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Let $\Lambda$ be the integral group ring of the infinite cyclic group $\langle t:\rangle$ . A $\Lambda-$

module $A$ is called a knot module if $A$ is finitely generated over $\Lambda$ and $r-1$

induces an automorphism of $A$ . The purpose of this paper is to generalize
results of E. S. Rapaport [8], R. H. Crowell [2] and D. W. Sumners [9] on knot
modules. M. Kervaire [5] showed that the $Z$-torsion part $T$ of a knot module
$A$ is a finite $\Lambda$-submodule. It follows from [3, vol. 2, p. 187] that $A$ splits as
an abelian group, $i.e.,$ $A\cong_{Z}F\oplus T$ , where $F=A/T$. The $Z$-torsion part of a
knot module has been completely determined. That is, a finite abelian group
$T$ is isomorphic to the $Z$-torsion part of some knot module if and only if the
number of factors isomorphic to $Z_{2}i$ in the 2-primary component of $T$ is not
equal to one for any positive integer $i$ (cf. [4], [6]). On the other hand, it
still remains open to characterize the $Z$-structure of a $Z$-torsion free knot module.
In this paper, we investigate two classes of $Z$-torsion free knot modules; one
is homogeneous and the other is completely decomposable. Using our result,
we can find an answer to Sumners’s question [9, p. 84] for models of Z-torsion
free knot modules.

Throughout this paper (unless otherwise specified), all groups will be Z-
torsion free abelian and all $\Lambda$-modules will be $Z$-torsion free knot modules.

1. Introduction.

A polynomial $f(t)$ of $\Lambda$ is primitive if all its coefficients are relatively prime.
Let $A$ be a $\Lambda$ -module. Then $A\otimes_{Z}Q$ is a finitely generated $\Gamma$-module, where
$\Gamma=\Lambda\otimes_{Z}Q$ . Therefore, since $\Gamma$ is a principal ideal domain, we have

$A\otimes_{Z}Q\cong_{\Gamma}\Gamma/(\lambda_{1})\oplus\cdots\oplus\Gamma/(\lambda_{k})$ .
In the above decomposition, one can take the $\lambda_{i}$ to be primitive elements of $\Lambda$

such that $\lambda_{i+1}|\lambda_{i}$ in $\Lambda,$ $i=1,$ $\cdots,$ $k-1$ . We call $\{\lambda_{i}\}_{i=1}^{k}$ the (rational) polynomial
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invariants of $A$ and $\Delta(A)=\lambda_{1}\cdots\lambda_{k}$ the (rational) polynomial of $A$ .
By the rank $r(G)$ of an abelian group $G$ , we mean the dimension of the

vector space $G\otimes_{Z}Q$ over $Q$ . It is well-known that $r(A)=\deg\Delta(A)$ for a $\Lambda-$

module $A$ . An abelian group $G$ is said to be comPletely decomposable if it is a
direct sum of rank one abelian groups. Let $G$ be an abelian group. If $S$ is a
subset of $G$ , then $S_{*}$ denotes the smallest pure subgroup of $G$ containing $S$ .
(A subgroup $H$ is called a Pure subgroup of $G$ if $H\cap nG=nH$ for all $n\in Z.$ )

An isomorphism class of abelian groups of rank one is called a type. The type
determined by an abelian group $G_{1}$ of rank one is denoted by $t(G_{1})$ . If $x(\neq 0)$

$\in G$ , then $t(\{x\}_{*})$ is called the tyPe of $x$ and denoted by $t_{G}(x)$ . We say that
$G$ is homogeneous of type $\tau$ if $t_{G}(x)=\tau$ for any non-zero element $x$ of G. (In

Section 2, types will be explained in detail.) Let $Z[1/m],$ $m\in Z-\{0\}$ , denote
the additive group consisting of all rationals of the form $r=i/m^{j}(i, j\in Z)$ .

Let $f(t)=c_{0}t^{i}+c_{1}t^{i+1}+\cdots\vee+c_{a}t^{i+d}\in\Lambda$ , where $C{}_{0}C_{d}\neq 0$ . Then let $\mu(f(t))$ denote
the integer $c_{0}c_{d}$ . Let $\Lambda_{p}=\Lambda\otimes_{Z}Z_{p}$ , where $p$ is a prime, and $\epsilon_{p}$ : $\Lambdaarrow\Lambda_{p}$ be the
homomorphism given by $\epsilon_{P}(f)=f\otimes 1$ . Then the units of $\Lambda_{P}$ are of the form
$t^{i}\otimes\alpha,$ $\alpha(\neq 0)\in Z_{p}$ . For a polynomial $f(t)$ of $\Lambda,$ $\epsilon_{p}(f(t))$ is a unit in $\Lambda_{p}$ if and
only if $p$ divides all the coefficents of $f(t)$ except one.

In [8], E. S. Rapaport showed that a $\Lambda$ -module $A$ which has a square pre-
sentation matrix is finitely generated as an abelian group $(i$ . $e.,$ $A\cong_{Z}\oplus_{i=1}^{(}fZ$,

where $d=\deg\Delta(A))$ if and only if $\mu(\Delta(A))=\pm 1$ . More generally, by [2] and [9],

the following holds:

THEOREM 1.1 (Crowell [2]; Sumners [9]). A $\Lambda$ -module $A$ with polynomial
$f(t)$ is homogeneous of tyPe $t(Z[1/\mu(f)])$ and completely decomposable of rank $d$ ,
$i$ . $e.,$ $A\cong_{Z}\oplus i_{=1}^{i}Z[1/\mu(f)]$ , where $d=\deg f(t)$ , if and only if
(1.1) for each Prime $p$ which divzdes $\mu(f(t)),$ $e_{p}(f(t))$ is a unit in $\Lambda_{p}$ .

In Section 3, we generalize this theorem as follows:

THEOREM 1.2. A $\Lambda$ -module $A$ is homogeneous of tyPe $\tau$ if and only if each
irreducible factor of $\Delta(A)$ is of $tyPer$ .

We say that a polynomial $f(t)$ of $\Lambda$ is of tyPe $\tau$ if there exist primes
$p_{1},$ $\cdots$ , $p_{m}$ such that $\tau=t(Z[1/p_{1}\cdots p_{m}])$ and $\epsilon_{p_{i}}(f(t))$ is a unit in $\Lambda_{p_{i}},$ $i=1,$ $\cdots$ ,
$m$ , but $\epsilon_{p}(f(t))$ is not a unit in $\Lambda_{p},$ $p\neq p_{1},$ $\cdots$ , $p_{m}$ . (If $m=0$ , then we set
$\tau=t(Z).)$ Let $t(f)$ denote the type of $f(t)$ . Note that a polynomial $f(t)$ of $\Lambda$

satisfies (1.1) if and only if

(1.1) each irreducible factor of $f(t)$ is of type $t(Z[1/\mu(f)])$ .

In Section 4, we obtain the following result:
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THEOREM 1,3. If a $\Lambda$ -module $A$ is completely decomposable, then each irre-
ducible factor of $\Delta(A)$ satisfies (1.1) in Theorem 1.1. Conversely, given a poly-
nomial $f(t)$ of $\Lambda$ such that (i) $f(1)=\pm 1$ and (ii) each irredztczble factor of $f(t)$

satisfies (1.1), there exzsts a completely decomposable $\Lambda$ -module of rank $d$ with
Polynomial $f(t)$ , where $d=\deg f(t)$ .

