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\S 0. Introduction.

Mackey’s induced representation is one of the most fundamental concepts of
unitary representation theory of groups and has played a significant role also in
the recent development of representation theory of discrete groups. The author
[13], [15] constructed new irreducible representations of the infinite symmetric
group by means of induced representations and discussed a relation to inde-
composable central characters or factor representations of type II. Hirai [6], [7]

has made a systematic approach to representations induced from infinite-dimen-
sional ones and obtained a fairly big family of irreducible representations of
infinite wreath products and the infinite symmetric group. Although the central
interest lies in the infinite symmetric group in those works mentioned above,
the basic idea of constructing irreducible representations established there covers
a large part of discrete groups.

The main purpose of this paper is to develop a study of induced repre-
sentations of an amalgam of discrete abelian groups. We shall construct irre-
ducible representations induced from maximal abelian subgroups and discuss
irreducible decompositions of the regular representation. Our discussion contains
a classical result on free groups due to Yoshizawa [21] and its generalization
by Kawakami [9]. Moreover, analogous results for $SL(2, Z)$ due to Saito [17]

are fully reproduced within our framework. While, there have been consider-
able interests in harmonic analysis of free groups, free products and amalgams,
see [1], [2], [3], [5], [16], etc. Their discussions, being based on spectral
theory of random walks on graphs and spherical functions on groups, seem to
be independent of induced representations.

Let $G=*_{Z}G_{i}$ be an amalgam of discrete abelian groups $G_{4},$ $i\equiv I$ , with the
commom subgroup $Z$ being amalgamated. Note that $Z$ becomes the center of
$G$ . We assume that each free factor $G_{i}$ satisfies the condition

(A) $|G_{t}$ : $Z|=\infty$ if $|G_{i}|=\infty$ .

This research was supported by the Ishida Foundation (Grant No. 89-456).
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Tbroughout a central role will be played by the set $\mathfrak{M}_{\infty}(G)$ of maximal abelian
subgroups $H$ of $G$ such that $|H|=\infty$ . The following two properties of $\mathfrak{M}_{\infty}(G)$

are essential to our goal:
(C) $\mathfrak{M}_{\infty}(G)$ is closed under conjugation;
(P) If $H,$ $K\in \mathfrak{M}_{\infty}(G)$ satisfy the condition that $|H:H\cap K|<\infty$ and $|K:H\cap K|$

$<\infty$ , then $H=K$.
For each maximal abelian subgroup $H\in \mathfrak{M}_{\infty}(G)$ we have:

(1) $H$ is either conjugate to a free factor or a direct product of the center
$Z$ and an infinite cyclic group;

(2) $|N_{G}(H):H|\leqq 2$ , where $N_{G}(H)$ stands for the normalizer of $H$ ;
(3) If $H$ is conjugate to a free factor, then $N_{G}(H)=H$.

Accordingly, $\mathfrak{M}_{\infty}(G)$ is divided into two subclasses:

$\mathfrak{M}_{\infty}(G)=\mathfrak{M}_{\infty}^{+}(G)\cup \mathfrak{M}_{\infty}^{-}(G)$ ,

where
$\mathfrak{M}_{\infty}^{+}(G)=\{H\in \mathfrak{M}_{\infty}(G);N_{G}(H)=H\}$ ,

$\mathfrak{M}_{\infty}^{-}(G)=\{H\in \mathfrak{M}_{\infty}(G);|N_{G}(H):H|=2\}$ .

Let $H\in \mathfrak{M}_{\infty}^{-}(G)$ and put $H=Z\cross\langle h\rangle$ . Then there exists an element $z_{0}\in Z$ such
that ghg $=z_{0}h^{-1}$ for all $g\in N_{G}(H)-H$. We then come to the main results (see

also Theorems 3.6 and 3.8).

THEOREM A. Let $G=*_{Z}G_{i}$ be an amalgam of discrete abelian groups $G_{\iota}$ ,
$i\in I$ , satisfying (A). Let $\chi$ and $\psi$ be one-dimensional representations of $Hs\mathfrak{M}_{\infty}(G)$

and $K\in \mathfrak{M}_{\infty}(G)$ , respectively. Then:
(1) $Ind_{H}^{G}\chi$ and $Ind_{K}^{G}\psi$ are mutually equivalent or $dis_{J}$ oint. They are fnutually

equivalent if and only if $H=K^{g}$ and $x=\psi^{g}$ for some $g\in G$ , where $\psi^{g}$ is a repre-
sentation of $K^{g}=g^{-1}Kg$ defined as $\psi^{g}(g^{-1}kg)=\psi(k),$ $k\in K$.

(2) If $H\in \mathfrak{M}_{\infty}^{+}(G)$ , then $Ind_{H}^{G}\chi$ is irreducible.
(3) Assume $H\in \mathfrak{M}_{\infty}^{-}(G)$ and put $H=Z\cross\langle h\rangle$ . Then $Ind_{H}^{G}\chi$ is irreducible if

and only if $\chi(h)^{2}\neq x(z_{0})$ . If $\chi(h)^{2}=x(z_{0})$ , then $Ind_{H}^{G}\chi$ is decomposed into a direct
sum of two irreducible representations which are not mutually equivalent.

THEOREM B. Let $G=*_{Z}G_{i}$ be an amalgam of discrete abelian groups $G_{i}$ ,
$i\in I$ , satisfying (A). For each $H\in \mathfrak{M}_{\infty}(G)$ we have

(regular representation of $G$ ) $\cong\int_{\hat{H}}^{\oplus}Ind_{H}^{G}xd\chi$ ,

where $Ind_{H}^{G}\chi$ is irreducible for almost all $\chi\in\hat{H}$ with respect to the Haar measure
$d\chi$ . Moreover, if two maximal abelian subgroups in $\mathfrak{M}_{\infty}(G)$ are not $con_{J}$ ugate in
$G$ , the corresponding irreducible decompositions are completely different.

A particularly interesting example of amalgams of discrete abelian groups
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is the group $SL(2, Z)$ of $2\cross 2$ matrices of integers with determinant one. In
fact, $SL(2, Z)\cong(Z/4Z)*_{Z/2z}(Z/6Z)$ is a classical result (see, $e$ . $g.$ , Serre [18]).

In [17] Saito dealt with representations of $SL(2, Z)$ . His construction of irre-
ducible representations is based on induced representations from Cartan sub-
groups and his motivation bears some resembrance to representation theory of
linear algebraic groups. However, it will turn out that Saito’s results are simple
consequences of our theorems. In other words, the fact that $SL(2, Z)$ is an
amalgam of discrete abelian groups is essential to our goal. As a result, the
Cartan subgroups of $SL(2, Z)$ are in coincidence with $\mathfrak{M}_{\infty}(SL(2, Z))$ .

The paper is organized as follows. In Section 1 we establish a general
criterion for irreducibility and mutual equivalence of induced representations of
discrete groups. We then derive some practical criteria and mention relationship
between known results and ours. In Section 2 we study structure of maximal
abelian subgroups of a free product of discrete groups. In Section 3 we give a
complete description of maximal abelian subgroups of an amalgam of discrete
abelian groups and prove the main theorems. In Section 4 the case of $SL(2, Z)$

is discussed. We determine all maximal abelian subgroups in terms of matrices
and see that Saito’s results are fully covered witb our argument.

ACKNOWLEDGEMENTS. I would like to express my gratitude to Prof. T.
Hirai for his numerous remarks which considerably improved this paper. I have
profited also from interesting conversation with Prof. K. Aomoto.

\S 1. Induced representations of discrete groups in general.

In this section we assemble and establish general results on induced repre-
sentations of discrete groups. Let $G$ be a discrete group and simply by a repre-
sentation of $G$ we always mean a unitary representation on a Hilbert space. A
representation $(\pi, W)$ of a subgroup $H$ of $G$ is denoted by $(\pi;H)=(\pi, W;H)$ .
Let Wt be a family of irreducible representations of subgroups of $G$ . We say
that $H$ is a underlying subgrouP of sa if it contains a representation of $H$. The
main purpose of this section is to establish criteria for irreducibility and mutual
equivalence of representations in $\Re=\{Ind_{H}^{G}\pi;(\pi;H)\in\Re\}$ in terms of $\Re$ .

