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Introduction.

Let $\rho:Sarrow\Delta_{\epsilon}$ be a proper flat morphism of a nonsingular threefold $S$ to a
disk A. $=\{t\in C;|t|<\epsilon\}$ with connected fibers. We call it a semi-stable degenera-
tion if $\rho$ is smooth over $\Delta_{\epsilon}^{*}=\Delta_{\epsilon}\backslash \{0\}$ and $S_{0}=\rho^{-1}(0)$ is a reduced divisor with
simple normal crossings. The divisor $S_{t}=\rho^{-1}(t)$ is called the singular fiber if
$t=0$ and it is called a general fiber if $t\neq 0$ . Let $\rho$ : $Sarrow\Delta_{\epsilon}$ be a semi-stable de-
generation and denote by $\rho^{o}$ : $S^{*}arrow\Delta_{\text{\’{e}}}^{*}$ its restriction to the punctured disk. Then
the fundamental group of $\Delta_{\text{\’{e}}}^{*}$ acts naturally on $H^{2}(S_{t}, Z),$ $t\neq 0$ . Let $N$ denote
the logarithm of the monodromy action. We say the degeneration $\rho:Sarrow\Delta_{\epsilon}$ is
a Type I (resp. Type II) degeneration if $N=0$ (resp. $N^{2}=0$). Type I degenera-
tions are attractive, since one must study them if he want to make the period
mapping proper.

In this article, we construct some semi-stable degenerations such that a
general fiber is a Castelnuovo surface, that is, a minimal algebraic surface of
general type with $c_{1}^{2}=3p_{g}-7$ whose canonical map is birational onto its image.

In \S 1, we recall some fundamental results on Castelnuovo surfaces found
in [1]. In \S 2, we construct a Type I degeneration. Note that a Castelnuovo
surface with $p_{g}=4$ is a quintic surface. Therefore, ours serves an explicit
example of Type I degenerations of quintic surfaces whose existence was shown
by Friedman [4] using Horikawa’s family of deformations of a numerical quintic
surface of type $II_{b}[5]$ . We also refer the reader to [4] for further discussions
on such degenerations. Friedman informed us that N. Shepherd-Barron con-
structed another Type I degeneration of quintic surfaces. The other examples
of Type I degenerations of surfaces of general type can be found in [4], [11]

and [12].

In \S 3, we extend Horikawa’s canonical resolution of singularities on double
coverings of surfaces [5] to the case of cyclic triple coverings. This is used
in \S 4 in order to construct Type II degenerations. In our example, the singular
fiber consists of a Castelnuovo surface $\Sigma$ and a rational surface $R$ , and the in-
variants of $\Sigma$ are the “next’‘ to those of a general fiber $S_{t}$ on the line $c_{1}^{2}=$

$3p_{g}-7$ , that is, $p_{g}(\Sigma)=p_{g}(S_{t})-1$ and $c_{1}^{2}(\Sigma)=c_{1}^{2}(S_{t})-3$ . Thus we can descend
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down along $c_{1}^{2}=3p_{g}-7$ by our Type II degenerations. An analogous phenomena
was observed by Usui [12] on the Noether-Horikawa lines $c_{1}^{2}=2p_{g}-4,2p_{g}-3$ .

1. Castelnuovo surfaces.

In this section, we recall some fundamental properties of Castelnuovo sur-
faces which can be found in [1].

1.1. Let $a,$ $b,$ $c$ be integers satisfying

(1.1) $0\leqq a$ $ $b\leqq c$ , $a+b\perp_{C}>0$ .
We denote by $P_{a.b.e}$ the $P^{2}$-bundle $P(O_{P1}(a)\oplus O_{P1}(b)\oplus \mathcal{O}_{P1}(c))$ over the projective
line $P^{1}$ . We denote by di the projection and put

$T$ : the (relatively ample) tautological divisor,

$F$ : a fiber of $\overline{\omega}:P_{a.b.c}arrow P^{1}$ .
We consider an irreducible member $S\in|4T-(a+b+c-2)F|$ which has at most
rational double points (RDP’s for short). Since the dualizing sheaf is given by
$\omega_{S}=O_{S}(T)$ , the minimal resolution $\tilde{S}$ of $S$ is a surface whose canonical map is
birational onto its image. Furthermore, its numerical invariants are given by

$p_{g}(\tilde{S})=a+b+c+3$ , $q(S)=0$ ,
(1.2)

$c_{1^{2}}(\S)=T^{2}S=3p_{g}(\tilde{S})-7$ .
Conversely, almost all surfaces with $c_{1^{2}}=3p_{g}-7$ whose canonical map is bira-
tional arises in this way [1, \S 1]. On the other hand, Castelnuovo’s second in-
equality ([2, p. 228]) says that a minimal $surface_{\sim}$ of general type satisfies $c_{1}^{2}\geqq$

$3p_{g}-7$ if its canonical map is birational onto its image. Since $\tilde{S}$ achieves the
lower bound, we call it a Castelnuovo surface of tyPe $(a, b, c)$ . Note that the
projection di induces on $\hat{S}$ a pencil of non-hyperelliptic curves of genus 3.

1.2. Put $a=b=0$ and $c=1$ . Then (1.2) shows that $\tilde{S}$ is a numerical quintic
surface. It can be shown that the canonical image of $\tilde{S}$ contains a line [1,
Proposition 2.5]. Conversely, let $S’$ be a quintic surface with at most RDP’s
and assume that it contains a line 1. Then, by blowing up $P^{3}$ along 1, we get
$P_{0.0.1}$ and the minimal resolution of the proper transform of $S’$ is a Castelnuovo
surface of type $(0,0,1)$ .

The following can be found in [1, \S \S 3-4].