In Section 5, we consider cyclic $\Lambda$ -modules and give a criterion for a cyclic
$\Lambda$-module to be completely decomposable (Theorem 5.1). D. W. Sumners [9] has
defined the model of a $\Lambda$ -module $A$ as follows: Let $\{\lambda_{i}\}_{i=1}^{k}$ be the polynomial
invariants of $A$ . Then we call the $\Lambda$ -module $M$ defined by

$M=\Lambda/(\lambda_{1})\oplus\cdots\oplus\Lambda/(\lambda_{k})$

the model of A. (Note that $M$ is also $Z$-torsion free because $\lambda_{i},$ $i=1$ , , $k$ , are
primitive.) Sumners [9] proved that if $A$ is a $\Lambda$-module, then there exists an
exact sequence of $\Lambda$-modules

$\phi$

$0arrow Marrow Aarrow Garrow 0$ ,

where $G$ is a finite $\Lambda$ -module. Thus the monomorphic image $\phi(M)$ of the model
$M$ has finite index in $A$ . Then, Sumners asks the following question:

QUESTION 1.4 $($ [9, $P$ . 84] $)$ . Is the model $M$ of any $\Lambda$ -module A $Z$-isomorphic
to $A^{\rho}$

In Section 5, we can answer in the negative as follows:

THEOREM 1.5. There exists a $\Lambda$ -module A whose model is not $Z$-isomorphic
to $A$ .

2. Preliminaries.

Let $x$ be an element of an abelian group $G$ . We say that $x$ is divistble by
a positive integer $n$ in $G$ if there exists an element $y$ of $G$ such that $ny=x$ .
Given a prime $p$ , the largest integer $k$ such that $x$ is divisible by $p^{k}$ in $G$ is
called the $P$-height $h_{p}(x)$ of $x$ ; if no such maximal integer $k$ exists, then we
set $h_{p}(x)=\infty$ . Let $p_{1},$ $p_{2}$ , , $p_{n}$ , be the sequence of all primes of $Z$ in
increasing order of magnitude, $i$ . $e.,$ $0<p_{1}<p_{2}<\ldots<p_{n}<\ldots$ Then, the se-
quence of p-heights

$x_{G}(x)$ (or simply $\chi(x)$ ) $=(h_{p_{1}}(x), h_{p_{2}}(x),$ $)$

is called the characteristic or the height-sequence of $x$ . Let $(k_{1}, \cdots , k_{n}, )$ and
$(l_{1}, \cdots , l_{n}, )$ be two characteristics. Then by $(k_{1}, \cdots , k_{n}, )\geqq(l_{1}, \cdots, l_{n}, )$ ,
we mean that $k_{n}\geqq l_{n}$ for all $n$ .

The following are easily obtained:
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PROPOSITION 2.1 ([3, vol. 2, p. 108]). Let $G$ be an abelian grouP. Then
the following hold;

(a) $\chi(-a)=x(a)$ for all $a\in G$ ,
(b) $\chi_{A}(a)\leqq x_{G}(a)$ for any element $a$ of a subgroupA of $G$ ; and $A$ is pure

in $G$ if and only if equality holds for all $a\in A$ ,
(c) $\chi(a+b)\geqq\chi(a)\cap\chi(b)foralla,$ $b\in G,$ $where \chi(a)\cap\chi(b)=(\min\{h_{p_{1}}(a), h_{p_{1}}(b)\}, \cdots)$,
(d) if $G=A\oplus B$ and $a\in A,$ $b\in B$ , then $\chi(a+b)=x(a)\cap\chi(b)$ ,
(e) for any homomorphism $\alpha$ of $G$ to an abelian group $H$ and for any $a\in G$ ,

$\chi_{G}(a)\leqq\chi_{H}(\alpha(a))$ .

We say that two characteristics $(k_{1}, \cdots , k_{n}, )$ and $(l_{1}, \cdots , l_{n}, )$ are equi-
valent if $\Sigma_{n=1}^{\infty}|k_{n}-l_{n}|$ is finite. (Set $\infty-\infty=0.$ ) An equivalence class of charac-
teristics is called a tyPe, Let $x$ be an element of an abelian group $G$ . If $\chi_{G}(x)$

belongs to a type $\tau$ , then we say that $x$ is of tyPe $\tau$ and write $t_{G}(x)=\tau$ (or

simply $t(x)=\tau)$ . Let $\tau_{1}$ and $\tau_{2}$ be types. Then by $\tau_{1}\geqq\tau_{2}$ , we mean that there
are characteristics $\chi_{1}\in\tau_{1}$ and $x_{2}\in\tau_{2}$ such that $\chi_{1}\geqq\chi_{2}$ . Two types $\tau_{1}$ and $\tau_{2}$ are
comparable if $\tau_{1}\geqq\tau_{2}$ or $\tau_{1}\leqq\tau_{2}$ . A tyPe $\tau$ of a subset $S$ of the set of tyPes is
said to be maximal in $S$ if $\tau\not\leq\tau_{S}$ for any $\tau_{S}\in S$ .

The following are well known results:

PROPOSITION 2.2 ([3, vol. 2, p. 109]). Let $G$ be an abelian group.
(A) If $ma=rb(a, b\in G, m, r\in Z-\{0\})$ , then $t(a)=t(b)$ ,
(B) $t_{A}(a)\leqq t_{G}(a)$ for any element $a$ of a subgrouP $A$ of $G$ ,
(C) $t(a+b)\geqq t(a)\cap t(b)$ for all a, $b\in G$ , where $t(a)\cap t(b)$ is the type rePresented

by $\chi_{1}\cap\chi_{2}(x_{1}\in t(a), x_{2}\in t(b))$ ,
(D) if $G=A\oplus B$ and $a\in A,$ $b\in B$ , then $t(a+b)=t(a)\cap t(b)$ and $t_{A}(a)=t_{G}(a)$ ,
(E) for any homomorPhism a of $G$ to an abelian grouP $H$ and for any

$a\in G,$ $t_{G}(a)\leqq t_{H}(\alpha(a))$ .
If all the nonzero elements of an abelian group $G$ are of the same type $\tau$ ,

we say that $G$ is homogeneous of type $\tau$ .

REMARK 2.3. From Proposition 2.2 (A), all the nonzero elements of an
abelian group of rank one are of the same tyPe, that is, it is homogeneous.
Moreover, it is known that two abelian groups of rank one are isomorphic if
and only if they are of the same tyPe [1], [3, vol. 2]. Therefore the above
definition of types agrees with that in Section 1. Concerning completely de-
composable abelian groups, it is known that any direct summand of a completely
decomposable abelian group is also completely decomposable, and the decomposi-

tion of a completely decomposable abelian group $A$ into a direct sum of rank
one abelian groups is unique in the sense that, if $A=\oplus_{i}B_{i}=\oplus_{j}C_{j}$ , where
$r(B_{i})=r(C_{j})=1$ , then one can find a one-to-one correspondence between the two
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sets $\{B_{i}\}$ and $\{C_{j}\}$ of components such that corresponding components are
isomorphic [1], [3, vol. 2].

LEMMA 2.4. Let $A$ be a $\Lambda$-module. If $h(t)$ is a factor of $\Delta(A)$ such that
$g$ . $c$ . $d.(h(t), \Delta(A)/h(t))=1$ , then $hA$ and $\{hA\}_{*}$ are $\Lambda$-submodules with polynomial
$\Delta(A)/h(t)$ .

PROOF. The proof is elementary.

PROPOSITION 2.5. If $a$ is a nonzero element of a $\Lambda$ -module $A$ , then we have
$t_{A}(a)\leqq t(Z[1/\mu(\Delta(A))]),$ $i$ . $e.$ , there exists a positive integer $k$ such that $t_{A}(a)=$

$t(Z[1/k])$ and $k|\mu(\Delta(A))$ .

