g_r\}: \{E_r(X), d_r(X)\} \to \{E_r(Y), d_r(Y)\}$ satisfying that $g_2(u) = u'$, $g_2(\gamma_r(w)) = \gamma_r(w')$ ($g_2(\gamma_r(v)) = \gamma_r(v')$), where u and w are elements associated with x, v is an

element associated with y. u', w' and ν' are elements associated with x' and y' respectively.

Next we examine the relation between the torsion $\operatorname{Tor}_{\Lambda \otimes A}^{**}(\Lambda, \Lambda)$ obtained from Proposition 1.1 and the torsion $\operatorname{Tor}_{\Lambda \otimes A}^{**}(\Lambda, \Lambda)$ obtained from the bar resolution of Λ as a $\Lambda \otimes \Lambda$ -module. Let $\operatorname{Tor}_{\Lambda \otimes A}^{**}(\Lambda, \Lambda)_B$ denote the latter.

LEMMA 1.5. Suppose Λ is a GCI algebra $\Lambda(y_1, \dots, y_l) \otimes \mathbf{K}_p[x_1, \dots, x_n]/(\rho_1, \dots, \rho_m)$, where each ρ_i is decomposable and l=0 if p=2. Then there exists an isomorphism of algebras

$$\phi: \operatorname{Tor}_{A\otimes A}^{**}(A, A)_{B} \longrightarrow \operatorname{Tor}_{A\otimes A}^{**}(A, A)$$

such that $\psi(1[y_i \otimes 1 - 1 \otimes y_i]1) = \nu_i$ and $\psi(1[x_j \otimes 1 - 1 \otimes x_j]1) = u_j$, moreover $\psi(1[z \otimes 1 - 1 \otimes z]1) = \sum_{j=1}^n (\partial z/\partial x_j)u_j$ if p=2.

PROOF. Let us define a morphism of resolutions

$$B^{\cdot}(\Lambda \otimes \Lambda, \Lambda) \xrightarrow{\varepsilon} \Lambda \longrightarrow 0$$

$$\Psi^{\#} = \{ \psi_{-n}^{\#} \}_{n \geq 0} : \downarrow \qquad \qquad \parallel$$

$$\mathcal{F} \xrightarrow{\mu} \Lambda \longrightarrow 0 .$$

First define ϕ_0^* : $(\Lambda \otimes \Lambda) \otimes \Lambda \to \Lambda \otimes \Lambda$ by $\phi_0^*(a \otimes b \otimes c) = a \otimes bc$. Then ϕ_0^* is a morphism of $\Lambda \otimes \Lambda$ -modules. From the definition of the external differential δ in the bar resolution, it follows that

(1.3)
$$\delta(1 \otimes 1 [y_i \otimes 1 - 1 \otimes y_i]1) = y_i \otimes 1 \otimes 1 - 1 \otimes y_i \otimes 1 \quad \text{and}$$
$$\delta(1 \otimes 1 [x_i \otimes 1 - 1 \otimes x_i]1) = x_i \otimes 1 \otimes 1 - 1 \otimes x_i \otimes 1.$$

We define Ψ_{-1}^* as follows.

$$(1.4) \qquad \psi_{-1}^{*}(1 \otimes 1 \lfloor y_{i} \otimes 1 - 1 \otimes y_{i} \rfloor 1) = \nu_{i} \quad \text{and} \quad \psi_{-1}^{*}(1 \otimes 1 \lfloor x_{j} \otimes 1 - 1 \otimes x_{j} \rfloor 1) = u_{j}.$$

From [5: Lemma 3.4], for any element $z \in K_p[x_1, \dots, x_n]$, there exist elements $\zeta_j \in K_p[x_1, \dots, x_n] \otimes K_p[x_1, \dots, x_n]$ $(1 \le j \le n)$ such that $z \otimes 1 - 1 \otimes z = \sum_{j=1}^n \zeta_j(x_j \otimes 1 - 1 \otimes x_j)$ and $\mu(\zeta_j) = \partial z/\partial x_j$. We define that

(1.5)
$$\phi_{-1}^*(1 \otimes 1[z \otimes 1 - 1 \otimes z]1) = \sum_{i=1}^n \zeta_i u_i.$$

From (1.3), (1.4) and (1.5), ψ_{-1}^* can be defined in $(\overline{\Lambda \otimes \Lambda}) \otimes \Lambda$ ($\subset B^{-1}(\Lambda \otimes \Lambda, \Lambda)$) extending the above ψ_{-1}^* . Furthermore, we require that $\psi_{-1}^*((a \otimes b) \otimes v) = (a \otimes b) \cdot \psi_{-1}^*(v)$ for any $(a \otimes b) \otimes v \in \Lambda \otimes \Lambda \otimes (\overline{\Lambda \otimes \Lambda}) \otimes \Lambda = B^{-1}(\Lambda \otimes \Lambda, \Lambda)$, where $v \in (\overline{\Lambda \otimes \Lambda}) \otimes \Lambda$. Since δ , d and Ψ_0^* are morphisms of $\Lambda \otimes \Lambda$ -modules, it follows that $d\psi_{-1}^* = \psi_0^* \delta$ and ψ_{-1}^{*1} is a morphism of $\Lambda \otimes \Lambda$ -modules. Finally, we obtain a morphism of resolutions Ψ^* extending ψ_0^* and ψ_{-1}^* . Since Ψ^* induces the identity

map of Λ , Ψ^* is a chain equivalence map, and so $1 \bigotimes_{\Lambda \otimes \Lambda} \Psi^*$ induces the required isomorphism. q. e. d.

