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\S 1. Introduction.

The short time asymptotics of the traces of the heat kernels for the
Schr\"odinger operators without magnetic fields on Euclidean spaces has been
considered from the old times mainly because it is directly related to the
asymptotic distributions of the eigenvalues by virtue of the Tauberian theorem.
See, for example, [6], [8] and the references therein. Moreover Tamura [10]

has studied this short time asymptics for the Schr\"odinger operators only with
magnetic fields whose magnitudes grow unboundedly at infinity.

In this paper we will consider the Schr\"odinger operators $H_{0}$ and $H$ on $R^{d}$ ,
$d\geqq 2$ , which are given by

$H_{0}=- \frac{1}{2}\Delta+V(x)$

and

$H= \frac{1}{2}(-\sqrt{-1}\nabla+A(x))^{2}+V(x)$ ,

both of which act on $L^{2}(R^{d})$ , and we will study the difference between the
short time asymptotics of the traces of the heat kernels for $-H_{0}$ and $-H$.

We will assume that the scalar potential $V$ is bounded from below and is
bounded from below by some polynomial of $|x|$ at infinity. This implies that
$e^{-tH_{0}}$ and $e^{-tH}$ are of the trace class. Then we will see that, if the derivatives
$\partial^{\alpha}A(x),$ $|\alpha|=1,2$ , of the vector potential $A$ grow more slowly than V. the
leading term of the asymptotics of the trace of $e^{-tH}$ as $t$ tends to $0$ coincides
with that of $e^{-tH_{0}}$ . Therefore such vector potentials or magnetic fields, which
are given by curl $(A(x))$ , do not affect the asymptotic behavior of the trace so
seriously. Moreover this result says that the leading terms of the asymptotic
distributions of the eigenvalues of $H_{0}$ and $H$ are identical.

Similar problem has been considered by Odencrantz [5] in the case of a uni-
form magnetic field. This important case will be discussed in detail also in
this paper. The main methods used in [5] are the canonical order calculus
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developed by Simon [1] and the theory of pseudodifferential operators based on
the weighted Sobolev spaces. In this paper we will use the probabilistic method,
which is also different from that of [6]. By virtue of this approach we can
show the result directly and can prove the result without any differentiability
conditions on the scalar potential $V$ .

Finally the author would like to thank the referee for useful comments.

\S 2. Main results.

We consider the operators $H_{0}$ and $H$ on $R^{d},$ $d\geqq 2$ , defined by

$H_{0}=- \frac{1}{2}\Delta+V(x)$

and

$H= \frac{1}{2}(-\sqrt{-1}\nabla+A(x))^{2}+V(x)$ ,

respectively.
First of all we state the assumptions on the scalar potential $V(x)$ and on

the magnetic vector potential $A(x)=(a_{1}(x), a_{2}(x),$ $\cdots$ , $a_{a}(x))$ . Throughout this
paper we assume:

(V1) $V(x)$ is real valued continuous function on $R^{\dot{a}}$ and there exist a compact
set $KcR^{d}$ and Positive constants $C_{1}$ and $k$ such that

$V(x)\geqq C_{1}|x|^{2k}$ for $x\in R^{a}\backslash K$ .
(A1) $a_{j}(x),$ $1\leqq j\leqq d$ , are real valued $C^{2}$ functions and there exist positive con-
stants $C_{2}$ and $r$ with $r<2k$ such that

$|D^{\alpha}$ a $j(X)|\leqq C_{2}(1+|x|^{r})$

for each $j$ and each multi-index $\alpha$ with $|\alpha|=1,2$ .

Under these assumptions it is known that $H_{0}$ and $H$ are essentially self-
adjoint in $C_{0}^{\infty}(R^{d})$ . We will denote the selfadjoint realizations of $H_{0}$ and $H$ on
$L^{2}(R^{d})$ by the same notations, respectively. Moreover the assumptions imply
that Tr $e^{-tH_{0}}$ , the trace of the semigroup $e^{-tH_{0}}$ generated by $H_{0}$ , is finite for
any $t>0$ and that, since

Tr $e^{-tH}\leqq$ Tr $e^{-tH_{0}}$ ,

$e^{-tH}$ is also of the trace class. For details of these fundamental facts, we refer
to [7] and [8].

NOW we state the first result which is concerned in the rough estimate for
the asymptotics of the difference between the traces of $e^{-tH}$ and $e^{-tH_{0}}$ as $t$

tends to $0$ .
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THEOREM 1. Under the assumptions (V1) and (A1), there exists a Positive
constant $C$ such that

(2.1) Tr $(e^{-fH}-e^{-tH_{0}})|\leqq Ct^{2-(\dot{a}/2)(1+1/}k)-\gamma/k$

for sufficiently small $t>0$ .

