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§0. Introduction.

Let 2X be a space of loops on X and AX a space of free loops on X. We

will call a fibration 2Xc,AX5X a free loop fibration on X where n(w)=w()
for weAX. Let K, be a field of characteristic p. When is QX totally non-
homologous to zero in 4X with respect to a field K,?

We call a commutative algebra Ay, -+, YOQK[x1, ==, x21/(01, =+, pm)
over a field K, is GCI algebra if p,, ---, pn is a regular sequence (see [4; p.
957) or m=0 where deg y, is odd and deg x; is even if p+#2. (see [5; Definition,
p. 893].) In [5], L. Smith has proved the following.

THEOREM 1 ([5; Theorem 4.1]). Let X be a simply connected space such
that H¥(X ; K,) is a GCI algebra. Then QX is totally non-homologous to zero in
AX with respect to K, if and only if H¥(X ; K,) is a free commutative algebra,
in which case H¥(AX ; K)=H*X; K)QH*RQX ; K,) as an algebra.

In this paper, using methods which L. Smith has given in [5], we will
examine whether X is totally non-homologous to zero in AX with respect to
K, for cases where X=U(m+n)/U(m)xXU(n), Sp(m+n)/Sp(m)x Sp(n), Sp(n)/U(n),
SO(m+n)/SO(n), SUm~+n)/SU(n), Sp(m—+n)/Sp(n), €P(2) and p=2.

In order to obtain our results, we will consider the Eilenberg-Moore spectral
sequence of a fibre square

AX X
F(X):= | |4 (e D,
X —— XxX

4

where 4 is a diagonal map. Throughout this paper, F(X) means the above
fibre square.

For a space X, let T(X) denote a set of prime numbers p such that QX
is totally non-homologous to zero in 4X with respect to K,.
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Our results are stated as follows.

THEOREM 2.
1) p=T(CP(n)) iff n+1=0mod p.
@) p=THP(n)) iff n+1=0mod p.
(3) peT@P2) if p=3.
@) If m, n=2, then p&ETUm~+n)/Um)xU(n)) for any prime p.
(B) If m, n=2, then pET(Sp(m-+n)/Sp(m)XSp(n)) for any prime p.
6) p=T(Sp(n)/U(n)) iff p=2.
(7) If n is even, then p&ET(SO(m+n)/SO(n)) for any odd prime p.
(8) If n is odd, then p<T(SO(m+n)/SO(n)) for any odd prime p.
) pT(SU(m+n)/SU(n)) for any prime p.
10) peT(Spim+n)/Sp(n)) for any prime p.

The problem whether the prime 2 is contained to T(SU(m-+n)/SU(n)) for
any m and n is not expected to be easy. We will consider the problem for
some m and n. Before we state the results, we recall the mod2 cohomology
of the real Stiefel manifold and the action of the squaring operations on it.

0.1 H*(SO(m+n)/SO(n); Z/Z) = A(Xn, Xn+1y 5 Xmin-1)
= @ 2205/,

where J={j=2t+1| n=j<m+n}, J'={j=2t | n<7<min(2n, m+n)}, 7-27i7 1<
m+n<j-2'7 and Sq"xi:<;.>xi+j; Xi14;=0 if i+j7=2m-+n.

L. Smith has proved the following collapse theorem, making use of the k-
stage Postnikov system given by D. Kraines [3].

THEOREM 3 ([6; Theorem]). Let X be a simply connected space, and suppose
that Sq* vanishes on H¥(X ; Z/2) and H¥(X ; Z/2)=Z/2[ x1, -, x:1/(x2 Y, -, 127 0).
Then the mod2 Eilenberg-Moore spectral sequence of the fibre square F(X)
collapses at the E,-term.

The fact implies that can not be applied in the case where
X=SO0(m+n)/SO(n). Examining the argument in the proof of [Theorem 3, we
see that the theorem holds if the action of Sg¢! is trivial on certain important
degrees of the cohomology groups of X. Taking notice of this fact, we have
the following.

THEOREM 4. Suppose that the wvector space V := D (Im Sq*)* is
g=j-o  JtE_ok+lyp
JEJUJ k21

zero or, for any non-zero element o&V, there exists an integer j such that
(0n*p/0x;)#0 in H*Spin(m-+n); Z/2). Then 2T(SO(m+n)/SO(n)), where
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7 . Spin (m—+n) 5 SO(m+n) 5 SO(m+n)/SO(n); % is the universal covering and p
1S the natural projection.

In consequence, we get:

COROLLARY 5. (1) If m=4, then 2=T(SO(m-+n)/SO(n)).
2) If n=zm and

{s=j- 281 2L 207 JUT', kZ2IN{ji+ - +id 1< <Jo, 1iE€]'} =0,

then 2€T(SO(m+n)/SOn)). In particular, when 1<m<8 and n=43, 2<
T(SO(m~+n)/SO(n)).