From Proposition 1.1 and 1.2, it follows that a condition which $\partial \rho_i/\partial x_j=0$ in $H^*(X; \mathbf{K}_p)$ for any i and j does not depend on the choice of algebra generators x_j and generators of the ideal ρ_i .

The condition whether $\partial \rho_i/\partial x_j$ is zero in $H^*(X; K_p)$ for each i and j is important for the collapse problem of the spectral sequence $\{\bar{E}_r, \bar{d}_r\}$, because we have the following two propositions.

PROPOSITION 1.6. Suppose $\partial \rho_i/\partial x_j=0$ in $H^*(X):=H^*(X; \mathbf{K}_p)$ for any i and j, moreover $d_r(\langle \bigoplus_{n\geq 1} (QE_r^{**})^{-n}.* \rangle) \subset \langle \bigoplus_{n\geq 1} (QE_r^{**})^{-n}.* \rangle$ for any r in the spectral sequence $\{E_r, d_r\}$, where $\langle M \rangle$ denotes the subalgeba generated by M. Then $\{\bar{E}_r, \bar{d}_r\}$ collapses at the E_2 -term.

PROOF. From assumptions, we can define an isomorphism of spectral sequences $\{g_{\tau}\}: \{E_{\tau}, d_{\tau}\} \rightarrow \{\hat{E}_{\tau} \otimes H^{*}(X), \hat{d}_{\tau} \otimes 1\}$ by $g_{\tau}(a \otimes \lambda) = f_{\tau}(a) \otimes \lambda$ where $\{f_{\tau}\}: \{E_{\tau}, d_{\tau}\} \rightarrow \{\hat{E}_{\tau}, \hat{d}_{\tau}\}$ is the morphism of spectral sequences given by Lemma 1.3, $\lambda \in E_{\tau}^{0} : *\cong H^{*}(X), a \in \langle \bigoplus_{n \geq 1} (QE_{\tau}^{**})^{-n} : * \rangle$ and $[\hat{E}_{\tau} \otimes H^{*}(X)]^{s, t} = \bigoplus_{u+v=t} E_{\tau}^{s, u} \otimes H^{v}(X)$. Therefore, we conclude that $E_{\infty}^{**} \cong \hat{E}_{\infty}^{**} \otimes H^{*}(X)$. Since the spectral sequence $\{E_{\tau}, d_{\tau}\}$ converges to $H^{*}(\Lambda X; K_{p})$ and the spectral sequence $\{\hat{E}_{\tau}, \hat{d}_{\tau}\}$ converges to $H^{*}(\Omega X; K_{p})$, it follows that $H^{*}(\Lambda X; K_{p})$ is isomorphic to $H^{*}(\Omega X; K_{p}) \otimes H^{*}(X; K_{p})$ as a vector space. Hence $\{\bar{E}_{\tau}, \bar{d}_{\tau}\}$ collapses at the E_{2} -term.

PROPOSITION 1.7. (1) Suppose that there exist integers i $(1 \le i \le m)$ and j $(1 \le j \le n)$ such that $\partial \rho_i/\partial x_j \ne 0$ in $K_p[x_1, \cdots, x_n]/(\rho_1, \cdots, \rho_m)$ and $\hat{d}_r^{s,t} = 0$ for any $r \ge 2$, s and t; $s+t \le \deg \rho_i - 2$. Then there exist integers $r(\ge 2)$, s and t such that $s+t \le \deg \rho_i - 2$ and $\bar{d}_r^{s,t} \ne 0$.

(2) Suppose that $\partial \rho_i/\partial x_j=0$ in $K_p[x_1, \dots, x_n]/(\rho_1, \dots, \rho_m)$ for any i and j. Then the spectral sequence $\{E_r, d_r\}$ collapses at the E_2 -term if and only if two spectral sequences $\{\hat{E}_r, \hat{d}_r\}$ and $\{\bar{E}_r, \bar{d}_r\}$ collapse at the E_2 -term.

Before we prove Proposition 1.7, let us define the Poincaré series and notations which will be used in its proof.

DEFINITION 1.8. If V is a graded vector space, we define the Poincaré series of V to be the formal power series

$$P(V, t) = \sum_{n=0}^{\infty} (\dim V^n) \cdot t^n.$$

DEFINITION 1.9. If V is a bigraded vector space, we define the Poincaré series of V to be the formal power series

$$P(V, t) = \sum_{n=0}^{\infty} (\dim \bigoplus_{i+j=n} V^{i,j}) \cdot t^n$$
.

DEFINITION 1.10. For power series $A = \sum_{n=0}^{\infty} a_n \cdot t^n$ and $B = \sum_{n=0}^{\infty} b_n \cdot t^n$ $(a_n, b_n \in \mathbb{Z})$, we call that A is less than B and denote it by A < B, if $a_i - b_i \le 0$ for any $i \ge 0$, and there exists some integer n such that $a_n - b_n < 0$.

NOTATION 1.11. For a power series $A = \sum_{n=0}^{\infty} a_n \cdot t^n$, put $A^{\leq N} = \sum_{n=0}^{N} a_n \cdot t^n$.

