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1. Introduction.

In this paper, we shall consider the Cauchy problem of Hamilton-Jacobi
equation in $R^{n+1}$ :

(1.1) $\{u(0,x)=\phi(x)u_{t}+f(u_{x})=0$ $onin$ $\partial DD\equiv\{(tx)\in R^{n+1} ; t>0\}$

,

where $f\in C^{\infty}(R^{n})$ is uniformly convex $i$ . $e$ . there exists $c>0$ such that

$f’(p)\equiv[f_{p_{i^{p_{j}}}}(p)]_{1\leq i.j\leq n}\geqq cI_{n}$

and $\phi\in g(R^{n})$ .
Because of the nonlinearity of $f$ , we cannot generally expect the global

smoothness of solutions of (1.1). That is, singularities appear. Our purpose is
to describe geometrically formation and propagation of their singularities.
Hence we consider (1.1) in a weak sense. A generalized solution of (1.1) is a
Lipschitz continuous function $u$ satisfying (1.1) almost everywhere and having
semi-concavity property: there exists $K\geqq 0$ such that

(1.2) $u(t, x+y)+u(t, x-y)-2u(t, x)\leqq K|y|^{2}$

for any $t,$ $x$ and $y$ .
Global existence and uniqueness of generalized solutions for (1.1) was estab-

lished by Douglis [4] and Kruzkov [6] for example. See also Benton [2].

But we are interested in the geometrical description of singularities of solutions.
In this context, Tsuji [10], [11], [12] studied formation and propagation of their
singularities explicitly in case $n=1$ and 2. He used the theory of singularities
of mappings of the plane into the plane obtained by Whitney [13]. Our work
is much inspired by his and aims an extension of his results to the case of
general space dimensions. Similar results have been obtained by many authors
for conservation laws. See, for example, Debeneix [3], Nakane [8] and Schaeffer
[9].

This research was partially supported by Grant-in-Aid for Scientific Research (No.
01740112), Ministry of Education, Science and Culture.
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After [12], we shall construct concretely the solution of (1.1) by the method
of characteristics. Generally speaking, it becomes multi-valued in finite time.
By virtue of the singularity theory of $C^{\infty}$-mappings in higher dimensional spaces,
we shall clarify its structure as a multi-valued function. In fact, we shall
show that under some assumptions, its graph has swallow’s tail as singularities,
as is pointed out in Arnold [1]. Thus it becomes triple-valued. See Figure 2.
We can find which branch of three values to take in order to get a single-
valued continuous solution. At the same time, we shall see that its singularities
correspond to “Maxwell’s line” in the graph. Thus we obtain the generalized
solution of (1.1) and describe its singularities geometrically.

2. The method of characteristics.

Here, we shall construct the solution of (1.1) concretely by the method of
characteristics. The characteristic line through $(0, y)$ associated with (1.1) is
the solution of the following:

(2.1) $\{$

$x=f’(p)$ , $x(O)=y$ ,

$\phi=0$ , $p(0)=\phi’(y)$ ,

ab $=-f(p)+\langle p, f’(p)\rangle$ , $v(0)=\phi(y)$ .
That is, it is Written by

(2.2) $\{$

$x=x(t, y)=y+tf’(\phi’(y))$ ,

$P=P(t, y)=\phi’(y)$ ,

$v=v(t, y)=\phi(y)+t(-f(\phi’(y))+\langle\phi’(y), f’(\phi’(y))\rangle)$ .

Associated with this, we define $C^{\infty}$-mappings $H_{t}$ : $R_{y}^{n}arrow R_{x}^{n}$ and $H:R_{(t.y)}^{n+1}arrow R_{(t.x)}^{n+1}$

as follows:
$H_{t}(y)=y+tf’(\phi’(y))$ , $H(t, y)=(t, H_{t}(y))$ .

Then, the solution $u$ of (1.1) is expressed by

$u(t, x)=v(H^{-1}(t, x))$ ,

which is $C^{\infty}$ at $(t, x)$ which is not the critical value of $H$. But near the critical
values of $H,$ $u$ may become multi-valued. Hence, in the next section, we con-
sider the singularities of $H$.