LEMMA 1.3. Assume that $4a\geqq p_{g}-5$ . Then a Castelnuovo surface of type
$(a, b, c)$ is simply cmnected. Further, if it is generic, the Kuranishi space is non-
singular and the infinitesimal Torelli theorem holds.
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1.4. Returning to the situation of 1.1, we define a subclass of Castelnuovo
surfaces. Among others, we use the following notation. For any nonnegative
integer $d$ , we denote by $\Sigma_{a}$ the Hirzebruch surface of degree $d$ . We let $C_{0}$

and‘ $f$ denote the section $(C_{0}^{2}=d)$ and a fiber of $\Sigma_{a}arrow P^{1}$ , respectively.
We choose sections $X_{0},$ $X_{1}$ and $X_{2}$ of $[T-aF],$ $[T-bF]$ and $[T-cF]$ , re-

spectively, in such a way that they form a system of homogeneous coordinates
on each fiber of $P_{a.b.c}arrow P^{1}$ . Assume that $S$ contains the line $Z$ defined by $X_{1}=$

$X_{2}=0$ . If $v:Xarrow P_{a.b.\iota}$ denotes the blowing-up with center $Z,$ $X$ is isomorphic
to $P(O_{\Sigma_{c-b}}\oplus O_{\Sigma_{c-b}}(C_{0}+(b-a)f))$ . Let $\pi$ : $Xarrow\Sigma_{c-b}$ be the projection and $H$ the
tautological divisor on $X$ . Then the proper transform $S’$ of $S$ by $\nu$ is linearly
equivalent to $3H+\pi^{*}(C_{0}+(2a+2-c)f)$ . If we denote by $\tilde{S}$ the minimal resolu-
tion of $S’$ , then the natural map $\tilde{S}arrow\Sigma_{m-l}$ induced by $\pi$ is clearly of degree 3.
For this reason, we call such $\tilde{S}$ a trigonal Castelnuovo surface.

2. Type I degenerations.

The purpose of this section is to construct Type I degenerations of Castel-
nuovo surfaces. Our idea is to degenerate the pencil of nonhyperelliptic curves
of genus 3 on a Castelnuovo surface to a pencil of hyperelliptic curves.

2.1. We keep the notation of \S 1. Assume that $3a-\vdash 2\geqq b+c$ . Then the
linear system $|4T-(a+b+c-2)F|$ is free from base points. Take two integers
$\alpha,$ $\beta$ satisfying

(2.1) $a+b+c-2=2\alpha-\beta$ , $2a\geqq\alpha,$ $\beta\geqq 0$ .

We remark that $M_{\alpha}|,$ $M_{\alpha}=2T-\alpha F$ is free from base points. We choose $q\in$

$H^{0}(P_{a.b.g}, O(M_{\alpha}))$ which defines an irreducible nonsingular divisor $Q$ . Let $\epsilon$ be
a sufficiently small positive number and put A. $=\{z\in C;|z|<\epsilon\}$ . We consider a
family $\{S_{t}\}_{t\in_{\Delta_{8}}}$ of subvarieties of the $P^{1}$ -bundle $Y=P(O\oplus O(M_{\alpha}))arrow P_{a.b}$ . , defined
by

(2.2) $S_{t}$ : $\{a_{0}Y_{0}^{2}+a_{1}Y_{0}Y_{1}+a_{0}Y_{1}^{2}=0$ , $t\in\Delta_{\epsilon}$

$tY_{0}=qY_{1}$

where $(Y_{0}, Y_{1})$ is a system of homogeneous coordinates on fibers of $Yarrow P_{a.b.c}$

and $a_{j}\in H^{0}(P_{a.b.t}, O(jM_{a}+\beta F)),$ $0\leqq j\leqq 2$ . We assume that $a_{j}$ are general. If
$t\neq 0$ , then $S_{t}$ is biholomorphically equivalent to a surface in $P_{a.b.t}$ defined by
the equation

(2.3) $a_{0}q^{2}+ta_{1}q+t^{2}a_{2}=0$ .
By (2.1), we see that $S_{t}$ is a Castelnuovo surface of type $(a, b, c)$ . On the other
hand, $S_{0}$ consists of $\beta+1$ components. One of them is a double covering of $Q$
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and each of the other is isomorphic to $P^{2}$ .

LEMMA 2.2. For a generic choice of $q$ and $a_{j},$ $0\leqq j\leqq 2,$ $S_{0}$ is a divisor with
simple normal crossings consisting of a minimal surface $\Sigma$ with $c_{1}^{2}=3p_{g}-7-\beta$

and $\beta$ disjoint coffles of $P^{2}$ . Furthermore, a double curve $\Sigma\cap P^{2}$ is a smooth
conic (in $P^{2}$ ) and $p_{g}(\Sigma)=p_{g}(S_{t}),$ $t\neq 0$ .

PROOF. Putting $t=0$ in the second equation of (2.2), we get $Y_{1}=0$ or $q=0$ .
If $Y_{1}=0$ , then we get $a_{0}=0$ from the first equation. Since $a_{0}$ can be identified
with a homogeneous form of degree $\beta$ on $P^{1}$ , we may assume that its zeros
are mutually distinct and give $\beta$ fibers $F_{1},$ $\cdots$ $F_{\beta}$ on $P_{a.b.t}$ . Thus $Y_{0}=a_{0}=0$

defines a section $F_{j}$ of the $P^{1}$-bundle $Y|_{F_{j}}arrow F_{j}$ for each $j,$ $1\leqq j\leqq\beta$ and there-
fore $\hat{F}_{j}\cong P^{2}$ . We next consider the case $q=0$ . The first equation of (2.2) de-
fines a double covering $\Sigma$ of $Q$ .

CLAIM. $\Sigma$ is a regular minimal surface with $c_{1}^{2}(\Sigma)=3p_{g}(\Sigma)-7-\beta$ . Further,
its geometric genus equals that of a general fiber $S_{t}$ .