PROOF OF PROPOSITION 1.7. (1) Since $E_2^{**} \cong \operatorname{Tor}_{A \otimes A}^{**}(A, A)$ as an algebra, where $A = H^*(X; \mathbf{K}_p)$, by Proposition 1.1, we see that

(1.6)
$$E_2^{**} \cong H(\mathcal{E}, d)$$
 as an algebra.

From the assumption that there exist integers i and j such that

$$\frac{\partial \rho_i}{\partial x_j} \neq 0$$
 in $K_p[x_1, \dots, x_n]/(\rho_1, \dots, \rho_m)$,

it follows that $d(w_i) = \sum_{j=1}^n (\partial \rho_i/\partial x_j) u_j \neq 0$ in \mathcal{E} . Put $k(i) = \deg \rho_i - 2$. From (1.6) and the above fact, we have an inequality:

$$P(E_2^{**}, t)^{\leq k(i)} < P(\mathcal{E}, t)^{\leq k(i)}$$
.

Since the spectral sequence $\{E_r, d_r\}$ converges to $H^*(\Lambda X; \mathbf{K}_p)$,

$$P(H^*(\Lambda X; \mathbf{K}_n), t) \leq P(E_{\infty}^{**}, t) \leq \cdots \leq P(E_{2}^{**}, t)$$
.

Therefore,

$$(1.7) P(H^*(\Lambda X; \mathbf{K}_p), t)^{\leq k(i)} < P(\mathcal{E}, t)^{\leq k(i)}.$$

Next let us consider the spectral sequence $\{\hat{E}_r, \hat{d}_r\}$. Then $\hat{E}_2^{**} \cong \text{Tor}_{A}^{**}(K_p, K_p)$. By Proposition 1.2, it follows that

$$\hat{E}_{2}^{**} \cong \Gamma[s^{-1}y_{1}, \cdots, s^{-1}y_{l}] \otimes \Lambda(s^{-1}x_{1}, \cdots, s^{-1}x_{n}) \otimes \Gamma[\tau \rho_{1}, \cdots, \tau \rho_{m}] = :\mathcal{K}$$

as an algebra.

We see that

$$(1.8) P(H^*(\Omega X; \mathbf{K}_p), t)^{\leq k(i)} = P(\mathcal{K}, t)^{\leq k(i)}$$

because $\hat{d}_r^{s_r t} = 0$ for any $r(\geq 2)$, s and t ($s+t \leq \deg \rho_i - 2$), and the spectral sequence $\{\hat{E}_r, \hat{d}_r\}$ converges to $H^*(\Omega X; \mathbf{K}_p)$. Suppose $\bar{d}_r^{s_r t} = 0$ for any $r(\geq 2)$, s and t ($s+t \leq \deg \rho_i - 2$). Then

$$P(H^*(\Lambda X; \mathbf{K}_p), t)^{\leq k(i)} = P(H^*(X; \mathbf{K}_p) \otimes H^*(\Omega X; \mathbf{K}_p), t)^{\leq k(i)}$$

because $\bar{E}_2^{**} \cong H^*(X; \mathbf{K}_p) \otimes H^*(\Omega X; \mathbf{K}_p)$ and the spectral sequence $\{\bar{E}_r, \bar{d}_r\}$ converges to $H^*(\Lambda X; \mathbf{K}_p)$. Moreover

$$P(H^*(\Lambda X; \mathbf{K}_p), t)^{\leq k(i)} = [P(H^*(X; \mathbf{K}_p), t) \cdot P(H^*(\Omega X; \mathbf{K}_p), t)]^{\leq k(i)}$$

$$= [P(H^*(X; \mathbf{K}_p), t) \cdot P(\mathcal{K}, t)]^{\leq k(i)} \quad (\text{from } (1.8))$$

$$= P(H^*(X; \mathbf{K}_p) \otimes \mathcal{K}, t)^{\leq k(i)}$$

(Regard $H^*(X; \mathbf{K}_p)$ as a bigraded algebra by a bigrading such that bideg $\lambda = (0, \deg \lambda)$ for $\lambda \in H^*(X; \mathbf{K}_p)$.)

$$=P(\mathcal{E},t)^{\leq k(i)}$$
 (see Proposition 1.1).

This consequence contradicts (1.7). Hence we have Proposition 1.7 (1).

(2) If $\{E_r, d_r\}$ collapses at the E_2 -term, from Proposition 1.6 and Lemma 1.3, it follows that $\{\hat{E}_r, \hat{d}_r\}$ and $\{\bar{E}_r, \bar{d}_r\}$ collapse at the E_2 -term. The converse is obtained from Proposition 1.1 and 1.2. q. e. d.

§ 2. Proof of Theorem 2.

The proof of Theorem 2 is based on Proposition 1.7. We must examine whether the cohomology ring of the given space is a GCI algebra.

Let G be a compact, connected Lie group and H a maximal rank subgroup of G.

LEMMA 2.1 ([1; 6.3 Theorem]). If $p \neq 0$ and $H^*(G)$, $H^*(H)$ have no ptorsion, or p=0, then $H^*(G/H; \mathbf{K}_p)$ is isomorphic to a GCI algebra $\mathbf{K}_p[x_1, \dots, x_n]/(\rho_1, \dots, \rho_n)$ such that $\rho_i \neq 0$ for $1 \leq i \leq n$, where $n=\operatorname{rank} G$.