PROOF. By [2] or [9], there exists a monomorphism $\phi:Aarrow B$ , where $B=$

$\oplus_{i=1}^{a}Z[1/\mu(\Delta(A))]$ and $d=\deg\Delta(A)$ . Therefore, from Proposition 2.2(E), we
obtain

$t_{A}(a)\leqq t_{B}(\phi(a))-t(Z[1/\mu(\Delta(A))])$

for each $a(\neq 0)\in A$ .
LEMMA 2.6. Let $A$ be a $\Lambda$-module and $A(\tau)=\{x\in A:t_{A}(x)\geqq\tau\}$ , where $\tau$ is

a type. Then
(1) $A(\tau)$ is a pure $\Lambda$-submodule of $A$ , and $t_{A(\tau)}(a)=t_{A}(a)$ for any element a

of $A(\tau)$ , and
(2) if $A$ is completely decomposable, then $A(\tau)$ is a completely decomposable

direct summand of $A$ as an abelian group.

PROOF. By [3, vol. 2, p. 109] or Propositions 2.1 (b), 2.2 (A) and (C), $A(\tau)$

is a pure subgroup of $A$ and $t_{A(\tau)}(a)=t_{A}(a)$ for any element $a$ of $A(\tau)$ . Since
$t^{\pm 1}$ induces an automorphism of $A$ , it follows from Proposition 2.2 (E) that
$t_{A}(t^{\pm 1}a)=t_{A}(a)\geqq\tau$ for any element of $A(\tau)$ . Hence $A(\tau)$ is a $\Lambda$-submodule, and
so (1) holds. Suppose that $A$ is completely decomposable and $A=A_{1}\oplus\cdots\oplus A_{n}$ ,
where $r(A_{i})=1,$ $i=1,$ $\cdots$ , $n$ . We may assume that $t(A_{i})\geqq\tau$ and $t(A_{j})\not\geqq\tau$ ,
$0<i\leqq r<j\leqq n$ for some integer $r$ . Then, from Proposition 2.2 (D), it is easily
seen that $A(\tau)=A_{1}\oplus\cdots\oplus A_{r}$ .

3. Homogeneous modules.

In this section, we give the proof of Theorem 1.2. To prove the theorem,
we will prove some lemmas.

LEMMA 3.1. Let $p$ be a Prime. Then a $\Lambda$-module $A$ is p–divzsible, $i$ . $e.$ ,
$t_{A}(a)\geqq t(Z[1/p])$ for any $a\in A$ , if and only if $\epsilon_{p}(\Delta(A))$ is a unit in $\Lambda_{p}$ .

PROOF. Suppose that $A$ is $p$-divisible. Then, for any $a\in A$ , there is an
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element $b$ of $A$ such that $a=P^{b}$ , Therefore we have $a\otimes 1=pb\otimes 1=b\otimes p=0$ in
the vector space $A\otimes_{Z}Z_{p}$ over $Z_{p}$ . Hence $\deg\epsilon_{p}(\Delta(A))=\dim_{z_{p}}A\otimes_{Z}Z_{p}=0$ , and
so $\epsilon_{p}(\Delta(A))$ is a unit in $\Lambda_{p}$ . Conversely, suppose that $e_{p}(\Delta(A))$ is a unit in $\Lambda_{p}$ .
Then there exists a polynomial $h(t)$ of $\Lambda$ such that

$1=q\cdot t^{i}\Delta(A)+p\cdot h(t)$ , $q\in Z$ .
Therefore, for any element $a$ of $A$ , we have $a=(q\cdot t^{i}\Delta(A)+p\cdot h(t))a=p(h(t)a)$ .
This shows that $A$ is p-divisible.

LEMMA 3.2. Let $A$ and $B$ be abelian groups of finite rank with a monomorphism
$\phi:Aarrow B$ such that $|B/\phi(A)|$ is finite. Then for any element $a$ of $A$ , we have
$t_{A}(a)=t_{B}(\phi(a))$ .

PROOF. Let $n=|B/\phi(A)|$ . Since $nB$ is contained in the image $\phi(A)$ and
$\phi$ is one-one, we can define a homomorphism $\psi:Barrow A$ by $\psi(b)=\phi^{-1}(nb)$ . Then
we see that

$\psi(\phi(a))=\phi^{-1}(n(\phi(a)))=na$

for any element $a$ of $A$ . Therefore, by Proposition 2.2(A) and (E), we obtain
$t_{A}(a)\leqq t_{B}(\phi(a))\leqq t_{A}(\psi(\phi(a)))=t_{A}(na)=t_{A}(a)$ .

The proof is completed.

LEMMA 3.3. Let $A$ be a cyclic $\Lambda$ -module and $\tau=t(Z[1/p_{1}\cdots p_{m}])$ , where
$p_{1}$ , , $p_{m}$ are Pnmes. Then there exists an element $x$ of A whose type is $\tau$ if
and only if there exzsts a factor $g(t)$ of $\Delta(A)$ whose tyPe is $\tau$ . (If $m=0$ , then we
set $\tau=t(Z).)$

PROOF. Suppose that there exists $x\in A$ such that $t_{A}(x)=\tau$ . Let $A(\tau)=$

$\{b\in A:t_{A}(b)\geqq\tau\}$ . Then, by Lemma 2.6, $A(\tau)$ is a pure $\Lambda$ -submodule of $A$ and,
for any element $b$ of $A(\tau)$ ,

$t_{A(\tau)}(b)=t_{A}(b)\geqq\tau\geqq t(Z[1/p_{i}])$ , $i=1,$ $\cdots$ , $m$ .
Hence by Lemma 3.1, $\epsilon_{p_{i}}(\Delta(A(\tau)))$ is a unit in $\Lambda_{p_{i}},$ $i=1$ , 2 $m$ . Moreover,
since $t_{A(\tau)}(x)=\tau\not\geqq t(Z[1/p])$ for any prime $p\neq p_{1},$ $\cdots$ , $p_{m}$ , it follows from Lemma
3.1 that $\epsilon_{p}(\Delta(A(\tau)))$ is not a unit in $\Lambda_{P}$ . Thus, since $\Delta(A(\tau))|\Delta(A)$ , we complete
the proof of the sufficiency, $i$ . $e.$ , we get a factor $g(t)=\Delta(A(\tau))$ .

Conversely, suppose that there exists a factor $g(t)$ of $\Delta(A)$ such that

(3.1) $\epsilon_{Pi}(g(t))$ is a unit in $\Lambda_{p_{l}},$ $i=1,$ $\cdots$ , $m$ , but $e_{p}(g(t))$ is not a unit in $\Lambda_{p}$ ,

$p\neq p_{1},$ $\cdots$ , $p_{m}$ .
Let $g^{*}(t)=\Delta(A)/g(t)$ and $A^{*}=g^{*}A$ . Then $A^{*}$ is a cyclic $\Lambda$ -submodule of $A$

with $\Delta(A^{*})=g(t)$ and is generated by $g^{*}a$ , where $a$ is a generator of $A$ as a $\Lambda-$

module. Therefore, from (3.1) and Lemma 3.1, we see that
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$t_{A*}(g^{*}a)\geqq t(Z[1/p_{i}])$ , $i=1,$ $\cdots$ , $m$ , and
$t_{A*}(g^{*}a)\not\geqq t(Z[1/p])$ , $p\neq p_{1},$ $\cdots$ $p_{m}$ .

Thus, by Proposition 2.5, we have
$t_{A*}(g^{*}a)=\tau$ .