The proof of Theorem 1 will be given in the next section. We note here
that, if $d=2$ or 3, there is some cases when the power of $t$ in (2.1) is positive
and, in particular,

Tr $(e^{-tH}-e^{-tH_{0}})=o(1)$ as $t\downarrow 0$ ,

which cannot be seen by the result of Odencrantz [5].
AS a corollary of Theorem 1 we can easily prove that the leading terms of

the asymptotic distributions of the eigenvalues of $H$ and $H_{0}$ are identical. To
mention the result, denote by $N_{0}(\lambda)$ and $N(\lambda)$ the numbers of the eigenvalues
less than $\lambda>0$ of $H_{0}$ and $H$, respectively. Then we will show:

COROLLARY 1. Assume (V1), (A1) and, moreover, assume that there exists a
constant $C_{3}$ such that

$V(x)\leqq C_{3}|x|^{2k}$

holds for $x\in R^{f}(\backslash K$ . Then it holds that

$N(\lambda)=N_{0}(\lambda)$ $(1+0(1))$ as $\lambda-\infty$ .
The proof will also be given in the next section.

Next we consider the asymptotically uniform magnetic field. We will see
that the power of $t$ in (2.1) is in fact attained in this case. Moreover we will
express the constant which appears in the leading term of the difference ex-
plicitly. For this purpose we assume also the following:

(V2) There exist a Lipschitz continuous function $v$ on the $d$-sphere $S^{d-1}$ and
positive constants $\delta$ and $C_{4}$ such that

$|V(x)-|x|^{2k}v(x/|x|)|\leqq C_{4}|x|^{2k-\delta}$ for $x\in R^{d}\backslash K$ .
(A2) For each $i,$ $j$ there exists a constant $a_{ij}$ such that

$\lim_{1x|arrow\infty}\frac{\partial}{\partial x^{j}}$ a $t(X)=a_{tj}$

and, for each multi-index $\alpha$ with $|\alpha|=2$ , it holds that

$\lim_{1x\rceilarrow\infty}|D^{a}a_{i}(x)|=0$ .

Then we will prove:

THEOREM 2. Under the assumPtions (V1), (V2), (A1) and (A2), it holds that
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$\lim_{t\downarrow 0}t^{-2+(a}/2)(1+1/k)$ Tr $(e^{-tH}-e^{-tH_{0}})$

(2.2)
$= \frac{1}{12(2\pi)^{a}/2}\int_{R^{d}}\exp(-|x|^{2k}v(x/|x|))dx\sum_{i,j=1}^{tz}(a_{ij}-a_{ji})^{2}$

The proof of Theorem 2 will be given in Section 4. Here we give another
expressions of the constant which appeared in (2.2). We will show

(2.3) $\frac{1}{12}\sum_{t,f=1}^{(}t(a_{tf}-a_{j\iota})^{2}=E[(_{i}\sum_{j=1}^{d}a_{ij}\int_{0}^{1}X_{s}^{j}\circ dX_{s}^{i)^{2}]}$ ,

where $E$ is the expectation with respect to the $d$-dimensional pinned Brownian
motion $\{X_{s}\}_{0\leqq S_{arrow}1}$ such that $X_{0}=X_{1}=0$ and $\circ dX_{s}^{j}$ denotes the Stratonovich inte-
gral. For the pinned Brownian motion and the Stratonovich integral, see [3]

and [8].

We will end this section with some remarks on the case of uniform magnetic
fields. By the gauge invariance (cf. [1]), we can assume that the uniform
magnetic field is defined by a skew-symmetric matrix $B=(a_{ij})$ , that is, by a
vector potential $Bx$ . In this case the expectation in (2.3) is the variance of a
linear combination of L\’evy’s stochastic area, which is defined by

$\frac{1}{2}\int_{0}^{1}X_{s}^{i_{c}}dX_{s}^{j}-X_{s}^{j}\circ dX_{s}^{i}$ .

This also appears when we write the heat kernel in terms of the pinned Brownian
motion by using the Feynman-Kac-It\^o’s formula. See the next section and see
also [2] for more informations.

Moreover, if $B=(a_{ij})$ is skew-symmetric, we can rewrite (2.3). Denote by
$\pm\sqrt{-1}b_{j},$ $b_{j}>0$ and $j=1,2,$ $\cdots$ , $r$ , the non-zero eigenvalues of $B$ , where $2r(<d)$

is the rank of $B$ . Then it is easily seen that

$\frac{1}{4}\sum_{ji=1}^{d}(a_{ij}-a_{fi})^{2}=\sum_{\iota<J}(a_{ij})^{2}=\sum_{j=1}^{r}(b_{j})^{2}$

\S 3. Proof of Theorem 1.