REMARK 2.2. For a GCI algebra $\Gamma = K_p[x_1, \dots, x_n]/(\rho_1, \dots, \rho_m)$, suppose that there exists an indecomposable element ρ_i , and that $\rho_i = \sum \lambda_s x_s + W$, where W is decomposable and some λ_j is non-zero. Then Γ is isomorphic to a GCI algebra

$$K_p[x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_n]/(\tau_1, \dots, \tau_{j-1}, \tau_{j+1}, \dots, \tau_n)$$
,

where τ_s ($s \neq i$) is an element that x_i was replaced with

$$-\sum_{s\neq i}\frac{\lambda_s}{\lambda_i}x_s-\frac{1}{\lambda_i}W \quad \text{in } \rho_S.$$

Using such replacements till all elements generating the ideal become decomposable, the algebra Γ may be regarded as a GCI algebra constructed from a polynomial algebra and an ideal consisting of decomposable elements.

As is known

(2.1)
$$H^*(U(m+n)/U(m)\times U(n); \mathbf{K}_p)$$

$$\cong \mathbf{K}_p[c'_1, \cdots, c'_m, c_1, \cdots, c_n]/(\sum_{i+j=k} c'_i \cdot c_j; k \ge 1),$$

$$\deg c_i = \deg c'_i = 2 \cdot i,$$

$$(2.2) H^*(Sp(m+n)/Sp(m)\times Sp(n); \mathbf{K}_p)$$

$$\cong \mathbf{K}_p[q'_1, \cdots, q'_m, q_1, \cdots, q_n]/(\sum_{i+j=k} q'_i \cdot q_j; k \ge 1),$$

$$\deg q_i = \deg q'_i = 4 \cdot i$$

and

(2.3)
$$H^{*}(Sp(n)/U(n); \mathbf{K}_{p})$$

$$\cong \mathbf{K}_{p}[c_{1}, c_{2}, \cdots, c_{n}]/(\sum_{i+j=2k} (-1)^{i} c_{i} \cdot c_{j}; k \geq 1),$$

$$\deg c_{i} = 2 \cdot i.$$

From Lemma 2.1, we see that the above algebras are GCI algebras. By Remark 2.2, the each algebra can be expressed as GCI algebra constructed from a polynomial algebra and an ideal which consists of decomposable elements. We consider this problem in the concrete.

LEMMA 2.3.

(1) Suppose $m \ge n \ge 2$. Then $H^*(U(m+n)/U(m) \times U(n); K_p) \cong K_p[c_1, \dots, c_n]/(\rho_1, \dots, \rho_n)$, where $\rho_1, \dots, \rho_n \in K_p[c_1, \dots, c_n]$ is a regular sequence, ρ_i $(1 \le i \le n)$ is decomposable, $\deg \rho_i = 2m + 2i$, and

$$\rho_{j} = \sum_{p_{1}+2p_{2}=m+j} (-1)^{p_{1}+p_{2}} {p_{1}+p_{2} \choose p_{2}} c_{1}^{p_{1}} \cdot c_{2}^{p_{2}} + W_{j} \qquad (j=1 \text{ or } 2);$$

 W_j consists of terms which include the factors c_i $(3 \le i \le n)$ if $n \ge 3$, and $W_j = 0$ if n = 2.

- (2) Suppose $m \ge n \ge 2$. Then $H^*(Sp(m+n)/Sp(m) \times Sp(n); \mathbf{K}_p) \cong \mathbf{K}_p[q_1, \dots, q_n]/(\tau_1, \dots, \tau_n)$, where $\tau_1, \dots, \tau_n \in \mathbf{K}_p[q_1, \dots, q_n]$ is a regular sequence and $\deg \tau_i = 4m+4i$. Moreover, if we replace c_i and ρ_i with q_i and τ_i , a similar equality to (1) holds.
 - (3) Suppose $n \ge 1$ and $p \ne 2$. Then

$$H^*(Sp(n)/U(n); \mathbf{K}_p) \cong \mathbf{K}_p[c_1, c_3, \cdots, c_{2[(n+1)/2]-1}]/(\mu_{[n/2]+1}, \cdots, \mu_n),$$

where $\deg \mu_i = 4i (\lfloor n/2 \rfloor + 1 \leq i \leq n)$,

$$\mu_{\lceil n/2 \rceil + 1} = \begin{cases} c_1^3 c_{n-1} - 2c_3 c_{n-1} + W & \text{if } n \text{ is even and } n \ge 4, \\ c_1^4 & \text{if } n = 2, \end{cases}$$

and $\mu_{\lceil n/2 \rceil+1} = -2c_1c_n + W'$ if n is odd; W does not have terms which include the factor c_{n-1} and W' does not have terms which include the factor c_n .

Suppose $n \ge 1$ and p = 2. Then

$$H^*(Sp(n)/U(n); \mathbf{K}_p) \cong \mathbf{K}_p[c_1, c_2, \cdots, c_n]/(c_1^2, \cdots, c_n^2).$$

PROOF. Put $R_k = \sum_{i+j=k} c_i' \cdot c_j$ $(k \ge 1)$. From (2.1), the algebra $H^*(U(m+n)/U(m) \times U(n); K_p)$ has exactly m+n relations such that $R_k = 0$. Since $R_k = 0$ $(1 \le k \le m)$, c_1' , \cdots , c_m' are inductively expressed with c_1 , \cdots , c_n in