On the other hand, since $A/A^{*}(\cong_{\Lambda}\Lambda/(g^{*}(t)))$ is $Z$-torsion free, $A^{*}$ is pure in
$A$ . It follows from Proposition 2.1 (b) that

$t_{A}(g^{*}a)=t_{A*}(g^{*}a)=\tau$ .
Thus we complete the proof.

More generally, concerning the type of an element of a $\Lambda$ -module, we have
the following:

THEOREM 3.4. Let $A$ be a $\Lambda$ -module and $\tau=t(Z[1/p_{1}\cdots p_{m}])$ , where $p_{1},$
$\cdots,$ $p_{m}$

are Primes. Then there exists an element $x$ of A whose tyPe is $\tau$ if and only if
there exists a factor $g(t)$ of $\Delta(A)$ whose type is $\tau$ .

PROOF. The sufficiency is proved in the same way as in the proof of Lemma
3.3.

We will prove the necessity. Let $M=\Lambda/(\lambda_{1})\oplus\cdots\oplus\Lambda/(\lambda_{k})$ be the model of
$A$ . Since $\lambda_{i+1}|\lambda_{i},$ $i=1$ , , $k-1$ , we may assume that $g(t)$ is a factor of $\lambda_{1}$ .
Therefore, by Lemma 3.3, there exists an element $x$ of $\Lambda/(\lambda_{1})$ such that
$t_{\Lambda/(\lambda_{1})}(x)=\tau$ . Since $\Lambda/(\lambda_{1})$ is a direct summand of $M$, it follows from Prop-
osition 2.2 (D) that $t_{M}(x)=t_{\Lambda/(\lambda_{1})}(x)$ . Therefore, since $|A/M|$ is finite (see

Section 1 or [9] $)$ , Lemma 3.2 shows that $t_{A}(x)=t_{M}(x)=\tau$ .

PROOF OF THEOREM 1.2. By the definition of homogeneity, $A$ is homogene-
ous of type $\tau$ if and only if $t_{A}(a)=\tau$ for any $a(\neq 0)\in A$ . Therefore, from
Theorem 3.4, we obtain the theorem.

COROLLARY 3.5. If a $\Lambda$-module $A$ is x-primary, $i$ . $e.,$ $\Delta(A)$ is a power of a
srngle irreducible Polynomial of $\Lambda$ , then $A$ is homogeneous.

REMARK 3.6. In [7, p. 32], J. Levine defined ‘homogeneity’ for $\Lambda$ -modules.
Since his ’homogeneity’ implies $\pi$ -primary, every ’homogeneous’ $\Lambda$ -module in
Levine’s sense is homogeneous as an abelian group in our sense.

In case of a homogeneous $\Lambda$ -module $A$ of type $t(Z[1/\mu(\Delta(A))])$ , we obtain
the following:

PROPOSITION 3.7. Let $A$ be a $\Lambda$-module. Then, the following four statements
are equivalent:

(1) $A$ is completely decomposable and homogeneous,
(2) $A$ is homogeneous of tyPe $t(Z[1/m])$ , where $m=\mu(\Delta(A))$ ,
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(3) $\Delta(A)$ satisfies the condition (1.1) in Theorem 1.1,
(4) $A\cong_{Z}\oplus_{i=1}^{d}Z[1/m]$ , where $d=r(A)$ .

PROOF. First we show that (1) implies (2). By Remark 2.3 and Proposition
2.5, we have

$A \cong_{z}\bigoplus_{i=1}^{d}Z[1/k]$ ,

where $k$ is a positive integer such that $k|m$ . Let $P$ be any prime such that
$p|m$ . Then, since $\dim_{z_{I)}}A\otimes_{Z}Z_{p}=\deg e_{p}(\Delta(A))<\deg\Delta(A)=d$ , it follows that
$p|k$ , otherwise $A\otimes_{Z}Z_{p}\cong\oplus_{i=1}^{(:}Z[1/k]\otimes_{Z}Z_{p}\cong\oplus_{i=1}^{a}Z_{p}$ . Therefore we see that
$Z[1/k]=Z[1/m]$ . Thus $A$ is homogeneous of type $t(Z[1/m])$ . Next, Theorem
1.2 shows that (2) implies (3). Therefore, by Theorem 1.1, we complete the
proof.

4. Completely decomposable modules.

In this section, we study completely decomposable $\Lambda$ -modules. First we
prove the following:

THEOREM 4.1. Let $A$ be a $\Lambda$ -module with Polynomial $f(t)$ . Then, if $A$ is
comPletely decompOsable,

(1) $A\cong_{Z}Z[1/m_{1}]\oplus\cdots\oplus Z[1/m_{a}]$ , where $d=\deg f(t)$ ,
(2) there exists a $decompo\alpha tionf(t)=f_{1}(t)\cdots f_{n}(t)$ into non-unit factors such

that each factor $f_{i}(t),$ $i=1,$ $\cdots$ , $n$ , satisfies (1.1) in Theorem 1.1, and $t(f_{i})\neq t(f_{j})$ ,
$i\neq j$ , and

(3) $\deg f_{i}(t)$ equals the number of rank one comPonents isomorPhic to
$Z[1/\mu(f_{i})],$ $i=1,$ $\cdots$ $n$ .

PROOF. Let $A=B_{1}\oplus\cdots\oplus B_{n}$ , where each $B_{\ell}(\neq 0),$ $i=1,$ $\cdots$ , $n$ , is completely
decomposable and homogeneous, and $t(B_{i})\neq t(B_{j}),$ $i\neq j$ . Then, by Proposition
2.5, there exists a positive integer $m_{i},$ $i=1,$ $\cdots$ , $n$ , such that $t(B_{i})=t(Z[1/m_{i}])\leqq$

$t(Z[1/\mu(\Delta(A))])$ . Therefore, by Remark 2.3, we see that

$B_{i} \cong_{z}\bigoplus_{j=1}^{a_{i}}Z[1/m_{i}]$ ,

where $d_{i}=r(B_{i}),$ $i=1,$ $\cdots$ , $n$ , and so

$A \cong_{z}\bigoplus_{i=1}^{n}\{\bigoplus_{j=1}^{a_{i}}Z[1/m_{i}]\}$ .

TO complete the proof, we use induction on the number $n$ of the compo-
nents $B_{i}$ . When $n=1$ , the assertions follow from Proposition 3.7. Suppose that
$n>1$ . We may assume that $\tau=t(B_{1})$ is maximal in $\{t(B_{1}), \cdot.. , t(B_{n})\}$ . Then,
by Lemma 2.6, $B_{1}(=\{x\in A:t_{A}(x)\geqq\tau\})$ is a $\Lambda$ -submodule of $A$ . Since $B_{1}$ is
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completely decomposable and homogeneous of type $\tau$ , it follows from Theorem
1.1 that $f_{1}(t)=\Delta(B_{1})$ satisfies (1.1) and $\deg f_{1}(t)=r(B_{1}),$ $t(f_{1})=\tau$ . On the other
hand, $A/B_{1}=B_{2}\oplus\cdots\oplus B_{n}$ is also a completely decomposable $\Lambda$ -module. Thus,
by the inductive hypothesis, we see that there exists a decomposition $\Delta(A/B_{1})=$

$f_{2}(t)\cdots f_{n}(t)$ into non-unit factors such that

(2) each factor $f_{i}(t),$ $i=2$ , , $n$ , satisfies (1.1), and $t(f_{t})\neq t(f_{j}),$ $i\neq j$ ,
(3) $\deg f_{i}(t)$ equals the number of rank one components isomorphic to

$Z[1/\mu(f_{i})],$ $i=2,$ $\cdots$ $n$ .
Therefore, since $\Delta(A)=\Delta(A/B_{1})\cdot\Delta(B_{1})=f_{1}(t)\cdots f_{n}(t)$ , we establish the theorem.
(Note that, since $\tau$ is maximal, $A/B_{1}$ has no component of type $\tau$ , and so
$t(f_{i})\neq\tau=t(f_{1}),$ $i=2,$ $\cdots$ $n.)$

Using Theorem 4.1, we can prove Theorem 1.3.