TO this end we need an intertwining number theorem. The conjugate of a
representation $(z, W;H)$ by $g\in G$ , denoted by $(\pi^{g}, W;H^{g})$ , is a rePresentation
of $H^{g}=g^{-1}Hg$ defined as $\pi^{g}(g^{-1}hg)=\pi(h)$ , $h\in H$. For two representations
$(\pi_{1}, W_{1} ; H)$ and $(\pi_{2}, W_{2} ; K)$ we denote by $\mathfrak{J}(\pi_{1}, \pi_{2} ; H, K)$ the space of bounded
operators $L\in B(W_{1}, W_{2})$ satisfying the following three conditions:

(31) $L\in Hom_{H\cap^{K}}(\pi_{1}, \pi_{2})$ , $i$ . $e.,$ $L\pi_{1}(h)=\pi_{2}(h)L$ for all $h\in H\cap K$ ;

(52) there exists a constant $M>0$ such that
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$\sum_{h\in H\cap K\backslash H}||L\pi_{1}(h)w||_{W_{2}}^{2}\leqq M||w||_{W_{1}}^{2}$ , $w\in W_{1}$ ;

(33) there exists a constant $M>0$ such that

$\sum_{k\in K\cap H\backslash K}||L^{*}\pi_{2}(k)v||_{W_{1}}^{2}\leqq M||v||_{W_{2}}^{2}$ , $v\in W_{2}$ .

With these notations we can state the following intertwining number theorem.

THEOREM 1.1. For any pair of rePresentations $(\pi_{1} ; H)$ and $(\pi_{2} ; K)$ it holds
that

$\dim Hom_{G}(Ind_{H}^{G}\pi_{1}, Ind_{K}^{G}\pi_{2})=\sum_{g\in K\backslash G/H}\dim \mathfrak{J}(\pi_{1}, \pi_{2}^{g} ; H, K^{g})$ .

This useful formula is direct from known results, see Mackey [11] and
Hirai [6, \S 1]. As usual, the normalizer of $H$ is defined as $\Lambda^{r_{G}}(H)=N(H)=$

$\{g\in G;H=H^{g}\}$ .

THEOREM 1.2. Let SR be a family of irreducible representations of subgroups

of a discrete group G. Suppose that SR satisfles the following two hypotheses:

(H1) Wt is closed under $con_{J}$ ugation, $i.e.$ , if $(\pi;H)\in\Re$ and $g\in G$ , then $(\pi^{g} ; H^{g})$

$\in\Re,\cdot$

(H2) $\mathfrak{J}(\pi_{1}, \pi_{2} ; H, K)=\{0\}$ for any pair $(\pi_{1} ; H)\in\Re,$ $(\pi_{2} ; K)\in\Re$ with $H\neq K$.

Then:
(1) For any pair $(\pi_{1} ; H)\in\Re$ and $(\pi_{2} ; K)\in\Re$ ,

$\dim Hom_{G}(Ind_{H}^{G}\pi_{1}, Ind_{K}^{G}\pi_{2})=\#\{g\in K\backslash G/H;H=K^{g}, \pi_{1}\cong\pi\S\}$ .
(2) Any two representations in $\Re$ are mutually equivalent or $dis_{J}$ oinf.
(3) Let $(\pi_{1} ; H)\in\Re$ and $(\pi_{2} ; K)\in\Re$ . Then $Ind_{H}^{G}\pi_{1}\cong Ind_{K}^{G}\pi_{2}$ if and only if

$(\pi_{1} ; H)$ and $(\pi_{2} ; K)$ are conjugate, $i.e.,$ $H=K^{g}$ and $\pi_{1}\cong\pi_{2}^{g}$ for some $g\in G$ .
(4) For any $(\pi;H)\in\Re$ ,

$\dim Hom_{G}(Ind_{H}^{G}\pi, Ind_{H}^{G}\pi)=\#\{g\in N_{G}(H)/H;\pi\cong\pi^{g}\}$ .

In particular, $Ind_{H}^{G}\pi$ is irreducible if and only if $\pi$ and $\pi^{g}$ are not equivalent for
any $g\in N_{G}(H)-H$.

PROOF. (1) Let $g\in G$ satisfies the condition that $\dim S(\pi_{1}, \pi 2g;H, K^{g})>0$ .
Then $H=K^{g}$ by the hypotheses (H1) and (H2). Moreover, in view of the de-
finition of $\mathfrak{J}(\pi_{1}, \pi_{2}^{g} ; H, K^{g})$ , we have

$s^{o_{\langle}}(\pi_{1}, \pi_{2}^{g} ; H, K^{g})=Hom_{H\cap^{K^{g}}}(\pi_{1}, \pi_{2}^{g})=Hom_{H}(\pi_{1}, \pi_{2}^{g})$ .

Since both $\pi_{1}$ and $\pi_{2}^{g}$ are irreducible representations of $H$, we see that
$\dim 3(\pi_{1}, \pi 2g;H, K^{g})=1$ and $\pi_{1}\cong\pi_{2}^{g}$ . It then follows from Theorem 1.1 that
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$\dim Hom_{G}$ ( $Ind_{H}^{G}\pi_{1}$ , Ind $GK\pi_{2}$ )
$= \sum_{g\in K\backslash G/H}\dim \mathfrak{J}(\pi_{1}, \pi_{2}^{g} ; H, K^{g})$

$=\#\{g\in K\backslash G/H;\dim \mathfrak{J}(\pi_{1}, \pi_{2}^{g} ; H, K^{g})>0\}$

$=\#\{g\in K\backslash G/H;H=K^{g}, \pi_{1}\cong\pi_{2}^{g}\}$ .

(2) Let $(\pi_{1} ; H)\in\Re$ and $(\pi_{2} ; K)\in\Re$ , and assume that $Ind_{H}^{G}\pi_{1}$ and $Ind_{K}^{G}\pi_{2}$ are
not disjoint. Then, $\dim Hom_{G}(Ind_{H}^{G}\pi_{1}, Ind_{K}^{G}\pi_{2})>0$ . By (1) there exists some $g\in G$

such that $H=K^{g}$ and $\pi_{1}\cong\pi_{2}^{g}$ , and therefore $Ind_{H}^{G}\pi_{1}\cong Ind_{K}^{G}\pi_{2}$ .
(3) Suppose that $Ind_{H}^{G}\pi_{1}\cong Ind_{K}^{G}\pi_{2}$ . Then, in particular, they are not dis-

jolnt. In view of the argument of (2) we conclude that $H=K^{g}$ and $\pi_{1}\cong\pi_{2}^{g}$ for
some $g\in G$ . The converse assertion is obvious.

(4) Immediate from (1). Q. E. D.

REMARK ON THEOREM 1.2 (4). If $\dim Hom_{G}(Ind_{H}^{G}\pi, Ind_{H}^{G}\pi)<\infty$ , we have a
more presice result, namely, the intertwining algebra $Hom_{G}(Ind_{H}^{G}\pi, Ind_{H}^{G}\pi)$ is
isomorpbic to the group algebra $C[W(\pi)/H]$ , where $W(\pi)=\{g\in N_{G}(H);\pi\cong\pi^{g}\}$ .

Noticeably, Theorem 1.2 is quite useful in constructing irreducible repre-
sentations of discrete groups. For example, Hirai’s somewhat complex argu-
ment in the first half of [6] can be clarified with our result. Moreover, as is
seen below, many practical criteria for irreducibility and mutual equivalence of
induced representations are derived from Theorem 1.2.

For two subgroups $H$ and $K$ of $G$ we write $H\sim K$ if $|H:H\cap K|<\infty$ and
$|K:H\cap K|<\infty$ . This becomes an equivalence relation among subgroups. For
a subgroup $H$ of $G$ put

$Q(H)=Q_{G}(H)=\{g\in G;H\sim H^{g}\}$ .
Then $Q_{G}(H)$ becomes a subgroup of $G$ satisfying $H\subset N_{G}(H)\subset Q_{G}(H)$ . Following

Corwin [4] we call $Q(H)$ the quasi-normalizer of $H$. For two subgroups $H$ and
$K$ of $G$ we put

$(K\backslash G/H)_{f}=\{g\in K\backslash G/H;H\sim K^{g}\}$ .
Clearly, $(H\backslash G/H)_{f}=H\backslash Q(H)/H$.