 $K_p[c_1', \dots, c_m', c_1, \dots, c_n]/(R_k; k \ge 1)$, that is, let $c_j'(c_1, \dots, c_n)$ denote c_j' expressed with c_1, \dots, c_n , then $c_1'(c_1, \dots, c_n) = -c_1$ and

$$(2.4) \quad c'_t(c_1, \, \cdots, \, c_n)$$

$$= \left\{ \begin{array}{l} -c'_{t-1}(c_1, \cdots, c_n)c_1 - c'_{t-2}(c_1, \cdots, c_n)c_2 - \cdots - c'_{t-n}(c_1, \cdots, c_n)c_n & (t > n) \\ -c'_{t-1}(c_1, \cdots, c_n)c_1 - c'_{t-2}(c_1, \cdots, c_n)c_2 - \cdots - c'_1(c_1, \cdots, c_n)c_{t-1} - c_t & (t \le n). \end{array} \right.$$

Therefore, R_{m+i} $(1 \le i \le n)$ are expressed with c_1, \dots, c_n . Let ρ'_i mean R_{m+i} expressed with c_1, \dots, c_n . $H^*(U(m+n)/U(m) \times U(n); K_p)$ is isomorphic to a GCI algebra $K_p[c_1, \dots, c_n]/(\rho'_1, \dots, \rho'_n)$ by Remark 2.2.

In order to prove (1), it suffices to prove (1) in the case where n=2. From (2.4), we see that $c_i'(c_1, c_2) = \sum_{p_1+2p_2=t} (-1)^{p_1+p_2} \binom{p_1+p_2}{p_2} c_1^{p_1} \cdot c_2^{p_2}$ by induction on integers t. Since $\rho_1' = c_m'(c_1, c_2)c_1 + c_{m-1}'(c_1, c_2)c_2$ and $\rho_2' = c_m'(c_1, c_2)c_2$, it follows that

$$\rho_1' = \sum_{p_1 + 2p_2 = m+1} (-1)^{p_1 + p_2 + 1} \binom{p_1 + p_2}{p_2} c_1^{p_1} \cdot c_2^{p_2}$$

and

$$\rho_2' = \sum_{p_1 + 2p_2 = m} (-1)^{p_1 + p_2} \binom{p_1 + p_2}{p_2} c_1^{p_1} \cdot c_2^{p_2 + 1}.$$

Put $\rho_2 = c_1 \rho'_1 - \rho'_2$ and $\rho_1 = -\rho'_1$. We have (1). Similarly, we get (2).

(3) Put $R_k = \sum_{i+j=2k} (-1)^i c_i c_j$. It follows that

$$(2.5) R_k = \begin{cases} 2c_{2k} - 2c_1c_{2k-1} + 2c_2c_{2k-2} + \dots + (-1)^kc_k^2 & (2k \le n) \\ (-1)^{2k-n}2c_{2k-n}c_n + (-1)^{2k-n+1}2c_{2k-n+1}c_{n-1} + \dots \\ + (-1)^kc_k^2 & (2n \ge 2k > n) \end{cases}$$

Using (2.5), we can inductively replace elements c_{2k} ($2k \le n$) with c_1 , c_3 , \cdots , $c_{2\lfloor (n+1/2)\rfloor-1}$. Let μ_i ($\lfloor n/2 \rfloor + 1 \le i \le n$) mean R_i expressed with c_1 , c_3 , \cdots , $c_{2\lfloor (n+1/2)\rfloor-1}$. By the replacement, we have (3).

PROOF OF THEOREM 2. In order to examine whether ΩX is totally non-homologous to zero in ΛX with respect to K_p , it suffices to examine it with respect to \mathbb{Z}/p .

(1), (2) and (3). When $n+1\equiv 0 \mod p$, applying Proposition 1.1, it follows that $E_2^{**}(CP(n))\cong \operatorname{Tor}_{\Lambda\otimes\Lambda}^{**}(\Lambda,\Lambda)\cong K_p[x_2]/(x_2^{n+1})\otimes\Lambda(u)\otimes\Gamma[w]$ as an algebra, where $\Lambda=H^*(CP(n);K_p)$, bideg $x_2=(0,2)$, bideg u=(-1,2) and bideg w=(-2,2(n+1)).

If there exist an element $\gamma_{ps}(w)$ and an integer r such that $d_r(\gamma_{ps}(w)) \neq 0$, then $d_r(\gamma_{ps}(w))$ is decomposable and the factors have an element u. We can consider as follows:

$$d_r(\gamma_{ps}(w)) = \lambda u \cdot \gamma_{ps-1}(w)^{k(1)} \cdot \gamma_{ps-1}(w)^{k(2)} \cdots w^{k(s)} \cdot x_2^t + \cdots,$$

where $0 \le t \le n$ and $\lambda \ne 0$. Comparing the total degrees, we have

$$(2.6) 2n \cdot p^{s} + 1 = 1 + 2n \cdot k(1) \cdot p^{s-1} + 2n \cdot k(2) \cdot p^{s-2} + \dots + 2n \cdot k(s) + 2t.$$

Comparing the filtration degrees, we get an inequality: $2 \cdot p^s - 1 > 1 + 2 \cdot k(1) \cdot p^{s-1} + \cdots + 2 \cdot k(s)$ and so $2n \cdot p^s > 2n + 2n \cdot k(1) \cdot p^{s-1} + \cdots + 2n \cdot k(s)$. Since $n \ge 1$ and $0 \le t \le n$, the above inequality contradicts the equality (2.6). Hence this spectral sequence $\{E_r(CP(n)), d_r(CP(n))\}$ collapses at the E_2 -term. From Proposition 1.7 (2), we can conclude that $p \in T(CP(n))$ if $n+1 \equiv 0 \mod p$. Suppose that $n+1 \not\equiv 0 \mod p$. Using the differential Hopf algebra structure in $\{\hat{E}_r(CP(n)), \hat{d}_r(CP(n))\}$, it follows that $\{\hat{E}_r(CP(n)), \hat{d}_r(CP(n))\}$ collapses at the E_2 -term. From Proposition 1.7 (1), $p \notin T(CP(n))$ if $n+1 \not\equiv 0 \mod p$. Hence the proof of Theorem 2 (1) is complete. Similarly, we have (2) and (3).