The author wishes to thank Akira Kono for helpful conversation.

§1. Preliminaries.

In order to study the cohomology of the space of free loops on a simply
connected space X, we use the Eilenberg-Moore spectral sequence of the fibre
square F(X). When we use this method, we must computes Tor¥k (A4, A),
where A=H*(X; K,). In [5], L. Smith has given a differential bigraded alge-
bra to compute Tor*%,(4, A) when the field is of characteristic zero. In general,
when the field is of characteristic p=0, considering the methods of the proofs
of [5; Lemma 3.2], [5; Lemma 3.3], [5; Lemma 3.4] and [5; Proposition 3.5],
we can obtain the following :

PRrROPOSITION 1.1 ([5; Proposition 3.5]). Let A be a GCI algebra A(y, -+, y1)
QK[ %1, =+, x21/(p1, -+, Pm) over K,, where each p; is decomposable, deg y; is
odd and deg x; is even if p+2. Then there exists the following proper projective

resolution F 4 A—0 of A as a left ARQA-module :
F 1= ARARI [y, -+, v 1QA(uy, -+, u)Q [wy, -+, wal,

d(/l®/1):0; d(vi)=yi®l—1®yi, d(uj)zx]@l—l@xj, d(rr(wi)):(z‘?:lqijuj)@
7r-(w;) and ¢ is the multiplication of A, where bideg A=(0, deg ); A= AR,
bideg v;=(—1, deg »,), bideg u;=(—1, deg x;), bideg w;=(—2, deg p;) and {;;=
K, [xy, -, 2 JQK [ %1, -+, xa] satisfies that p,Q1—1RQp; =718 (x;Q1—1R x;)
and p§:)=(00:/0x;); pr: Kplx1, -, X2 JQK[ x4, -+, x5 1= Kp[ x4, -+, x2] is the
multiplication. Hence a differential bigraded algebra

& :A®F[U1, Tty lJl:“gA(uh Ty un)®r[wl) Tty wm:] ’
where dQ)=dv;)=d(u;)=0; 14, i=1, - ,1, j=1, -+, n, and

dw) = 3 001, for any i=1, -, m,

~10x; "’



334 K. KURIBAY ASHI

computes Tor%% (A, A). O

Let A be GCI algebra in Proposition 1.1. We can compute Tor¥*(K,, K,)
as follows by making use of [7; §3. Theorem 2] in the spirit of [7; §2] and
[5; Lemma 3.3].

ProrosITION 1.2 ([5; Lemma 3.1]). There exists the following Koszul resolu-
tion X—>K,—0 of K, asa left A-module:

K= AR [s7 yy, -, s IRQA(s x4, -, s %) [2p1, =+, TOm]»
ds'y)=yi, d(sT'x))=x; dF.(tp))=§:Q7,-1(cp:), where bideg s7'y;=(—1,
degy;), bideg s 'x;=(—1, deg x;), bideg rp;=(—2, deg p;) and &, AQA(s™ x4, -+,
s~'x,) satisfies that d(§;)=p:. Hence

Tor¥*(K,, K,) = I'[s'yy, -+, s ]RQA(s  xy, -+, s7'x)QL [201, =+, TOm]

as an algebra. O

For the rest of this paper, let X be a simply connected space whose cohomo-
logy with coefficients in the field K, is isomorphic to a GCI algebra over
Kp : H*(X’ Kp)g-/l(yl; T yl)®Kp[x1, Tty xn]/(plr Ty pm), where deg Xj is
even and deg y; is odd if p=2, and p; is decomposable. Let {E.,d,}, {E., d,}
and {E,, d.} (or {E(X), d,(X)}, {E-(X), d,(X)} and {E,(X), d,(X)}) be the
Eilenberg-Moore spectral sequences of the fibre square 4(X), of the path-loop
fibration £2Xc,PX— X, and the Leray-Serre spectral sequence of the free loop
fibration @Xc,. AX— X respectively.

We need the following lemma in order to consider relations between the
above three spectral sequences.

LEMMA 1.3. There exists a morphism of spectral sequences

{f+}: {E., d.} —> {E,, d.)
such that

1.1) f2(A)=0 if 264 and deg2i>0, () =21 if ic4

and deg A=0, f.(vi)=s7'y; (1=i=Z)), foluy)=s"'x; (1=j=n) and fo(y-(w:)=
7.(co:)) (1=<i<m) if r.(w:) is defined in Torkg (A, A), where A=H*(X; K,).
(For notations, see Proposition 1.1 and 1.2.)

