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§0. Introduction.

Let 2 be an exterior domain in R® with a smooth and compact boundary
02. We consider the isotropic elastic wave equation

Lu = (A40;)—6Hu =0 in RXQ,
(0.1) ut, x)=0 on Rx08,
u(0, x) = fo, 0:u(0, x) = f, on 2.

Here u="(u,, u,, u;) isithe displacement vector and A(d.) is of the form

A0 u = pAu+(A+p) grad (div u).

We assume that the Lamé constants 4 and g satisfy

Z—I—%p>0 and ©>0.

Then, as is shown in Yamamoto and Shibata and Soga [8], we can develop
the scattering theory for in a similar way to that in Lax and Phillips [6].
Let k_(s, w) and k.(s, w)e L}(RXS?) (={L*RxS%}*) be the incoming and out-
going translation representations of the initial data f=(f,, f,) respectively.
The mapping S: k.—k, is called the scattering operator, which is a unitary
operator from L*(RXxS?) to itself. The scattering operator is represented with
a distribution kernel S(s, 8, w) called the scattering kernel:

(SE_)s, 0) = SSR LS(s—1, 0, )k (t, w)tdo

Note that the scattering Kernel S{s, #, w) is a 3X3-matrix whose components
are smooth functions in # and w with the value of the distribution in s. The
purpose of the present paper is to study singularities of the scattering kernel
S(s, 0, w).

The characteristic matrix A(§) of the operator A(d.) has the eigenvalues
C:%1&|® and C*|&|% where

Co=Q+2m",  Cpe=pir.
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Let P,(€) be the eigen-projectors for the eigenvalues C,|&|* (=L, T). Then
P.(&)R® is the space spaned by & and Pr(§)R® is the orthogonal complement of
P (&)R®. Associated with the eigenvalues C,*|&|* (a=L, T), there are waves
of two different types (modes). The one propagates with the speed C;, and the
other with Cr. Furthermore their amplitudes are longitudinal and transverse
to the propagation direction repectively, and therefore these waves are called
longitudinal and transverse waves respectively.

For elastic waves there is a conspicuous phenomenom called “mode-conver-
sion”, that is, when a longitudinal or transverse incident wave hits the boun-
dary 0%, both a longitudinal reflected wave and a transverse reflected wave
appear. In the half-space mode-conversion is well known (cf. Chapter 5 of
Achenbach [I]). Soga studies the same problem in general domains for
anisotropic equations. He shows in terms of the asymptotic solutions that if 0£2
is flat at points where the incident wave hits 02 perpendicularly, mode-conver-
sion does not occur on the reflection rays emanating from those points (cf.
Theorem 2.1 of [12]).

In view of these results concerning mode-conversion, we can expect that
the corresponding phenomenon occurs for the scattering kernel S(s, 6, ®), be-
cause Pg(0)S(Cp'0-x—t, 6, @) P.(w) is regarded as the Cg-mode wave scattered
in the direction # for the incident plane C,-mode wave in the direction . By
Soga [1I] we obtain

0.2)  supp Ps(—@)S(+, —w, @)Po(w) C (—co, —(r w)+rsw))] (a, B=L,T),
0.3) —2rq(w) € sing supp P,(—w)S(-, -—w, 0)P,(w) (a=L, T),

where 7,(@)=C, 'r(w) (a=L, T) and r(w)=min{x-w|x=R*L2}. He treats an-
isotropic equations, but he does not analize sing supp Ps(—)S(:, —w, ®)P,(w) in
the case of a=+B. In this case there is a difficulty not encountered when a=§.
Thus our problem is

“to examine whether Ps(—w)S(s, —w, ®)P,(w) (a+p)

is singular or not at s=—(ry(@)+rr(@))".

This means “to study mode-conversion in the sence of the scattering kernel”.
In the present paper we restrict ourselves only in the case where the incident
wave is longitudinal (i.e. @=L and =T in the above statement). We set

(0.4) Spr(s; 0, w) = tﬁPT(“O))S(S, —0, 0)Pllwo .

Roughly speaking, our conclusion is that the singularities of S;.r(s; 6, @) at
s=—(r.(w)+rr(@) depend on symmetry of 02 near {x<0R|x-w=r(w)} (in
detail, see §1). Hence, in contrast with the fact that flatness of 02 determines
mode-conversion for the asymptotic solutions, symmetry of 2 determines mode-
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conversion for the scattering kernel.

The proof of our results is based on the representation formula of the
scattering kernel obtained by Soga [10]. By means of this formula, we repre-
sent S;.r(s; #, w) in an integral form on 0f with the reflected wave for the
incident plane wave in the direction w. Next, expressing the reflected wave in
this integral form by the asymptotic solutions

(0.5) ut, x:7) ~ Py _expliz(t+Caph(x) S ubt, x)Ge) 7,
=L, Jj=0

we write the Fourier transform (a.(-)S;.r(-; 8, ®))"(—Fk) in an oscillatory inte-
gral form, and analyze its asymptotic behaviour as |k|—co, where a.s) is a
cutoff function. In our case, however, the principal term of this oscillatory
integral form is always degenerate because mode-conversion does not occur for
the principal amplitude function u# in this is, the function uf vanishes
at points on 02 where the incident wave hits 02 perpendicularly. This is
quite different from the case of Majda and Soga [9, 11], and causes the
main difficulty in our proof. Hence, only by the methods in [7], and [11],
we cannot obtain informations of the singularities of S;.r(s; 8, w) at s =
—(rr(w)+rr(w)). But, by integration by parts and other methods, we can make
that integral form non-degenerate if 92 does not have symmetry (cf. §1). On
the other hand, if 08 is symmetric, the integrand in the representation of
Si.7(s; 0, w) becomes an odd function, and so S;.r(s; 8, w) itself vanishes near
s=—(r(@)+rr(w)) (cf. Theorem 1.3).