PROOF OF THEOREM 1.3. The first assertion immediately follows from
Theorem 4.1. To prove the second, we give the following example:

$A=\Lambda/(g_{1}(t)^{k_{1}})\oplus\cdots\oplus\Lambda/(g_{r}(t)^{k_{r}})$ ,

where $g_{i}(t),$ $i=1,$ $\cdots$ , $r$ , are irreducible and $g_{1}(t)^{k_{1}}\cdots g_{r}(t)^{k_{r}}=f(t),$ $k_{i}>0$ . Then,
by Theorem 1.1, each component $\Lambda/(g_{i}(t)^{k_{i}}),$ $i=1,$ $\cdots$ , $r$ , is completely decom-
posable. Thus, since $\Delta(A)=f(t)$ , this completes the proof.

REMARK 4.2. There exists a $\Lambda$-module whose polynomial satisfies (i) and
(ii), but which is not completely decomposable (see the proof of Theorem 1.5
in Section 5).

COROLLARY 4.3. Let $\{\lambda_{i}(t)\}_{i=1}^{k}$ be a family of non-unit Polynomials of $\Lambda$

such that (1) $\lambda_{i+1}|\lambda_{i},$ $\lambda_{t}(1)=\pm 1$ and (2) each irreducible factor of $\lambda_{i}$ satisfies (1.1).

Then there exists a completely decomposable $\Lambda$ -module whose polynomial invariants
are $\{\lambda_{i}(t)\}_{i=1}^{k}$ .

COROLLARY 4.4. If $\Lambda$-modules $A_{1}$ and $A_{2}$ are completely decomposable and
$\Delta(A_{1})=\Delta(A_{2})$ , then $A_{1}\cong_{Z}A_{2}$ .

Let $(g_{1}(t), \cdots , g_{n}(t))$ denote the ideal of $\Lambda$ generated by polynomials
$g_{1}(t),$ $g_{n}(t)\in\Lambda$ .

REMARK 4.5. If $(g_{1}(t), \cdots , g_{n}(t))=(1)$ , then $g$ . $c$ . $d.(g_{1}(t), \cdots , g_{n}(t))=1$ and
$(g_{1}’(t), , g_{n}’(t))=(1)$ , where $g_{i}’(t)$ is any factor of $g_{i}(t),$ $i=1$ , $\cdot$ .. $n$ . Moreover
$(g_{1}(t), , g_{n}(t))=(1)$ if and only if there exist polynomials $h_{1}(t)$ , $\cdot$ .. , $h_{n}(t)$ of $\Lambda$

such that $h_{1}(t)g_{1}(t)+\cdots+h_{n}(t)g_{n}(t)=1$ .
Though we do not know a necessary and sufficient condition for a $\Lambda$ -module

to be completely decomposable, we can give the following sufficient condition:
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THEOREM 4.6. Let $A$ be a $\Lambda$-module with polynomial $f(t)$ . Suppose that
(1) each irreducible factor of $f(t)$ satisfies (1.1) in Theorem 1.1, and
(2) if $h_{1}(t),$ $h_{2}(t)$ are factors of $f(t)$ such that arbtrary irreducible factors

$g_{1}(t),$ $g_{2}(t)$ of $h_{1}(t),$ $h_{2}(t)$ are of incomparable fypes, $i$ . $e.$ ,

(4.1) $t(g_{1})\not\geqq t(g_{2})$ , $t(g_{2})\not\geqq t(g_{1})$ ,

then $(h_{1}(t), h_{2}(t))=(1)$ . Then $A$ is completely decomposable of rank $d$ , where
$d=\deg f(t)$ .

Before proving the theorem, we will prove some lemmas.

LEMMA 4.7. Let $A$ be a completely decomposable $\Lambda$-module and $\Delta(A)=$

$f_{1}(t)\cdots f_{m}(t)$ be a decomposrtion into non-umt factors such that each factor $f_{\ell}(t)$ ,
$i=1,$ $m$ , satisfies (1.1) in Theotem 1.1 and $t(f_{i})\neq t(f_{j}),$ $i\neq j$ . If $h_{1}(t)=$

$f_{1}(t)\cdots f_{r}(t)$ and $h_{2}(t)=f_{r+1}(t)\cdots f_{m}(t)$ satisfy the condition
(4.2) $t(f_{i})\not\geqq t(f_{j})$ , $0<i\leqq r<j\leqq m$ ,

then the pure $\Lambda$-submodule $\{h_{1}A\}_{*}$ is a direct summand of $A$ as an abelian group.
Moreover, if $A=_{Z}A_{1}\oplus\cdots\oplus A_{m}$ , where $A_{i}\cong_{Z}\oplus_{j=1}^{a_{i}}Z[1/\mu(f_{i})]$ and $d_{i}=\deg f_{i}(t)$ , is a
direct decomposrtion of $A$ , then we have

$\{h_{1}A\}_{*}=_{Z}A_{r+1}\oplus\cdots\oplus A_{m}$

and so $A=_{Z}A_{1}\oplus\cdots\oplus A_{r}\oplus\{h_{1}A\}_{*}$ .

PROOF. Let $B=A_{r+1}\oplus\cdots\oplus A_{m}$ , $A’=A/\{h_{1}A\}_{*}$ and $\phi:Aarrow A’$ be the
canonical $\Lambda$ -homomorphism of $A$ onto $A’$ . Then we have $\Delta(A’)=\Delta(A)/\Delta(\{h_{1}A\}_{*})=$

$h_{1}(t)$ . Therefore, by Proposition 2.2 (E), we see that, for any non-zero element
$a_{j}$ of $A_{j},$ $j=r+1,$ $\cdots$ , $m$ ,

(4.3) $t(f_{j})=t(A_{j})=t_{A}(a_{j})\leqq t_{A’}(\phi(a_{j}))$ .
If $\phi(a_{j})\neq 0$ , it follows from Theorem 3.4 that there exists a non-unit factor
$h_{1}’(t)$ of $h_{1}(t)$ such that $t_{A’}(\phi(a_{j}))=t(h_{1}’)$ . Therefore we have

$t_{A’}(\phi(a_{j}))=t(h_{1}’)\leqq t(f_{i})$

for some factor $f_{i}(t),$ $0<i\leqq r$ . Thus, from (4.3), we see that
$t(f_{j})\leqq t(f_{i})$ .

However this contradicts (4.2). Hence we obtain $\phi(a_{j})=0$ and so $B\subset\{h_{1}A\}_{*}$ .
On the other hand, since $B$ is pure in $A,$ $B$ is also pure in $\{h_{1}A\}_{*}$ . Therefore,
the quotient group $\{h_{1}A\}_{*}/B$ is $Z$-torsion free. Moreover, since $r(\{h_{1}A\}_{*})=$

$\deg\Delta(\{h_{1}A\}_{*})=\deg h_{2}(t)=\Sigma_{j=r+1}^{m}\deg f_{j}(t)=r(B)$ , we have $r(\{h_{1}A\}_{*}/B)=r(\{h_{1}A\}_{*})$

$-r(B)=0$ , and so $\{h_{1}A\}_{*}=B$ . This completes the proof.