Proor. The morphism of fibre squares

2X > PX
N /
AX X
[, 4
X XXX
7 N

>
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where #(x)=(x, *), yields a morphism of spectral sequences. It remains to ex-
amine the stated behavior on E¥*. It suffices to show that there exists a mor-
phism of resolutions

g — 0
(1.2) U = {pnbnzot | K
7
KX K, 0

which induces the trivial map ¢ such that ¢_, is an z*-morphism for any =,

dav)=s"y;, ¢_(u;)=s"'x; and ¢_.(r-(w))=r-(rp:). In fact the following
diagram

Et* = Tor¥i 4, 4) = HARQ 1045 ")
| Tor.. | Fe@ )
E, = Tor¥*(K,, K,) = HK,Q4X")

fe

<«

is commutative.

First let us choose the elements {;; and &; for any 7. In the case where p;
is a monomial, suppose that p;=AxP"t--- x7». Let J mean a set {7, ---, j;|1=
1< <ji=n, m;;=1 for any 7}. Put {;;=0 if j& ],

—_ mi, -1 _Mmj mji -2 Mmj m;

Cijl o ijljl xj2.72 . Jt®l+2x J1 x]z 2. x]./l@le
-1
_|_...+,ij 2 .. J:®xmh ,
mj m mji,—-1

Lo = A3 e XFIIQuI e AN e @G

. my, -1 m; my,—1

and Cij, = Axj 7t T @yt e x4 o FALQ g7t o x7,7t

(see [5; Lemma 3.4]). Then it follows that dp./dx;=p(l;;) for any 7 and j.
Put &;=Ax;,\ " x;;72 - x}74®s 'x;,. Define a morphism of resolution ¥ as fol-
lows: ¢_(vi)=s"'y;, ¢_(u;)=s""x; and ¢_(7,(w:)=7-(rp:). We can show that
G d(7 - (w))=d_ (1 ().

In the general case where p,=32,x7 "t - x,%?, we can choose elements
(i) and (&), as the above for any k. Put ;=) and &=3}(&:):, then
Gord(@(we))=d¢d_.(r.(w;)). We obtain the required morphism of resolutions.

g.e.d.

Applying the same argument as above, we have:

LEMMA 1.4. Suppose H¥(X ; K,)= A(0)QK,[x1/(xPYQ(GCl-alg), H¥Y ; K,)
= Ay YRQK,[x'1/(x'PYRQGCl-alg) and there exists a map f:Y—X such that
f¥x)=x" (f*(y)=2y"). Then the map f induces a morphism of spectral sequences
{gr} HEAX), do(X)HENY), d(Y)} satisfying that go(w)=u', g (w))=
r-(w") (g7 -W)=7.(v")), where u and w are elements associated with x, v is an
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element associated with y. u’, w' and y' are elements associated with x' and y'
respectively. n

Next we examine the relation between the torsion Tor%%,(4, A) obtained
from [Proposition 1.1 and the torsion Tor%¥ /A, A) obtained from the bar resolu-
tion of 4 as a AXA-module. Let Tor%k (A, A)p denote the latter.

LEMMA 1.5. Suppose A is a GCI algebra A(y,, -, v )QK[x1, =+, %]/
(01, ==, Pm), where each p; is decomposable and [=0 if p=2. Then there exists
an isomorphism of algebras

¢ Torkg (A, A)g-—> Torki(A, A)

such  that  ¢(ALy:R1—1Qy,11)=v; and ¢(1[xj®1—l®xj]1):uj, moreover
P(1[zR1—1R211)=237-1(02/0x )u; if p=2.

PROOF. Let us define a morphism of resolutions

BURQA, M) ——> 4 0
o= {fhnt | !]
F S 0.

First define ¢f: (AQARA-ARA by ¢§(aRbRc)=aRXbc. Then ¢% is a mor-
phism of A®A-modules. From the definition of the external differential ¢ in
the bar resolution, it follows that

(1.3) J(1®1[y,®1-18y]1) = »:@IQ1-1Qy@!  and
SR xR —1®x,11) = 2,11 —1@x,R1 .

We define ¥'#, as follows.

1.4) ¢HARI[Y.R1—1RQy,I1) =v; and ¢#(1RI[1,QL—1Qx,11) = u,.

From [5: Lemma 3.4], for any element ze K,[ x,, ---, x,], there exist elements
GieKplxy, -, 2] Q Kp[xy, -+, o] (1£j<n) such that 2z2Ql—-1Rz=
Dli(x;RQ1—-1Qx;) and w(l;)=0z/dx;. We define that

(1.5) $LURIR1-1Q2I1) = 3 Cu; .

From (1.4) and ¢*, can be defined in (AQARA (CB AR, A))
extending the above ¢%,. Furthermore, we require that ¢*,(a®b)Rv) =
(a®b)-P%,(v) for any (aRb)RQueE AQARNARMNRXA=B (AR A, A), where ve
(ARQMRA. Since 8, d and ¥4 are morphisms of AR®A-modules, it follows
that d¢#,=¢%0 and ¢#] is a morphism of A®A-modules. Finally, we obtain a
morphism of resolutions ¥# extending ¢§ and ¢#,. Since ¥# induces the identity
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map of A, ¥# is a chain equivalence map, and so 1&® 4¢,¥# induces the required
isomorphism. qg.e.d.