Let us denote by $p(t, x, y)$ and $q(t, x, y)$ the heat kernels for $-H_{0}$ and $-H$,
respectively. Then the following probabilistic representation of these heat
kernels, called the Feynman-Kac-It\^o’s formula, is well known ([8]);

$p(t, x, y)=(2\pi t)^{-d}/2E_{0,x[\exp(-\int_{0}^{t}V(X_{s})ds)]e^{-|x-y|^{2}/2t}}^{t,y}$

$q(t, x, y)=(2 \pi r)^{-\dot{a}/2}E_{0;_{x[\exp(\sqrt{-1}}}^{ty}\int_{0}^{t}A(X_{s})\circ dX_{s}-\int_{0}^{t}V(X_{s})ds)]e^{-|x- y|^{2}/2t}$ ,

where $E_{0,x}^{t,y}$ is the expectation with respect to the $d$-dimensional pinned Brownian
motion $\{X_{s}\}_{0\leqq s\leqq t}=\{(X_{s}^{1}, X_{s}^{2}, \cdots , X_{s}^{d})\}_{0\leqq s\leqq t}$ such that $X_{0}=x$ and $X_{t}=y$ . Moreover,
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under the assumptions (V1) and (A1), $p(t, x, y)$ and $q(t, x, y)$ are continuous in
$t>0$ and $x,$ $y\in R^{d}$ . Since we are interested in the trace, we will consider the
heat kernels on the diagonal set only. Then, as is also well known, setting
$t=\epsilon^{2}$ from the probabilistic point of view, the self-similarity of the Brownian
motion implies that

(3.1) $p( \epsilon^{2}, x, x)=(2\pi\epsilon^{2})^{-a2}/E[\exp(-\epsilon^{2}\int_{0}^{1}V(x+\epsilon X_{s})ds)]$

$q( \epsilon^{2}, x, x)=(2\pi\epsilon^{2})^{-a}/2E[\exp(\sqrt{-1}F^{\epsilon}(x)-\epsilon^{2}\int_{0}^{1}V(x+\epsilon X_{s})ds)]$

$F^{\epsilon}(x)= \epsilon\int_{0}^{1}A(x+\epsilon X_{s})\circ dX_{s}$ .

Here and hereafter we denote $E_{0.0}^{1,0}$ simply by $E$ .
The argument in this paper is based on these probabilistic representations

of the heat kernels.
In order to prove Theorem 1, we need the following two lemmas. The

first one is related to the maximum of the pinned Brownian motion and might
be a well known fact. See, e.g., [9]. But, since we will use it also in the
proof of Theorem 2, we give it here.

Let $P$ be the probability law of the $d$-dimensional pinned Brownian motion
$X=\{X_{s}\}_{0\leqq S\leqq 1}$ such that $X_{0}=X_{1}=0$ . Denote by $\eta$ the maximum of $X$ ;

$\eta=\max_{0\leqq S\leqq 1}|X_{s}|$ .

Then

LEMMA 1. It holds that

(3.2) $P(\eta\geqq R)\leqq 2de^{-2R^{2}/^{a}}$ for $R>0$ .

PROOF. Let $\{x_{t}\}_{t\geqq 0}$ be a 1-dimensional standard Brownian motion starting
from $0$ defined on a probability space $(\Omega_{1}, \mathscr{F}_{1}, P_{1})$ and $\{\xi_{t}\}_{t\geqq 0}$ be its maximum
process,

$\xi_{t}-\max_{0\leqq S\leqq t}x_{s}$ .

Then, by virture of the Le’$vy’ s$ work on the joint distribution of these stochastic
processes, it is known that

$P_{1}(x_{t} \in da, \xi_{t}\in db)=(\frac{2}{\pi t^{3}})^{1/2}(2b-a)e^{-(2b- a)^{2}/2t}dadb$

holds for $t>0$ , OSb and $a\leqq b$ . See, $e.g.,$ $[4]$ . Since the probability law of each
1-dimensional pinned Brownian motion $\{X_{s}^{i}\}_{0\leqq S\leqq 1},$ $i=1,2,$ $\cdots$ , $d$ , coincides with
the conditional probability $P_{1}(\cdot|x_{1}=0)$ , it is easy to show
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$P( \max_{\leqq s\leqq 1}X_{s}^{t}\geqq r)=e^{-2r^{2}}$ $i=1,2,$ $\cdots$ , $d$ and $r>0$ .

Moreover the rotation invariance of the probability law of the Brownian motions
implies that

$P( \max_{0\leqq S\leqq 1}|X_{s}^{i}|\geqq r)\leqq 2e^{-2r^{2}}$

Therefore we get

$P( \eta\geqq R)\leqq P((\bigcup_{i=1}^{i} \{ \max_{0\leqq S\leqq 1}|X_{s}^{i}|\geqq R/\sqrt{d}\})$

$\leqq\sum_{i=1}^{d}P(\max_{0\leqq s\leqq 1}|X_{s}^{i}|1R/\sqrt{d})\leqq 2de^{-2R^{2}/f}($

The proof is completed.

The second lemma is concerned in the moment estimate of $F^{\epsilon}(x)$ .