3. Singularities of mapping $H$.
Let $J(H)$ (respectively $D(H)$ ) be the jacobian matrix (respectively the

jacobian determinant) of mapping $H$. Then, by a direct calcuIation, we have
$J(H_{t})=I_{n}+tf’(\phi’(y))\phi’(y)$ ,
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$J(H)=(\begin{array}{ll}1 0* J(H_{t})\end{array}\}$ ,

$D(H)=D(H_{t})= \prod_{t=1}^{n}(1+t\lambda_{i}(y))$ .

Here $\lambda_{i}(y),$ $1\leqq i\leqq n$ , are eigenvalues of $f’’(\phi’(y))\phi’(y)$ . We assume
(A.1) $\lambda_{1}(y)<\lambda_{2}(y)<\ldots<\lambda_{n}(y)$ ,
(A.2) $\min_{y}\lambda_{1}(y)=\lambda_{1}(y^{0})=-M<0$ ,

(A.3) the singularity of $\lambda_{1}$ is non-degenerate, $i$ . $e.,$ $\lambda_{1}’(y)=0$ implies that
$\lambda_{1}’’(y)$ is invertible.

REMARK. (1) In (A.1), we have only to assume the simplicity of the
minimum eigenvalue $\lambda_{1}(y)$ .

(2) Set $t^{0}=l/M$. Then $D(H)>0$ if $t<t^{0}$ and $D(H)(t^{0}, y^{0})=0$ .
(3) $(A.2)-(A.3)$ imply $\lambda_{1}’’(y^{0})>0$ .

Under these assumptions, we shall show that the singularities of $H$ must
be fold or cusP near $(t^{0}, y^{0})$ . In order that we give some lemmas.

LEMMA 1. By any rotation around $y^{0}$ , eigenvalues of $J(H)$ are kept invariant.

PROOF. Let $x=A(X-y^{0})+y^{0}$ , where $A\in O(n)$ and $w(t, X)=u(t, x)$ . Then
$w$ satisfies
(1.1) $w_{t}+g(w_{X})=0$ , $w(O, X)=\psi(X)$ ,

where $g(q)=f(^{t}Bq)$ , $B=A^{-1}$ and $\psi(X)=\phi(x)$ . A direct calculation shows
$g’’\psi’’=Bf’’\phi’A$ . This completes the proof.

LEMMA 2. By taking $A\in O(n)$ aPProPriately, we may assume that the n-th
column vector of $C=J(H_{t^{0}})(y^{0})$ is zero.

PROOF. Note that $rankC=n-1$ . Let $a_{n}$ be the unit eigenvector of $C$

associated with the eigenvalue $0$ and let $a_{1},$ $a_{2},$ $\cdots$ , $a_{n}$ be an orthonormal basis
of $R^{n}$ containing $a_{n}$ . Then $A=[a_{1}\cdots a_{n}]$ is the desired matrix. This completes
the proof.

LEMMA 3. There exist at least one non-zero PrinciPal minors of $C$ of order
$n-1$ .

PROOF. Let $g(s, y)=s^{n}D(H_{1/s})(y)=\Pi_{i=1}^{n}(s+\lambda_{i}(y))$ . Then $g_{S}(-\lambda_{1}(y^{0}), y^{0})=$

$\Pi_{i=2}^{n}(\lambda_{i}(y^{0})-\lambda_{1}(y^{0}))>0$ . On the other hand, by a direct calculation, it follows
$g_{s}(-\lambda_{1}(y^{0}), y^{0})=(-\lambda_{1}(y^{0}))^{n-1}$

$\cross$ { $sum$ of all the principal minors of $C$ of order $n-1$ }.

These imply the assertlon of this lemma.
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From Lemmas 2 and 3, we have

LEMMA 4. The following $C^{\infty}- mapffingh:R_{(t.y)}^{n+1}arrow R_{(t.Y)}^{n+1}$ is a diffeomorphism
near $(t^{0}, y^{0})$ :

$h$ : $\{$

$t=t$ ,

$Y_{i}=y_{i}+tf_{p_{i}}(\phi’(y))$ ,
$Y_{n}=y_{n}$ .