From [Proposition 1.1 and 1.2, it follows that a condition which dp./0x,=0
in H¥X; K,) for any 7 and 7 does not depend on the choice of algebra
generators x; and generators of the ideal p;.

The condition whether dp;/dx; is zero in H*(X; K,) for each 7 and ; is
important for the collapse problem of the spectral sequence {E,, d.}, because
we have the following two propositions.

PROPOSITION 1.6. Suppose 00:/0x;=0in H¥(X):=H*(X; K,) for any i and
7, moreover d.({(Pnz(QEF) )T Pn=(QEF*)"™*> for any v in the spectral
sequence {E., d.}, where (M) denotes the subalgeba generated by M. Then
{E., d.} collapses at the Ej-term.

ProOF. From assumptions, we can define an isomorphism of spectral
sequences {g.}:{E,, d.}>{E,QH*X), d,®1} by g.(a@)=f.(a)P2 where
{f+}: {E,, d,}—{E., d,} is the morphism of spectral sequences given by
Lemma ), A€EV*=H*X), aS{Bp(QE¥*) ™*> and [E,QH¥X)]"'=
P urot EL*QHY(X). Therefore, we conclude that EX*=EX*QH*(X). Since the
spectral sequence {E,, d.} converges to H*(A4X; K,) and the spectral sequence
{E,, d,} converges to H¥(QX; K,), it follows that H*(AX; K,) is isomorphic
to H¥(QX; K,)QH*(X; K,) as a vector space. Hence {E,, d.} collapses at the
E,-term. g.e.d.

PROPOSITION 1.7. (1) Suppose that there exist integers i (1=i<m) and j
(1=7=<n) such that 0p;/0x;+0 in K,[xy, -+, xal/(01, =, om) and d.»'=0 for
any r=2, s and t; s+t<deg p;,—2. Then there exist integers r(=2), s and t such
that s+t<deg p;—2 and d,**+0.

(2) Suppose that 0p;/0x;=0 in K,[x,, -+, x21/(01, =+, pm) for any i and j.
Then the spectral sequence {E., d.} collapses at the E,-term if and only if two
spectral sequences {E., d,} and {E., d.} collapse at the E,-term.

Before we prove [Proposition 1.7, let us define the Poincaré series and nota-
tions which will be used in its proof.

DEFINITION 1.8. If V is a graded vector space, we define the Poincaré
series of V' to be the formal power series

PV, t)= éo(dim Vrygm

DEFINITION 1.9. If V is a bigraded vector space, we define the Poincaré
series of 7V to be the formal power Series
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PV, 1) = nijo(dim”@n Vidy.gn

DEFINITION 1.10. For power series A=3%_,a,-1" and B=%_¢b,-t"
(an, bnsZ), we call that A is less than B and denote it by A<B, if a;,—b;=<0
for any /=0, and there exists some integer n such that a,—b,<0.

NOTATION 1.11. For a power series A=3%2_¢a,-t", put As¥=¥_,a,-t".

PROOF OF PrRoOPOSITION 1.7. (1) Since E¥f*=Tor%% (A4, A) as an algebra,
where A=H*(X; K,), by Proposition 1.1, we see that

(1.6) E¥* >~ He, d) as an algebra.
From the assumption that there exist integers ; and ; such that

00: #0 in Ky[xy, -, x,1/(01, =, Om),
ax]'

it follows that d(w;)=3>7%.(0p:/0x;)u;#0in &. Put k(Z)=deg p;—2. From (1.6)
and the above fact, we have an inequality :

P(E¥*, 1)s*® L P&, 1)=F®
Since the spectral sequence {E,, d,} converges to H¥(AX; K,),

P(H¥AX; K,), 1) £ P(EX*, )< - <P(E¥, 1),
Therefore,

(1.7) P(H¥AX; Kp), 1)**© < P(&, ).

A

Next let us consider the spectral sequence {E,, 3,}. Then E¥t=
Tor¥*(K,, K,). By |Proposition 1.2, it follows that

E¥s = T[sy, -, s QA %y, , s )R [2p1, +, Tom]= 1K

as an algebra.
We see that

(1.8) P(H¥QX; K,), )=*® = P(KX, t)s*®

because d%'=0 for any #(=2), s and ¢ (s+t=deg p:—2), and the spectral sequence
{E,, d,} converges to H*(2X; K,). Suppose d%'=0 for any »(=2), s and t
(s+t<degp;,—2). Then

PUHAAX ; Ky), 04O =PHAX ; K)QHHQX; Ky), *®

because E¥*=H*(X; K, QH*(Q2X; K,)and the spectral sequence {E., d,} con-
verges to H*(AX; K;). Moreover
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P(H*(AX ; K,), i = [PHX(X ; Kp), ) PCH¥(QX ; K,), )]+
=[P(H*X; K,), t)- P(X, )]**® (from [1.8))
= P(H¥(X; K;)QX, t)s*®

(Regard H*(X; K,) as a bigraded algebra by a bigrading such that bideg
A=(0, deg 2) for 2e H*(X ; K,).)