REMARK. In some literature (e. g., Shimura [19, Chap. 3]) two subgroups
$H$ and $K$ with $H\sim K$ are called commensurable and $Q(H)$ the commensurator of
$H$. The purpose is, however, quite different from ours.

PROPOSITION 1.3. If two rePresentations $(\pi_{1};H)$ and $(\pi_{2};K)$ satisfy the
condition
(F) $\mathfrak{J}(\pi_{1}, \pi_{2}^{g} ; H, K^{g})=\{0\}$ for any $g\in G$ such that $H’\star K^{g}$ ,

then it holds that

$\dim Hom_{G}(Ind_{H}^{G}\pi_{1}, Ind_{K}^{G}\pi_{2})=\sum_{g\in(K\backslash G/H)_{f}}\dim Hom_{H\cap^{K^{g}}}(\pi_{1}, \pi_{2}^{g})$
.
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Conversely, if this identity holds and is fintie, the condition (F) holds.

PROOF. It follows from Theorem 1.1 that

$\dim Hom_{G}(Ind_{H}^{G}\pi_{1}, Ind_{K}^{G}\pi_{2})=\sum_{g\in K\backslash G/H}\dim \mathfrak{J}(\pi_{1}, \pi_{2}^{g} ; H, K^{g})$ .

By assumption (F) the sum is taken over the subset of $g\in K\backslash G/H$ such that
$H\sim K^{g}$ , namely,

$\dim Hom_{G}(Ind_{H}^{G}\pi_{1}$ , Ind $K2c_{\pi)}= \sum_{g\in(K\backslash G/H)_{f}}\dim \mathfrak{J}(\pi_{1}, \pi_{2}^{g} ; H, K^{g})$ .

We then need only to show that $\mathfrak{J}(\pi_{1}, \pi_{2}^{g} ; H, K^{g})=Hom_{HK^{g}}\cap(\pi_{1}, \pi_{2}^{g})for_{L}^{r}a11g\in$

$(K\backslash G/H)_{f}$ . NOW suppose $g\in(K\backslash G/H)_{f}$ and $L\in Hom_{H\cap^{K^{g}}}(\pi_{1}, \pi_{2}^{g})$ . Then,

$\sum_{h\in H\cap K^{g}\backslash H}||L\pi_{1}(h)w||_{W_{2}}^{2}\leqq|H:H\cap K^{g}|||L||^{2}||w||_{W_{1}}^{2}$ , $w\in 7V_{1}$ .

This proves that $L$ satisfies (52). Similarly $L$ satisfies (S3), and therefore $L\in$

$\mathfrak{J}(\pi_{1}, \pi_{2}^{g} ; H, K^{g})$ . The converse assertion is already clear. Q. E. D.

The importance of the condition (F) is illustrated by the next fact (cf.

Kleppner [10] $)$ .

LEMMA 1.4. Any Pair of finite dimensional representations $(\pi_{1}, W_{1} ; H)$ and
$(\pi_{2}, W_{2} ; K)$ satisfies the condition (F).

PROOF. Suppose that $L\in \mathfrak{J}(\pi_{1}, \pi_{2}^{g} ; H, K^{g}),$ $L\neq 0$ . It suffices to show that
$H\sim K^{g}$ . By virtue of (S2) there exists a constant $M>0$ such that

$\sum_{h\in H\cap K^{g}\backslash H}||L\pi_{1}(h)w||_{W_{2}}^{2}\leqq M||w||_{W_{1}}^{2}$ , $w\in W_{1}$ .

Making $w$ run over a complete ortbonormal basis for $W_{1}$ , we take the sum of
both sides to get

$\sum_{h\in H\cap K^{g}\backslash H}||L\pi_{1}(h)||_{HS}^{2}\leqq M\dim W_{1}$ .

Hence,
$|H:H\cap K^{g}|||L||_{Hs}^{2}\leqq M\dim W_{1}<\infty$ .

Similarly, using (S3), we get

$|K^{g}$ : $H\cap K^{g}|||L^{*}||_{HS}^{2}\leqq M\dim W_{2}<\infty$ .
Since $L\neq 0$ we have $H\sim K^{g}$ . Q. E. D.

Thus, irreducibility and mutual equivalence of representations induced from
finite dimensional ones may be discussed fully within our framework. In thls
connection, see also [4], [10], [11], [14], etc.

We are now going back to a discussion about $\Re$ . Let 6 be a family of
subgroups of $G$ and consider the following two properties:



RePresentations of amalgams 591

(C) $\mathfrak{G}$ is closed under conjugation of $G$ ;
(P) for any two subgroups $H$ and $K$ in $\mathfrak{G},$ $H\sim K\xi\Rightarrow H=K$.

AS is seen in Section 3, these are concerned with irreducible decompositions of
the regular representation of $G$ . The following two facts are easily verified.

LEMMA 1.5. If $\mathfrak{G}$ satisfies (C) and (P), then $Q(H)=N(H)$ for all $H\in \mathfrak{G}$ .

LEMMA 1.6. If every $H\in \mathfrak{G}$ satisfies the condition that $Q(H)=H$, then $\mathfrak{G}$

satisfies (P).

With these preparations we can derive a useful criterion for irreducibility
and mutual equivalence of representations in $\Re=\{Ind_{H}^{G}\pi;(\pi;H)\in\Re\}$ .

THEORE.$M1.7$ . Let $\Re$ be a family of irreducible rePresentations of subgroups
of G. Assume that any two rePresentations in $\Re$ satisfy (F) and that the under-
lying subgrouPs satisfy (C) and (P). Then the same assertions as in Theorem 1.2
(1) $-(4)$ hold.

PROOF. It can be proved, with no difficulty, that $\Re^{*}=\{(\pi^{g} ; H^{g});(\pi;H)$

$\subset-Wt,$ $g\in G\}$ satisfies the hypotheses (H1) and (H2). Q. E. D.

REMARK. The idea of dealing with a family of representations of subgroups
is due to Saito [17]. Recently, Hirai [6, \S 1] has modified Saito’s argument to
get a criterion covering a wider class of induced representations. Their results
are, however, simple consequences of Theorem 1.7.

\S 2. Maximal abelian subgroups of free products.

Given a family of discrete groups $G_{t},$ $i\in I$, let $G=*G_{i}$ denote their free
product. Recall that each $G_{\iota}$ is called a free factor of $G$ . We always assume
that $G_{i}\neq\{e\}$ for all $i\in I$. Each element $g\in G,$ $g\neq e$ , may be written uniquely
in reduced exPression, namely, as a product $g=g_{1}\cdots g_{r}$ where $g_{n}\in G_{\iota_{n}},$ $g_{n}\neq e$ ,
$i_{n}\neq i_{n+1}$ . In that case $r$ is called the length of $g$ . By definition the length of
the unit element $e$ is zero. In this section we shall devote ourselves to a study
of maximal abelian subgroups of $G=*G_{i}$ where $G_{t},$ $i\in I$ , is a discrete group.

We denote by $M(A)$ the set of maximal abelian subgroups of a group $A$ and
by $\mathfrak{M}_{\infty}(A)$ the subset of $H\in M(A)$ with $|H|=\infty$ . Obviously, $\mathfrak{M}_{\infty}(G)$ satisfies (C),

namely, is closed under the conjugation of $G$ . In this section we shall prove
the following three results.

THEOREM 2.1. Let $H$ be an abelian subgroup of $G=*G_{\ell},$ $H\neq\{e\}$ . Then one
of the following two possibilities occurs:

(i) $H\cap G_{i}^{\gamma}\neq\{e\}$ for some pair $i\in I,$ $\gamma\in G$ . In this case $H\subset G_{i}^{\gamma}$ ;
(ii) $H\cap G_{t}^{\gamma}=\{e\}$ for all $i\in I$ and $\gamma\in G$ . In this case $H$ is an infinite cyclic
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group generated by an element which does not belong to any $con_{j}$ ugate of any
free factor.

THEOREM 2.2. If every $\mathfrak{M}_{\infty}(G_{i})$ satisfies the condition (P), so does $\mathfrak{M}_{\infty}(G)=$

$\mathfrak{M}_{\infty}(*G_{i})$ .