$1\leqq i\leqq n’-1$ ,

We write its inverse $h^{-1}$ : $t=t,$ $y_{i}=b_{i}(t, Y),$ $1\leqq i\leqq n$ . Then $b_{n}(t, Y)\equiv Y_{n}$ and
$b_{i},$ $1\leqq i\leqq n-1$ , satisfy

(3.1) $Y_{i}=b_{i}(t, Y)+tf_{p_{i}}(\phi’(b(t, Y)))$ .
NOW, the mapping $H_{1}=Hoh^{-1}$ is expressed by

$H_{1}$ : $\{$

$t=t$ ,

$x’=Y’$ ,

$x_{n}=Y_{n}+tf_{p_{n}}(\phi’(b(t, Y)))$ .
In what follows, we consider them only near $(t^{0}, y^{0})$ or near $(t^{0}, Y^{0})=h(t^{0}, y^{0})$ .
Let $\Sigma^{1}=\Sigma^{1}(H_{1})=\{(t, Y)\in R^{n+1} ; \partial x_{n}/\partial Y_{n}=0\}$ and $\Sigma^{1.1}=\Sigma^{1.1}(H_{1})=\{(t, Y)\in\Sigma^{1}$ ;
$\partial^{2}x_{n}/\partial Y_{n}^{2}=0\}$ . Then we have

PROPOSITION 5. The point in $\Sigma^{1.1}$ is a cusp point of $H_{1}$ .

PROOF. We use the characterization of singularities obtained in Morin [7].

An easy calculation shows
$\Sigma^{1}=\{(t, Y)\in R^{n+1} ; 1+t\lambda_{1}(b(t, Y))=0\}$ ,

$\Sigma^{1.1}=\{(t, Y)\in\Sigma^{1} ; \partial\lambda_{1}(b(t, Y))/\partial Y_{n}=0\}$ .
We consider $\partial^{3}x_{n}/\partial Y_{n}^{3}$ and $\partial^{2}x_{n}/\partial t\partial Y_{n}$ on $\Sigma^{1.1}$ . Then, on $\Sigma^{1.1}$

$\partial^{3}x_{n}/\partial Y_{n}^{3}=D(h)^{-1}\prod_{i=2}^{n}(1+t\lambda_{i}(b))t\partial^{2}\lambda_{1}/\partial Y_{n}^{2}$ ,

$\partial^{2}\lambda_{1}/\partial Y_{n}^{2}=\langle b_{Y_{n}}, \lambda_{1}’’b_{Y_{n}}\rangle+\langle\lambda_{1}’, \partial^{2}b/\partial Y_{n}^{2}\rangle>0$ ,

$\partial^{2}x_{n}/\partial t\partial Y_{n}=D(h)^{-1}\prod_{i\Rightarrow 2}^{n}(1+t\lambda_{i}(b))\lambda_{1}(b)\neq 0$ .

Thus, we have $\partial^{3}x_{n}/\partial Y_{n}^{3},$ $\partial^{2}x_{n}/\partial t\partial Y_{n}\neq 0$ on $\Sigma^{1.1}$ . These imply that the point in
$\Sigma^{1.1}$ is a cusP Point of $H_{1}$ .

LEMMA 6. $\Sigma^{1.1}$ is a $C^{\infty}$-submanifold of $R^{n+1}$ of codimenston 2 parametrized
by $Y’$ .

PROOF. This lemma follows from the implicit function theorem and the
fact:
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$\frac{\partial(1+t\lambda_{1},\partial\lambda_{1}/\partial Y_{n})}{\partial(t,Y_{n})}=\det\{\begin{array}{lll}\lambda_{1}+t \sum_{i=1}^{n-1}\partial\lambda_{1}/\partial y_{i}\partial b_{i}/\partial t \partial^{2}\lambda_{1}/\partial t\partial Y_{n} t\partial\lambda_{1}/\partial Y_{n} \partial^{2}\lambda_{1}/\partial Y_{n}^{2}\end{array}\}$

$=\lambda_{1}\partial^{2}\lambda_{1}/\partial Y_{n}^{2}\neq 0$ at $(t^{0}, Y^{0})$ .
The following lemma is easy to see.

LEMMA 7. $H_{1}(\Sigma 11)$ is a $C^{\infty}$-submamfold of $R^{n+1}$ of codimenston 2 parametnzed
by $x’$ .