LEMMA 2. Under the assumption (A1) there exists a positive constant $C_{1}$

such that

(3.3) $E[|F^{\epsilon}(x)|^{4}]\leqq C_{1}\epsilon^{8}(1+|x|^{4r})$

holds for every $x\in R^{a}$ and every $\epsilon$ with $0<\epsilon<1$ .

PROOF. We first note that the pinned Brownian motion such that $X_{0}=X_{1}=0$

can be realized as the solution of the following stochastic differential equation
based on the standard $d$-dimensional Brownian motion $\{w_{t}\}_{0\leqq t\leqq 1}$ defined on some
probability space $(\tilde{\Omega},\tilde{\mathscr{F}},\tilde{P})$ (see, [3]):

(3.4) $dX_{c}^{i}=dw_{t}^{i}- \frac{X_{t}^{i}}{1-t}dt$ , $X_{0}^{i}=0$ , $i=1,2,$ $\cdots$ , $d$ .

Then, by the It\^o’s formula, $F^{\epsilon}(x)$ is equal to

(3.5) $\epsilon^{2}\sum\int_{0}^{1}du_{s}^{i}\int_{0}^{s}\partial_{f}a_{i}(x+\epsilon X_{u})dw_{u}^{j}+\epsilon^{2}\sum\int_{0}^{1}\frac{X_{s}^{i}}{1-}ds\int_{0}^{s}\partial_{j}a_{i}(x+\epsilon X_{u})\frac{X_{u}^{j}}{1-u}du$

$- \epsilon^{2}\sum\int_{0}^{1}\frac{X_{s}^{i}}{1-s}ds\int_{0}^{s}\partial_{j}a_{l}(x+\epsilon X_{u})dw_{u}^{j}+\frac{\epsilon^{3}}{2}\Sigma\int_{0}^{1}dw_{s}^{i}\int_{0}^{s}\partial_{f}^{2}a_{i}(x+\epsilon X_{u})du$

$- \frac{\epsilon^{3}}{2}\sum\int_{0}^{1}\frac{X_{s}^{i}}{1-s}ds\int_{0}^{s}\partial_{j}^{2}a_{i}(x+\epsilon X_{u})du$

$- \epsilon^{2}\sum\int_{0}^{1}dw_{s}^{i}\int_{0}^{s}\partial_{j}a_{i}(x+\epsilon X_{u})\frac{X_{u}^{j}}{1-u}du+\epsilon^{2}\sum_{i=1}^{d}\int_{0}^{1}\partial_{j}a_{\ell}(x+\epsilon X_{u})du$ ,

where we have written simply $\sum$ for $\Sigma_{i,j=1}^{d}$ and $\partial_{j}$ for $\partial/\partial x^{j}$ . Now, noting
that $X_{u}$ is a Gaussian random variable of mean $0$ and variance $u(1-u)$ and,
therefore, that

(3.6) $E[|X. |^{2m}]=(2m-1)$ ! $!(u(1-u))^{m}$ for $m=1,2,$ $\cdots$
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(3.3) follows by the standard method using the H\"older’s inequality. We will
show the calculations for the first and the second terms of (3.5).

For the first term, we use the moment inequality for martingales (see, [3]).
Then there exists a constant $C>0$ such that

$\tilde{E}[|\int_{0}^{1}dw_{s}^{i}\int_{0}^{s}\partial_{f}a_{i}(x+\epsilon X_{u})dw_{u}^{j}|^{4}]\leqq C\tilde{E}[(\int_{0}^{1}|\int_{0}^{s}\partial_{j}a_{i}(x+\epsilon X_{u})dw_{u}^{j}|^{2}ds)^{2}]$

$\leqq C\int_{0}^{1}ds\tilde{E}[|\int_{0}^{s}\partial_{j}a_{i}(x+\epsilon X_{u})dw_{u}^{j}|^{4}]$ .

Here $\tilde{E}$ denotes the expectation with respect to $\tilde{P}$ and we have used the
Schwartz’s inequality at the last line. Now, using the moment inequality and
the Schwartz’s inequality again, we obtain

$\tilde{E}[|\int_{0}^{1}dw_{s}^{\ell}\int_{0}^{1}\partial_{j}a_{t}(x+\epsilon X_{u})dw_{u}^{j}|^{4}]\leqq C^{2}\int_{0}^{1}ds\tilde{E}[(\int_{0}^{s}\partial_{f}a_{i}(x+\epsilon X_{u})^{2}du)^{2}]$

$\leqq C^{2}\int_{0}^{1}ds\int_{0}^{S}\tilde{E}[\partial_{j}a_{i}(x+\epsilon X_{u})^{4}]du$ .

Therefore the assumption (A1) and (3.6) imply that the fourth moment of the
first term of (3.5) is bounded by constant X $\epsilon^{8}(1+|x|^{4r})$ .