Obviously, if $A$ is a finite group or an abelian group, $\mathfrak{M}_{\infty}(A)$ satisfies (P).

THEOREM 2.3. (1) If $H\in \mathfrak{M}_{\infty}(G)$ is in a $con_{J}$ ugate of a free factor, say,
$H\subset G_{i}^{\gamma}$ , then $N_{G}(H)=N_{c_{i}^{\gamma}}(H)$ .

(2) If $H\in \mathfrak{M}_{\infty}(G)$ is not in any conjugate of any free factor, then $g^{2}=e$ for
all $g\in N_{G}(H)-H$ and $|N_{G}(H):H|\leqq 2$ .

We first recall the following

LEMMA 2.4 ([12, Corollary 4.1.6]). Let $g,$ $h\in G=*G_{i}$ satisfy $gh=hg$ . Then
either both $g$ and $h$ are in the same conjugate of a free factor, or $g$ and $h$ are
both powers of the same element of $G$ .

An element $g\in G$ is called cyclically reduced if its reduced expression is
given as $g=g_{1}\cdots g_{r},$ $r\geqq 2$ , where $g_{1}$ and $g_{r}$ are from different free factors.
The next fact is useful.

LEMMA 2.5 ([12, Theorem 4.2]). Every element $g\in G=*G_{\ell}$ is $con_{J}$ ugate to
an element of a free factor or a cyclically reduced element.

LEMMA 2.6. Let $g$ and $h$ be cyclically reduced elements of $G=*G_{i}$ with
reduced expressions $g=g_{1}\cdots g_{\gamma},$ $h=h_{1}\cdots h_{s},$ $r,$ $s\geqq 2$ . Suppose that $g^{p}=h^{q}$ with
$p,$ $q\geqq 1$ . Let $d$ be the greatest common divisor of $r$ and $s$ . Then, $pr=qs,$ $d\geqq 2$

and $g_{1}$ $g_{\dot{a}}=h_{1}$ $h_{d}$ . Moreover, $g=(g_{1} g_{d})^{r/tl}$ and $h=(h_{1}$ ... $h_{d})^{s/\dot{a}}$ .

PROOF. By assumption, both sides of

$(= \frac{ptimes}{g_{1}\cdots g_{r})\cdots(g_{1}\cdots g_{r})}\frac{qt.imes}{(h_{1}\cdots h_{s})\cdot\cdot(h_{1}\cdots h_{s})}$

are reduced expressions, and hence $pr=qs$ . Without loss of generality we may
assume that r$s. Suppose 1Sz, ] $\leqq r$ . Then, $g_{i}=g_{j}$ if there is an integer $m$

such that $i\equiv mr+j$ (mod s). For, in that case $g_{i}=h_{i}=g_{j}$ . On the other hand,
if $i-$] $\equiv 0(mod d)$ , we may find two integers $m_{1},$ $m_{2}$ such that $m_{1}r+m_{2}s=i-$].

Then $i\equiv m_{1}r+j(mod s)$ and we get $g_{t}=g_{j}$ . This proves that $g=(g_{1}\cdots g_{d})^{r/d}$ .
Therefore $g_{1}$ $g_{d}=h_{1}\cdots h_{\dot{a}}$ and $h=(h_{1}\cdots h_{(f})^{s/i}$

( Q. E. D.

The centralizer of $g\in G$ is denoted by $Z(g)=\{h\in G;gh=hg\}$ .

LEMMA 2.7. Let $g\in G=*G_{i}$ and $g\neq e$ . Then:
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(1) If $g\in G_{i}$ , then $Z(g)\subset G_{i}$ .
(2) If $g$ is a cyclically reduced element, then $Z(g)=\langle w\rangle$ , where $w$ is a cycli-

cally reduced element of the smallest length such that $g=w^{p}$ for some $p\geqq 1$ . This
$w$ is uniquely determined.

(3) $Z(g)$ is a subgroup of a conjugate of a free factor or is an infinite cyclic
group.

PROOF. (1) is immediate by reduced expression. For (2) it suffices to show
the inclusion $Z(g)\subset\langle w\rangle$ . Let $w=w_{1}\cdots w_{r},$ $r\geqq 2$ , be the reduced expression of
$w$ and assume that $g=w^{p}$ with $p\geqq 1$ . Take $h\in Z(g),$ $h\neq e$ . In view of Lemma
2.4, $g$ and $/_{b}^{\wedge}$ are powers of the same element, say, $g=v^{q},$ $h=v^{Q’}$ . We may
assume that $q\geqq 1$ . Let $v=v_{1}\cdots v_{s}$ be the reduced expression. Since $g$ is a
cyclically reduced element, so is $v$ . We now note that $w^{p}=g=v^{q}$ . With the
help of Lemma 2.6, taking the greatest common divisor $d$ of $r$ and $s$ , we see
that $w=(w_{1}\cdots u_{d})$ ‘ ’ ’, $v=(v_{1}\cdots v_{a})^{S/d}$ and $w_{1}\cdots w_{d}=v_{1}\cdots V_{(}x$ . But it follows from
the assumption on $w$ that $d=r$ . Hence, $v\in\langle w\rangle$ and $h=v^{q^{r}}\in\langle w\rangle$ .

(3) follows directly from Lemma 2.5 and the above results. Q. E. D.

LEMMA 2.8. Let $\gamma\in G=*G_{\ell}$ . Then $G_{\ell}\cap G_{f}^{\gamma}=\{e\}$ unless $i=$] and $7\in G_{j}$ .

PROOF. Immediate by reduced expression. Q.E. D.

LEMMA 2.9. Let $g\in G=*G_{i}$ . If $g^{n}\neq e$ and $g^{n}\in G_{\ell}$ for some $n$ , then $g\in G_{t}$ .

PROOF. It follows from Lemma 2.7 that $Z(g^{n})\subset G_{i}$ . On the other hand,
$g\in Z(g^{n})$ is obvious. Hence $g\in G_{t}$ . Q. E. D.

PROPOSITION 2.10. Let $g\in G=*G_{i}$ and $g\neq e$ . Then one of the follouing two
possibilities occurs:

(i) $Z(g)\cap G_{i}^{\gamma}\neq\{e\}$ for some pair $i\in I,$ $\gamma\in G$ . In this case $Z(g)\subset G_{i}^{\gamma}$ .
(ii) $Z(g)\cap G_{i}^{\gamma}=\{e\}$ for all $i\in I$ and $\gamma\in G$ . In this case $Z(g)$ is an infinite

cyclic group generated by an element which does not belong to any conjugate of
any free factor.

PROOF. Suppose that $Z(g)$ is not a subgroup of any conjugate of any free
factor. It then follows from Lemma 2.7 that $Z(g)$ is an infinite cyclic group,
say, $Z(g)=\langle c\rangle,$ $c\in G$ . Then by Lemma 2.9 we have $Z(g)\cap G_{i}^{\gamma}=\{e\}$ for all $i\in I$

and $\gamma\in G$ . In this case, $c$ is not in any conjugates of free factors. Q. E. D.

PROOF OF THEOREM 2.1. Take $g\in H,$ $g\neq e$ , and note that $H\subset Z(g)$ since $H$

is abelian. We then need only to apply Proposition 2.10 to get the results.
Q. E. D.

LEMMA 2.11. Let $g,$ $h\in G=*G_{i}$ . Assume that $g$ is not in any conjugate of
any free factor. If $g^{n}=h^{n}$ with some $n\neq 0$ , then $g=h$ .
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PROOF. By Lemma 2.5 we may assume that $g$ is a cyclically reduced ele-
ment. It then follows from Lemma 2.7 that $Z(g)=\langle w\rangle$ and $g=w^{p}$ with a
cyclically reduced element $w$ . Obviously, $Z(h^{n})=Z(g^{n})=Z(g)=\langle w\rangle$ . Hence
$h\in\langle w\rangle$ , say, $h=w^{q}$ . Since $w^{pn}=g^{n}=h^{n}=w^{qn}$ , we have $P=q$ and therefore
$g=h$ . Q. E. D.