4. Singularities of the graph of the solution.

NOW, we define $C^{\infty}$-mappings which describe the graph of the solution of
(1.1) and study its singularities. Let

$H_{2}$ : $R_{(t.y)}^{n+1}arrow R_{(t,x.v)}^{n+2}$

$H_{2}$ : $\{$

$t=t$ ,

$x=y+tf’(\phi’(y))$ ,

$v=\phi(y)+t(-f(\phi’(y))+\langle\phi’(y), f’(\phi’(y))\rangle)$ ,

$H_{3}=H_{2}\circ h^{-1}$ : $R_{(t.Y)}^{n+1}arrow R_{(t,x.v)}^{n+2}$

$H_{3}$ : $\{$

$t=t$ ,

$x’=Y’$ ,

$x_{n}=Y_{n}+tf_{p_{n}}(\phi’(b))$

$v=\phi(b)+t(-f(\phi’(b))+\langle\phi’(b), f’(\phi’(b))\rangle)$ ,

$H_{4}$ : $R_{(t.y.x_{n})}^{n+2}arrow R_{(t.x.w)}^{n+z}$

$H_{4}$ : $\{$

$t=t$ ,

$x_{i}=y_{i}+tf_{p_{i}}(\phi’(y))$ , 1 $i\leqq n-l,

$x_{n}=x_{n}$ ,

$w=v+\phi_{Vn}(y)(x_{n}-y_{n}-tf_{p_{n}}(\phi’(y)))$ ,

$H_{5}=H_{4^{O}}h_{1}^{-1}$ : $R_{(t}^{n}Y.x_{n}$ )$2arrow R_{(t.x.w^{)}}^{n+2}$

$H_{\epsilon}$ : $\{$

$t=t$ ,

$x_{i}=Y_{i}$ , $1\leqq i\leqq n-1$ ,

$x_{n}=x_{n}$ ,

$w=v+\phi_{\nu_{n}}(b)(x_{n}-Y_{n}-tf_{p_{n}}(\phi’(b)))$ ,

where $h_{1}(t, y, x_{n})=(h(t, y),$ $x_{n})$ .
Then, it follows

LEMMA 8. $D(H_{5})=w_{Y_{n}}=A(t, Y)(x_{n}-Y_{n}-tf_{p_{n}}(\phi’(b)))$ , where $A(t, Y)=$
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$\Sigma_{i=1}^{n}\partial b_{i}/\partial Y_{n}\cdot\partial^{2}\phi/\partial y_{i}\partial y_{n}<0$ .
PROOF. By a direct calculation, we have

$w_{Y_{n}}=A(t, y)(x_{n}-Y_{n}-tf_{p_{n}})+ \sum_{i=1}^{n-1}\phi_{y_{i}}(b_{i.Y_{n}}+t\sum_{j.k=1}^{n}f_{p_{i^{p_{j}}}}\phi_{y_{j^{y_{k}}}}b_{k.Y_{n}})$ .
On the other hand, by differentiating (3.1) by $Y_{n}$ , we have

(4.1) $0=b_{i.Y_{n}}+t \sum_{j.k=1}^{n}f_{p_{i}p_{j}}\phi_{y_{j^{y_{k}}}}b_{k.Y_{n}}$ $(1\leqq i n-1)$ .
Thus, the first part of the assertion is proved. Next, from (4.1), it follows

$\sum_{i=1}^{n}b_{i,Y_{n}}\phi_{y_{i}y_{n}}=\phi_{y_{n^{y}n}}(1+t\sum_{j.k=1}^{n}fp_{n}p_{j}\phi_{y_{j^{y_{k}}}}b_{k,Y_{n}})$

$-t \sum_{i.j.k=1}^{n}\phi_{y_{n}y_{i}}f_{p_{i^{p_{j}}}}\phi_{y_{j^{y}k}}b_{k.Y_{n}}\equiv I_{1}-I_{2}$ .

Here,
$I_{1}=\phi_{y_{n}y_{n}}$ $\cross$ { $n$ -th element of $(I_{n}+tf’’\phi’’)b_{Y_{\mathcal{R}}}$ },

$I_{2}=t\cross$ ( $n$-th element of $\phi’’f’’\phi’b_{Y_{n}}$ ).

From Lemma 2 and (4.1), it is easy to see that $b_{Y_{n}}=^{t}(0, , 0,1)$ at $(t^{0}, Y^{0})$ ,

which implies $I_{1}=0$ . On the other hand, at $(t^{0}, Y^{0})$ , we have
$I_{2}=t\langle\phi’f’\phi’b_{Y_{n}}, b_{Y_{n}}\rangle=t\langle f’\phi’b_{Y_{n}}, \phi’’b_{Y_{n}}\rangle\geqq ct|\phi’b_{Y_{n}}|^{2}$ .