PROOF. We denote the restriction of $T$, etc. to $Q$ by the same symbol if
there is no danger of confusion. Then $\Sigma$ is a divisor on $Y_{Q}$ $:=Y|_{Q}$ linearly
equivalent to $2\sigma\tau+\Pi*(\beta F)$ , where $\xi\tau$ is a tautological divisor and $\Pi$ is the pro-
jection map of $Y_{Q}$ . It is easy to see that the linear system $|2f+\Pi*(\beta F)|$ is
free from base points. Therefore, we can assume that $\Sigma$ is irreducible and
nonsingular. Since the canonical bundle of $Y_{Q}$ is given by

$K_{Y_{Q}}=O_{Y_{Q}}(-2f+\Pi*(T-\beta F))$ ,

we see that the canonical bundle of $\Sigma$ is

$K_{\Sigma}=(K_{Y_{Q}}+\Sigma)|_{\Sigma}=O_{\Sigma}(\Pi*\tau)$ .
Since $\Pi|_{\Sigma}$ is of degree 2, we have

$K_{\Sigma}^{2}=2(T|_{Q})^{2}$ (on $Q$ )

$=2T^{2}(2T-\alpha F)$ (on $P_{a.b.c}$ )

$=3(a+b+c+3)-7-\beta$ .
Consider the exact sequence

$0arrow O(K_{Y_{Q}})arrow O(K_{Y_{Q}}+\Sigma)arrow O_{\Sigma}(K_{\Sigma})arrow 0$ .
Since $Y_{Q}$ is rational, we have

$H^{p}(Y_{Q}, o(K_{Y_{Q}}))\cong\{c0 ^{if} p=3,$

otherwise.
Therefore, for $p<2$ , we have
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$H^{p}(\Sigma, \mathcal{O}(K_{\Sigma}))\cong H^{p}(Y_{Q}, O(K_{Y_{Q}}+\Sigma))\cong H^{p}(Q, \mathcal{O}(T))$ .
We consider the exact sequence

$0arrow O_{P_{a\cdot bc}},(T-Q)arrow \mathcal{O}_{P_{a\cdot b\cdot c}}(T)arrow \mathcal{O}_{Q}(T)arrow 0$ .

Since $T-Q\sim-T+\alpha F$, we have $H^{p}(P_{a.b.\iota}, \mathcal{O}(T-Q))=0$ for any $p$ . Therefore,

$h^{0}(\Sigma, \mathcal{O}(K_{\Sigma}))=h^{0}(P_{a.b.c}, \mathcal{O}(T))=a+b+c+3$ ,

$h^{1}(\Sigma, \mathcal{O})=h^{1}(\Sigma, O(K_{\Sigma}))=0$ .

This gives the assertion.
TO complete the proof of Lemma 2.2, we must study the intersection

$\Sigma\cap(Y_{1}=a_{0}=0)$ . Since $Q$ is a conic bundle, we can assume that $QAF_{j}$ is a
smooth conic for all $j$ (viewed in $F_{j}\cong P^{2}$ ). Putting $t=q=a_{0}=0$ in (2.2), we get

$(a_{1}Y_{0}+a_{2}Y_{1})Y_{1}=0$ .

In this expression, $Y_{1}=0$ gives $\Sigma\cap\tilde{F}_{j}$ . Thus if we choose $a_{1},$ $a_{2}$ generic, $\Sigma_{\cap}F_{j}$

is mapped isomorphically to $Q\cap F_{j}$ via the projection $Yarrow P_{a.b,c}$ .
Q. E. D. of Lemma 2.2.

The above consideration is summarized in the following:

THEOREM 2.3. There exists a semi-stable degeneration $\rho$ : $Sarrow\Delta_{s}$ satisfying
the following properties.

(1) A general fiber $S_{t}$ is a Castelnuovo surface.
(2) The singular fiber $S_{0}=\Sigma\cup$ ( $\beta$ disjoint $co\mu es$ of $P^{2}$ ), where $\Sigma$ is a minimal

surface of general type with $c_{1}^{2}=3p_{g}-7-\beta$ , and $\Sigma\cap P^{2}$ is a conic.
(3) $\rho$ is a Type I degeneration.

PROOF. (1) and (2) follow from the construction. (3) is a consequence of
the Clemens-Schmid exact sequence (see, $e.g.,$ $[3]$ or [8]).

Furthermore, we can show the following. Since the proof follows easily
from the arguments in [4], [7], we omit it.

PROPOSITION 2.4. Let $\rho^{o}$ : $S^{*}arrow\Delta_{\epsilon}^{*}$ denote the restriction of the family in
Theorem 2.3 to the punctured disk $\Delta_{\epsilon}^{*}=\Delta_{\epsilon}-\{0\}$ . Then the following hold.

(1) NO base change of it may be filled in smoothly, if $\beta>0$ .
(2) Some power of the Picard-Lefschetz diffeomorphism is homotopic to the

identity.

REMARK 2.5. We see the following from our construction.
(1) Put $(a, b, c)=(O, 0,1)$ and $(\alpha, \beta)=(0,1)$ . Then we get an example of

Type I degeneration of quintic surfaces. The main component $\Sigma$ of the singular
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fiber is of type (0) according to Horikawa’s classification of surfaces with
$(p_{g}, c_{1^{2}})=(4,4)([6])$ . The existence of such a degeneration was shown by
Friedman [4] using a complicated family of deformations of a numerical quintic
surface (of type $II_{b}$ ) due to Horikawa [5].

(2) If $\beta=0$ , then we get a family of surfaces with $c_{1^{2}}=3p_{g}-7$ . The
canonical map of the central fiber is of degree 2. On the other hand, that of a
general fiber is birational. This example was already found in [1, \S 4].

2.6. (Variants) The construction in 2.1 is so simple that we can generalize
it, for example, to the following set-up:

$P$ : an irreducible nonsingular projective variety,
$D_{1},$ $D_{2}$ : divisors on $P$,
$p:P(\mathcal{E})arrow P$ : the $P^{2}$-bundle associated with a locally free sheaf $\mathcal{E}$ of rank 3

on $P$,
$T$ : the tautological divisor such that $O(T)=O_{P(\mathcal{E})}(1)$ .

Assume that
(1) general members of $|2T+p^{*}D_{1}|$ and $|4T+p^{*}(2D_{1}+D_{2})|$ are irreducible

nonsingular, and
(2) general members of $|D_{2}|$ are nonsingular.