LEMMA 4.8. Let $H$ and $B$ be abelian groups of fimte rank and $\psi:Harrow B$ an
effl $7norphism$ such that $t_{H}(c)\geqq t_{B}(b)$ for any $c\in Ker\psi$ and for any $b(\neq 0)\in B$ . If
$B$ is completely decomposable and each comPonent $B_{t}$ of rank 1 is isomorphic to
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$Z[1/m_{i}]$ , then $H$ is isomorphic to $Ker\psi\oplus B$ .
PROOF. Let $B=B_{1}\oplus\cdot..\oplus B_{n}$ , where $B_{i}\cong Z[1/m_{i}]$ . Let $b_{i},$ $i=1$ , $\cdot$ .. , $n$ , be

a non-zero element of $B_{i}$ such that if the $P$-height $h_{p}(b_{\ell})$ is finite, then
$h_{p}(b_{i})=0$ . (If the $P$-height $h_{p}(u)$ of an element $u$ of $B_{i}$ is $k(\neq\infty)$ , then there
exists $v\in B_{i}$ such that $p^{k}v=u$ , and the $P$-height $h_{p}(v)$ of $v$ is zero. Hence
such an element $b_{i}$ of $B_{i}$ exists.) Then, since $B_{i}\cong Z[1/m_{i}]$ , for each $x\in B_{i}$ ,
there exist integers $k$ and $l$ such that

(4.4) $m_{i}^{k}x=lb_{i}$ , $k\geqq 0$ .
Let $a_{t}$ and $y$ be elements of $H$ such that $\psi(a_{i})-b_{i},$ $\psi(y)=x$ , and let $c=la_{i}-m_{i}^{k}y$ .
Then we have $c\in Ker\psi$ . Therefore, since $t_{H}(c)\geqq t_{B}(b_{i})=t(Z[1/m_{i}])$ , there exists
$c’\in H$ such that $m_{i}^{k}c’=c$ . Hence, we have

$m_{i}^{k}\overline{x}=la_{i}$ ,

where $\overline{x}=y+c’$ . Then $\overline{x}$ is uniquely determined by $x$ and does not depend on
a choice of $k$ and $l$ in (4.4). (Note that $H$ and $B$ are $Z$-torsion free.) Therefore
we can define a mapping $\beta_{i}$ of $B_{i}$ to $H$ by $\beta_{i}(x)=\overline{x}$ . We will show that $\beta_{i}$

is a homomorphism. Let $m_{i}^{k_{1}}x_{1}=l_{1}b_{\ell}$ and $m_{i}^{k_{2}}x_{2}=l_{2}b_{i}(k_{1}, k_{2}\geqq 0)$ . Then, since
$m_{i}^{k_{1}+k_{2}}(x_{1}+x_{2})=(m_{i^{2}}^{k}l_{1}+m_{i}^{k_{1}}l_{2})b_{i}$ , we see that

$m_{i}^{k_{1}+k_{2}}\beta_{t}(x_{1}+x_{2})=m_{i^{1}}^{k+k_{2(\overline{x_{1}+x_{2})}=(m_{i}^{k_{2}}l_{1}+m_{i}^{k_{1}}l_{2})a_{i}=m_{t}^{k_{2}}l_{1}a_{i}+m_{t^{1}}^{h}l_{2}a_{i}}}$

$=m_{i}^{k_{2}}(m_{i}^{k_{1}}\overline{x}_{1})-\llcorner m_{i^{1}}^{k}(m_{i}^{k_{2}}\overline{x}_{2})=m_{i}^{k_{1}+k_{2(\overline{x}_{1}+\overline{x}_{2})}}$

$=m_{i}^{k_{1}+k_{2}}(\beta_{i}(x_{1})+\beta_{i}(x_{2}))$ .
Therefore we have $\beta_{i}(x_{1}+x_{2})=\beta_{i}(x_{1})\dashv-\beta_{i}(x_{2})$ and so $\beta_{i}$ is a homomorphism,
$i=1,$ $\cdots$ $n$ .

Since $B$ is the direct sum of $B_{1}$ , 2
$B_{n}$ , there is a homomorphism $\beta$ of $B$

to $H$ such that $\beta|B_{i}=\beta_{i},$ $i=1$ , , $n$ . It is easy to see that $\psi\beta=1_{B}$ . There-
fore $\beta$ is one-one. Hence, by [3, vol. 1, Lemma 9.1], $H=Ker\psi\oplus\beta(B)\cong_{Z}$

$Ker\psi\oplus B$ .

LEMMA 4.9. Let $G,$ $A$ and $B$ be abelian grouPs of finite rank and $\phi:Garrow A\oplus B$

an epimorphism such that $t_{G}(c)\geqq t_{B}(b)$ for any $c\in Ker\phi$ and for any $b(\neq 0)\in B$ .
SuPPose that $B$ is completely decomposable and each $compone\hslash tB_{i}$ of rank 1 is
isomorphic to $Z[1/m_{i}]$ . If there exists a subgroup $A’$ of $G$ such that the restric-
tion $\phi|A’$ : $A’arrow A$ is an isomorphism of $A’$ onto $A$ , then $G$ is isomorphic to
$A\oplus B\oplus Ker\phi$ .

PROOF. Let $H=\phi^{-1}(B)$ . Then we have

$\phi(A’\cap H)\subset\phi(A’)\cap\phi(H)=A\cap B=0$ .
Therefore $A’\cap H\subset Ker\phi\cap A’$ . Since $\phi|A’$ is one-one, it follows that $A’\cap H=0$ .
Thus, since $G=A’+H$, we get
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(4.5) $G=A’\oplus H$ .
Let $\psi:Harrow B$ be the epimorphism of $H$ onto $B$ defined by $\psi(x)=\phi(x),$ $x\in H$.

Then, from (4.5) and Proposition 2.2, we see that $t_{H}(x)=t_{G}(x),$ $x\in H$. There-
fore, we have

$t_{H}(c)=t_{G}(c)\geqq t_{B}(b)$

for any $c\in Ker\psi(\subset Ker\phi)$ and for any $b(\neq 0)\in B$ . Thus, from Lemma 4.8,
we obtain

(4.6) $H\cong Ker\psi\oplus B$ .
On the other hand, since $Ker\psi=Ker\phi\cap H=Ker\phi$ , it follows from (4.5) and
(4.6) that

$G\cong A’\oplus(Ker\phi\oplus B)\cong A\oplus B\oplus Ker\phi$ .

PROOF OF THEOREM 4.6. By (1), there exists a decomposition $f(t)=$

$f_{1}(t)\cdots f_{n}(t)$ into non-unit factors such that each factor $f_{i}(t),$ $i=1,$ $\cdots$ , $n$ , satisfies
(1.1) and $t(f_{i})\neq t(f_{j}),$ $i\neq j$ . We may asumme that $t(f_{1})$ is maximal in
$\{t(f_{1}), \cdots , t(f_{n})\}$ . We use induction on $n$ . If $n=1$ , then the assertion follows
from Theorem 1.1. Suppose that $n>1$ . Without loss of generality, we may
assume that, for some integer $r$ (l$r\leqq n)

(4.7) $t(f_{i})\leqq t(f_{1})$ , $t(f_{j})$ $ $t(f_{1})$ $2\leqq i\leqq r<j\leqq n$ .
(Note that $t(f_{j})\not\geqq t(f_{1})$ because $t(f_{1})$ is maximal.) Therefore we have
(4.8) $t(f_{i})\not\geqq t(f_{j})$ , $2\leqq i\leqq r<j\leqq n$ .