Here we use the uniform convexity of $f$ . Now suppose $\phi’’b_{Y_{n}}=0$ . Then,
$b_{Y_{n}}=-tf’’\phi’b_{Y_{n}}=0$ at $(t^{0}, Y^{0})$, which is a contradiction. Thus $I_{2}$ must be
positive. This proves the latter part of lemma.

We set $\Sigma^{1}=\Sigma^{1}(H_{6})=\{(t, Y, x_{n})\in R^{n+2} ; D(H_{6})=0\}$ . Then Lemma 8 says
$\Sigma^{1}=\{x_{n}=Y_{n}+tf_{p_{n}}(\phi’(b))\}$ . Hence $H_{\overline{0}}|_{\Sigma^{1}}=H_{3}$ . Furthermore, if we set $\Sigma^{1.1}=$

$\Sigma^{1,1}(H_{5})=\{\partial w/\partial Y_{n}=\partial^{2}w/\partial Y_{n}^{2}=0\}$ and $\Sigma^{1.1.1}=\Sigma^{1.1.1}(H_{5})=\{\partial w/\partial Y_{n}=\partial^{2}w/\partial Y_{n}^{2}=$

$\partial^{3}w/\partial Y_{n}^{3}=0\}$ , then Proposition 5 says $\partial^{4}w/\partial Y_{n}^{4},$ $\partial^{2}w/\partial t\partial Y_{n}\neq 0$ on $\Sigma^{1.1.1}$ . Lemma
8 implies $\partial^{2}w/\partial x_{n}\partial Y_{n}=A(t, y)\neq 0$ . Again, by the results of [7], we have

PROPOSITION 9. The point in $\Sigma^{1.1.1}$ is a swallow’s tail of $H_{5}$ .

PROOF. We have only to show that, on $\Sigma^{1.1.1}$ , the rank of the mapping
$M:R^{n+2}arrow R^{3}$ defined by $M(t, Y, x_{n})=(\partial w/\partial Y_{n}, \partial^{2}w/\partial Y_{n}^{2}, \partial^{3}w/\partial Y_{n}^{3})$ is equal to
3. A direct calculation shows

$\frac{\partial M}{\partial(t,Y_{n},x_{n})}=-A(t, Y)^{2}\cdot\partial^{4}w/\partial Y_{n}^{4}\cdot\partial^{3}w/\partial t\partial Y_{n}^{2}\neq 0$

on $\Sigma^{1.1.1}$ . This completes the proof.

NOW, we shall find a system of coordinates which gives the canonical form
of swallow’s tail. Since $\partial^{4}w/\partial Y_{n}^{4}=-tA(t, Y)D(h)^{-1}\partial^{2}\lambda_{1}/\partial Y_{n}^{2}>0$ , the unfolding
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theorem in [9] shows that there exist $C^{\infty}$-functions $k=k(t, Y, x_{n})$ and
$a_{i}=a_{i}(t, Y’, x_{n}),$ $i=1,2,3$ such that

$w=k^{4}/4-a_{1}k^{2}/2-a_{2}k-a_{3}$ and $\partial k/\partial Y_{n}\neq 0$ .
Then, $\Sigma^{1.1.1}=\{(t, Y, x_{n}):k=a_{1}=a_{2}=0\}$ . Define, for each $Y’$ fixed, $C^{\infty}$-mappings
as follows:

$M_{1}(t, x_{n})=(a_{1}(t, Y’, x_{n}), a_{2}(i, Y’, x_{n}))$ ,

$M_{2}(t, Y_{n}, x_{n})=(a_{1}(t, Y’, x_{n}), a_{2}(t, Y’, x_{n}), k(t, Y, x_{n}))$ .
The proof of Proposition 9 shows that these are diffeomorphisms. By the
coordinate transformations:

$P:R_{(t.y.x_{n})}^{n+2}arrow R_{(T.Z.X_{n})}^{n+2}$

$P:\{\begin{array}{l}T=a_{1}(t,Y’,x_{n}),Z’=Y’,Z_{n}=k(t,Y,x_{n}),X_{n}=a_{2}(t,Y’,x_{n}),\end{array}$

$Q$ : $R_{(t.x.w)}^{n+2}arrow R_{(T.Z’.X_{n}.W)}^{n+2}$

$Q$ : $\{$

$T=a_{1}(t, x)$ ,

$Z’=x’$ ,
$X_{n}=a_{2}(t, x)$ ,

$W=w+a_{3}(t, x)$ .
$H_{5}$ is transformed into $H_{6}=Q\circ H_{5}\circ P^{-1}$ : $R_{(}^{n}F_{Z.x_{n})}^{2}arrow R_{(T.Z’.X_{n}.W)}^{n+2}$ which is written
by

$H_{6}$ : $\{$

$T=T$ ,

$Z’=Z’$ ,
$X_{n}=X_{n}$ ,
$W=Z_{n}^{4}/4-TZ_{n}^{2}/2-X_{n}Z_{n}$ .