We are now in a position to give the

PROOF OF THEOREM 2.2. We put $G=*G_{i}$ . Suppose that $H,$ $K\in \mathfrak{M}_{\infty}(G)$ satisfy
the condition $H\sim K$. It is sufficient to show that $H=K$. Note that $H\cap K\neq\{e\}$ ,
for $|H:H\cap K|<\infty$ and $|H|=\infty$ . According to Theorem 2.1 we consider two
cases for $H$.

(Case 1) Suppose that $H\subset G_{i}^{\gamma}$ for some $i\in I$ and $\gamma\in G$ . Then $\{e\}\neq H\cap K\subset$

$G_{i}^{\gamma}\cap K$. It follows from Theorem 2.1 that $K\subset G_{i}^{\gamma}$ . Thus both $H$ and $K$ are
maximal abelian subgroups of $G_{i}^{\gamma}$ with the property $H\sim K$. By assumption
$\mathfrak{M}_{\infty}(G_{t})$ satisfies (P) and therefore $H=K$.

(Case 2) Assume that $H\cap G_{i}^{\gamma}=\{e\}$ for all $i\in I$ and $\gamma\in G$ and put $H=\langle c\rangle$ .
Since $H\cap K\neq\{e\},$ $K$ is not a subgroup of any conjugate of any free factor.
Therefore, $K$ is also an infinite cyclic group and we put $K=\langle d\rangle$ . Since $H\cap K$

$\mp\{e\}$ , we may write $H\cap K=\langle c^{p}\rangle=\langle d^{Q}\rangle$ with some $p\geqq 1,$ $q^{\sim}--\nearrow 1$ . Then $c^{p}=d^{\pm q}$ .
Moreover,

$c^{p}=d^{-1}d^{\pm q}d=d^{-1}c^{p}d=(d^{-1}cd)^{p}$ .

Since $c$ does not belong to any conjugate of any free factor, in view of Lemma
2.11 we have $c=d^{-1}cd$ . Consequently, $\langle c, d\rangle$ is an abelian group containing
both $H$ and $K$. Since $H$ and $K$ are maximal, $H=\langle c, d\rangle=K$ . We have thus
proved (P) for $\mathfrak{M}_{\infty}(G)$ . Q. E. D.

PROOF OF THEOREM 2.3. (1) For any $g\in N_{G}(H)$ w\’e have $H^{g}=H\subset G_{t}^{\gamma}$ and
$H\subset G_{f}^{\gamma g^{-1}}\cap G_{i}^{\gamma}$ . In particular, $G_{\ell}^{\gamma g^{-1}}\cap G_{4}^{\gamma}\neq\{e\}$ . It follows from Lemma 2.8 that
$g\in G_{\iota}^{\gamma}$ , namely, $N_{G}(H)\subset G_{t}^{\gamma}$ . In other words, $N_{G}(H)=N_{c_{\ell}^{\gamma}}(H)$ .

(2) It follows from Theorem 2.1 that $H$ is an infinite cyclic group, say,
$H=\langle c\rangle$ . For any $g\in_{\wedge’}V_{G}(H)$ we have $\langle c\rangle=H=H^{g}=\langle g^{-1}cg\rangle$ . Hence $c=g^{-1}cg$ or
$c=g^{-1}c^{-1}g$ . In the former case $\langle c, g\rangle$ is an abelian group containing $H$. Then
$g\in H$, for $H$ is a maximal abelian subgroup of $G$ . In the latter case, observing
that

$c=g^{-1}c^{-1}g=g^{-1}(g^{-1}cg)g=g^{-2}cg^{2}$ ,

we have $g^{2}=c^{p}$ for some $p$ . Suppose first that $P\neq 0$ . Then,

$c^{p}=g^{2}=gg^{2}g^{-1}=gc^{p}g^{-1}=(gcg^{-1})^{p}$ .

Recalling that $c$ is not in any conjugate of any free factor, we see from Lemma
2.11 that $c=gcg^{-1}$ . This implies contradiction, for $c^{-1}=gcg^{-1}=c$ . Hence $g^{2}=e$ .
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The action of $\Lambda_{G}^{\gamma}(H)$ on $H$ induces a homomorphism $\alpha:N_{G}(H)arrow Aut(H)$ .
Since $H$ is a maximal abelian subgroup of $G$ , we see that $\alpha$ induces an injective
homomorphism $N_{G}(H)/H-arrow Aut(H)$ . On the other hand, it is evident that
$|Aut(H)|=2$ . Consequently, $|N_{G}(H):H|\leqq 2$ . Q. E. D.

For structure of each maximal abelian subgroup of free products we only
mention the following result.

PROPOSITION 2.12. Let $G=*G_{i}$ be a free product of abelian groups $G_{\ell},$ $i\in I$ .
If $H$ is a maximal abelian subgroup of $G$ , then $H=Z(g)$ for any $g\in H$ with $g\neq e$ .
In particular, the maximal abelian subgroup of $G$ containing $g\in G,$ $g\neq e$ , is uni-
que and given by $Z(g)$ .

PROOF. Suppose $H\in \mathfrak{M}(G)$ and take $g\in H,$ $g\neq e$ . Obviously, $H\subset Z(g)$ . Then
we need only to show that $Z(g)$ is abelian. But this is immediate from Prop-
osition 2.10 and the assumption that each free factor is abelian. Q. E. D.

COROLLARY 2.13. Let $G$ be the same as in Proposition 2.12. For a maximal
abelian subgroup $H$ of $G$ one of the following two possibilities occurs:

(i) $H$ is $con_{f}$ ugate to a free factor $G_{i}$ ;
(ii) $H\cap G_{i}^{\gamma}=\{e\}$ for any $l\in I$ and $\gamma\in G$ . In this case $H$ is an infinite cyclic

group generated by an element which does not belong to any conjugate of any
free factor.

\S 3. Induced representations of amalgams of discrete abelian groups.

Given discrete groups $G_{l}$ , $i\equiv I$, we denote by $G=*_{Z}G_{i}$ their free product
with the common subgroup $Z$ amalgamated. To avoid inessential argument we
always assume that $G_{f}\neq Z$ for all $i\in I$ . We call such a group $G$ an amalgam
for sbort. As in the case of free products, each $G_{i}$ is called a free factor of $G$ .

Throughout this section we assume that every free factor $G_{t}$ is abelian.
(Later on we add one more assumption called $(A).$ ) Then, $Z$ becomes the center
of $G$ and there is a canonical isomorphism between $G/Z$ and the free product
$*(G_{i}/Z)$ . Let $\pi$ be the canonical projection from $G$ onto $G/Z$ .

We begin with the following

PROPOSITION 3.1. For a maximal abelian subgrouP $H$ of $G=*_{Z}G_{i}$ one of the
following two possibilities occurs:

(i) $H$ is $con_{J}$ ugate to a free factor;
(ii) $H\cap G_{i}^{\gamma}=Z$ for all $i\in I$ and $\gamma\in G$ . In this case there exists an element

$w\in H$ of in.linite order such that $H=Z\cross\langle w\rangle$ .
In any case $H/Z$ is a maximal abelian subgroup of $G/Z$.
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PROOF. Since $Z$ is the center of $G,$ $Z\subset H$ and therefore $\pi(H)=H/Z\neq\{\pi(e)\}$

is an abelian subgroup of $G/Z=*(G_{i}/Z)$ . According to Theorem 2.1 we con-
sider two possibilities for $H/Z$.

(Case 1) Suppose that $H/Z\subset(G_{\ell}/Z)^{\pi(\gamma)}=G_{i}^{\gamma}/Z$ for some $\gamma\in G$ and $i\in I$ .
Then, $H\subset G_{i}^{\gamma}$ . Since $H$ is a maximal abelian subgroup, we have $H=G_{l}^{v}/$ . In
this case, obviously, $H/Z$ is a maximal abelian subgroup of $G/Z=*(G_{t}/Z)$ .