(4) and (5). By Lemma 2.3, we have

$$\rho_{1}=-c_{1}^{2t+1}+(-1)^{t+1}(t+1)c_{1}c_{2}^{t}+2tc_{1}^{2t-1}c_{2}+\cdots \qquad \text{if } m{=}2t \text{ ,} \\$$

and

$$\rho_1 = c_1^{2t+2} - (2t+1)c_1^{2t}c_2 + (-1)^{t+1}c_2^{t+1} + \cdots$$
 if $m = 2t+1$.

Hence, in $H^*(U(m+n)/U(m)\times U(n)$; K_p), $\partial \rho_1/\partial c_1 = -(2t+1)c_1^{2t} + (-1)^{t+1}(t+1)c_2^t + 2tc_1^{2t-2}c_2 + \cdots \neq 0$ for any p if m=2t, $\partial \rho_1/\partial c_1 = (2t+2)c_1^{2t+1} - 2t(2t+1)c_1^{2t-1}c_2 + \cdots \neq 0$ for any odd prime p, and $\partial \rho_1/\partial c_2 = -(2t+1)c_1^{2t} + (-1)^{t+1}(t+1)c_2^t + \cdots \neq 0$ for p=2, if m=2t+1. Moreover the spectral sequence $\{\hat{E}_r(U(m+n)/U(m)\times U(n)), \hat{d}_r(U(m+n)/U(m)\times U(n))\}$ satisfies the condition of Proposition 1.7 (1). Therefore we have Theorem 2 (4). Similarly, we get (5).

(6) Suppose p=2. From Lemma 2.3 (3), Theorem 3 can be applied in this case. We see that $2 \in T(Sp(n)/U(n))$. Suppose $p \neq 2$. By Lemma 2.3 (3), we obtain that

$$\frac{\partial(\mu_{\lceil n/2 \rceil+1})}{\partial c_{n-1}} = \left\{ \begin{array}{ll} c_1^3 - 2c_3 \neq 0 & \text{if } n \text{ is even, and } n \geq 4, \\ 4c_1^3 \neq 0 & \text{if } n = 2, \end{array} \right.$$

and

$$\frac{\partial (\mu_{\lfloor n/2\rfloor+1})}{\partial c_n} = -2c_1 \neq 0 \quad \text{if } n \text{ is odd,}$$

in $H^*(Sp(n)/U(n); \mathbf{K}_p)$. Since the spectral sequence $\{E_r(Sp(n)/U(n)), d_r(Sp(n)/U(n))\}$ collapses at the E_2 -term, applying Proposition 1.7 (1), it follows that $p \notin T(Sp(n)/U(n))$.

(7) As is known

$$H^*(SO(m+n)/SO(n); \mathbf{K}_p)$$

$$\cong \begin{cases} \Lambda(e_{2n+3}, e_{2n+7}, \cdots, e_{2n+2m-3}) \otimes \mathbf{K}_p[x_n]/(x_n^2) \\ & \text{if n is even and m is odd} \\ \Lambda(e_{2n+3}, e_{2n+7}, \cdots, e_{2n+2m-5}, e'_{n+m-1}) \otimes \mathbf{K}_p[x_n]/(x_n^2) \\ & \text{if n and m are even,} \end{cases}$$

where $p \neq 2$. From Proposition 1.7 (1), it follows that $p \notin T(SO(m+n)/SO(n))$ for any odd prime p.

(8), (9) and (10). Suppose n is odd and $p \neq 2$. The morphism $(\Omega\pi)^*: QH^*(\Omega(SO(m+n)/SO(n)); \mathbf{K}_p) \to QH^*(\Omega(Spin(m+n)); \mathbf{K}_p)$ is monomorphic where π is composite of the universal covering $\tilde{\pi}: Spin(m+n) \to SO(m+n)$ and the natural projection $\tilde{p}: SO(m+n) \to SO(m+n)/SO(n)$. Since Ω (Spin(m+n)) is totally non-homologous to zero in Λ (Spin(m+n)) with respect to \mathbf{K}_p (see [6; Lemma 3]), comparing $\{\bar{E}_r(SO(m+n)/SO(n)), \bar{d}_r(SO(m+n)/SO(n))\}$ with $\{\bar{E}_r(Spin(m+n)), \bar{d}_r(Spin(m+n))\}$, it follows that the spectral sequence $\{\bar{E}_r(SO(m+n)/SO(n)), \bar{d}_r(SO(m+n)/SO(n))\}$ collapses at the E_2 -term. Therefore $p \in T(SO(m+n)/SO(n))$ for any odd prime p if n is odd. Similarly, we have (9) and (10).

§ 3. Proof of Theorem 4.