We can estimate the moment of the second term of (3.5) by using the
H\"older’s inequality and (3.6) as follows:

$\tilde{E}[|\int_{0}^{1}\frac{X_{s}^{i}}{1-s}ds\int_{0}^{s}\partial_{j}a_{\ell}(x+\epsilon X_{u})\frac{X_{u}^{j}}{1-u}du|^{4}]$

$\leqq\prod_{k=1}^{4}\int_{0}^{1}ds_{k}\{\tilde{E}[|\int_{0}^{s_{k}}\partial_{j}a_{i}(x+\epsilon X_{u})\frac{X_{u}^{j}}{1-u}du|^{8}]\}^{1/8}\{\tilde{E}[(\frac{X_{s_{k}}^{j}}{1-s_{k}})^{8}]\}^{1/8}$

$\leqq C_{1}\{\int_{0}^{1}\{\tilde{E}[\int_{0}^{s}(\partial_{j}a_{i}(x+\epsilon X_{u}))^{16}du]\tilde{E}[\int_{0}^{s}(\frac{X_{u}^{j}}{1-u})^{16}du]\}^{1/16}s^{1/2}(1-s)^{-1/2}ds\}^{4}$

$\leqq C_{2}\{\int_{0}^{1}ds(1+|x|^{\tau})s(1-s)^{-15/16}ds\}^{4}\leqq C_{3}(1+|x|^{4\gamma})$ ,

where $C_{i}’ s$ are constants independent of $\epsilon$ and $x$ .
The other terms can be estimated in a similar way. The proof is com-

pleted.

NOW we are ready to give the proof of Theorem 1.

PROOF OF THEOREM 1. We first note that $q(\epsilon^{2}, x, x)$ is real although its
probabilistic representation is of a complex form. Then we have, by (3.1),

$|q( \epsilon^{2}, x, x)-P(\epsilon^{2}, x, x)|=|\epsilon^{-d}E[\{\cos(F^{\epsilon}(x))-1\}\exp(-\epsilon^{2}\int_{0}^{1}V(x+\epsilon X_{s})ds)]|$

$\leqq\frac{1}{2}\epsilon^{-d}E[F^{\epsilon}(x)^{2}\exp(-\epsilon^{2}\int_{0}^{1}V(x+\epsilon X_{s})ds)]$ .
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Here we have used the elementary inequality

$0 \leqq 1-\cos\theta\leqq\frac{1}{2}\theta^{2}$ for real $\theta$ .

Therefore, by the Schwartz’s inequality and (3.3), we get

$|q( \epsilon^{2}, x, x)-p(\epsilon^{2}, x, x)|\leqq C_{1}\epsilon^{4-d}(1+|x|^{2r})\{E[\exp(-2\epsilon^{2}\int_{0}^{1}V(x+\epsilon X_{s})ds]\}^{1/2}$

Here $C_{1}$ is a constant independent of $\epsilon$ and $x$ . We will denote such constants
by $C_{i}’ s$ .

Next let us denote by $I_{1}$ the indicator function of the set $\{\eta\geqq|x|/2\epsilon\}$ .
Note that, if $\eta<|x|/2\epsilon,$ $|x+\epsilon X|\geqq|x|/2$ for all $s$ , 0;$ $s;:;11$ . Then we get, by

the assumption (V1) and (3.2),

$E[ \exp(-2\epsilon^{2}\int_{0}^{1}V(x+\epsilon X_{s})ds)]$

$=E[ \exp(-2\epsilon^{2}\int_{0}^{1}V(x+\epsilon X_{s})ds)(1-I_{1})]+E[\exp(-2\epsilon^{2}\int_{0}^{1}V(x+\epsilon X_{s})ds)I_{1]}$

$SE[\exp(-C_{2}\epsilon^{2}|x|^{2k})(1-I_{1})]+\exp(C_{3}\epsilon^{2})P(\eta\geqq|x|/2\epsilon)$

$\leqq\exp(-C_{2}\epsilon^{2}|x|^{2k})+C_{4}\exp(-C_{5}|x|^{2}/\epsilon^{2})$

for every $x$ with $x/2\in R^{d}\backslash K$. Therefore we have proved that

(3.7) $|q(\epsilon^{2}, x, x)-p(\epsilon^{2}, x, x)|$

$\leqq C_{1}\epsilon^{4-d}(1+|x|^{2r})\{\exp(-C_{6}\epsilon^{2}|x|^{2k})+C_{7}\exp(-C_{8}|x|^{2}/\epsilon^{2})\}$

holds for every $x$ with $x/2\in R^{d}\backslash K$.
NOW, since the integral of $|q(\epsilon^{2}, x, x)-p(\epsilon^{2}, x, x)|$ over a compact set in

$R^{(:}$ is of $O(\epsilon^{4-d})$ , the assertion of the theorem is shown by integrating (3.7)

over $R^{d}$ . The proof is completed.

We will end this section with the proof of Corollary 1.