Then, as in 2.1, we can construct a semi-stable degeneration $\{Y_{t}\}_{e\in_{\Delta_{8}}}$ satisfying:
(3) a general fiber $Y_{t}$ is a nonsingular member of $|4T+p^{*}(2D_{1}+D_{2})|$ ,
(4) the singular fiber $Y_{0}=\Sigma\cup R$ , where

(i) $\Sigma$ is a double covering of a nonsingular $Q\in|2T+p^{*}D_{1}|$ ,

(ii) $R$ is a $P^{2}$-bundle on a nonsingular $D\in|D_{2}|$ , and
(iii) $\Sigma$ and $R$ intersect transversally along a conic bundle on $D$ .

In particular, when $P$ is a curve, one gets various examples of Type I de-
generations of surfaces in this way. If we put harmlessly $D_{2}=0$ , then we get
a family of deformations such that, under a suitable assumption, the canonical
maps of $Y_{t}$ and $Y_{0}$ may have different flavors.

3. Canonical resolution for cyclic triple coverings.

In [5, \S 2], Horikawa gave a method, called the canonical resolution, in
order to resolve singularities on double coverings of surfaces. In this section,
we extend it to cyclic triple coverings of surfaces.

3.1. Let $V$ be a nonsingular surface and $L$ a line bundle on $V$ . We denote
by $\pi:X=P(O_{V}\oplus O_{V}(L))arrow V$ the $P^{1}$-bundle associated with $L$ . Let $H$ be the
tautological divisor on $X$ and consider the complete linear system $|3H+\pi^{*}A|$ ,
where $A$ is a divisor on $V$ . If we fix a system of fiber coordinates $(Z_{0}, Z_{1})$ on
$X$ , then any section $\phi\in H^{0}(V, O_{V}(3H+\pi^{*}A))$ can be written as
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$\phi=\phi_{A}Z_{0^{3}}+\phi_{A+L}Z_{0}^{2}Z_{1}+\phi_{A+2L}Z_{0}Z_{1}^{2}+\phi_{A+3L}Z_{1}^{3}$ ,

where $\phi_{A+iL}\in H^{0}(V, O_{V}(A+iL))$ for $0\leqq i\leqq 3$ . We set

$|3H+\pi^{*}A|_{C}=\{(\emptyset)\in|3H+\pi^{*}A| ; \phi=\phi_{A}Z_{0^{3}}+\phi_{A+3L}Z_{1}^{3}\}$ ,

where $(\emptyset)$ is the divior defined by $\phi$ . We call it the cyclic subsystem of
$|3H+\pi^{*}A|$ . For any member $(\emptyset)\in|3H+\pi^{*}A|_{C}$ , we call the divisors $B_{\phi}=$

$(\phi_{A+3L})$ and $B_{\phi}’=(\phi_{A})$ the branch locus and the assistant branch locus of $(\emptyset)$ ,
respectively. With this notation, we define the good-cyclic subsystem 3$H+\pi^{*}A|_{GC}$

by the following two properties:
(1) $B_{\phi}$ is reduced and $B_{\phi}’$ is nonsingular.
(2) $B_{\phi}’$ passes through no singular points of $B_{\phi}$ , and they meet transver-

sally.
Take a member $S=(\emptyset)\in|3H+\pi^{*}A|_{cc}$ . We write $B=B_{\phi}$ and $B’=B_{\phi}’$ for

the sake of simplicity. It follows from the definition of the good-cyclic system

that $S$ is an irreducible normal surface. Furthermore, it is easy to see that a
point $P\in S$ is a singular point of $S$ if and only if $\pi(P)\in Sing(B)$ , the singular
locus of $B$ . Thus the local analytic equation of $P\in Sing(S)$ is of the form
$\xi^{3}+f(x, y)=0$ .

REMARK 3.2. By a result of Wavrik [13, \S 1], for a finite cyclic triple
covering of surfaces $Sarrow V$ , we can find a line bundle $L$ on $V$ so that $S$ can be
considered as a member of $|3H|_{C}$ on $X=P(O_{V}\oplus O_{V}(L))$ . This is a typical ex-
ample of our situation.

3.3. We now give a method to resolve singularities on $S$ , which proceeds
inductively as follows:

SteP (1). Take a point $P_{1}\in Sing(B)$ and denote by $m_{1}$ the multiplicity of
$B$ at $P_{1}$ . Let $\tau_{1}$ : $V_{1}arrow V$ be the blow-up of $V$ at $P_{1}$ . Then we have $\tau_{1}^{*}B=$

$B_{1}+m_{1}E_{1}$ , where $B_{1}$ is the proper transform of $B$ by $\tau_{1}$ and $E_{1}=\tau_{1}^{-1}(P_{1})$ is the
exceptional curve. We define the line bundle $L(1)$ and divisors $B(1),$ $B’(1)$ and
$A(1)$ on $V_{1}$ by

$L(1)=\tau_{1}^{*}L\otimes O_{V_{1}}(-[m_{1}/3]E_{1})$ , $B(1)=\tau_{1}^{*}B-3[m_{1}/3]E_{1}$ ,

$B’(1)=\tau_{1^{*}}B’$ and $A(1)=\tau_{1}^{*}A$ ,

where $[m_{1}/3]$ is the greatest integer not exceeding $m_{1}/3$ . We put $X_{1}=$

$P(\mathcal{O}_{V_{1}}\oplus O_{V_{1}}(L(1)))$ and denote its projection map by $\pi_{1}$ . We let $H_{1}$ denote the tau-
tological divisor on $X_{1}$ . Since we have $B(1)\sim 3L(1)+A(1)$ and $B’(1)\sim A(1)$ , the
pair $(B(1), B’(1)):defines$ a member $S_{1}$ of $|3H_{1}+\pi_{1}^{*}A(1)|_{C}$ on $X_{1}$ . The composite
of the sheaf homomorphisms

$\tau_{1^{*}}$

$O_{V}(L)arrow O_{V_{1}}(\tau_{1}^{*}L)arrow O_{V_{1}}(L(1))$ ,
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where the last map is obtained by tensoring $O_{V_{1}}(-[m_{1}/3]E_{1})$ , induces the mor-
phism $\tilde{\mu}_{1}$ : $X_{1}arrow X$ . From this, we get a birational morphism $\mu_{1}=\tilde{\mu}_{1}|_{S_{1}}$ : $S_{1}arrow S$ .
Here, we remark that $S_{1}$ is not necessarily normal, since $B(1)$ is not reduced
if $m_{1}\equiv 2(mod. 3)$ .