L. Smith [6] has prove Theorem 3 by comparing $\{E_r(X), d_r(X)\}$ with $\{E_r(P_k), d_r(P_k)\}$, where the space P_k is in the (k+1)-stage Postnikov system which D. Kraines has given in [3]. We prove Theorem 4 with the same method.

REMARK 3.1. Consider the (k+1)-stage Postnikov system [3; Theorem 4.2] which D. Kraines has given:

$$(3.1) K(\mathbf{Z}/2, 2^{k}m+1) \longrightarrow P_{k}$$

$$\downarrow \pi_{k}$$

$$P_{k-1} \xrightarrow{\lambda_{k-1}} K(\mathbf{Z}/2, 2^{k}m+2)$$

$$\vdots$$

$$\downarrow \qquad \qquad \downarrow$$

$$K(\mathbf{Z}/2, 2m+1) \longrightarrow P_{1} \xrightarrow{\lambda_{1}} K(\mathbf{Z}/2, 4m+2)$$

$$\downarrow \pi_{1}$$

$$K(\mathbf{Z}/2, t) = P_{0} \xrightarrow{\lambda_{0}} K(\mathbf{Z}/2, 2^{u}t),$$

where $m=2^{u-1}t-1$. Using the fact P_s is a *H*-space and considering the mod 2 Eilenberg-Moore spectral sequence of the fiber square

we see that each P_s ($s \ge 1$) satisfies the following ([2], [3]):

(3.2)
$$H^*(P_s; \mathbf{Z}/2) \cong \mathbf{Z}_2[\iota_t]/(\iota_t^{2^u}) \otimes \mathbf{Z}/2[s^{-1}Sq^{2^sm}\iota_{2^sm+2}, s^{-1}Sq^{1}Sq^{2^sm}\iota_{2^sm+2}] \otimes \text{Poly},$$

 $Sq^1(s^{-1}Sq^{2^sm}\iota_{2^sm+2}) = s^{-1}Sq^1Sq^{2^sm}\iota_{2^sm+2},$

where Poly is an appropriate polynomial algebra.

(3.3)
$$\pi_s^*(\ell_t) = \ell_t \text{ and } \lambda_s^*(\ell_{2s+1m+2}) = s^{-1} Sq^1 Sq^{2s_m} \ell_{2s_{m+2}}.$$

(3.4) In the spectral sequence $\{\hat{E}_{\tau}(P_s), \hat{d}_{\tau}(P_s)\}$, $\hat{d}_{\tau}(\gamma_{2i}(\tau(\iota_t^{2u})))$ is zero for any $0 \le i \le s-1$ and r. Moreover, the elements $\gamma_{2s}(\tau(\iota_t^{2u}))$ and $s^{-1}(s^{-1}Sq^{1}Sq^{2^{s_m}}\iota_{2^{s_m+2}})$ survive to the E_{2s+1-1} -term and $\hat{d}_{2s+1-1}(P_s)(\gamma_{2s}(\tau(\iota_t^{2u})))=s^{-1}(s^{-1}Sq^{1}Sq^{2^{s_m}}\iota_{2^{s_m+2}})$.

In order to prove Theorem 4, it suffices to show that $\Omega(SO(m+n)/SO(n))$ is totally non-homologous to zero in $\Lambda(SO(m+n)/SO(n))$ with respect to $\mathbb{Z}/2$. Let all coefficients of cohomologies be the field $\mathbb{Z}/2$ and spectral sequences in the field $\mathbb{Z}/2$.

PROOF OF THEOREM 4. For any $j \in J \cup J'$, choose a map $g_j \colon SO(k+n)/SO(n) \to K(\mathbf{Z}/2,j) = P_0$ such that $g_i^*(\iota_j) = x_j$. In (3.1), put $u = r_j$. Then it follows that g_j has a lift $g_{j,1}$ in P_1 . Suppose g_j has a lift $g_{j,s}$ up to P_s and does not have a lift in P_{s+1} . Put $V_{k,n} = SO(k+n)/SO(n)$. Let $\{\bar{g}_r\} \colon \{E_r(P_s), d_r(P_s)\} \to \{E_r(V_{k,n}), d_r(V_{k,n})\}$ be the morphism of spectral sequences induced by $g_{j,s}$ and $\{f_r\} \colon \{E_r(V_{k,n}), d_r(V_{k,n})\} \to \{E_r(\mathrm{Spin}(k+n)), d_r(\mathrm{Spin}(k+n))\}$ the morphism of spectral sequences induced by π . From Lemmas 1.4, 1.5 and Remark 3.1, we have

$$\begin{split} d_{2s+1-1}(V_{k,n})(\gamma_{2s}(w_j)) &= d_{2s+1-1}(V_{k,n})\bar{g}_{2s+1-1}(\gamma_{2s}(\hat{w}_j)) \\ &= \bar{g}_{2s+1-1}d_{2s+1-1}(P_s)(\gamma_{2s}(\hat{w}_j)) = \bar{g}_{2s+1-1}([\alpha \otimes 1 - 1 \otimes \alpha]) \\ &= [g_{j,s}*(\alpha) \otimes 1 - 1 \otimes g_{j,s}*(\alpha)], \end{split}$$

where w_j and \tilde{w}_j are the algebra generators in $E_2(V_{k,n})$ and $E_2(P_s)$ associated with x_j and ϵ_j respectively, and $\alpha = s^{-1} Sq^1 Sq^{2^s m} \epsilon_{2^s m+2}$; $m = j \cdot 2^{r_{j-1}} - 1$. Moreover,

$$\begin{split} d_{2s+1-1}(\mathrm{Spin}\,(k+n))f_{2s+1-1}(\gamma_{2s}(w_j)) &= f_{2s+1-1}([g_{j,\,s}*(\alpha)\otimes 1 - 1\otimes g_{j,\,s}*(\alpha)]) \\ &= [\pi^*g_{j,\,s}*(\alpha)\otimes 1 - 1\otimes \pi^*g_{j,\,s}*(\alpha)] \,. \end{split}$$