PROOF OF COROLLARY 1. By the assumptions we have

(3.8) Tr $e^{-tH_{0}}=Ct^{-l}+o(t^{-t})$

as $t\downarrow 0$ for some $C>0$ , where $l=(d/2)(1+1/k)$ . Moreover, by the Tauberian
theorem, it holds that

$N_{0}( \lambda)=\frac{C}{\Gamma(l+1)}\lambda^{\iota}+o(\lambda^{\iota})$

as $\lambdaarrow\infty$ . Since Theorem 1 says that (3.8) holds if we replace $H_{0}$ with $H$, we
see, by using the Tauberian theorem again, that $N(\lambda)$ has the same leading
term as that of $N_{0}(\lambda)$ . The proof is completed.
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\S 4. Proof of Theorem 2.

Since $q(\epsilon^{2}, x, x)$ is real, we have

(4.1) $q(\epsilon^{2}, x, x)-p(\epsilon^{2}, x, x)$

$=(2 \pi\epsilon^{2})^{-d}/2E[\{\cos(F^{\epsilon}(x))-1+\frac{1}{2}F^{\epsilon}(x)^{2}\}\exp(-\epsilon^{2}\int_{0}^{1}V(x+\epsilon X_{s})ds)]$

$- \frac{1}{2}(2\pi\epsilon^{2})^{-d}/2E[F^{\epsilon}(x)^{2}\exp(-\epsilon^{2}\int_{0}^{1}V(x+\epsilon X_{s})ds)]$

$F^{\epsilon}(x)= \epsilon\sum_{i=1}^{d}\int_{0}^{1}a_{i}(x+\epsilon X_{s})\circ dX_{s}^{i}$ .

By some calculations as in the proof of Lemma 2, we see that
$E[|F^{\epsilon}(x)|^{8}]\leqq C_{1}\epsilon^{16}$

holds for some $C_{1}>0$ by virtue of the boundedness of $\partial_{j}a^{i}$ . Therefore, by the
Schwartz’s inequality and the elementary inequality

$0 \leqq\frac{1}{2}\theta^{2}-1+\cos\theta\leqq\frac{1}{4!}\theta^{4}$

we see that the first term of the right hand side of (4.1) is bounded by

$C_{2} \epsilon^{8-d}\{E[\exp(-2\epsilon^{2}\int_{0}^{1}V(x+\epsilon X_{s})ds)]\}^{1/2}$

Moreover, if $|x|$ is sufficiently large, this is bounded by

$C_{2}\epsilon^{8-d}(\exp(-C_{3}\epsilon^{2}|x|^{2k})+C_{4}\exp(-C_{5}|x|^{2}/\epsilon^{2}))$

as is shown in the proof of Theorem 1. Here and hereafter $C_{i}’ s$ denote the
positive constants independent of $\epsilon$ and $x$ . These show that the first term of
the right hand side of (4.1) is negligible.

NOW, to show Theorem 2, it is sufficient to consider the integral of the
second term of the right hand side of (4.1):

$\frac{1}{2}(2\pi\epsilon^{2})^{-d2}/\int_{R}aE[F^{\epsilon}(x)^{2}\exp(-\epsilon^{2}\int_{0}^{1}V(x+\epsilon X_{s})ds)]dx$

$= \frac{(2\pi)^{-d/2}}{2}\epsilon^{-d(1+1/k)}\int_{R}aE[F^{\epsilon}(\epsilon_{k}x)^{2}\exp(-\epsilon^{2}\int_{0}^{1}V(\epsilon_{k}x+\epsilon X_{s})ds)]dx$ ,

where $\epsilon_{k}=\epsilon^{-1/}k$ To clarify the argument in the proof of Theorem 2, we need
the following lemma. To mention it, define a random variable $S$ by

$S= \sum_{i,f=1}^{d}a_{\{j}\int_{0}^{1}X_{s}^{j}\circ dX_{s}^{i}$ .

Then we will show:

LEMMA 3. $E[\epsilon^{-2}F^{\epsilon}(\epsilon_{k}x)^{2}]$ converges to $E[S^{2}]$ as $\epsilon$ tends to $0$ uniformly on
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$\{x;|x|\geqq r\}$ for every $r>0$ .

The proof of this lemma is a little lengthy and so we give the proof of
Theorem 2 before that of Lemma 3.

PROOF OF THEOREM 2. At first we will show

(4.2) $\lim_{\epsilon\downarrow 0}\int_{R^{i}}(E[S^{2}g^{\epsilon}(x)]dx=0$ ,

where

$g^{e}(x)= \exp(-\epsilon^{2}\int_{0}^{1}V(\epsilon_{k}x+\epsilon X_{s})ds)-\exp(-|x|^{2k}v(x/|x|))$ .