= P(&, t)=**  (see [Proposition 1.1)).

This consequence contradicts [1.7). Hence we have [Proposition 1.7 (1).

(2) If {E,, d,} collapses at the E,-term, from [Proposition 1.6 and
1.3, it follows that {£., d,} and {E., d.,} collapse at the E,-term. The con-
verse is obtained from [Proposition 1.]] and 1.2. g.e.d.

§2. Proof of Theorem 2.

The proof of is based on [Proposition 1.7, We must examine
whether the cohomology ring of the given space is a GCI algebra.

Let G be a compact, connected Lie group and H a maximal rank sub-
group of G.

LEMMA 2.1 ([1; 6.3 Theorem]). If p+0 and H*(G), H*(H) have no p-
torsion, or p=0, then H¥(G/H; K,) is isomorphic to a GCI algebra K,[ x,, -+, x,]/
(p1, ==+, pa) Such that p;#0 for 1=<i<n, where n=rank G. O

REMARK 2.2. For a GCI algebra I'=K,[xy, -, x21/(01, =, Pm), SUDPOSE
that there exists an indecomposable element p;, and that p,=>4,x,+W, where
W is decomposable and some 4; is non-zero. Then [’ is isomorphic to a GCI
algebra

Kp[xh iy Xje1y Xjrry Uty xn]/('[l; ty Ti-1 Tit1y 77 Tn),

where 7, (s#17) is an element that x; was replaced with

_223 ’:'l‘W in Ps-

§#J Z e 4
Using such replacements till all elements generating the ideal become decom-
posable, the algebra /" may be regarded as a GCI algebra constructed from a
polynomial algebra and an ideal consisting of decomposable elements.

As is known
2.1) H*¥Um~+n)/Um)xU(n); K,)
= Kp[ci,l, ) C;ny Ci, "7, Cn]/(iﬁqz':kc;'c]l; kzl);

degc; =degci =27,
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(2.2) H*(Sp(m~+n)/Spm)xSp(n); K,)
= Ko[q% = @ Quy qn]/(HZ‘kqé-qj; k=1),

j=

deg g, =degg; =4+

and
(2.3) HXSp(n)/U(n); Kp)
= Kplcy, €2, o0 Cn]/(i+§2k(’l)ici'cj; kzl),
degc, =2-1.

From [Lemma 2.1, we see that the above algebras are GCI algebras. By
Remark 2.2, the each algebra can be expressed as GCI algebra constructed from
a polynomial algebra and an ideal which consists of decomposable elements.
We consider this problem in the concrete.

LEMMA 2.3.

(1) Suppose m=n=2. Then H*(U(m~+n)/Um)xU(n); K,)=K,[c,, -+, cnl/
(01, =+ 5 Pn), Where py, -, pr=K,[cy, -+, cal is a regular sequence, p; (1=i<n)
s decomposable, deg p;=2m-+2i, and

0; = 3 (—1)7’1+”2(p1+p2>c1{’1~c€2—:~ ; (=1 or 2);
D1+2Pg=m+j De

W ; consists of terms which include the factors c¢; 3=i<n)if n=3, and W;=0 if
n=2.

(2) Supposemz=nz=2. Then H¥(Sp(m-+n)/Spim)xXSp(n); Kp)=K,[q1, -, g/
(ty, ==+, Tn), where z,, -, T, K[ q, -+, qn] is a rvegular sequence and degc,=
dm-+4i. Moreover, if we replace c¢; and p; with q; and t;, a similar equality to
(1) holds.

(3) Suppose n=1 and p+2. Then

H*(Sp(n)/U(n); Kp) = Kp (e, €y o0y C2[(n+1)/2]-1]/(#[n/2]+17 Tty #n) >
where deg p,=47 ([n/2]+1=<i<n),
_( Citni—2C5Ca W if nis even and n=4,
ﬂ[n/2]+1—{ o if n=2,

and prprppai=—2¢:C,+W’' if n is odd; W does not have terms which include the
factor c,_, and W’ does not have terms which include the factor c,.

Suppose n=1 and p=2. Then

H*Sp(n)/U(n); Ky) = Kylcy, co, -+, €2]/(c3, o+, €R).