ACKNOWLEDGEMENTS. The authors would like to express their thanks to
Professor M. Ikawa and Professor M. Nagase for their useful advice.

§1. Main theorems.
We fix the progagation direction w<=S? of the incident wave, and set

M) = {x€df | x-0o=r(w)}.

Let Z be the mean curvature of the boundary 0£, and denote by V' the gra-
dient operator on 02. The first main result is the following :

THEOREM 1.1. Assume that

(1.1 0-V'5+#0 on M(w) and the sign of 6-V'E does not change on M(w).

Then the distribution Sp_r(s; 8, w) is singular at s=—(r(w)+rr(w)).
We give a typical example which satisfies the condition (1.1) in [Theorem 1.1:

EXAMPLE 1.2. Let £ be the outside of the ellipsoid {x=R?| (x,/a,)?+
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(x2/a)*+(x:/as)*>1} with a,%a,, and o="(w;, w,, 0)=S5% We set ;=" (—w,, w,,0)
and ¢,=%0, 0, 1). Then we can easily check that the condition (1.1) is satisfied
if w and 6 fulfil the following and [L.2) :

(1.2) o+ £41,0,0) or o= £40,1,0),
(L.2y G-e,+0.

In the above example if w satisfies [1.2), the boundary 02 near M(w) is not
symmetric with respect to the direction e¢;,. Thus we can understand that the
condition (1.1) explains that ¢f2 near M(w) is not symmetric.

On the other hand, if the boundary 0£ is symmetric near M(w), then we
can show that not only S;.z(s; 8, ) is smooth at s=—(r (w)+rr(w)) but also
Si.r(s; 0, w) vanishes near s=—(r (@)+7rr(®)). In the present paper, we say
that the set W is symmetric in the direction v, if the following condition is
satisfied :

(1.3) There exist planes =y, @, -+, @, normal to y and disjoint open
sets U, U,, -, U, in R? covering W such that WNU; is
symmetric with respect to x; for each j=1, 2, ---, 7.

Note that if 02 is symmetric with respect to an axis parallel to w, for any v
orthogonal to w, 0f2 is symmetric in the direction v.

THEOREM 1.3. If the intersection 2 and a neighborhood U of M(w) is the
symmetric in the direction v orthogonal to w (c¢f. (1.3)), then there exists a posi-
tive constant ¢ such that

Sror(s; v, w) =0 for any s > —(ry(w)+rrlw)—c¢.

REMARK. The ¢ in is a constant such that Ce-neighborhood
of the set {x<d2NU; | x-w<r(w)+Cre} is contained in the open set U, stated
in (1.3) for each j=1, 2, ---, r.

From we have the following corollary immediately :

COROLLARY. If 08 is symmetric with respect to an axis parallel to w, then
Si.r(s; 0, =0 for any s€R and any 6<5* normal to w.

We shall prove in §2 and in §§3, 4 and 5.

§2. Proof of Theorem 1.3.

Before proving [Theorem 1.3, we review some results obtained in Soga [10].
Let vZ(¢, x; w) be the solution of the equation
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Lo, x; 0)=0 in RxQ,
2.1 Vi, x5 ) = —27Y(—2m)tC¥0(¢—Ci'x-0)w on RX0Q,

vEt, x;0) =0 if ¢ is small enough.
The solution vX(¢, x ; w) is a smooth function of x and @ with the value of the
distribution in ¢{. By Theorem 2 in [10], we have

PROPOSITION 2.1. Let N be the conormal derivative of the operator A(0.),

Nu = 2(div u)n(xj)—{—Zy% u+pn(x)X(curl u),

where n{x)=""(n,(x), ny(x), ny(x)) is the unit outer normal to Q at x=082. Then
we have

(2.2) Sror(s; 0, w) = C?”Sag‘ﬁ(athL)(w Crlx-w—s, x; w)dS..

In the above proposition, the integral S-dSI is in the sence of the Riemann

integral with the value of the distribution in ¢.

PROOF OF THEOREM 1.3. At first we deal with the particular case where
the boundary 082 is symmetric with respect to a plane = normal to v. Let us
note that the isotropicity of the equation yields the following equalities:

(2.3) A@ul yayr = TA@N( Tu)y(x))  for any x=80,
(2.4) (Nyu)(v(x)) = TN(CTu)y(x))) for any x=0Q.
Here the transformation: x—v(x) means the reflection with respect to the plane
# and T is the 3X3-orthogonal matrix representing the reflection with respect
to the plane parallel to = containing the origin.

The equality [2.3)] and the assumption for the boundary imply that

Tvi(t, x(v); w) is also a solution of [2.1), where x(y)is the inverse transforma-
tion for y(x). Hence we obtain

(2.5) TvEt, x(y); @) = v, v; 0) for any y=2,

because of the uniqueness of the solutions of [2.1]. From and [2.5) it fol-
lowes that
Npit, v; @) yoyor = TNVHE, x5 @) for any x<af.

Hence we get
(2.6) '@ N B, v 0)] yeyr = =0 NV, x5 o) for any x<04.