(Case 2) Suppose that $H/Z\cap G_{i}^{\gamma}/Z=\{\pi(e)\}$ for all $i\in I$ and $\gamma\in G$ , and put
$H/Z=\langle\pi(w)\rangle$ . Obviously, $H_{-}\pi^{-1}(H/Z)=Z\vee\langle w\rangle$ . Since $H$ is a maximal abelian
subgroup, $w\not\in Z$ . Moreover, $Z\cap\langle w\rangle=\{e\}$ . In fact, $w^{p}\in Z$ implies that $\pi(w)^{p}$

$=\pi(e)$ and $p=0$ . Therefore $H$ admits a direct product decomposition $H=Z\cross\langle w\rangle$ .
We next show that $\langle\pi(w)\rangle$ is a maximal abelian subgroup of $G/Z$ . Since $\pi(w)$

does not belong to any conjugate of any free factor of $G/Z$ , an abelian group
containing $\langle\pi(w)\rangle$ should be an infinite cyclic group, say, $\langle\pi(v)\rangle$ . Then we have
$Z\cross\langle w\rangle\subset Z\cross\langle v\rangle\subset G$ . Since $Z\cross\langle w\rangle$ is a maximal abelian subgroup of $G$ , it
coincides with $Z\cross\langle v\rangle$ and hence $\langle\pi(v)\rangle=\langle\pi(w)\rangle$ . Q. E. D.

For structure of each maximal abelian subgroup of $G=*_{Z}G_{t}$ we only men-
tion the following fact. The proof is easy from Proposition 2.12.

PROPOSITION 3.2. If $H$ is a maximal abelian subgrouP of $G=*_{Z}G_{i}$ , then
$H=Z(g)$ for any $g\in H-Z$ .

LEMMA 3.3. $G_{i}\cap G_{j}^{v}’=Z$ unless $i=_{J}$ and $\gamma\in G_{j}$ .

PROOF. Immediate from Lemma 2.8. Q. E. D.

From now on we impose one more assumption on the amalgam $G=\tau_{Z}G_{i}$ of
discrete abelian groups. Let us assume

(A) $|G_{i}$ : $Z|=\infty$ if $|G_{i}|=\infty$ .
For instance, an amalgam of finite abelian groups satisfies this condition. The
following two results are very important to our goal.

LEMMA 3.4. $\mathfrak{M}_{\infty}(G)$ satisfies (C) and (P).

PROOF. (C) is obvious. We shall prove (P). Let $H\in \mathfrak{M}_{\infty}(G)$ and $K\in \mathfrak{M}_{\infty}(G)$

satisfy the condition $H\sim K$. In view of Proposition 3.1 we consider three cases:
(Case 1) Suppose that both $H$ and $K$ are conjugate to some free factors,

say, $H=G_{i}^{\gamma}$ and $K=G_{j}^{\delta}$ . By assumption, we have $|G_{i}$ : $G_{i}\cap G_{j}^{\delta\gamma- 1}|<\infty$ and
$|G_{j}$ : $G_{j}\cap c_{i}^{\gamma\delta}- 1|<\infty$ . Then we see from (A) that $G_{i}\cap G_{j}^{\delta\gamma^{-1}}\neq Z$ . Hence by
Lemma 3.3 we have $i=j$ and $\delta\gamma^{-1}\in G_{J}$ . Therefore, $H=K$.

(Case 2) Suppose that $H$ is conjugate to a free factor, say, $H=G_{i}^{\gamma}$ , and that
$K\cap G_{j}^{\grave{0}}=Z$ for all $j\in I$ and $\delta\in G$ . Then $H\cap K=Z$ and $|G_{i}$ : $Z|=|H:H\cap K|<\infty$ .
But this is impossible due to the assumption (A).
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(Case 3) Suppose that $H\cap G_{i}^{\gamma}=K\cap G_{i}^{\gamma}=Z$ for all $i\in I$ and $\gamma\in G$ . In view of
Proposition 3.1 we have $H/Z\sim K/Z$ in $G/Z$ . On the other hand, note that
$\mathfrak{M}_{\infty}(G_{i}/Z)$ satisfies (P) because $G_{i}/Z$ is abelian. It follows from Theorem 2.2
that $\mathfrak{M}_{\infty}(*(G_{i}/Z))=\mathfrak{M}_{\infty}(G/Z)$ satisfies (P). Since both $H/Z$ and $K/Z$ are in
$\mathfrak{M}_{\infty}(G/Z)$ by Proposition 3.1, we see that $H/Z=K/Z$ , and therefore $H=K$. Q.E.D.

LEMMA 3.5. $|N_{G}(H):H|\underline{<-}2$ for all $H\in \mathfrak{M}_{\infty}(G)$ .

PROOF. Suppose that $H\in \mathfrak{M}_{\infty}(G)$ . Then, by Proposition 3.1 and assumption
(A) we see that $H/Z\in \mathfrak{M}_{\infty}(G/Z)=\mathfrak{M}_{\infty}(*(G_{i}/Z))$ . It then follows from Theorem
2.3 (2) that $|N_{G/Z}(H/Z):H/Z|$ $2. On the other hand, we have an obvious iso-
morphism

$N_{G}(H)/H\equiv N_{G/Z}(H/Z)/(H/Z)$ .
The assertion is then immediate. Q. E. D.

According to Lemma 3.5 we put

$\mathfrak{M}_{\infty}^{+}(G)=\{H\in \mathfrak{M}_{\infty}(G);N_{G}(H)=H\}$

and
$\mathfrak{M}_{\infty}^{-}(G)=\{H\in \mathfrak{M}_{\infty}(G) ; |N_{G}(H) : H|=2\}$ .

Then $\mathfrak{M}_{\infty}(G)=\mathfrak{M}_{\infty}^{+}(G)\cup \mathfrak{M}_{\infty}^{-}(G)$ . It follows from Lemma 3.3 that if $H\in \mathfrak{M}_{\infty}(G)$ is
conjugate to a free factor, it belongs to $\mathfrak{M}_{\infty}^{+}(G)$ . Suppose that $H\in \mathfrak{M}_{\infty}^{-}(G)$ and
put $H=Z\cross\langle h\rangle$ . We see from Lemma 3.5 that there exists an element $z_{0}\in Z$

such that ghg $=z_{0}h^{-1}$ for all $g\in N_{G}(H)-H$. This $z_{0}$ depends upon the choice
of $h$ in the direct product decomposition of $H$.

THEOREM 3.6. Let $G=*_{z}G_{i}$ be an amalgam of discrete abelian groups $G_{i}$

satisfying (A). Let $\Re$ be the collection of all irreducible rePresentations of sub-
grouPs in $\mathfrak{M}_{\infty}(G)$ . Then:

(1) Any two rePresentations in $\Re=\{Ind_{H}^{G}x;(x;H)\in \mathfrak{R}\}$ are mutually equi-
valent or disjoint.

(2) Let $(x;H)\in\Re$ and $(\psi;K)\in\Re$ . Then $Ind_{H}^{G}\chi\cong Ind_{K}^{G}\psi$ if and only if $H=K^{g}$

and $x=\psi^{g}$ for some $g\in G$ .
(3) If $H\in \mathfrak{M}_{\infty}^{+}(G)$ , then $Ind_{H}^{G}\chi$ is irreducible.
(4) Assume $H\in \mathfrak{M}_{\infty}^{-}(G)$ and put $H=Z\cross\langle h\rangle$ . Then $Ind_{H}^{G}\chi$ is irreducible if and

only if $\chi(h)^{2}\neq\chi(z_{0})$ . If $\chi(h)^{2}=x(z_{0})$ , then $Ind_{H}^{G}\chi$ is decomPosed into a direct sum
of two irreducible rePresentations which are not mutually equivalent.

PROOF. Note that only one-dimensional representations are irreducible ones
of subgroups in $\mathfrak{M}_{\infty}(G)$ . Hence by virtue of Lemma 3.4, we see that $\Re$ satisfies
all the conditions of Theorem 1.7. Therefore (1)$-(2)$ follow directly from Theo-
rem 1.7 (2) $-(3)$ . Furthermore (3) follows from Theorem 1.7(4) because $Q(H)=$

$N(H)=H$ for all $H\in \mathfrak{M}_{\infty}^{+}(G)$ . We now prove (4). Suppose $H\in \mathfrak{M}_{\infty}^{-}(G)$ , namely,
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$|N(H):H|=2$ . It follows from Theorem 1.7 (4) that $Ind_{H}^{G}\chi$ is reducible if and
only if $\dim Hom_{G}(Ind_{H}^{G}\chi, Ind_{H}^{G}\chi)=2$ . In this case, $Ind_{H}^{G}\chi$ is a direct sum of two
irreducible representations which are not mutually equivalent. On the other
hand, $Ind_{H}^{G}\chi$ is irreducible if and only if $x^{g}\neq x$ for all $g\in N(H)-H$. Recall that
ghg $=z_{0}h^{-1}$ for $g\in N(H)-H$. Then $x^{g}(h)=x(ghg^{-1})=x(z_{0})\chi(h^{-1})$ . Hence $x^{g}=x$

if and only if $X(h)^{2}=x(z_{0})$ . This completes the proof. Q. E. D.