PROOF. Put R,=3mcioc; (kZ1). From [2.I), the algebra
H*U(m+n)/Um)xU(n); K,) has exactly m-+n relations such that R,=0.
Since R,=0 (1k<m), c¢i, -+, ¢, are inductively expressed with ¢y, -, ¢, in
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K,[ci, =, Cmy €1y € 1/(Ry; B=1), that is, let ¢j(cy, --+, ¢a) denote ¢ expressed
with ¢y, <+, ¢a, then ci(cy, -+, ¢n)=-—c¢, and
(2.4) ciley, =+, Ca)
{ —cioqley, v, ep)er—CialCy, ry Ca)ea— ot —Cion(Cyy o, Cr)Cn  (E>1)
Uiy oy Cader—chaler, s Ca)ea— o —cllen, v, Cadeeoi—Ce (ESm).
Therefore, R,.; (1<i<n) are expressed with ¢, ---, ¢,. Let p; mean R,
expressed with ¢, =+, ¢,  H*U(m+n)/Um)xU(n); K,) is isomorphic to a

GCI algebra K,[cy, -, ¢al/(p1, -+, pa) by Remark 2.2.

In order to prove (1), it suffices to prove (1) in the case where n=2. From
(2.4), we see that c;i(c,, cz)zzpﬁm:t(—1)1’1+1’2(p’:p2)c§’1-c’z’z by induction on
2

integers f. Since pi=cm(cy, co)c1F+Cm-1(cy, C2)ce and ps=cnlcy, c2)cs, it follows
that

p1+p2
r_ __1\P1+DPa+? P1.,D
pl o p1+2p2=m+1( 1) o ( jbz )611 622
and it b
r S __1\P1+D 1 2\ .p1. D241
O2= P1-i->2‘1|>2=m( 1) 2( P )Cll (0 S

Put p,=c;pi—p5 and p;=—pi. We have (1). Similarly, we get (2).
(3) Put R,=3isj=0:(—1)'cic;. It follows that

2020 —2¢1C05 -1F2¢oCo5 2+ +(—1)"C% 2k=n)
Ry = { (—=1**7"2¢08 nCnH(—=1)F 7" 12000 p41Cnort -
+(—=1)¥c; @2n=2k>n)
Using [2.5), we can inductively replace elements c¢,, (22<n) with ¢y, ¢5, -,
Catcni1/m1-1. Let gy ([n/2]+1<:<n) mean R, expressed with ¢,, ¢5, ==, Catcnrr/2ri-1-
By the replacement, we have (3). g.e.d.

(2.5)

PROOF OF THEOREM 2. In order to examine whether £X is totally non-
homologous to zero in AX with respect to K,, it suffices to examine it with
respect to Z/p.

(1), (2) and (3). When n+1=0 mod p, applying [Proposition 1.1, it follows
that E¥*(CP(n))=Tor%k (A, N=K,[x,]/(x7"NQAW)RX [w] as an algebra,
where A=H*(CP(n); K,), bideg x,=(0, 2), bideg u=(—1,2) and bideg w=
(=2, 2(n+1)).

If there exist an element 7,s(w) and an integer » such that d,.(7,s(w))+0,
then d,(7,s(w)) is decomposable and the factors have an element u. We can
consider as follows:

dr(rps(w)) = zu'TPS‘].(w)k(l)'Tps—i(w>k(2) e wk(s)'Xé"{_ oy,

where 0==¢t<n and 2#0. Comparing the total degrees, we have
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(2.6) 20 po+1 = 1420 E(1)- p*~ +2n- B (2)- p*~24 -+ +2m- k(s)+2t.

Comparing the filtration degrees, we get an inequality: 2-p*—1>1+42-k(1)-
Pt oo +2-k(s) and so 2n-p*>2n+2n-k(1)-p* 4 - +2n-k(s). Since n=1
and 0<t<n, the above inequality contradicts the equality (2.6). Hence this
spectral sequence {E.(CP(n)), d.(CP(n))} collapses at the E,-term. From Pro-
position 1.7 (2), we can conclude that p=T(CP(n)) if n+1=0mod p. Suppose
that n-+15£0 mod p. Using the differential Hopf algebra structure in
{E.(CP(n)), d.(CP(n))}, it follows that {E,(CP(n)), d.(CP(n))} collapses at the
E,-term. From [Proposition 1.7] (1), p&£T(CP(n)) if n+1z=0 mod p. Hence the
proof of (1) is complete. Similarly, we have (2) and (3).
(4) and (5). By we have

01 = —cEH (=1t 1eics+-2tet et - if m=2t,
and

01 = P —(2t+1)ci e+ (—1) st e if m=2t41.