This equality shows that the integrand in is an odd function on the boun-
dary since we assume that 0£ is symmetric. This proves the theorem in the
particular case. The idea in general case is essentially the same.
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Now we give the proof in general case. The transformation: x—y;(x)
means the reflection with respect to the plane =, for each j=1, 2, ---, ». Since
the propagation speed is less than C., by the same methods as for the equality
(2.6) we see that there exist a positive constant ¢, and open sets Uj with
U,cU; (=1, 2, ---, r) such that

(2.7) WONWINE, 35 @) yay ;0 = —W(O NN, x5 @)
for any (¢, x)IX(@NU)  (=1,2, -, 7)

where = {w)—z,, rr(w)+&).
We take a(s)=C>(R) such that 0Za=<1 on R, a(s)=1, for |s|=<1/2 and
a(s)=0 for |s|=1. For any £¢>0 we set

a.(s) = a((s+rw)+rr(w))/2e).

Note that supp a.(—C7'x-0—s)NIX @MU )CIXx@82NU) (7=1, 2, -+, r)if e>0
is small enough. The equality yields

(a(-)Spaz(+, v, @) (—Fk)

J=1

= C7%3 é S”’) " Cv(0NVEY(s, x5 w), a(—Crlx-w—s)exp(—ik(Cilx-w+3)>dS,
82U

for small ¢>0, where f(k)zgexp(—ik-s)f(s)ds and <{,) means the pairing of

the distribution in s and their test functions. Representing these surface inte-
grals by the local coordinates, we see from and the assumption in the
theorem that each integrand is an odd functions in the local coordinates. Hence
we obtain a.(s)S..r(s; v, ®)=0, which proves [Theorem 1.3.

§3. The Fourier transform of the scattering kernel.

In this section, by the same procedures as in Majda and Soga [9] we
derive the precise form of the Fourier transform of a.(s)S;.rz(s; @, w) in s (see
Proposition 3.2). For this purpose we construct an approximate solution of
[2.1], and represent the Neumann operator by a classical pseudo-differential
operator on RX0£L2, which gives informations about the singularities of NvZ|g,z0.

We take an orthonormal frame {w, ¢, ¢,} in R?, and choose the local coordi-
nate system x(¢) of 0£2 near M(w) in the following way:

Uy= 0 =(0g,, 6,) —> x(6) = ,0,+0:¢,+g(c)w €082,

where U, is an open set in R? and g is a smooth function on U,. We set
Myw)y={ocU, | x(6)=M(w)}. Note that each element of M,(w) is a stationary
point of g. We construct the approximate solution for vX(¢, x ; ) modulo
smooth function near the boundary by means of the asymptotic solutions
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3.1 ut, x;t, &) ~explict+oi(x, &)} Z ul@, x; &)t

+explit(t+¢T(x, €N} 2 ul(t, x; &)ir)"

=0

satisfying asymptotically the equation

Lu=20 in RX(2NV),
(3.2) u =explitt+& -o(x)}H on Rx(@92NV),

u is outgoing,
where o(x) (x€082) is the inverse of x(¢), V is an open set in R? such that
VNol={x(c)€dR | ¢=U,} and I is the 3X3-unit matrix. Karal and Keller
constructed asymptotic solutions of the form for the Cauchy problem of
the isotropic elastic wave equation (cf. §2 of [3]). Our construction is their
modification (for the detailed procedures e.g. cf. §2 of Kawashita [4]).

Let ug,t, x; &) be the j-th columm vector of uf. We can determine the
phase functions ¢“ and the amplitudes uf; by the methods in or [4]; ¢*
and u%; (=1, 2,3, a=L, T, =0, 1, 2, ---) satisfy the following equations:

Ne*)? =1/C:2 in 2NV,
p*=¢&-a(x) on 02NV,

3.3.a) s
| 3,9 >0 on 82NV,  (a=L,T)
(3.4.0) { byt Dot =0 in RX(NV),
VolXuk;+curluf,; =0  in RX(2NV),
(3.5.0) { HYufy+ Ozt =0 in RX(2NV),
Vo' -ufl.;+divul_,; =0 in Rx(2NV),
(3.6.0) { uf = (VSDL'WT)“V@L@V@T on RX(@2NV),
uf = I— on RX(@Q2NV),
and for /=1
(3.6.0) { u;, (Vo= Ny (e, V" N +2%;  on RX@LNV),
Wy = —uls on RX(@2NV),
where H#=2C3Vpf.V—20,+C}A¢pf, 0,=C3A—(@,), u,=u%=0 and
(3.7.0) { 2%, = CiNg" Xcurl'u,_l,j on RX@2NV),
hi; = —25%;+CH(div ul_, )VeT  on RX@2NV),

=123, [=0,1,2, ..

In the above expressions we have used the notations
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111,2,3
j—1, 2, 3>
for a=%a,, a., as), b="4by, by, b;)=R*. Remark that the amplitudes uf are in-
dependent of the variable ¢ since the amplitude of the boundary data is inde-
pendent of {. Hence hereafter we abbreviate the variable ¢ in u¢.
We take cutoff functions X(¢)=C%(U,) and % (g, &)= C3(U,X R?) satisfying
(i) X(o)=1 near My w),
(il) supp ¥, is contained in a small neighborhood of My(w)Xx {0}CU,x R?,
(iii) Ao, &)=1 if o=suppX and |&’| is small enough.
Set ¢t, x)=—27""(—2rm)?C7**0(t—Cz'x-w). Then the wave front set of ¢(f, x)
is non-glancing in {(t, x)eRX02 | —2r (w)—n<—Cz'x-w—t} if >0 is small
enough (cf. Soga §2). This fact yields that

o), x(a))

a@b:( i

and (a, b)=a-b= Zg] a:b;
i=1

- (2n)"3SSRxRZeXp(iz‘(z‘+§’—0))%1(0', ENP0P) (z, o€ )odede’  mod C=
Hence, using the asymptotic solution [3.1), we obtain
(3.8) vEE, x; w) = (27r)‘3§SRxR2u(t, x; T, §(a, &))" (r, & )wdrdé’
mod C= in {({, x)ERX0Q | —2r (w)—e,<—Ci'x-w—t, dist(x, 002)< e’}

for some small ¢,>0 and ¢>0. By this approximate solution of vX(¢, x; w), we
get a representation of the Neumann operator:

LEMMA 3.1. There exist a first order pseudo-differential operator B on
Rx0%2 independent of t and posessing the following properties (1)~(iv):

(i) (NvBYE, x; 0| roe = B, x)w)mod C in {(t, x)ERX0Q | —2r (w)—
e, < —Cilx-w—t} for some small constant ¢,>0.