Irreducible representations obtained in Theorem 3.6 are relevant to irreduci-
ble decompositions of the regular representation of $G$ . We first note the fol-
lowing

LEMMA 3.7. Let $G$ be an arbitrary discrete grouP and $H$ an abelian sub-
grouP of G. Then,

(regular rePresentation of $G$ ) $\cong\int_{\hat{H}}^{\oplus}Ind_{H}^{G}xd\chi$

where $\hat{H}$ denotes the dual of $H$ and $d\chi$ the Haar measure of H. If $Q(H)=H$, the
above direct integral gives an irreducible decomposition. Moreover, two irre-
ducible decompositions obtained from such abelian subgroups are completely different
if and only if the abelian subgroups are not $con_{J}$ ugate.

PROOF. The first assertion is well known and easy to see by Fourier
transform on $H$. Note that $H$ is a maximal abelian subgroup of $G$ if $Q(H)=H$.
Then the statements on irreducible decompositions are direct from Theorem 1.7.
Q. E. D.

THEOREM 3.8. Let $G=*_{Z}G_{i}$ be an amalgam of discrete abelian groups $G_{i}$

satisfying (A). For each $H\in \mathfrak{M}_{\infty}(G)$ we have

(regular rePresentation of $G$ ) $\cong\int_{\hat{H}}^{\oplus}Ind_{H}^{G}xd\chi$

where $Ind_{H}^{G}\chi$ is irreducible for almost all $x\in\hat{H}$ with resPect to the Haar measure
$d\chi$ . Moreover, if two maximal abelian subgroups in $\mathfrak{M}_{\infty}(G)$ are not conjugate, the
corresPonding irreducible decomPositions are comPletely different.

PROOF. If $H\in \mathfrak{M}_{\infty}^{+}(G)$ , the assertion is immediate from Theorem 3.6 (2)(3)

and Lemma 3.7. Actually, in this case every $Ind_{H}^{G}\chi$ is irreducible. If $H\in \mathfrak{M}_{\infty}^{-}(G)$ ,
then $Ind_{H}^{G}\chi$ can be reducible for some $x\in\hat{H}$. But such $\chi’ s$ form a null set of
$\hat{H}$ with respect to the Haar measure $d\chi$ . Q. E. D.

REMARK. In case of $G$ being a free group the above result was shown by
Kawakami [9], see also Kajiwara [8]. In that case we have $\mathfrak{M}(G)=\mathfrak{M}_{\infty}(G)=$

$\mathfrak{M}_{\infty}^{+}(G)$ . While, using particular maximal abelian subgroup of a free group,
Yoshizawa [21] showed this kind of diversity of irreducible decompositions of
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the regular representation in the initial stage of unitary representation theory.

\S 4. An example $SL(2, Z)$ .
One of the most interesting examples of amalgams of discrete groups is,

with no doubt, the group $SL(2, Z)$ of all $2\cross 2$ matrices of integers with deter-
minant one. We put

$\sigma=(\begin{array}{ll}0 1-1 0\end{array})$ , $\tau=(\begin{array}{ll}1 1-1 0\end{array})$ , $e=(\begin{array}{ll}1 00 1\end{array})$ .

Then, $Z/4Z\cong\langle\sigma\rangle,$ $Z/6Z\cong\langle\tau\rangle$ and $Z/2Z\cong\{\pm e\}$ . With these isomorphisms we
come to a classical result:

$SL(2, Z)\cong(Z/4Z)*z/2Z(Z/6Z)$ .
We therefore have the assertions in Theorems 3.6 and 3.8 for $G=SL(2, Z)$ .
Moreover, the statement of Theorem 3.6 (4) is equivalent to the following

(4) Assume that $H\in \mathfrak{M}_{\infty}^{-}(G)$ . Then $Ind_{H}^{G}\chi$ is irreducible if and only if $x\neq\overline{x}$ .
If $x=\overline{x}$ , then $Ind_{H}^{G}\chi$ is decomposed into a direct sum of two irreducible rePre-
sentations which are not mutually equivalent.

We give a brief account of this fact. Recall that each $H\in \mathfrak{M}_{\infty}^{-}(G)$ admits a direct
product decomposition $H=Z\cross\langle h\rangle$ and that there exists an element $z_{0}\in Z$ such
that ghg $=z_{0}h^{-1}$ for all $g\in N_{G}(H)-H$. But we have $z_{0}=e$ due to the fact that
$Tr(h)=Tr(h^{-1})$ . The assertion (4) is then immediate.

We shall investigate structure of a maximal abelian subgroup of $G=SL(2, Z)$

in terms of matrices. With the help of Jordan’s canonical form and Proposition
3.2 one may prove the following assertion easily.

LEMMA 4.1. Let $g\in G,$ $g\neq\pm e$ . Then a maximal abelian subgrouP of $G$

containing $g$ is unique and given by $Z(g)$ . Moreover, $Z(g)=(Qg+Qe)\cap SL(2, Z)$ .

Given integers $n_{1},$ $\cdots$ , $n_{l}\in Z$ , we denote by $((n_{1}, \cdots , n_{l}))$ their greatest com-
mon divisor, namely, the integer $d\geqq 0$ such that $n_{1}Z+\cdots+n_{l}Z=dZ$ .

PROPOSITION 4.2. Given $g=(\begin{array}{ll}a bc d\end{array})\in G,$ $g\neq\pm e$ , We put

$\alpha=\frac{a-d}{((a-d,b,c))}$ , $\beta=\frac{b}{((a-d,b,c))}$ , $\gamma=\frac{-c}{((a-d,b,c^{)})}$ ,

$D=D(\alpha, \beta, \gamma)=\alpha^{2}-4\beta\gamma$ .
Then

$Z(g)=\{(\begin{array}{ll}(p+\alpha q)/2 \beta q-\gamma q (p-\alpha q)/2\end{array});p,q\in Zp^{2}-Dq^{2}=4\}$ .

PROOF. Note first that
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$Qg+Qe=\{(\begin{array}{llll}\lambda a T| \mu \lambda \lambda c \lambda d+\mu\end{array})$ $\lambda,$ $\mu\in Q\}$

and ($(a-d, b, c)\geqq 1$ . Changing parameters $\lambda,$ $\mu\in Q$ with $p,$ $q\in Q$ by the formula:

$\{\begin{array}{l}p=(a+d)\lambda+2\mu q=((a-d,b,c))\lambda,\end{array}$

we obtain $Qg+Qe=\{h(p, q);p, q\in Q\}$ , where

$h(P, q)=(\begin{array}{ll}(P+\alpha q)/2 \beta q-7q (p-\alpha q)/2\end{array})$ .

In view of Lemma 4.1 we have $Z(g)=\{h(p, q);p, q\in Q\}\cap SL(2, Z)$ . First sup-
pose that $h(p, q)\in SL(2, Z),$ $p,$ $q\in Q$ . Then $(p\pm\alpha q)/2,$ $\beta q,$ $-\gamma q\in Z$ , and therefore
$p,$ $q\in Z$ since $((\alpha, \beta, \gamma))=1$ . Moreover, since

$1= \det h(p, q)=\frac{p^{2}-Dq^{2}}{4}$ ,

$(Pq)$ is an integral solution of the equation $P^{2}-Dq^{2}=4$ .
Conversely, suppose $(p, q)$ to be an integral solution of the equation $p^{2}-Dq^{2}$

$=4$ . Then, we have

$(p+\alpha q)(p-\alpha q)=P^{2}-Dq^{2}-4\beta\gamma q^{2}=4(1-\beta\gamma q^{2})$ .
Since $p+\alpha q\equiv p-\alpha q(mod 2)$ , we conclude that $h(P, q)\in SL(2, Z)$ . Q. E. D.