Hence, in H*(U(m+n)/Um)xU(n); Kp), 0p,/dc,=—Qt+1)ci +(—1)*(t+1)cs+
2tc¥%c,+ - #0 for any p if m=2t, 00,/0c,=2t+2)ci* —2t(2t+1)cT cot -
#0 for any odd prime p, and 0p,/0co=—2t+1)c}*+(—1)"*(¢+1)cs+ -+ #0 for
p=2, if m=2t+1. Moreover the spectral sequence {E . (U(m+n)/U(m)xU(n)),
d.(Um+n)/Um)xU (n))} satisfies the condition of [Proposition 1.7/(1). Therefore
we have (4). Similarly, we get (5).

(6) Suppose p=2. From [Lemma 2.3 (3), [Theorem 3 can be applied in this

case. We see that 2 T(Sp(n)/U(n)). Suppose p=+2. By Lemma 2.3 (3), we
obtain that

%,[nm“):{ ci—2¢,#0 if »n is even, and n=4,

0cy -y 4ci+0 if n=2,
and
@(_;g;;ezl)z —2¢,#0  if n is odd,

in  HXSp(n)/U(n); K,). Since the spectral sequence {E.(Sp(n)/U(n)),
d.(Sp(n)/U(n))} collapses at the E,-term, applying [Proposition 1.7/(1), it follows
that p&T(Sp(n)/U(n)).

(7) As is known
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H*(SO(m+n)/SO(n); K,)

A(€2n+3, Contry "7 €2n+2m—a)®Kp[xn]/(xvzz)
if n is even and m is odd

A(92n+3, Can+7s ' 5 C2nt+2m-5, e1’z+m-1)®Kp[xn]/(erz)

if » and m are even,

~

where p+2. From [Proposition 1.7 (1), it follows that p&T(SO(n-+n)/SO(n))
for any odd prime p.

(8), (9) and (10). Suppose n is odd and p+2. The morphism
(2r)*: QH*(Q(SO(m~+n)/SO(n)); K,)—QH*(2(Spin m+n)); K,)is monomorphic
where © is composite of the universal covering 7 : Spin (m+n)—>SO(m-+n) and
the natural projection p: SO(m-+n)—SO(m-+n)/SO(n). Since 2 (Spin(m-+n)) is
totally non-homologous to zero in A (Spin (m+n)) with respect to K, (see [6;
Lemma 3]), comparing {E,(SO(m+n)/SO(n)), d.(SO(m+n)/SO(n))} with
{E ,(Spin (m—+n)), d.(Spin (m+n))}, it follows that the spectral sequence
{E.(S0(m+n)/SO(n)), d(SO(m+n)/SO(n))} collapses at the E,-term. There-
fore p=T(SO(m-+n)/SO(n)) for any odd prime p if n is odd. Similarly, we
have (9) and (10). g.e.d.

§3. Proof of Theorem 4.

L. Smith has prove by comparing {E.(X), d.,(X)} with
{E(Py), d.(P,)}, where the space P, is in the (k+1)-stage Postnikov system
which D. Kraines has given in [3]. We prove with the same
method.

REMARK 3.1. Consider the (k-41)-stage Postnikov system [3; Theorem 4.2]
which D. Kraines has given:

K(Z/2, 2*m+1)—_, P,

Tk
Ap-1
P, ———> K(Z/2, 2*m+2)

(3.1)

A
K(Z/2, 2m+1) =0 P, ——— K(Z/2, 4m—+2)

T1

2
K(Z/2, 1) =P, — > K(Z/2, 244)
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where m=2%"'—1. Using the fact P; is a H-space and considering the mod 2
Eilenberg-Moore spectral sequence of the fiber square

P, —— PK(Z/2, 2°"'m+2)
Ts l \i] and {Er(Ps)y C?r(Ps)};

p Bt K(Z/2, 2m-+2)
we see that each P, (s=1) satisfies the following ([2], [3]):
(3.2)  H¥Ps; Z/2) = Z:[e ]/ ()R Z/2[571Sq* ™tasm+a, $7'S¢'Sq” " tasm+2 JQPoOLy,
SqH(sTISg  ™tasmes) = S 2S¢ SGF ™essm s
where Poly is an appropriate polynomial algebra.
3.3) 7¥e) =¢ and A(lesiimez) = ST S SG ™tasmas

(3.4) In the spectral sequence {E,(P.), d.(P)}, d,(72:(z(¢*)) is zero for any
0<i<s—1 and ». Moreover, the elements 7::(z(c}*)) and s }(s7'Sg'Sq* ™tssm+2)
survive to the Ess+i_s-term and das+i_i(Po)(7as(z(ed*)=5"(s"Sq*Sq* ™tasm+2)-

In order to prove [Theorem 4, it suffices to show that 2(SO(m-+n)/SO(n))
is totally non-homologous to zero in A(SO(m+n)/SO(n)) with respect to Z/2.

Let all coefficients of cohomologies be the field Z/2 and spectral sequences in
the field Z/2.