Step(i): Let $P_{i}$ be a polnt of Sing $(B(i-1)_{red})$ , where $B(i-1)_{rea}$ denotes
the reduced part of $B(i-1)$ . We denote by $m_{i}$ the multiplicity of $B(i-1)$ at $P_{i}$ .
Let $\tau_{i}$ : $V_{i}arrow V_{i-1}$ be the blow-up of $V_{i-1}$ at $P_{i}$ and set

$L(i)=\tau_{i^{*}}L(i-1)\otimes O_{V_{i-1}}(-[m_{i}/3]E_{i})$ ,

$B(i)=\tau_{i^{*}}B(i-1)-3[m_{i}/3]E_{i}$ , $B’(i)=\tau_{i^{*}}B’(i-1)$ ,

$A(i)=\tau_{i^{*}}A(i-1)$ ,

where $E_{i}=\tau_{i}^{-1}(P_{i})$ . From the pair $(B(i), B’(i))$ , we obtain a member $S_{i}\in$

$|3H_{i}+\pi_{i^{*}}A(i)|_{C}$ on $X_{i}=P(O_{V_{i}}\oplus O_{V_{i}}(L(i)))$ , where $H_{i}$ is the tautological divisor
and $\pi_{i}$ is the projection of $X_{i}$ . Further, as before, we get a birational mor-
phism $\mu_{i}$ : $S_{i}arrow S_{i-1}$ .

LEMMA 3.4. There exists a nonnegative integer $n$ such that the curve $B(n)_{red}$

is nonsingular.

PROOF. Clearly, there is a nonnegative integer $r$ such that, after Step $(r)$ ,
the proper transform of $B$ is nonsingular and $B(r)_{red}$ is a divisor with simple

$(\alpha, \beta)=(2,2)$ :

$arrow$ $arrow$

$(\alpha, \beta)=(1,2)$ :

$arrow$ $-1|^{--------}0t^{--}2$

$(a, \beta)=(1,1)$ :

$arrow$ $arrow$

Figure 1.
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normal crossings. Then the local analytic equation of a singular point $P$ of
$B(r)$ is of the form: $x^{\alpha}y^{\beta}=0$ , where $(\alpha, \beta)=(2,2),$ $(2,1)$ or $(1, 1)$ . Thus, if we
proceed the steps as in Figure 1, we get the desired result.

3.5. Let $n$ be the integer in Lemma 3.4. Then $B(n)_{rea}$ is nonsingular and
we have the diagram:

$\mu_{n}$ $\mu_{1}$

$S_{n}arrow$ $arrow S_{1}arrow S_{0}=S$

$\downarrow\pi_{n}$ $\downarrow\pi_{1}$ $\downarrow\pi_{0}=\pi$

$\tau_{n}$ $\tau_{1}$

$V_{n}arrow$ $arrow V_{1}arrow V_{0}=V$ .

We set $\mu=\mu_{1}\circ$
$\cdot$ ..

$\circ\mu_{n}$ and $\tau=\tau_{1}\circ$ $9\circ\tau_{n}$ . Let $B_{n}$ be the proper transform of $B$

by $\mu$ . Then we can write $B(n)$ in the form

$B(n)=B_{n}+2 \sum_{j\in J}E_{j}+E_{k}k\in K$

where $\{E_{j}, E_{k}\}_{j\in J.k\in K}$ are the part of the reduced components of exceptional
curves. Then the singular locus of $S_{n}$ coinsides with $\bigcup_{j\in J}\pi_{\overline{n}}^{1}(E_{j})$ and the local
analytic equation of Sing $(S_{n})$ is $\xi^{3}+x^{2}=0$ . We may call it the compound cusp
(see, Figure 2).

Figure 2.

If $\overline{\mu}:S^{*}arrow S_{n}$ denotes the normalization of $S_{n}$ , then $s*$ is nonsingular. We
call $\tilde{\mu}=\overline{\mu}^{Q}\mu:S^{*}arrow S$ the canonical resolution. In general, this is not the minimal
resolution. We get the minimal resolution $\tilde{S}$ of $S$ by contracting all (possibly
infinitely near) $(-1)$ curves on $s*$ .

We give the formula for calculating the difference between $(\chi(\mathcal{O}_{S}), \omega_{S^{2}})$ and
$(\chi(\mathcal{O}_{S*}), \omega_{S*}^{2})$ .

PROPOSITION 3.6. Let $\tilde{\mu}:S^{*}arrow S$ be the canonical resolution as above and $n$

the integer as in Lemma 3.4. Then,

(1) $\chi(\mathcal{O}_{S*})=\chi(\mathcal{O}_{S})-\frac{1}{2}\Sigma_{i\in I}[m_{i}/3](5[m_{i}/3]-3)+\Sigma_{j\in J}(1-C_{j^{2}})$ ,

(2) $\omega^{2}*=\omega\S-3\Sigma_{i\in I}(2[m_{i}/3]-1)^{2}+\Sigma_{j\in J}8$ ,

where $m_{i}$ is the multiplicity of $B(i-1)$ at the center of the blow-up $\tau_{i}$ : $V_{i}arrow V_{i-1}$ ,
$C_{J^{2}}$ is the self-intersection number in $s*$ of the nonsingular curve $C_{j}$ which is a
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reduced component of the pull-back by $\mu$ of the singular locus of $S_{n}$ .