Thus we have obtained the canonical form of swallow’s tail. The self-inter-
section submanifold, what we call Maxwell’s line, is expressed by $\{W=$

$-T^{2}/4,$ $X_{n}=0,$ $T>0\}$ . In $(t, x, w)$ space, it is expressed by $\{w=-a_{1}^{2}/4-a_{3}$ ,
$a_{2}=0,$ $a_{1}>0\}$ , whose projection on $(t, x)$ space is $\Gamma=\{a_{2}=0, a_{1}>0\}$ . Since
$\partial a_{2}/\partial x_{n}=-A\partial h/\partial Y_{n}\neq 0,$ $\Gamma$ is parametrized by $(t, x’)$ . We express it by
$x_{n}=\varphi(t, x’)$ . The boundary $\partial\Gamma$ of $\Gamma$ is expressed by $\{a_{1}=a_{2}=0\}$ , which is
parametrized by $x’$ . It is easy to see that $\partial\Gamma=H_{1}(\Sigma 11(H_{1}))$ . From the argu-
ment above, we can express the graph of the solution of (1.1). See Figure 2.

EXAMPLE (See Arnold [1]). Let $n=1,$ $f(p)=p^{2}/2,$ $\phi(x)=-3x^{4/3}/4$ . Then the
solution of the characteristic equation is:
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$x=y-ty^{1/3}$ , $v=-3y^{4/3}/4+ty^{2/3}/2$ .
Let $Y=y^{1/3}$ . Then the mappings $H_{2}$ and $H_{4}$ are written by

$rt=t$ ,
$H_{l}$ :

$\{$

$x=Y^{S}-tY$ ,

$v=-3Y^{4}/4+tY^{2}/2$ ,

$H_{4}$ : $\{$

$t=t$ ,

$x=x$ ,

$w=Y^{4}/4-tY^{2}/2-xY$ .
Thus $H_{4}$ is the canonical form of swallow’s tail. Note that the above $\phi$ does
not belong to $g(R)$ . Nevertheless, this example expresses the essential part of
the formation of singularities.

5. Structure of $u$ as a multi-valued function.

In the previous section, we have got a geometrical structure of the solution
$u$ of (1.1) as a multi-valued function. In this section, we study analytically its
structure and get a single-valued continuous solution.

Proposition 5 says that $H_{1}^{-1}$ is triple-valued in $\Omega$ , which is the domain
surrounded by $H_{1}(\Sigma^{1}(H_{1}))$ . See Figure 1.

Figure 1.

Welwrite the three branches of $H_{1}^{-1}$ by

$H_{1}^{-1}$ : $\{$

$t=t$ ,

$Y’=x’$ ,
$Y_{n}=G_{n}^{(i)}(t, x)$ , $1\leq i\leqq 3$ ,

where $G_{n}^{(1)}<G_{n}^{(2)}<G_{n}^{(3)}$ in $\Omega$ . If we set
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$u_{i}(t, x)=(v\circ h^{- 1})(t, x’, G^{(i)}(i, x))$ $1\leqq i\leqq 3$ ,

$g^{(\ell)}(t, x)=b(t, x’, G^{(i)}(t, x))$ $1\leqq i\leqq 3$ ,

then $u_{i}(t, x)=v(g^{(i)}(t, x))$ l;$i;S3. By a direct calculation, we have

LEMMA 10. $u_{\ell.x_{j}}(t, x)=\phi_{y_{j}}(g^{(i)}(t, x))$ for all $i$ and $j$ .

LEMMA 11. $\langle g^{(i)}(t, x)-g^{(j)}(t, x), \phi’(g^{(i)}(t, x))-\phi’(g^{(f)}(t, x))\rangle<0$ for $i\neq j$ .