PRrROOF OF THEOREM 4. For any j=/J\UJ’, choose a map g;: SO(k+n)/SO(n)
—K(Z/2, j)=P, such that g¥*(;)=x;. In [8.1), put u=r;. Then it follows that
g; has a lift g;, in P,. Suppose g, has a lift g, ; up to P, and does not have
a lift in Pgy.  Put V. ,=S0(k+n)/SOn). Let {g,}:{E(Py), d.(P)}—
{E+(Vi.n), d:(V. 2)} be the morphism of spectral sequences induced by g, . and
{77} AE(Vin), de(Vi )} —{E(Spin(k+n)), d.(Spin(k+n))} the morphism of
spectral sequences induced by x. From Lemmas [.4, and Remark 3.1, we
have

dost11(V i, 2)Tes(wy) = das+121(V i n) Gas+1-1(72s5(105))
= Gos+1.1das+1_1(Pe)(125(0 ;) = Zost11([aR1—1Qa])
= [gj.s*(a)®1_l®gj,s*(a):| »

where w; and @; are the algebra generators in E.(V, ) and E.(P;) associated
with x; and ¢; respectively, and a=s"1S¢"Sq* ™tssm+2; m=7-273"*—1. Moreover,

das+1-2(Spin (B +n))fast11(Tes(w ) = fosr11([€1. M (@)R1—1Rg;, s*(a)])
= [7*g;, ML =1Q9m*g;, ()] .

Since g; does not have a lift in P;,,, it follows that g¥(a)#0. From the as-
sumption, there exists an integer 7 such that d(z*g; *(@))/0x,~0 in



Free loops on the Grassmann and Stiefel manifolds 345

H*(Spin(k+n); Z/2). Applying Lemma 1.5, we have that dss+:_,(Spin(k+n))
#0, which contradicts [Proposition 1.7 (2). Therefore, g; has a lift g, in P,
for any j and s. Using the same argument as the proof of [6; Theorem], we
see that {E,(V4. ), d+-(Vy.»)} collapses at the FE,-term. From [Proposition 1.7
(2), it follows that 2 T(SO(k-+n)/SO(n)). g.e.d.

PrROOF OF COROLLARY 5. (1) It suffices to show that 2&eT(SO4+n)/SO(n)).
In fact, since *: QH*(SO@+n)/SO(n); Z/2)»QH*SOm+n)/SO(n); Z/2) is
epimorphic, where m=<4 and i is the map induced by the inclusion map
7: SO(m+n)SO@4+n), it follows that 2 T(SO(m+n)/SO(n)) for any 1<m=<4,
by applying the Leray-Serre spectral sequence (or [Proposition 1.7 (2)).

Now let us prove that 2T (SO@4+n)/SO(n)). We have the following table
of the behavior of Sq! in H¥(SO@A-+n)/SO(n); Z/2)=AM(xs, Xni1, Xnte) Xnis) '

XnXn+1Xa+e XnXn+1Xn+s XnXn+2Xn+s Xn+1Xn+2Xn+3

@Bn+3) S (3n+4) Bn+5) N\ (3n+6)

/\ XnXnast Xnp1Xnqe /\
xnle+1 XnXnso (2n+3) Xn+1Xn+s3 xn+2xn+3
@2n+1) (2n+2) XnXnss Xns1Xnsz / (2n-+4) (2n+5)

\ \
/\ .
Xn Xn+1 Xn+2 Xn+s ’

(n) > (n+1) (n+2) >"(n+3)

the upper arrows mean the behavior of S¢' when #» is even and the lower
arrows mean those when n is odd.

Suppose n==m=4. Let s be the dimensions of V such that V* may be non-
zero. Since 3n-+6 is the largest of the dimensions 7 such that (Im S¢')* is not
trivial, s is equal to n-22—2242 or (n+1)-2°—22+2. From the above table, we
see that V4" 2=V**+2={0}. When n=3 or 2, we can verify that V={0} with
concrete computation. Applying [Theorem 4], the proof is completed.

(2) Suppose n=m. Then

{s:j-21+k___2k+1+2 I ].EJU]', kgl}
Nt W< <J, €] =0

if and only if there exists an integer j such that 0z*p/dx;#0 in
H*(Spin(m+n); Z/2) for any non-zero element p<V. Therefore, we have the
former of this corollary by applying [Theorem 4. The latter is obtained by
solving an inequality ;e ji<<n-2°—2°+2. qg.e.d.

REMARK 3.2. When m=5 and n=8, we see that Sq¢(xsX10X11)=X5X10%12,
xsxoxe(m Sg ) 2*+2CV and that 7*(xsx0x10)=x2x2x2 in H*(Spin(13); Z/2).



346 K. KURIBAYASHI

Hence we have that d(x2ixix2)/dx;=0 for any free algebra generator x; in
H*(Spin(13); Z/2), so we can not apply in this case.
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