(ii) B=0mod C* on RXO\RXV', where V' is an open set on 02 satis-
fying Mlw)CV'CCV.

(iiiy The symbol B(eo, T, §) of B in the local coordinates ¢ has an homogeneous
asymptotic expansion B(e, t, §)~37,Bi(a, t, &) such that By(e, t, &) are purely
imaginary-valued for even | and real-valued for odd I.

(iv) The symbols B,(o, t, &) in (iii) are represented of the forms

Bi(o, 7, &) = (it)"U(o, &/ (0, &/0)+N(a, &/m)1)6. (1=0, 1,2, --),
where N is the part of N tangential to the boundary and ¥, are of the forms

T
3.9 Vila, &)= u(%E) 4 pTT@m)+ (Tt -ToT) 1 (1) CHn @)
on

+2u( )(V¢L®V¢T)—( )(VsoL@VsDT) #(a )<V¢T®VSDT>}
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L

8100 ¥ia, &)= (@t mn@n{(2 -2 ure Dt ) ez,

For a 3Xx3-matrix valued function w=(u,, u,, u;) a 3X3-matrix Nu is defind
as Nu=(Nu,, Nu., Nu,).

Proor or LEMMA 3.1. Applying N to (3.8), we have
(No9) niso = @\| | expizt+80)Blo, 7, 2)e9) (z, o6 drde’
mod C* in {¢, x)ERX0Q | —2r(@)—e,<—Ci'x-w—t},
where B(o, 7, §)~>7B(0, 7, & and

Bi(o, 7, & = (o)~ | (o, &) 32 {ATef, uin

+u<aa(P Jul e, whVgP}+ 33 NCta, utn)|

§r=b/r
In the above equality we have used the notation

' 11,2, 3>
’ 7—1,2,3
Hence (i) and (ii) are evident. Since every component of u# is real-valued, we
obtain (iii). The equality (3.9) also follows since yields that

(Vor, ub)n = C*(Net-VoD) (n@Ve"),  (VoT, u)n =0,

(n, ub)Volt = (Np=-VoT)- ( )V90L®Vgo ,

(e, uidb = (

(a, beR?).

(n, ul)VeT = Ve @n—ept-VeT)- ( >V90T®Vgo

Finally let us show (3.10) for /(=1. Since Vp’—Vo"=(dp’/0n—d¢"/dn)n
and (n, ub)n=nXn)u¥ on 02, it follows from (3.6.]) that

Bya, 7,8 = (ir)l"[xl(o, 5,)<%<p ago >(#I+<2+ﬂ)n®n)m

+NQ(o, E’)(uf-1+uf—1>)] 15, et

Noting that N=(ul+(A+ p)n®@n)d/dn+N and we obtain
N(y(a, &) ut+ul_y)

=10, &)l Ot @) (ubet T+ R, €YD

Hence we get (3.10), which completes the proof of Lemma 3.1l

Now we take the Fourier transform of a.(s)S;.7(s; 8, w). Taking the con-
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stant ¢ so that 0<e<e,/2, by Lemma 3.1l and [Proposition 2.1 we obtain

(a(-)Sz-7(-5 0, @) = —2"(—27fi)‘2(CLCT)‘3’2jZ:‘Jo(ik)“j

S <B[5(3—C21x-w)X(0)w], ((%)jas)(—CFx-w—s)exp(——z’k(C;lx-a)+s))0>de

aQ

= 2720 (CoC e B ] Koo, B () @)~ Crgo)—9)

.exp{—ik(c;‘g<«r>+8>}P<0>X2<">0])is 4

=0=1 °
—CL g(a)

where p(0)=(1+|V,g|»)'?, %L,eC3U,) satisfying X,=1 on (suppX)U
(J{supp X:(-, &)|&’=R?}) and 'B is the transposed operator of B. The symbol
of ‘B has a homogeneous asymptotic expansion Z}‘f:lgl(o, 7, &) such that each
component of ﬁl(a, 7, &) are purely imaginary-valued for even [/ and real-
valued for odd /. Expanding

d \i .
‘B[((E—)Jag)(—C;‘g(a‘)——s)p(a‘)%z(a)ﬁ exp(—zk<c;1g<0)+s>)] as |k|—oo
(see}Kumano-go [5]), we obtain
PROPOSITION 3.2. For any positive integer m=0 we have

@.11) (@(-)Sp-r(-; 8, @) (—k) = —2‘1(—27ri)‘2(CLCT)‘3’2go(ik)z“j

| &XP (—ik(CE+Crg(0)) Bi(@)da+O( k] ™),

where B;=C%3(U,) are real-valued functions and Byo) (=0, 1, 2) are of the fol-
lowing forms:

Bo(0) = i~'a(—(CT'+C7)g(a)(a)p(0)w, Bi(a, =1, —C7 T, 2)0))8),
Bi(0) = a.(—(CT'+Ci)g(aa)p(a)w, Bi(a, —1, —C7 (V,2)0))0)
+i"U0) 3 (@, (%580, =1, —CF(Tog)0)
0%, o»r(a(—Cr'g(a)—s)p(a)X:(a))0)