For this we devide the integrand into two parts as in the proof of Theorem 1.
We set

$f_{1}^{e}(x)=E[S^{2}g^{\epsilon}(x)I_{2}]$ , $f_{2}^{\epsilon}(x)=E[S^{2}g^{\epsilon}(x)(1-I_{2})]$ ,

where $I_{2}$ is the indicator function of the set $\{\eta\geqq\epsilon^{-1/2}|x|\},$ $\eta=\max_{0\leq S\leqq 1}|X_{s}|$ .
Note that $g^{\epsilon}(x)$ is a uniformly bounded random variable in $x$ and $\epsilon$ , and that
any moment of the random variable $S$ exists. Then we see, by the H\"older’s

inequality,
$f_{1}^{\epsilon}(x)\leqq\{E[S^{8}]\}^{1/8}\{E[g^{\epsilon}(x)^{4}]\}^{1/4}\{E[I_{2}]\}^{1/4}$

$\leqq C_{1}\{P(\max_{0\leqq S\leqq 1}|X_{s}|\geqq\epsilon^{-1/2}|x|)\}^{1/4}$

Therefore, by Lemma 1, we get

$\int_{R^{d}}f_{1}^{\epsilon}(x)dx\leqq C_{2}\int_{R}\overline{a}\exp(-|x|^{2}/2\epsilon d)dx=O(\epsilon^{d/2})$ .

TO estimate the integral of $f_{2}^{\epsilon}(x)$ , let us note the elementary inequality

$|e^{a}-1|\leqq|a|(1+e^{a})$

and set

$G^{\epsilon}(x)=|x|^{2k}v(x/|x|)- \epsilon^{2}\int_{0}^{1}V(\epsilon_{k}x+\epsilon X_{s})ds$ .

Then, by the Schwartz’s inequality, we get

$f_{2}^{\epsilon}(x)\leqq C_{4}\exp(-|x|^{2k}v(x/|x|))\{E[G^{\epsilon}(x)^{2}(1+exp(G^{\epsilon}(x))^{2}(1-I_{2})]\}^{1/2}$

Moreover it is easy to see that, if $\eta<\epsilon^{-1/2}|x|$ ,

$(\epsilon_{k}-1)|x|\leqq|\epsilon_{k}x+\epsilon X_{s}|\leqq 2\epsilon_{k}|x|$

holds for $x\neq 0$ and for $\epsilon<1$ and, therefore, that

$|G^{\epsilon}(x)|\leqq C_{4}\epsilon^{C_{5}}|x|^{c_{6}}$

by the assumption (V2), where $C_{5}>0$ and $C_{6}\leqq 2k$ . Now we have proved
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$\int_{R^{d}}f_{2}^{\epsilon}(x)dx\leqq\int_{R^{d}}C_{7}\epsilon^{C_{5}}(1+|x|^{c_{6}})exp(-|x|^{2k}v(x/|x|)+C_{8}\epsilon^{C_{5}}|x|^{c_{6}})dx$

and, therefore, (4.2) because $v$ is strictly positive by the assumptions.
Combining (4.2) with Lemma 3, we see that the left hand side of (2.2) is

equal to

$(2 \pi)^{-d2}/\int_{R^{d}}E[S^{2}]\exp(-|x|^{2k}v(x/|x|))dx$ .

Finally we show the equality (2.3). By using the It\^o’s formula, we see
that the expectation

$E[ \int_{0}^{1}X_{s}^{j}\circ dX_{s}^{i}\int_{0}^{1}X_{s}^{k}\circ dX_{s]}^{\iota}$

does not vanish if and only if $j=k\neq i=l$ or $j=l\neq i=k$ . Moreover, $r_{by}\iota$ the L\’evy’s
formula for the characteristic function of the stochasticlarea (cf. [3] and [11]),

it is easy to show

$E[( \int_{0}^{1}X_{s}^{j}\circ dX_{s}^{i)^{2}]}=-E[\int_{0}^{1}X_{s}^{j}\circ dX_{s}^{i}\int_{0}^{1}X_{s}^{i}\circ dX_{s}^{j]}=\frac{1}{12}$ ,

which implies the assertion of the theorem.

In the rest we prove Lemma 3.

PROOF OF LEMMA 3. Define the function $\gamma_{ij}(x)$ and the random variable
$H^{\epsilon}(x)$ by

$\gamma_{tj}(x)=\frac{\partial}{\partial x^{j}}$ a $i(x)-a_{ij}$

$H^{\epsilon}(x)= \sum_{i,j=1}^{d}\int_{0}^{1}\circ dX_{s}^{i}\int_{0}^{s}\gamma_{ij}(\epsilon_{k}x+\epsilon X_{u})\circ dX_{u}^{j}$ .

Then we have

$E[ \epsilon^{-2}F^{\epsilon}(\epsilon_{k}x)^{2}]-E[(\sum_{i,=1}a_{ij}\int_{0}^{1}X_{s}^{j}\circ dX_{s}^{i)^{2}]}=2E[S\cdot H^{\epsilon}(x)]+E[H^{\epsilon}(x)^{2}]$ .