Let $h_{1}(t)=f_{2}(t)\cdots f_{r}(t),$ $h_{2}(t)=f_{r+1}(t)\cdots f_{n}(t),$ $C=\{(f/f_{1})A\}_{*}$ and $H=A/C$ .
Then $C$ and $H$ are $\Lambda$-modules with $\Delta(C)=f_{1}(t)$ and $\Delta(H)=\Delta(A)/\Delta(C)=h_{1}(t)h_{2}(t)$ .
Therefore, by the inductive hypothesis, $C$ and $H$ are completely decomposable.
Furthermore, by (4.8) and Lemma 4.7, we have

(4.9) $H=_{Z}\{h_{1}H\}_{*}\oplus B$ ,

where $\{h_{1}H\}_{*}$ is a completely decomposable $\Lambda$-submodule of $H$ with $\Delta(\{h_{1}H\}_{*})=$

$h_{2}(t)$ , and $B$ is a completely decomposable subgroup of $HZ$-isomorphic to the
quotient $\Lambda$-module $H/\{h_{1}H\}_{*}$ with $\Delta(H/\{h_{1}H\}_{*})=h_{1}(t)$ .

Let $\phi:Aarrow H$ be the canonical $\Lambda$-epimorphism of $A$ onto $H$, and let
$D=\phi^{-1}(\{h{}_{\iota}H\}_{*})$ . Then, since $A/D\cong {}_{\Lambda}H/\{h_{1}H\}_{*}\cong_{Z}B,$ $D$ is a pure $\Lambda$-submodule
of $A$ with $\Delta(D)=\Delta(A)/\Delta(H/\{h_{1}H\}_{*})=f/h_{1}=f_{1}h_{2}$ . We will show that the
restriction $\phi|f_{1}D:f_{1}Darrow\{h_{1}H\}_{*}$ is an isomorphism. Let $x\in\{h_{1}H\}_{*}$ . Then
there is $y\in D$ such that $\phi(y)=x$ . By (2) and (4.7), there exist polynomials $F_{1}$

and $F_{2}$ of $\Lambda$ such that
$F_{1}f_{1}+F_{2}h_{2}=1$ .

Hence, we see that
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$\phi(F_{1}f_{1}y)=\phi((1-F_{2}h_{l})y)=\phi(y)-F_{2}h_{2}\phi(y)=x-F_{2}h_{2}x$ .
Thus, since $\Delta(\{h_{1}H\}_{*})=h_{2}$ , we have

$\phi(F_{1}f_{1}y)=x$ .
Therefore the restriction $\phi|f_{1}D:f_{1}Darrow\{h_{1}H\}_{*}$ is onto. Moreover, since
$r(Ker\phi|f_{1}D)=r(f_{1}D)-r(\{h_{1}H\}_{*})=\deg\Delta(f_{1}D)-\deg\Delta(\{h_{1}H\}_{*})=\deg h_{2}-\deg h_{2}=0$ ,
it follows that $\phi|f_{1}D:f_{1}Darrow\{h_{1}H\}_{*}$ is an isomorphism of $f_{1}D$ onto $\{h_{1}H\}_{*}$ .
(Note that $f_{1}D$ and $\{h_{1}HI*areZ$-torsion free.)

By (4.9), $B$ is $Z$-isomorphic to the completely decomposable $\Lambda$-moduIe
{ $H/h_{1}HI*$ with polynomial $h_{1}(t)=f_{2}(t)\cdots f_{r}(t)$ . On the other hand, since
$\Delta(Ker\phi)=\Delta(A)/\Delta(H)=f_{1}(t)$ , it follows from (4.7) and Theorem 3.6 that, for any
$c\in Ker\phi(=C)$ and any $b(\neq 0)\in B$ ,

$t_{A}(c)\geqq t_{c}(c)\geqq t_{B}(b)$ .
Hence, By Lemma 4.9, we see that

$A\cong_{Z}f_{1}D\oplus B\oplus C$ .
This completes the proof.

COROLLARY 4.10. Let $A$ be a $\Lambda$-module. If each irreducible factor of $\Delta(A)$

satisfies (1.1) and any pair of irreducible factors of $\Delta(A)$ are of comparable types,
then $A$ is completely decomposable of rank $d$ , where $d=\deg\Delta(A)$ .

5. Completely decomposable cyclic modules.

In the previous section, we give a sufficient condition for a $\Lambda$-module to be
completely decomposable. In this section, we prove that the condition is
necessary in case of cyclic $\Lambda$-modules.

THEOREM 5.1. A cyclic $\Lambda$-module $A$ with polynomial $f(t)$ is comPletely de-
composable of rank $d$ if and only if $f(t)$ satisfies (1) and (2) in Theorem 4.6,
where $d=\deg f(t)$ .

COROLLARY 5.2. Let $A$ be a cyclic $\Lambda$ -module with $\Delta(A)=g_{1}(t)^{k_{1}}g_{2}(t)^{k_{2}}$ , where
$g_{i}(t)$ is irreducible and $k_{i}>0,$ $i=1,2$ . Then $A$ is completely decomposable if and
only if

(1) $g_{i}(t),$ $i=1,2$ , satisfies (1.1) in Theorem 1.1, and
(2) $t(g_{1})$ and $t(g_{2})$ are comParable, or $(g_{1}(t)^{k_{1}}, g_{2}(t)^{k_{2}})=(1)$ .

AS a corollary to Theorems 4.6 and 5.1, we obtain the following:

COROLLARY 5.3. If a cyclic $\Lambda$ -module $A$ is comPletely decomPosable, then
so is every $\Lambda$-submodule of $A$ .

TO prove the theorem, we prove some lemmas.
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LEMMA 5.4. If a cyclic $\Lambda$ -module $A$ is decomposed into a direct sum of two
cyclic $\Lambda$-submodules $A_{1}$ and $A_{2}$ as a $\Lambda$-module, then $(\Delta(A_{1}), \Delta(A_{2}))=(1)$ .

PROOF. The lemma follows immediately from the fact that the second
elementary ideal of $A$ is (1).

LEMMA 5.5. Let $A$ be a cyclic $\Lambda$ -module and $h(t)$ any factor of $\Delta(A)$ . Then
the $\Lambda$-submodule $h(t)A$ is pure in $A,$ $i$ . $e.,$ $\{h(t)A\}_{*}=h(t)A$ .

PROOF. Since $A$ is cyclic, the quotient $\Lambda$-module $A/h(t)A$ is $\Lambda$-isomorphic
to $\Lambda/(h(t))$ , which is $Z$-torsion free. Therefore $h(t)A$ is pure.

LEMMA 5.6. Let $A$ be a completely decomposable cyclic $\Lambda$-module and $\Delta(A)=$

$f_{1}(t)\cdots f_{m}(t)$ be a decomposrtion of $\Delta(A)$ into non-unit factors such that each factor
$f_{\ell}(t),$ $i=1$ , $\cdot$ , $m$ , satisfies (1.1) in Theorem 1.1, and $t(f_{i})\neq t(f_{j}),$ $i\neq j$ . If $h_{1}(t)=$

$f_{1}(t)\cdots f_{r}(t)$ and $h_{2}(t)=f_{r+1}(t)\cdots f_{m}(t)$ satisfy the condition

(5.1) $t(f,)$ $ $t(f_{j})$ , $t(f_{i})\not\geqq t(f_{j})$ , O<i\leqq r<j$m,

then $(h_{1}(t), h_{2}(t))=(1)$ .
PROOF. Let $A=\oplus_{i\approx 1}^{m}A_{i}$ , where $A_{i}\cong_{Z}\oplus_{j\Rightarrow 1}^{a_{i}}Z[1/\mu(f_{i})]$ and $d_{i}=\deg f_{i}(t),$ $i=$

$1$ , $\cdot$ .. , $m$ . Then, by Lemmas 4.7, 5.5 and (5.1), we have
$h_{2}A=A_{1}\oplus\cdots\oplus A_{r},$ $h_{1}A=A_{r+1}\oplus\cdots\oplus A_{m}$ , and $A=_{Z}h_{2}A\oplus h_{1}A$ .