+2 %“”’ 0% B, —1, —CF'(V,8)(a))0%, o(— C7'g(a)—s))

la}=2

& (—(CT'+Cga)p(a (@)0) ||

=0=1g@ ’
§=CT. g

Be(o) = ia(—(CE'+Cr)g(a)Xa)p(o)w, Bya, —1, —Cz(V,2)(0))0)

+10)] 3 (@, @%.0B)0, -1, —C7'V.8)0)
3%, (@ — Ci'g(0)=5)p(a)(0))0)
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1 ~
+ 2 ;f(w, 0% oB:)(a, =1, —C7'(N.g)0))0%, o5(—Cr'gla)—s))

la|=2

@ (—~(CE+CPIg@)p(o ()0} |

s=Crlgcod

+UD)| B 1, @086, —1, —CR(TogX0)
0%, o> (a(—C7'g(a)—s)p(a)Xy(0))0)

1T, (@, GroBia, —1, —C7Tog)o)

la|=3

2, (g)@&.w(—c;1g<o>—s>>a%;,,%<as<—c;‘g<o>—s>p<0>%z<0>>9>
18

l ~
+27 3 (0, @5 Bo, —1, —C7'(Tog)o)

la|=4

32 (0%;, o5 (— C7'g(a)—$))0% 5(— C7' g(a)—3s))

@ (—(Ci'+Cig(@)p(a ()0}

s=Cplecod

We note that
B’O(U; 7, E) = tB()(o'J -7, _E),
Byo, 7, &)= 3 “Dsdg)Bua, —1, —E)+'Bi(o, —7, —£),

1=1

Buo, 7, = 3 - (DIDBo, —7, &)

a|=

+ 3 {D5a)Bilo, —t, —H+'Bila, 7, —§),

la

where D¢=((1/7)d,)".
It cannot be derived immediately from [Proposition 3.2 that S;.;(s; 8, ) is
/Isingular at s=—(r.(w)+rr(w)), because in our case fB,(¢)=0 at the stationary
points of g. This is different from the scalor-valued wave equation. But, as
we shall discuss in the next section, by integration by parts we can represent
(a(-)Szr(-; 0, w))"(—Fk) by an oscillatory integral with a non-degenerate am-
plitude function if the assumption (1.1) is satisfied. To realize this we need to
calculate precisely not only S, but also 8, and B, in [Proposition 3.2

§4. Non-degenerate representation of the Fourier transform
of the scattering kernel.

The goal of this section is to show the following theorem, which proves
Theorem 1.1.
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THEOREM 4.1. For any positive integer m=0 we have
4.1) (@(+)Srr(-, 0, @) (—k) = —2‘1(—27ri)‘2l§m‘40 (GR)!

. ngeXp(—Zk(czl—}—C‘T'l))g(g)rl<g)d6_‘_0(I kl—m-x) as iki——‘Co ‘

W

Here 71,&C%5(U,) are real-valued functions, and
2
7o(0) = a(Cy/Cr)a(—(C7'+C7')g(0)(0) 35 0.(35,4:8)(0),

where a(x) = x~ 1 +x)"%2x°—5x*+x*+5x2+3x—2), O0,=0-¢, and A, =
2§=1(6/80j>2-

We remark that a(x)>0 if x=1; in particular a(C./Cz)>0. Hence 7, in
does not vanish at the stationary points of g since (8-V'H) )=

21%-10:(05,4,g)(0). Thus we can apply Theorem 2 in Soga and obtain
Theorem 1.1l
We set

1k) = | exp{—ib(CT'+Cie(0)) fulodds (=0, 1,2),
A4(0) = a(~(Ci*+Cg(@) o),
Tk = | exp{—ik(CE+C7)g(0)} Ad0) 23 0,05, Aog)0)a

The main part of the proof of is to reperesent (Zk)*~'I(k) ({=0,1, 2)
in the oscillatory integral form similar to(4.1)in[lheorem 4.1 For convenience
we introduce the following notations:

(i) For f, feC3U,), we write f=F if f is equal to f in some neigh-
borhood of M (w) (which is the set defined in §3).

(ii) For a positive integer / we denote by [V,gli (resp. [V,g]") the sum
of the form

|az|j=‘l ha<0)‘§a I §=Vs8>

where A, are real-valued functions C3(U,) (resp. € C=U,)).

(iii) Let I(k) and I(k) are functions bounded in % (| 2| =1). Then we write
I(k)=I(k) if there exist real-valued functions f,=CsU,) (j=0, 1,2, ---) such
that for any integer A=1 we have

1) =1k = 23R\ expl—ik(C3'+Ci)lg(a)f (o)

i=1
+O0(| k="  as [k|—oo,
To prove [Theorem 4.1, we have only to show that
4.2.7) (@RI k) = k;J(R)  (7=0, 1, 2)
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where £,=—2C.C7(Cr—Cp)(C'+C7)%, ki=(C'+C7)- {(CLC7'—1)(C;—C})
+2CECLC' =2}, ky=—(Cr—Cp)(C;—2C,Cr+2C%). In fact, noting (3.11) and
4.2.7) (=0, 1, 2), we have by a routine calculation. At first we prove
(4.2.0). To get (4.2.0) we rewrite Bo(o):

LEMMA 4.2. The first order amplitude function Bo(e) is of the form

Bo(o) = —Cré 0.(0,,8)A(0)2f(IVsg|*)—3),

where
flx) = A4+x)/(x+{(CrCT Y —=Dx+(CrCTH?}?) .

We remark that f(x) is not smooth for large x<R. But in our case |V,g]?
is so small on U, that f(|V,g|? is smooth function on U,.