COROLLARY 4.3. (1) If $Tr(g)=0$ , then $Z(g)$ is $con_{j}$ ugate to $\langle\sigma\rangle$ .
(2) If $|Tr(g)|=1$ , then $Z(g)$ is $C0n_{J^{ugate}}$ to $\langle\tau\rangle$ .

PROOF. With the same notations as in Proposition 4.2 we have

$D= \alpha^{2}-4\beta\gamma=\frac{(a-d)^{2}+4bc}{((a-d,b,c))^{2}}=\frac{(a-1\ulcorner\text{\’{a}})^{2}-4}{((a-d,b,c))^{2}}$ .

Hence $|Tr(g)|=|a+d|<2$ if and only if $D<0$ . In that case, $Z(g)$ is a finite
group by Proposition 4.2. On tbe other hand, it follows from Lemma 4.1 that
$Z(g)$ is a maximal abelian group and from Proposition 3.1 that it is conjugate
to a free factor. Consequently, $Z(g)$ is conjugate to $\langle\sigma\rangle$ or $\langle\tau\rangle$ according as
$Tr(g)=0$ or $|Tr(g)|=1$ . Q. E. D.

We now give a parametrization of $\mathfrak{M}_{\infty}(G)$ . Let $H=\mathfrak{M}_{\infty}(G)$ and take $g\in H$,
$g\neq\pm e$ . Then, by Lemma 4.1 we have $H=Z(g)$ . We keep to the same nota-
tion as in Proposition 4.2. Note that $D=D(\alpha, \beta, \gamma)=\alpha^{2}-4\beta\gamma\geqq 0$ , otherwise $H$

becomes a finite group. Note also that $D\equiv 0$ or 1 $(mod 4)$ . Moreover, it is not
difficult to see that $D$ can not be a positive square. Accordingly, we put

$\Delta=\{\delta\in Z;\delta\geqq 0, \delta\equiv 0,1(mod 4)\}-\{1^{2},2^{2},3^{2}, \}$

and
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$\Lambda=\{(\alpha, \beta, \gamma)\in Z^{3}$ ; $(\alpha^{2}(\alpha,-\beta,\gamma))=1\}$ .

For $(\alpha, \beta, \gamma)\in\Lambda$ we put

$H(\alpha, \beta, \gamma)=\{(\begin{array}{ll}(P+\alpha q)/2 \beta q-\gamma q (P-\alpha q)/2\end{array})$ ; $p^{2}-D(\alpha p,q\in Z\beta, \gamma)q^{2}=4\}$ .

Then, $H=Z(g)=H(\alpha, \beta, \gamma)$ by Proposition 4.2. Conversely, note that $H(\alpha, \beta, \gamma)$

$\in \mathfrak{M}_{\infty}(G)$ for all $(\alpha, \beta, \gamma)\in\Lambda$ . In fact, the theory of Pell’s equation guarantees
the existence of a non-trivial integral solution of $p^{2}-D(\alpha, \beta, \gamma)q^{2}=4$ , see $e$ . $g.$ ,

[20, \S 33]. More precisely, let $(p_{1}, q_{1})$ be its integral solution such that $p_{1}>0$

and $q_{1}>0$ are the smallest among the solutions. Let $g_{1}=h(p_{1}, q_{1})$ be the corre-
sponding matrix. Then, $H(\alpha, \beta, \gamma)=Z(g_{1})=\{\pm e\}\cross\langle g_{1}\rangle$ . In particular, $H(\alpha, \beta, \gamma)$

$\in \mathfrak{M}_{\infty}(G)$ . The following assertion is now easy to see.

PROPOSITION 4.4. Let $H\in \mathfrak{M}(G)$ . Then, one of the following three Possibilities
occurs:

(i) $|H|=4$ and $H$ is $con_{J}$ ugate to $\langle\sigma\rangle,\cdot$

(ii) $|H|=6$ and $H$ is conjugate to $\langle\tau\rangle,\cdot$

(iii) $|H|=\infty$ and $H=H(\alpha, \beta, \gamma)$ for some $(\alpha, \beta, \gamma)\in\Lambda$ . In this case $H=\{\perp-e\}$

$\cross\langle g\rangle$ for some $g\in G$ .
Furthermore, $\mathfrak{M}_{\infty}(G)=\{H(\alpha, \beta, \gamma);(\alpha, \beta, \gamma)\in\Lambda\}$ and $H(\alpha, \beta, \gamma)=H(\alpha’, \beta^{f}, \gamma’)$ if
and only if $(\alpha, \beta, \gamma)=\pm(\alpha’, \beta’, 7’)$ .

We have not obtained a brief description of conjugacy classes of $\mathfrak{M}_{\infty}(G)$ .
Here we only mention a relation between $\mathfrak{M}_{\infty}(G)$ and quadratic forms (or real
quadratic number fields). For $(\alpha, \beta, \gamma)\in\Lambda$ we put

$F(\alpha, \beta, \gamma)=(\begin{array}{ll}\gamma \alpha/2\alpha/2 \beta\end{array})$ .

Then by a direct calculation we have

LEMMA 4.5. $H(\alpha, \beta, \gamma)=\{g\in G;{}^{t}gF(\alpha, \beta, \gamma)g=F(\alpha, \beta, \gamma)\}$ .

We say that $F(\alpha, \beta, \gamma)$ and $F(\alpha^{f}, \beta^{f}, \gamma^{f})$ are equivalent if $F(\alpha’, \beta’, \gamma’)=$

${}^{t}uF(\alpha, \beta, \gamma)u$ for some $u\in G$ . The following result is then immediate.

PROPOSITION 4.6. $H(\alpha, \beta, \gamma)$ and $H(\alpha^{f}, \beta’, \gamma’)$ are conjugate in $G$ if and only
if $F(\alpha, \beta, \gamma)$ and $F(\alpha’, \beta’, \gamma^{f})$ are equivalent. In that case $D(\alpha, \beta, \gamma)=D(\alpha’, \beta’, \gamma’)$ .

Given $\delta\in\Delta$ , we put

$\Lambda_{\delta}=\{(\alpha, \beta, \gamma)\in\Lambda ; D(\alpha, \beta, \gamma)=\delta\}$ .
Then, as is easily verified, $\Lambda_{\delta}\neq\emptyset$ and $\Lambda=U_{\delta\in\Delta}\Lambda_{\delta}$ . We therefore see from Prop-
osition 4.6 that there are countably infinite number of conjugacy classes of
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maximal abelian subgroups in $\mathfrak{M}_{\infty}(G)$ . Furthermore, it is noteworthy that the
number of conjugacy classes of maximal abelian subgroups $H(\alpha, \beta, r)$ , where
$(\alpha, \beta, \gamma)$ runs over $\Lambda_{\delta},$ $\delta>0$ , is equal to the class number of $Q(\sqrt{\delta})$ .

For $\mathfrak{M}_{\infty}^{\pm}(G)$ we only mention the following result. The proof is easy and
omitted.

PROPOSITION 4.7. Given $H=H(\alpha, \beta, \gamma)\in \mathfrak{M}_{\infty}(G)$ , consider

(E) $\{\alpha x-\gamma y+\beta z=0x^{2}+yz=-1$

.
Then:

(1) (E) admits no integral solution if and only if $H\in \mathfrak{M}_{\infty}^{+}(G)$ .
(2) (E) admits an infegral solution $(x, y, z)\in Z^{3}$ if and only if $H\in \mathfrak{M}_{\infty}^{-}(G)$ .

In this case $N_{G}(H)=H\cup(\begin{array}{ll}x yz -x\end{array})H$.
(3) If $(\alpha, \beta, \gamma)\in\Lambda_{0},$ $i.e.,$ $\alpha^{2}-4\beta\gamma=0$ , then $H(\alpha, \beta, \gamma)\in \mathfrak{M}_{\infty}^{+}(G)$ .

REMARK. In [17] Saito determined all Cartan subgroups of $SL(2, Z)$ with
a direct calculation of matrices. Comparing his discussion with Proposition 4.4,
we see that the Cartan subgroups of $SL(2, Z)$ are in coincidence with $\mathfrak{M}_{\infty}(SL(2, Z))$ .
It therefore turns out that the results of Theorems 3.6 and 3.8 for $G=SL(2, Z)$

are equivalent to Saito’s ones [17, Theorems 4-7].
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