Since g_j does not have a lift in P_{s+1} , it follows that $g_{j,s}^*(\alpha) \neq 0$. From the assumption, there exists an integer i such that $\partial(\pi^*g_{j,s}^*(\alpha))/\partial x_i \neq 0$ in

 $H^*(\operatorname{Spin}(k+n); \mathbb{Z}/2)$. Applying Lemma 1.5, we have that $d_{2s+1-1}(\operatorname{Spin}(k+n)) \neq 0$, which contradicts Proposition 1.7 (2). Therefore, g_j has a lift $g_{j,s}$ in P_s for any j and s. Using the same argument as the proof of [6; Theorem], we see that $\{E_r(V_{k,n}), d_r(V_{k,n})\}$ collapses at the E_2 -term. From Proposition 1.7 (2), it follows that $2 \in T(SO(k+n)/SO(n))$.

PROOF OF COROLLARY 5. (1) It suffices to show that $2 \in T(SO(4+n)/SO(n))$. In fact, since $\tilde{i}^*: QH^*(SO(4+n)/SO(n); \mathbb{Z}/2) \to QH^*(SO(m+n)/SO(n); \mathbb{Z}/2)$ is epimorphic, where $m \leq 4$ and \tilde{i} is the map induced by the inclusion map $i: SO(m+n) \hookrightarrow SO(4+n)$, it follows that $2 \in T(SO(m+n)/SO(n))$ for any $1 \leq m \leq 4$, by applying the Leray-Serre spectral sequence (or Proposition 1.7 (2)).

Now let us prove that $2 \in T(SO(4+n)/SO(n))$. We have the following table of the behavior of Sq^1 in $H^*(SO(4+n)/SO(n); \mathbb{Z}/2) \cong \Delta(x_n, x_{n+1}, x_{n+2}, x_{n+3})$:

the upper arrows mean the behavior of Sq^1 when n is even and the lower arrows mean those when n is odd.

Suppose $n \ge m = 4$. Let s be the dimensions of V such that V^s may be nonzero. Since 3n+6 is the largest of the dimensions i such that $(\operatorname{Im} Sq^1)^i$ is not trivial, s is equal to $n \cdot 2^2 - 2^2 + 2$ or $(n+1) \cdot 2^2 - 2^2 + 2$. From the above table, we see that $V^{4n-2} = V^{4n+2} = \{0\}$. When n=3 or 2, we can verify that $V = \{0\}$ with concrete computation. Applying Theorem 4, the proof is completed.

(2) Suppose $n \ge m$. Then

$$\{s = j \cdot 2^{1+k} - 2^{k+1} + 2 \mid j \in J \cup J', \ k \ge 1\}$$

$$\cap \{j_1 + \dots + j_t \mid j_1 < \dots < j_t, \ j_i \in J'\} = \emptyset$$

if and only if there exists an integer j such that $\partial \pi^* \rho / \partial x_j \neq 0$ in $H^*(\mathrm{Spin}(m+n); \mathbb{Z}/2)$ for any non-zero element $\rho \in V$. Therefore, we have the former of this corollary by applying Theorem 4. The latter is obtained by solving an inequality $\sum_{j_i \in J'} j_i < n \cdot 2^2 - 2^2 + 2$.

REMARK 3.2. When m=5 and n=8, we see that $Sq^1(x_8x_{10}x_{11})=x_8x_{10}x_{12}$, $x_8x_{10}x_{12} \in (\text{Im } Sq^1)^{8\cdot 2^2-2^2+2} \subset V$ and that $\pi^*(x_8x_{10}x_{12})=x_4^2x_5^2x_6^2$ in $H^*(\text{Spin}(13); \mathbb{Z}/2)$.

Hence we have that $\partial(x_4^2x_5^2x_6^2)/\partial x_j=0$ for any free algebra generator x_j in $H^*(\mathrm{Spin}(13); \mathbf{Z}/2)$, so we can not apply Theorem 4 in this case.

References

- [1] P.F. Baum, On the cohomology of homogeneous spaces, Topology, 7 (1968), 15-38.
- [2] D. Kraines, The $\mathcal{A}(p)$ cohomology of some k stage Postnikov systems, Comm. Math. Helv., 48 (1973), 66-71.
- [3] D. Kraines, The kernel of the loop map, Illinois J. Math., 21 (1977), 91-108.
- [4] H. Matsumura, Commutative Algebra (second edition), Benjamin, 1980.
- [5] L. Smith, On the characteristic zero cohomology of the free loop space, Amer. J. Math., 103 (1981), 887-910.
- [6] L. Smith, The Eilenberg—Moore spectral sequence and the mod 2 cohomology of certain free loop spaces, Illinois J. Math., 28 (1984), 516-522.
- [7] J. Tate, Homology of Noetherian rings and local rings, Illinois J. Math., 1 (1956), 14-27.

Katsuhiko KURIBAYASHI Department of Mathematics Kyoto University Kyoto 606 Japan