PROOF OF LEMMA 4.2. Equalities (3.3.L), (3.3.7) and (3.9) imply that
1" (Bo(a, 7, 78w, 0) = X\ (o, E’)[ﬂ(n-wxﬁ-thT)

T sy a0 700 (o 7))

Noting that Yol —VeT=(0¢"/0n—ad¢" /dn)n, and that Vel-VeT=Ci*+(0¢"/0n—
0@ /0n )0 /an)=Cr*+(0p*/pn—0apT /dn)0pT/dn), we see that

+

@3)  i(Bdo, 7, &0, 0) = tl(o, sv[mn(a)-wxe-w)

o

dp" 0 st 8
G o (R G S )]

B dp™ a(p w-Vo"
=1Xi(a, §)(n-0)0-Voh)+p ( )(9 Vg @ VoT

+(w-quT)(n-0)(2(V90L-V50T)“—3p).
Furthermore, we have
(VoT)(x(a), C7'Vsg) = Cr'o, (No™-VoT) ' (x(a), C7'V.g) = C2f(IVsgl?)
by means of the following equalities:

2 ) 8
Tpi)o, &)= 31 #0d, N0 +( 2L Yo, &m(o)
4.4)

(2)0, &) = (c5— 3 gorsel)”

J, =1
where
g'e) = 51-:—(1-1-IVaglz)“‘(a;jg)(aalg) .
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We can see these equalities by expressing Vo in the form of linear combina-
tion of n, d,,x and 0,,x. Hence the proof of is complete.

Using and integration by parts, we have

L(k) = —Cr 21 0.]_ exp(—ik(CT'+C7)8(0))0,,8) A )2 (1 T,8 1) —3)do
= —4CHGK(CE+CF) 2 0] exp(—ik(CT+CT)g(0)

AL F(19081%) 2 0,8)0s,20,8)d0+0( 1)

1N

—4CT(ik(Cz‘+C;1>)"2gm exp (—k(Cz'+C7h)g(o)

AL £(17,1819) 2] 005,00 8)d0

Hence, noting that 0,f(|V,g|%)=0.f(0)+[V,g]" and 9, /(0)=C(Cr—Cr)*/2C},
we obtain (4.2.0).

Next, we examine (¢k)I,(k). By [Proposition 3.2 we get
Bi(0) = Aa)p(a)(Bi(a, 1, C7'(V.8)o, 0)
+Ae(0)p(0)i‘lla§1((533330)(0, 1, C¥'(V.9)w, 0)

—ALo)™! 35 (08B, 1, Cr'(Veg)w, 005 0)(a)

—CFIAE(G)p(GDi'IIEZ%(@?BO)(G, 1, C7'(Vs))w, 6)078)(0),

since ((d/ds)Ya.)(—(Cz!4+C7Y)g(a))=0 near M,(w) for j=1.

It is difficult to represent $3,(¢) completely by the graph g of the boundary
02 near M(w) like B,. But we can show that (7k)[;(k) is a similar form to
in [Theorem 4.1. Using the Taylor expansion, we present §,(¢) in the form

4.5) Bi(0) = 3 Bul@)+[Tog1t
where

Bu(0) = Ad)(@) 3 @B, 1, 00, OF leecr, e,

Bis(0) = Aa)p(a)i™? le}:l ‘T}psn—,l-!(ag‘a?”Bo(O‘, 1, O)w, 0)&" {e-c5'7,4
Bis(0) = —Ala)i™? ‘2 > (0817 By(o, 1, O)w, 0>ET(83P>(0)EE=C}IVUg,

ai|=1 |7is1

B1(0) = —Cil Ao)p(a)i~t 5~ 5 2

=2 =2 7!

.(ag-H’BO(G’ 1: 0)0), 0)Er(agg)(0)if=0;lvog .
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Thus to attain our purpose we have only to calculate 8.;(¢) ((=1, 2, 3, 4). This
is carried out by means of the following Lemmas and 4.4

LEMMA 4.3. We have the following velations:
i7'((0¢,B0)(0, 1, Do, 0) = C#2—C1Cr (0, 0)0,0(0)"  (7=1, 2),
i71((0¢,0:, Bo)(a, 1, 0)a, 8) = Xi(a, O)E(CT—CL){(C%—CLCT—C%)i?jkl;“ 6.(0,,8)

+C#H040,,9)+000,,8N}1+[VNegld, (U, k=1,2),
i‘l((agjagkango)(U, L, Qw, 0) = —CCr(Cr—Cr)Xi(a, 0)p~'(a)
(g'*0.+g"0;+g"0,)  (J, R, 1=1,2),
i (@¢Bo)a, 1, 0w, ) =[V,g1}  for |a|=4.

LEMMA 4.4. We have the following relations:
2 2
(Bl(gr 1’ O)CU, 0) L{ (CL"_CT>X1<O-; 0)10_1(0-)[(:7'[;1 01]_221 (agjg)(agjaalg>

+27(Co—Cn) 2 0105, 28, 81+ (V,813

((@¢;B:)a, 1, 0w, 0) =2"'Cr(Cr—Cr)(Cr—2Cr)A(a, 0)0,;4,8
+[Vogl},  (=1,2).
((0¢Bi)a, 1, 0w, 0) = [V.gli  for la|=2.