PROOF. From the definition, we have
$g^{(i)}+tf’(\phi’(g^{(i)}))=g^{(j)}+tf’(\phi’(g^{(j)}))$ .

Then $\phi’(g^{(i)})\neq\phi’(g^{(j)})$ for $i\simeq j$ , since $g^{(i)}\neq g^{(j)}$ . Hence,

$\langle g^{(i)}-g^{(j)}, \phi’(g^{(i)})-\phi’(g^{(j)})\rangle$

$=-t\langle f’(\phi’(g^{(i)}))-f’(\phi’(g^{(f)})), \phi’(g^{(i)})-\phi’(g^{(j)})\rangle$

$=-t\langle f’’(*)(\phi’(g^{(i)})-\phi’(g^{(j)})), \phi’(g^{(i)})-\phi’(g^{(j)})\rangle$

$\leqq-ct|\phi’(g^{(i)})-\phi’(g^{(j)})|^{2}$

$<0$ .
This completes the proof.

LEMMA 12. $u_{1.x_{n}}>u_{2,x_{n}}>u_{s.x_{n}}$ in $\Omega$ .
PROOF. Let $I=\langle g^{(i)}-g^{(j)}, \phi’(g^{(i)})-\phi’(g^{(j)})\rangle$ . Then

$I=(G_{n}^{(i)}-G_{n}^{(j)})\langle b_{Y_{n}}(t, x’, *), \phi’(g^{(i)})-\phi’(g^{(j)})\rangle$

$=(G_{n}^{(i)}-G_{n}^{(j)})(\phi_{y_{n}}(g^{(i)})-\phi_{y_{n}}(g^{(j)}))$

$+(G_{n}^{(i)}-G_{n}^{(j)})\langle b_{Y_{n}}’, \phi_{Y’}(g^{(i)})-\phi_{Y’}(g^{(j)})\rangle$

$\equiv I_{1}+I_{2}$ .
Since $b_{Y_{n}}’(t^{0}, Y^{0})=0$ , for any $\epsilon>0,$ $|b_{Y_{n}}’|<\epsilon$ in a sufficiently small neighborhood
of $(t^{0}, Y^{0})$ . Hence

$|I_{2}|\leqq\epsilon|G_{n}^{(i)}-G_{n}^{(j)}||\phi’(g^{(i)})-\phi’(g^{(j)})|$

$\leqq\epsilon t|f_{p_{n}}(\phi’(g^{(i)}))-f_{p_{n}}(\phi’(g^{(j)}))||\phi’(g^{(i)})-\phi’(g^{(j)})|$

$\leqq\epsilon Mt|\phi’(g^{(i)})-\phi’(g^{(j)})|^{2}$

for some $M>0$ . On the other hand, Lemma 11 says

$I_{1}+I_{2}\leqq-ct|\phi’(g^{(i)})-\phi’(g^{(j)})|^{2}$ .
By taking $\epsilon$ small, we have $I_{1}<0$ . Then, it follows from Lemma 10

$(G_{n}^{(i)}-G_{n}^{(j)})(u_{i.x_{n}}-u_{f,x_{n}})<0$ .
Since $G_{n}^{(1)}<G_{n}^{(2)}<G_{n}^{(3)}$ , the assertion is proved.

Note that $u_{1}=u_{2}$ on $H_{1}(\Sigma_{-}1)$ and $u_{2}=u_{s}$ on $H_{1}(\Sigma_{+}1)$ (see Figure 1). Thus we
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have

LEMMA 13. $u_{1}<u_{2}$ and $u_{2}>u_{3}$ in $\Omega$ .

The graph of $u$ as a multi-valued function is as follows:

Figure 2. Graph of $u$ .

This graph corresponds to the image of $\Sigma^{1}(H_{6})$ by $H_{6}$ .
In order to get a single-valued continuous solution, we must pass from $u_{1}$

to $u_{3}$ on $\Gamma$ . Let $\Omega_{\pm}=\{(t, x)\in\Omega;X_{n}><\varphi(t, x’)\}$ and

$u(t, x)=\{u_{3}(tu_{1}(t|x)x)$ $inin\Omega_{-}\Omega_{+}.$

Then this function is the desired solution. It is $C^{\infty}$ outside $\Gamma$ . Thus, its
singularities propagate along $\Gamma$ .