PROOF. First, we shall measure the difference between the invariants
$(\chi(O_{S}), \omega_{S}^{2})$ and $(\chi(\mathcal{O}_{S_{n}}), \omega_{s_{n}}^{2})$ . Since $K_{X}+S\sim H+\pi^{*}(K_{V}+L+A)$ , by using the
exact sequence

0– $O(K_{X})arrow O(K_{X}+S)arrow\omega_{S}arrow 0$

and the fact that

$\pi_{*}O_{X}(H)\cong O_{V}\oplus O_{V}(L)$ , $R^{p}\pi_{*}O_{X}(H)=0$ $(p>0)$ ,
we get

(3.1) $\chi(O_{S})=x(\omega_{S})=\chi(K_{X}+S)-\chi(K_{X})$

$=\chi(K_{V}+L+A)+x(K_{V}+2L+A)-\chi(O_{V})$ .
Since, in the process of the canonical resolution, we have

$K_{V_{i}}\sim\tau_{i^{*}}K_{V_{i-1}}+E_{i}$ , $L(i)=\tau_{\ell^{*}}L(i-1)-[m_{i}/3]E_{i}$ , $A(i)=\tau_{i^{*}}A(i-1)$ ,

we get

(3.2) $K_{V_{i}}+L(i)+A(i)\sim\tau_{i^{*}}(K_{V_{i-1}}+L(i-1)+A(i-1))+(1-[m_{i}/3])E_{i}$ ,

$K_{V_{i}}+2L(i)+A(i)\sim\tau_{i^{*}}(K_{V_{i-1}}+2L(i-1)+A(i-1))+(1-2[m_{i}/3])E_{i}$ .

CLAIM. For a divisor $D$ on $V_{i-1}$ and an integer $k\geqq-1$ , set $D_{k}=\tau_{i^{*}}D-kE_{i}$ .
Then,

X(V,, $O(D_{k})$ ) $=\chi(V_{i-1}, O(D))-k(k+1)/2$ .

PROOF. If $k=-1$ , then this is easy. If $k\geqq 0$ , then we consider the exact
sequence

$0arrow \mathcal{O}(D_{k})arrow \mathcal{O}(D_{k-1})-O_{E_{i}}(k-1)arrow 0$

to conclude that $\chi(O(D_{k}))=x(O(D_{k-1}))-k$ . Therefore, we get the desired result
inductively.

By this, (3.1) and (3.2), a calculation shows

(3.3) $\chi(\mathcal{O}_{s_{n}})-\chi(O_{S})-\frac{1}{2}\sum_{i}[m_{i}/3](5[m_{i}/3]-3)$ .

Next, we compute $\omega_{s_{n}}^{2}$ . Since

$H_{\iota^{2}}=c_{1}(\mathcal{O}_{V_{i}}\oplus O_{V_{i}}(L(i)))\cdot H_{i}$ ,
we have

$\omega_{S_{i}}^{2}=(K_{X_{i}}+S_{i})^{2}\cdot S_{i}$

$=(H_{i}+\pi_{i^{*}}(K_{V_{i}}+L(i)+A(i)))^{2}(3H_{t}+\pi_{i^{*}}A(i))$

$=3(K_{r_{t}}+2L(i)+A(i))^{2}$ .
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It follows from (3.2) that

$\omega_{S_{i}}^{2}=3((K_{V_{i-1}}+2L(i-1)+A(i-1))^{2}-(2[m_{i}/3]-1)^{2})$

$=\omega_{S_{i-1}}^{2}-3(2[m_{i}/3]-1)^{2}$

Thus we get the following formula.

(3.4) $\omega_{s_{n}}^{2}=\omega_{S}^{2}-3\sum_{i}(2[m_{i}/3]-1)^{2}$

In order to get the formulae in Proposition 3.6, we have to measure the
contribution of the compound cusps. We remark that the singular locus of $S_{n}$

is the disjoint union of curves: $U_{j\in J}C_{j}$ . Put $\overline{\mu}^{*}C_{j}=\tilde{C}_{j}$ . Then $(\tilde{C}_{j})_{re\dot{a}}$ is iso-
morphic to $C_{j}$ and, identifying these, we have $\tilde{C}_{j}=2C_{j}$ . Let $\sigma:\tilde{X}arrow X_{n}$ be the
blow-up of $X_{n}$ with center $\bigcup_{j\in J}C_{j}$ , and let $\mathcal{E}_{j}=\sigma^{-1}(C_{j})$ be the exceptional
divisors. Then $s*$ is the proper transform of $S_{n}$ by $\sigma$ and $\overline{\mu}=\sigma|_{S*}$ . Thus we
have $S^{*\sim} \sigma^{*}S_{n}-2\sum_{j\in J}\mathcal{E}_{j}$ . From the exact sequence

$0arrow O_{\tilde{X}}(-\sigma^{*}S_{n})arrow 0_{\tilde{X}}arrow \mathcal{O}_{\sigma*s_{n}}arrow 0$ ,

it follows that
$\chi(\mathcal{O}_{\sigma*s_{n}})=x(\mathcal{O}_{\tilde{X}})-\chi(\mathcal{O}_{2}(-\sigma^{*}S_{n}))$

$=x(\mathcal{O}_{X})-\chi(O_{X}(-S_{n}))=x(o_{s_{n}})$ .

On the other hand, from the exact sequences

$0arrow \mathcal{O}_{2\Sigma 8_{j}}(-S^{*})arrow 0_{\sigma*s_{n}}arrow 0_{s*}arrow 0$ ,

$0 arrow\bigoplus_{j}\mathcal{O}_{\mathcal{E}_{j}}(-S^{*}-\mathcal{E}_{j})arrow O_{2\Sigma 8_{j}}(-S^{*})arrow\bigoplus_{j}O_{\mathcal{E}_{j}}(-S^{*})arrow 0$ ,

we get
$\chi(O_{\sigma*s_{n}})=x(o_{s*})+\chi(\mathcal{O}_{2\Sigma \mathcal{E}_{j}}(-S^{*}))$

$=x(O_{S*})+\Sigma_{j}\{\chi(O_{\mathcal{E}_{j}}(-S^{*}-\mathcal{E}_{j}))+x(O_{\mathcal{E}_{j}}(-S^{*}))\}$ .