By and we can easily obtain Lemma 4.3, Hence we omit its
proof. The proof of will be given in §5.
Noting that o(¢)=1+[Y,g]", by we have

51(9) = ALONC1—=C){Cr 2} 00 33 0,,8)0,,90,8)
+272CL—3Cr) 2 0:30,2)8,8}+[Tglt,

Noting that p(¢)=1+[V,g]' and (1+|V,g|) '=1+[V,g]}, by
we have

Buu(0) == Aa)| CHCLCH~2) 33 0: 33 (00,8)0s 90,0)
H1=CoCPCUCr—Cr) 2 01 3 0u 8000 01,8)

+Ct 22 0:0,,8)808} |+ 17,213,

For Bi3(o) and f8,,(0), by the same way as 8,;(¢) we have

Bus(0) = CHCLCF ~DAL0) 3 01 3} 0r,8)0,00,8)+ (Vg T3,
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Bido) = A(a)27(CLCT —D{(2CE—2C CT_C%‘)é 0:00,,8)7:8
+(262 ZC CT+2C )2012(3 ]b)(anOglg/}‘{"[vdgju-
Hence by we obtain

Bilo) = A<o>[{2C%<CLC;1—1>+ZC%<CLCT ~2)}

I M.o

012 05,2)00,00,2)

2
H(CE-3CHC:CH-D 3 m(aolgmag}ﬂvgg]s,
which yields (4.2.1).

In the same way as the proof of (4.2.1) we get (4.2.2) if we obtain the fol-
lowing relation proved in the next section

(46 iBa, 1,00, 0)=2(a, 027 Cr(Co—Cr) 2 0,00, A,2)+(T2214,

(for the proof of (4.6), see §5). Thus we complete the proof of [Theorem 4.1

§5. Computation of the symbols of the Neumann operators.

In this section we prove and (4.6) stated in §4. We define the
mapping X(e, ) by
UyX[—r, 0] 2 (0, r) —> (0, ) = x(0)+rnle) =

where 7,>0 is so small that ¥(g, ») is diffeomorphic, and we denote by Z'! (e, r)

j—1,2 ;
L 2) Note that

Z¥(e, 0) is equal to g¥’(¢) which is introduced in the proof of Lemma 4.2. In
the same way as we see that

(5= (e B0 (3,

Furthermore, noting that ¢®(g, 0, &)=¢-&" and

(3 G080 = 57 ((5 Y 0.99)

the (7, I)-component of the inverse matrix of <(8 %) (c%lr)‘

)( a7, s>(—~)<o re) (=L, 1.

= ~2—1<%92-7)'1<o, 0,83 ( aik g o),
we get
(5.1) ag,(aan)zgoﬁ(a, 0,0)=0 (la|=0,1).

At first let us check
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LEMMA 5.1. We have the following equalities and relations:

(52) CLA¢L]51=0 = CTAQDTIEr=o on aan\-V y
5.3) { Ap? e = —C3'Asg+[V,8]2  on 02NV,
' 08 AQP e = [V,8] on 2NV,

(la|=1, =L, T)

O2(uk@, 0)s_s = --v—czé 0,:@,,000)+[Tog]'  on 02NV,
5.4)
Or(ufo, 0)|s o= C} by 0.(0,,4,8)+[V,g7 on 02NV,

PROOF. Since it is seen that Cre*|e-o=Cre” a0 in 2NV, (5.2) is satisfied.
Expressing A in the variables (¢, ) and noting that

= p 7o), 2 871(0)(0,,0,,8) = A, g+ V.81,

7 i=1

we obtain [5.3) from and [5.I) The transport equations (3.4.0) and (3.5.0)
yield that

0 0pP\-1 [ & ., 0pF
_Z (yB — (2 57 B Y A BY(1 8
i (uiw, 6) (871 ) { 47_,:‘ gt 9o, 8 (ufw, 0)+2"{ApP)(ufw, 0)}
From it follows that

(7=0,1,2)

o\, . _
(37) (Wi, Oleco=Tog] om 0@V ) 70
Thus we have

2

Aufw, 0)|s-0= > g'0)

az
8 1
a ao_l(uow7 0) 5'=0+|:vdg] .

7

Hence, noting that J3;=C3A—0% (8=L, T) and

(147,817 3} 0ids,g on RNV if f=L,
(ulgw’ 0)16':0 = .
(+|7.219" 2 0., on 92NV if f=T,
we can get [(5.4).

PrOOF OF LEMMA 4.4. By (3.10) and the equality n(a):p"(o)(—Z§=lej(60jg)
+w) (I=1), we have

(5.5) (Bi(o, T, T80, 0) = (k) -HX(a, E)D (0, &)+ Nti(a, ENdy} ,
where
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66 00, )= p(%8 % Vuto, 0)

L 2
—tmo (3~ %Y. 2} (uko, ¢)@,,8)0)

+(l+y)p‘1(0)( il % )0 n(ufw, w)+y{<aa ut o, 0>+(a—an—u§"_1w, 0)}

ko {( C ukw, )+ (aan UL, ¢;)}00,8)(0)

+@A+wpe(a)0- n{(%uf_lw, w)—}—(a—éj{ ul_ o, w)}» .

Combining this with and the following Lemmas b.2~5.4, we can obtain

LEMMA 5.2. We have the following relations:
(uiw, e)le 0= —p (0){Cr(0d,,2)A, 2
+C1 3} 00,0000 0} + Vo8l on Uy (=1,2),
ag,j(ufw, ele o= —27'CL(CL—2C1)0;: 8,8+ C1C1(0,,05,8)+ [V, 8]

. on UO, (]’ l:]‘> 2) »
0% (utw, e))leo =[Nog1* on U, (Jal=2, =1, 2).

LEMMA 5.3. We have the following relations:
(utw, 0)= Crp " (0)Asg+[V,81* onU,,
aéi’(ull‘w’ w)ié’zo ::.‘ [Vo‘gjl on UO; (]:]-, 2) .