6. Semi-concavity of $u$ .
NOW, we shall prove the semi-concavity of $u$ constructed above. Slnce $C^{2}-$

function is automatically semi-concave, we have only to consider $u$ on $\Gamma$ .
Let $\Gamma_{t}=\{x;x_{n}=\varphi(t, x’)\}$ and $u_{x}(t, x \pm Oy)=\lim_{\text{\’{e}}arrow+0}u_{x}(t, x\pm\epsilon y)$ for $x\in\Gamma_{t}$ .

Then, we have
$u(t, x+y)+u(t, x-y)-2u(t, x)$

$= \int_{0}^{1}\langle u_{x}(t, x+sy)-u_{x}(t, x+Oy), y\rangle ds+\int_{0}^{1}\langle u_{x}(t, x-Oy)-u_{x}(t, x-- sy), y\rangle ds$

$+\langle u_{x}(t, x+Oy)-u_{x}(t, x-Oy), y\rangle$
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$= \int_{0}^{1}\langle u_{1.x}(t, x+sy)-u_{1,x}(t, x), y\rangle ds+\int_{0}^{1}\langle u_{3,x}(t, x)-u_{3,x}(t, x-sy), y\rangle ds$

$+\langle u_{1,x}(t, x)-u_{3,x}(t, x), y\rangle$

$\equiv I_{1}+I_{2}+I_{3}$ .
First, we estlmate $I_{1}$ . The same holds for $I_{2}$ . Since $u=u_{i}$ are not $C^{\infty}$ on
$H_{1}(\Sigma^{1}(H_{1}))$ , we must pay attention to the behaviour of $u’$ near $H_{1}(\Sigma^{1}(H_{1}))$ . We
use the canonical form of swallow’s tail described in section 4. Then, $u$ is
expressed by

$u=(W+a_{3})|_{\Sigma 1(H_{5})}=a_{3}-3Z_{n}^{4}/4+TZ_{n}^{2}/2$ ,

where $T=a_{1},$ $X_{n}=a_{2}=Z_{n}^{3}-TZ_{n}$ and $a_{i}$ are $C^{\infty}$-functions. Hence,

$u_{x_{i}}=a_{3.x_{i}}+(-3Z_{n}^{2}\cdot+T)Z_{n}Z_{n,x_{\{}}+Z_{n}^{2}T_{x_{i}}/2$ .
Since $X_{n,x_{i}}=(3Z_{n}^{2}-T)Z_{n,x_{i}}-Z_{n}T_{x_{i}}$ , it follows
$u_{x_{i^{-}}}a_{3.x_{i}}-Z_{n}X_{n,x_{i}}-Z_{n}^{2}T_{x_{i}}/2$ ,

$u_{x_{t^{x}j}}=(T-3Z_{n}^{2})^{-1}(X_{n.x_{i}}+Z_{n}T_{x_{i}})(X_{n.x_{j}}+Z_{n}T_{x_{j}})+a_{3,x_{i^{x}f}}-Z_{n}$ a 2, $x_{i}x_{j}Z$ ft $a_{1.x_{i^{x}j}}/2$ .
Since $T-3Z_{n}^{2}<0$ in the domain we consider, the first term of $u_{x_{i^{x}j}}$ above yields
negative semi-definite part of $u’$ . On the other hand, the other terms are
continuous. Hence, these imply

$I_{1}+I_{2}\leqq K|y|^{2}$ for some $K>0$ .
AS for $I_{3}$ , we have only to show in case $y=n=n(t, x)$ is a unit normal of

$\Gamma_{t}$ at $x$ oriented from $\Omega_{-}$ to $\Omega_{+}$ . Since $u_{1}-u_{3}><0$ in $\Omega_{\mp}$ ,

$\langle u_{1.x}-u_{3,x}, n\rangle=\frac{d}{ds}(u_{1}(t, x+sn)-u_{3}$( $t$ , x-fr $sn$ ) $)|_{s0}=\leqq 0$ .

Thus we have shown the semi-concavity of $u$ .
THEOREM 14. Assume (A. $1$ )$-(A.3)$ . Then the solution of (1.1) obtained by

the method of characteristics becomes triple-valued near $(t^{0}, x^{0})=H_{1}(t^{0}, y^{0})$ . Its
graph has swallow’s tail as singularities. From it, we can obtain the srngle-valued
generalized solution of (1.1), whose srngularities correspond to Maxwell’s line of
swallow’s tail.
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