Therefore, since $h_{1}A$ and $h_{2}A$ are $\Lambda$-submodules, $A$ is the direct sum of $h_{2}A$

and $h_{1}A$ as a $\Lambda$-module. Thus, by Lemma 5.4, we obtain $(h_{1}(t), h_{2}(t))=(1)$ .
PROOF OF THEOREM 5.1. The necessity follows from Theorem 4.6. There-

fore suppose that $A$ is completely decomposable. By Theorem 1.3, the first
assertion holds. Then we will prove the second. Let $f(t)=f_{1}(t)\cdots f_{n}(t)$ be a
decomposition of $f(t)$ into non-unit factors such that each factor $f_{i}(t),$ $i=1,$ $\cdots$ , $n$ ,
satisfies (1.1) and $t(f_{i})\neq t(f_{j}),$ $i\neq j$ . We use induction on the number $n$ of the
factors $f_{\mathfrak{i}}(t)$ . If $n=1$ , then the assertion is trivial. Suppose that $n>1$ . Let
$h_{1}(t)$ and $h_{2}(t)$ be factors of $f(t)$ satisfying the assumption in (2) of Theorem 4.6.
Then we may suppose that $h_{1}(t)$ and $h_{2}(t)$ are factors of $\tilde{h}_{1}(t)=f_{1}(t)$ $f_{r}(t)$ and
$\tilde{h}_{2}(t)=f_{r+1}(t)\cdots f_{m}(t)$ for some integers $r,$ $m(1\leqq r<m\leqq n)$ . Moreover, without
loss of generality, we may assume that

(5.2) $t(f_{i})\not\geqq t(f_{j})$ , $t(f_{i})$ $ $t(f_{j})$ , $1\leqq i\leqq r<j\leqq m$ , and

(5.3) there is no factor $f_{k}(t),$ $m<k\leqq n$ , such that $t(f_{i_{1}})\leqq t(f_{k})\leqq t(f_{i_{2}})$ or
$t(f_{J_{1}})\leqq t(f_{k})\leqq t(f_{j_{2}}),$ $1\leqq i_{1},$ $i_{2}\leqq r<j_{1},$ $j_{2}\leqq m$ .

By Remark 4.5, it suffices to show that $(\tilde{h}_{1}(t),\tilde{h}_{2}(t))=(1)$ .
If there is a factor $f_{k}(t),$ $m<k\leqq n$ , such that $t(f_{k})$ is maximal in

$\{t(f_{1}), \cdot.. , t(f_{n})\}$ , then, by Lemmas 4.7 and 5.5, the $\Lambda$-submodule $(f/f_{k})A$ is a
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maximal direct summand of type $t(f_{k})$ of $A$ . Therefore the quotient $\Lambda$-module
$A/(f/f_{k})A(\cong_{\Lambda}\Lambda/(f/f_{k}))$ is also completely decomposable. Since $\Delta(A/(f/f_{k})A)=$

$f/f_{k}=f_{1}(t)\cdots f_{k-1}(t)f_{k+1}(t)\cdots f_{n}(t)$ , it follows from the inductive hypothesis that
$(\tilde{h}_{1}(t),\tilde{h}_{2}(t))=(1)$ .

Next suppose that $t(f_{k}(t)),$ $m<k\leqq n$ , are not maximal. We will show that
(5.4) $t(f_{\ell})\not\leqq t(f_{k})$ , l$i$m $<k\leqq n$ .
Suppose that $t(f_{i})\leqq t(f_{l})$ for some integers $i$ and $l,$ $1\leqq i\leqq m<l\leqq n$ . Then, since
$t(f_{k}),$ $m<k\leqq n$ , are not maximal, there is a factor $f_{j}(t)$ (l$j\leqq m) such that
$t(f_{i})\leqq t(f_{l})\leqq t(f_{j})$ . Hence, by (5.2), we see that

(5.5) either $1\leqq i,$ $j\leqq r$ or $r<i,$ $j$ $ $m$ .
However this contradicts (5.3). Thus we obtain (5.4). Therefore, by Lemmas
4.7 and 5.5, the $\Lambda$-submodule $(f_{m+1}\cdots f_{n})A$ is a completely decomposable direct
summand of $A$ as an abelian group. Since $(f_{m+1}$ ... $f_{n})A\cong_{\Lambda}\Lambda/(f_{1}(t)\cdots f_{m}(t))=$

$\Lambda/(h_{1}(t)h_{2}(t))$ , it follows from (5.2) and Lemma 5.6 that $(h_{1}(t), h_{2}(t))=(1)$ . Hence
(2) holds. The proof is completed.

Using Corollary 5.2, we can prove Theorem 1.5:

PROOF OF THEOREM 1.5. TO prove the theorem, we will give the following
examples:

Let $g_{1}(t)=2t-3,$ $g_{2}(t)=8t-7\in\Lambda$ and $B_{n},$ $C_{n}$ be $\Lambda$-modules with $\Delta(B_{n})=g_{1}(t)^{n}$ ,
$\Delta(C_{n})=g_{2}(t)^{n}$ , where $n>0$ . Then, since $g_{1}(t)^{n}$ and $g_{2}(t)^{n}$ satisfy (1.1), it follows
that

$B_{n} \cong_{Z}\bigoplus_{i=1}^{n}Z[1/\mu(g_{1})]=\bigoplus_{i=1}^{n}Z[1/6]$ , $C_{n} \cong_{z}\bigoplus_{i=1}^{n}Z[1/\mu(g_{2})]=\bigoplus_{i=1}^{n}Z[1/14]$ .

Therefore, a $\Lambda$-module $A_{n}=B_{n}\oplus C_{n}$ is $Z$-isomorphic to

$\bigoplus_{i=1}^{n}(Z[1/6]\oplus Z[1/14])$

and $A_{n}$ is completely decomposable. On the other hand, the model $M_{n}$ of $A_{n}$

is given by
$M_{n}=\Lambda/(g_{1}(t)^{n}g_{2}(t)^{n})$ .

TO prove that $A_{n}$ is not $Z$-isomorphic to $M_{n}$ , it suffices to show that $M_{n}$ is not
completely decomposable. It is obvious that

$t(g_{1})\not\geqq t(g_{2})$ and $t(g_{1})$ $ $t(g_{2})$ .
Moreover, since $g_{1}(-1)^{n}=(-5)^{n}$ and $g_{2}(-1)^{n}=(-15)^{n}$ , we see that

$(g_{1}(t)^{n}, g_{2}(t)^{n})\neq(1)$ .
Therefore, from Corollary 5.2, the cyclic $\Lambda$ -module $M_{n}$ is not completely
decomposable. This completes the proof.
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Finally we raise the following more general question:

QUESTION 5.7. For every $\Lambda$-module $A$ , does there exist $a$ A-module
$\Lambda/(f_{1}(t))\oplus\cdots\oplus\Lambda/(f_{n}(t))$ ,

where $f_{1}(t)\cdots f_{n}(t)=\Delta(A)$ , that is $Z \frac{-}{}isomorphic$ to $A^{\rho}$
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