LEMMA 5.4. Set

fie, & ={(

fio 0=

5 vt O+ (5 w0 O,
G
on "

utw, w>+<~a%~u€w, w)} i

Then we have
f1<6,0):0 OnUo,
@ f)(a, 0)=(C.—Cr) £0100,90,0)+[Vogl' o Uy, (7=1,2),

08 f1)(o, 0) =[V,g1"  on U, (|la|=2),
fola, 0)=2"p"(0)Asg+[V,g]* onU,,
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0 ful0, 0= [Voglt  on Us, (=1,2).

PROOF OF LEMMA 5.2. From (3.6.1), (3.7.1) and the eikonal equations (3.3.L)
and (3.3.7), it follows that

(5.7) (utw, e)) = Np™ N 'V (0, §e- Vot +(ziw, e)),
where
(5.8) Ve, &) = —Ci(Np: X (curl ulw))- Vo' +div ulw,

Since VT -(Vor X (curl u)) = (VoI -Vu, Vor)—((Ver-Vu, Vo), we see that
Ve, &)=(ve* X (curl ufw))-VoT is of the form
(5.9) Vile, &) = (Vo' - Nutw, Vol )— (Ve - Nufw, V'eT).

Furthermore, using the equalities Vor=V¢T+(d¢’/on—0aeT /an)n, Vot =""¢"+
(0¢™/0n)n and (3.4.0), we have

Vit )= (227~ 2 (et D, m—( 2 uto, Ter)}

_ (09" 0T\ 0"\ o, 401 '
_<8n " on )(611) {(Ve" b, Tph)+27(Ap" ) (ufow, V'e™)}.

Hence the eikonal equation (3.3.L) and [3.6.0) yield that

(5.10) Vo, 5/)_:(@9&“%?)(3903' ez, 2 g0 ( 0-Vo' D)

on on /\on VotV
(. @ Vo' > !
+2-(Ag )( o )HZIgJ (G)SJEL}
The operator div - is represented in the variables (g, ») as follows:
0 2 ox 0
o T,y —— e T jk o . (yT
divufw =n o (u 0w)+j’%}:1g (o)ao_j do. ulw).

Hence, noting that (9/0n)(ulw)=—(0¢" /on) " {(V ¢ - Nulw+2-(ApTufw}, 0x/0a;
=e,;4+(0g/00,)w and n(e)=p (o){—5-1(0g/00)e,+w}, by [3.6.0] we obtain

.11) div ugw:—(a;;) [,o“(o‘){ 2 g™ >EJ a o, (Who, @)

- B e w>}+z-mw<n-w—v‘;;7sw<%*:f>>]

_,21 g—(uow e)—(14+1V,g]3t

dg dg 0 0g 0
{ ]kxla; %‘k—av fw, kH—E—]é‘a—(uow a))}

Combining (5.10) and [5.11) yields that
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Ve, 0)=A,g+[V.g]1%,

612 { @, Ve, 0= [Vogl  (i=12).

In the same way as for we obtain
(zfw, 0) = C}{—(Tp* -V)(ufo, 0)+(0-Vufw, Vo).

This equality, the transport equation (3.4.0) and 6-V=X%,.,87(¢)0,(0/00;)+
+n-6(0/0n) give

2 ) 0
(ztw, 6) = Ci[Z“(AgoLXu’aw, 0)+J_’§1g”(o)0ra;;(u€w, Vo©)
dp™\ 1
—0-n (55) (gt Dk, Toh)+27 (0" (who, Toh) ]

-V
= ci[2 g, D+Cit 3 60050 (el )

Vo*-VoT
_sz(o.n)<%%i>_l{j,; g'lto )5’80' (Vw v§¢T>+2 @ L>(Vw VSVDSD )H

Thus it is seen that

@, 0)lge0 = C1 2 0152—9"1+[V0g]3 on 39NV,
=1 L

2 ag .
613 { gfelo, O)lemo= —27Ci0,A0g+CiCr 501505 +[Vug]

on 32NV (=1, 2),
08 (ztw, 0)]¢o = [Vog]"  on 02NV (Ja|=2).
is derived from and (5.13).

PrROOF OF LEMMA 5.3. (3.6.1) yields that

(utw, @) = (Vo= -VoT) 'V (g, §)o-Vo'+(zio, v).

By the same methods as for (5.13), we have

dg 0 v
(#to, @) = C1| 27" 8p") ko, ) +-CTA+Vog ) 3 57 (20 37”@)

—cien(5) B, £ 0 (g2 e )

Hence, using (5.2), and [4.4), we obtain
{ (Ztw, ®))e=o = [V,8]° on 02NV,
08 (25w, )| g0 = [Vog] on 02NV .
which proves [Lemma 5.3
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PROOF OF LEMMA 5.4. By the transport equations (3.4.0) and (3.5.0) we
have
o¢pF

LN s Vuto, 0)+2(Ag ko, )]

2.
)

2 0
- 3 g“(“)«f}é’g—l(u%w, 0)-2-(dp" ko, 0)}

n L J.i=1

fito, &)= —(2Y"

0pT\-1
w( on ) L
Therefore, by we can obtain directly.

PROOF OF (4.6). In the same way as for Lemmas 5.7 and 5.4, we can prove

>
1=

LJ,

g”(a)éj (uow, ®)+2" (A" utw, w)]

1

_]jélgu(()‘)fj (utw,w)—2- 1<ASDT>(ULCU w)+2-! ASDT):I‘

(1w, 0)]e0 = —.'z—l(;L<cL—2cT>§‘1 0.0,,8,g+[V,g]"  on 2NV,

[ ko, 00+ 2 (o, D)}, =27(CoC) 310, 85+ [T

on 02NV .
Noting these equalities and we can get (4.6).
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