Since $-S^{*}- \sum \mathcal{E}_{j}\sim\sum \mathcal{E}_{j}-\sigma^{*}S_{n}$ and since $\mathcal{E}_{j}$ is an exceptional divisor which can
be identified with a $P^{1}$-bundle on $C_{j}$ , we have

$\chi(O_{\mathcal{E}_{j}}(-S^{*}-\mathcal{E}_{j}))=x(O_{\mathcal{E}_{j}}(\mathcal{E}_{j}-\sigma^{*}S_{n}))=0$ .

Note that we have $O_{\mathcal{E}_{j}}(-S^{*})=\mathcal{O}_{\mathcal{E}_{j}}(-2C_{j})$ . Therefore, the exact sequences

$0arrow O_{8_{j}}(-2C_{j})arrow \mathcal{O}_{\mathcal{E}_{j}}arrow \mathcal{O}_{2c_{j}}arrow 0$ ,

$0arrow \mathcal{O}_{C_{j}}(-C_{j})arrow 0_{2c_{j}}arrow 0_{c_{j}}arrow 0$

show
$\chi(O_{\mathcal{E}_{f}}(-S^{*}))=x(\mathcal{O}_{\mathcal{E}_{j}})-\chi(O_{2c_{j}})$

$=x(\mathcal{O}_{\mathcal{E}_{f}})-\chi(\mathcal{O}_{C_{j}})-\chi(\mathcal{O}_{C_{j}}(-C_{j}))$

$=-\chi(\mathcal{O}_{C_{j}})+\deg([C_{j}]|_{C_{j}})$ .
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Since $C_{j}$ is isomorphic to $P^{1}$ , by summing up, we get

$\chi(O_{S*})=x(\mathcal{O}_{S_{n}})+\sum_{j}(1-C_{j^{2}})$ .

On the other hand, since we have

$\overline{\mu}^{*}\omega_{S_{n}}\sim\omega_{s*}+\sum_{j}\tilde{C}_{j}\sim\omega_{S*}+2\sum_{j}C_{j}$ ,

we get
$\omega_{s_{n}}^{2}=(\overline{\mu}^{*}\omega_{S_{n}})^{2}=\omega_{S*}^{2}+4\Sigma_{j}(\omega_{S*}\cdot C_{j}+C_{j}^{2})$

$=\omega_{S*}^{2}+\Sigma_{J}\mathfrak{Z}$ .

This completes the proof of Proposition 3.6.

EXAMPLE 3.7. By means of our canonical resolution, we resolve some iso-
lated singularities on a surface $S$ . Let $P$ be an isolated singularity on $S$ whose
local analytic equation is of the form $\xi^{3}+f(x, y)=0$ . As in [1, \S 5], we define
the type of singularity $P$ by $(\chi(O_{S})-\chi(O_{\tilde{S}}):\omega_{S}^{2}-\omega_{\tilde{s}}^{2})$ , where $\tilde{S}$ is the minimal
resolution of $P\in S$ . If $s*$ denotes the canonical resolution, we can calculate it
by Proposition 3.6, since we have $\chi(O_{S})=x(O_{S*})$ and $\omega_{\tilde{s}}^{2}=\omega_{s*}^{2}+(the$ number of
contructions). For convenience, we explain by drawing figures. The types of
the singularities are also indicated.

We use the following notation in the figures: A line stands for a curve
and the number near it is its self-intersection number.

On $V_{i}$ : a solid line means a component of the reduced brunch locus, a
double line means a component of the double branch locus and a broken line
means an exceptional curve which is not a component of the branch locus.

On $s*$ and $\tilde{S}$ : a solid line means an exceptional rational curve, a double
line means an exceptional elliptic curve and a broken line means the inverse
image of the branch locus.

EXAMPLE 1. $\xi^{3}+xy=0$ (a RDP of type $A_{2}$); Type $(0:0)$ .

EXAMPLE 2. $\xi^{3}+x^{3}+y^{3}=0$ (a simple elliptic singularity of type $E_{6}$ , see [9];

Type (1: 3).

EXAMPLE 3. $\xi^{3}+x^{2}+y^{6}=0$ (a simple elliptic singularity of type $E_{s}$), see
[9]; Type (1: 1).

EXAMPLE 4. $\xi^{3}+x^{5}+y^{5}=0$ ; Type (3: 10). Compare this with Tomari [10

(2.9) $]$ .
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$arrow$ $arrow$

$\tau_{1}$ $-2$

$V$ $V_{1}$ $V_{2}$

$\nearrow_{\overline{\mu}\cdot d}\sim_{2}$

$arrow$
blow down

$\tilde{S}$

Figure 3.

$s*$

$arrow\tau_{1}$

$-\}--\{--\}-$
$arrow\overline{\mu}\cdot\pi_{1}$

$\frac{\frac{I|I\mathfrak{l}|II1I1I}{}}{IIt,|1|II|||}-3$

$V$ $V_{1}$ $S^{*}=\tilde{S}$

Figure 4.

$arrow$ $arrow$

$V$ $V_{1}$ $V_{2}$

$\uparrow$

blow down
$arrow 3$-times

$\tilde{s}$

$s*$

$|^{-3}$

$-1$ $\equiv|$

$arrow$ $\frac{||-3|^{-}|}{\underline{|}I||}1$

$+$
$V_{s}$

Figure 5.
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$V$ $V_{1}$

$S^{*}=\tilde{S}$

$\wedge|/||\wedge^{t}/1$$/\nearrow\nearrow^{1}$

$arrow-611|I|\underline{\underline{\mathfrak{l}1II|}|||}$

$-1_{1}^{1}-1_{I}^{I}-1_{I}^{1}-1_{1}^{1}-1_{1}^{I}$

$v_{2}$

$\nearrow$

Figure 6.