In order to prove the lemma, it is sufficient to show that $E[H^{\epsilon}(x)^{2}]$ con-
verges to $0$ uniformly on $\{x;|x|\geqq r\}$ . For this we devide the expectation into
two parts as before. Let $I_{3}$ be the indicator function of the set $\{\eta\geqq|x|/\epsilon\}$ .
Then we have, by Lemma 1,

$E[H^{S}(x)^{2}I_{3}]$ $ $C_{1}\exp$ $(-C_{2}|x|^{2}./\epsilon^{2})$ ,

which tends to $0$ uniformly on $\{x;|x|\geqq r\}$ .
Next let $\delta>0$ be given. There exists $R>0$ such that $|\gamma_{ij}(x)|<\delta$ for $|x|\geqq R$

by the assumption (A2). Moreover let us define the stopping time $\tau$ by

$\tau=\inf\{s>0;|X_{s}|\geqq\epsilon^{-1}|x|\}$
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and fix $x$ with $|x|\geqq r$ . Then we have

(4.3) $|\epsilon_{k}x+\epsilon X_{s}|\geqq(\epsilon_{k}-1)|x|>R$

and, therefore,
$|\gamma_{ij}(\epsilon_{k}x+\epsilon X_{s})|<\delta$

for $s\leqq\tau$ and for sufficiently small $\epsilon$ . Taking (4.3) into account, we show the
uniform convergence of $E[H^{S}(x)^{2}(1-I_{3})]$ to $0$ .

Let us remember that the pinned Brownian motion with $X_{0}=X_{1}=0$ is re-
alized as the solution of the stochastic differential equation (3.4) and rewrite
$H^{\epsilon}(x)$ . Then, by using the It\^o’s formula, we have

$H^{\epsilon}(x)= \Sigma\int_{0}^{1}dw_{s}^{i}\int_{0}^{s}\gamma_{ij}(\epsilon_{k}x+\epsilon X_{u})dw_{u}^{j}-\Sigma\int_{0}^{1}\frac{X_{s}^{i}}{1-s}ds\int_{0}^{s}\gamma_{ij}(\epsilon_{k}x+\epsilon X_{u})dw_{u}^{j}$

$+ \frac{\epsilon}{2}\Sigma\int_{0}^{1}dw_{s}^{i}\int_{0}^{s}\partial_{j}\gamma_{if}(\epsilon_{k}x+\epsilon X_{u})du$

$- \frac{\epsilon}{2}\Sigma\int_{0}^{1}\frac{X_{s}^{i}}{1-s}ds\int_{0}^{s}\partial_{j}\gamma_{ij}(\epsilon_{k}x+\epsilon X_{u})du-\Sigma\int_{0}^{1}dw_{s}^{i}\int_{0}^{s}\gamma_{ij}(\epsilon_{k}x+\epsilon X_{u})\frac{X_{u}^{j}}{1-u}du$

$+ \Sigma\int_{0}^{1}\frac{X_{s}^{i}}{1-s}ds\int_{0}^{s}\gamma_{ij}(\epsilon_{k}x+\epsilon X_{u})\frac{X_{u}^{j}}{1-u}du+\sum_{i=1}^{d}\int_{0}^{1}\gamma_{ii}(\epsilon_{k}x+\epsilon X_{u})du$

$=J_{1}+J_{2}+\cdots+J_{7}$ ,

where the simple $\sum$ denotes $\Sigma_{i,j=1}^{d}$ . Now it is easy to see that $E[(J_{l})^{2}(1-I_{3})]$ ,
$l=4,6,7$ , are bounded by constant $\cross\delta^{2}$ by virtue of (4.3) because these $J_{l}’ s$ do
not contain any stochastic integrals.

We will prove

(4.4) $E[(J_{1})^{2}(1-I_{3})]\leqq C_{3}\delta^{2}$

The others can be estimated similarly. To prove (4.4), we note that

$E[(J_{1})^{2}(1-I_{3})] \leqq E[(\Sigma\int_{0}^{1\Lambda\tau}dw_{s}^{i}\int_{0}^{s}\gamma_{ij}(\epsilon_{k}x+\epsilon X_{u})dw_{u}^{j})^{2}]$ .

Then, by using the optional stopping theorem and the moment inequality for
martingales (see, e.g., [3]), we obtain

$E[(J_{1})^{2}(1-I_{3})] \leqq C_{4}\sum E[\int_{0}^{1A\tau}ds(\int_{0}^{s\Lambda\tau}\gamma_{ij}(\epsilon_{k}x+\epsilon X_{u})dw_{u}^{j)^{2}]}$

$SC_{5}\sum\int_{0}^{1}dsE[(\int_{0}^{s\wedge\tau}\gamma_{\ell j}(\epsilon_{k}x+\epsilon X_{u})dw_{u}^{f})^{2}]$

$\leqq C_{6}\sum\int_{0}^{1}dsE[\int_{0}^{s\wedge\tau}\gamma_{ij}(\epsilon_{k}x+\epsilon X_{u})^{2}du]\leqq C_{\sim}\delta^{2}$ ,

which proves (4.4). The proof is completed.
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