4. Type II degenerations.

In this section, we construct Type II degenerations of trigonal Castelnuovo
surfaces by using the canonical resolution given in the previous section. The
construction begun in 4.2 will show the following:

THEOREM 4.1. Let $x$ and $y$ be integers satisfying $y=3x-7$ and $x\geqq 5$ . Then
there exists a semi-stable degeneration $\rho:Sarrow\Delta_{\epsilon}$ of surfaces such that

(1) a general fiber $S_{t}$ is a trigonal Castelnuovo surface with $p_{g}(S_{t})=x$ and
$c_{1}(S_{t})^{2}=y$ ,

(2) the singular fiber $S_{0}$ comists of two reduced components $\Sigma$ and $R$ meet-
ing transversally, which satisfy

(i) $\Sigma$ is a trigonal Castelnuovo surface with $p_{g}(\Sigma)=x-1$ and $c_{1}(\Sigma)^{2}=y-3$ ,
(ii) $R$ is a nonsingular rational surface,
(iii) the double curve $C=\Sigma\cap R$ is a nonsingular elliptic curve,
(3) $\rho$ is a Type II degeneration.

4.2. We fix a fiber $\tilde{f}$ on $V=\Sigma_{m-1}$ and take a point $P$ on $\tilde{f}$. Assuming
that

(4.1) $3b+2>a+c$ ,

we take reduced members $\tilde{B}\in|4C_{0}+(3b+1-a-c)f|$ and $B’\in|C_{0}+(2a+2-c)f|$

on $V$ which satisfy the following conditions:
(1) The singularities of $\check{B}$ are at most ordinary double points and $P$ isIa

singular point of $\tilde{B}$ .
(2) $B’$ is nonsingular and meets transversally with $\tilde{B}$ (at nonsingular points).

We take a moving fiber $f_{t}$ which depends holomorphically on the parameter
$t\in\Delta_{\epsilon}$ and satisfies $f_{0}=\tilde{f}$. We assume that the divisor $B_{t}=\tilde{B}+f_{t}$ satisfies the
following conditions:
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(3) $P$ is an ordinary triple point of $B_{0}$ .
(4) $B_{t},$ $t\neq 0$ , has at most ordinary double points.
(5) $B$ meets $B_{t}$ transversally at nonsingular points.

Then, for each $t\in\Delta_{\epsilon}$ , the pair $(B_{t}, B’)$ defines a member $S_{t}\in|3H+\pi^{*}(C_{0}+$

$(2a+2-c)f)|_{GC}$ on $X=P(O_{V}\oplus O_{V}(C_{0}+(b-a)f))$ . We remark that $S_{t},$ $t\neq 0$ , has
at most RDP’s of type $A_{2}$ whereas $S_{0}$ has a unique elliptic singularity of type
$E_{6}$ in addition to RDP’s of type $A_{2}$ .

4.3. The collection $\{S_{t}\}_{\iota\in\Delta_{\epsilon}}$ defines a threefold $S’$ on $X\cross\Delta_{\epsilon}$ . By the canonical
resolution given in \S 3, we can resolve $S’$ in the following way: In the figures
below, the wavy line means the assistant branch locus. For the other notation,
see 3.7.

Step 1. The branch locus and the assistant branch locus on $V\cross\Delta_{\epsilon}$ near
$fx\Delta_{\epsilon}$ are as in Figure 7.

$CV\cross\{t\}$ $cv\cross\{0\}$

Figure 7.

Step 2. Let $C^{(1)}$ be the blow-up of $V\cross\Delta_{\epsilon}$ with center $P\cross\Delta_{\epsilon}$ and $E_{1}x\Delta_{\epsilon}$

the exceptional set.

$c_{V_{p}^{(1\rangle}}$
$\subset_{V_{\cup}^{(1)}}$

Figure 8.
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Figure 9.

Step 3. Let $Cy^{(2)}$ be the blow-up of $c_{V^{(1)}}$ with center $E_{1}\cross\{0\}$ . The excep-
tional set is $\Sigma_{1}$ , the Hirzebruch surface of degree 1.

Step 4. To get $CV^{(3)}$ , blow up $CV^{(2)}$ along $P_{1}\cross A_{\epsilon}$ and $P_{2}\cross\Delta_{\epsilon}$ one time,
along $P_{i}\cross\Delta_{\epsilon}(3\leqq i\leqq 6)$ three times, and along the other (compound) double points
of the branch locus similarly.

$c_{V_{0}^{tS)}}$

Figure 10.

Step5. Take the cyclic triple covering of $CV^{(3)}$ with the assigned branch
locus and the normalization $S^{(1)}$ of it. Let $\tilde{\mu}:S^{(1)}arrow CV^{(3)}$ be the natural map.
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Figure 11.

We consider \^E and $\hat{f}$ in Figure 11. Let $U$ be an open neighbourhood of
$P_{7}\in V_{0}^{(3)}$ in Figure 10. If $(x, y)\cross(\xi_{0} : \xi_{1})$ is a system of coordinates on $U\cross P^{1}$ ,
then the equation of $S_{0}^{(1)}$ over $U$ is of the form $x\xi_{0}^{3}+y\xi_{1}^{3}=0$ . This implies that

$0=(\mu^{*}f’)\text{\^{E}}=(3f+E)\text{\^{E}}=3+E^{2}$ ,

$-15=(\tilde{\mu}^{*}f’)^{2}=(3\hat{f}+\text{\^{E}})^{2}=9\hat{f}^{2}+3$ .

Thus we get $E^{2}=-3$ and $\hat{f}^{2}=-2$ .
Step 6. Let $S^{(1)}arrow S$ denote the nonsingular contractions. The main com-

ponent $\Sigma$ of the singular fiber is minimal, since its canonical linear system is
free from fixed components as is easily seen.

$S_{0}=R\cup\Sigma$

$\Sigma$

Figure 12.
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PROOF OF THEOREM 4.1. For any integers $x,$ $y$ with $y=3x-7$ and $x\geqq 5$ ,

we can find integers $a,$
$b$ and $c$ satisfying (1.1), (4.1) and $(p_{g}(s_{t}), c_{1}(S_{t})^{2})=(x, y)$

for $t\neq 0$ (see, (1.2)). Thus we get (1). The assertion (2) follows from the con-
struction and the consideration in 3.8. The assertion (3) follows from the well-
known criterion (see, [8]). Thus we get Theorem 4.1.
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