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\S 1. Introduction.

In this paper we establish a generalized Pohozaev identity and its variant
for the radial solutions of the following quasilinear elliptic equation,

(1.1) $div(A(|Du|)Du)+f(|x|, u)=0$

in $R^{n}$ , where $Du$ is the gradient of $u,$ $f(|x|, u)$ and $A(p)$ are given functions.
The Pohozaev identity is useful to investigate the existence and non-existence
of the ground state of (1.1). By a ground state we mean a positive solution $u$

in $R^{n}$ , which tends to zero at $\infty$ .
The Pohozaev identity was used by Pohozaev [15] in 1965 to show the non-

existence of non-trivial solutions of non-linear eigenvalue problems for semi-
linear elliptic equations. Identities of this kind were first discovered by Rellich
[17] in 1940 in his study of the first eigenvalue of $\Delta$ , and by Nehari [5] in
1960. The idea was applied to investigate the properties of solutions for non-
linear elliptic equations (see, e.g., [1], [2], [3], [4], [6], [7], [8], [9], [10],

[11], [12], [13], [14], [16] $)$ . Especially, Ding and Ni [2] found that the
Pohozaev-type identity is useful to get the non-existence theorems for the ground
state in the anomalous case, $f_{u}(|x|, 0)=0$ , by employing suitable change of
variables. Recently, Ni and Serrin [9, 10, 11] established some generalized
Pohozaev identities and used them to investigate the solutions of the quasilinear
elliptic equations,

(1.2) $div(A(|Du|)Du)+f(u)=0$ .

They extend the argument employed by Ding and Ni to the quasilinear case.
Their results are sharp, however their arguments are tricky and difficult. Our
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aim is to simplify, unify and generalize the method. We have found that the
essence of the argument is clarified by using a new kind of Pohozaev-type
identity (see the identity (PII) in Section 2).

The organization of this paper is as follows. In Section 2 we state the main
theorems of this paper. In Section 3 applications to the generalized Laplace
equations are included, which are useful to investigate the existence and non-
existence of the ground state. Sections 4-8 contain some related topics and the
proofs of theorems stated in Section 3. In Section 4 we collect some preliminary
lemmas which will be used frequently in the subsequent sections. In Section 5
we investigate the asymptotic behavior of solutions, which is fundamental for
further analysis. In Section 6 we establish the existence and uniqueness of the
solutions of the initial value problem. In Section 7 we give the proof of the
generalized Pohozaev identity for the generalized Laplace equation, and prove
the existence theorem for the ground state. In Section 8 we prove the non-
existence theorems of the positive solutions and the ground state. Section 9
contains some slight modifications of the theorems obtained in previous sections
for a special nonlinearity, and Section 10 contains some concluding remarks.

\S 2. Main theorems.

We consider the radial solutions of (1.1). Let $u=u(r)$ be a radial solution
of (1.1), then $u$ satisfies the equation

(2.1) $r^{1-n}(r^{n-1}A(|u’ )u’)’+f(r, u)=0$ , $r>0$ ,

where $n$ is a positive integer, and $u’=u’(r)=du(r)/dr$ .
THEOREM 2.1. SuPPose that $A(p)\in C^{1}((0, \infty)),$ $pA(p)arrow 0$ as $parrow 0$ , and $f(r, u)$ ,

$f_{r}(r, u)\in C((O, \infty)\cross(-\infty, \infty))$ . Let $u(r)\in C([0, \infty))\cap C^{2}((0, \infty))$ satisfy (2.1),

(2.2) $\lim_{rarrow 0}r^{n}\int_{0}^{|u’(r)|}\rho E(p)d\rho=0$ ,

(2.3) $\lim_{rarrow 0}r^{n- 1}A(|u’(r)|)u’(r)=0$ ,

and

(2.4) $\lim_{rarrow 0}r^{n}F(r, u(r))=0$ .

Then the following generalized Pohozaev identity holds:

$R^{n} \{\int_{0}^{|u’(R)|}\rho E(\rho)dp+F(R, u(R))+aR^{-1}A(|u’(R)|)u’(R)u(R)\}$

(PI)

$= \int_{0}^{R}\{n\int_{0}^{|u’|}\rho E(\rho)d\rho+(a+1-n)A(|u’ )$ $|u’|^{2}$

$+nF(r, u)+rF_{r}(r, u)-auf(r, u)\}r^{n- 1}dr$
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for all $R>0$ , where $a$ is an arbitrary constant,

$F(r, u)= \int_{0}^{u}f(r, \xi)d\xi$

and

$E(p)=A(p)+p \frac{dA(p)}{dp}$ , $P>0$ .

REMARK 2.1. It holds that

(2.5) $\int_{0}^{p}\rho E(p)dp=\int_{0}^{p}\rho(\rho A(\rho))_{\rho}d\rho=Ap^{2}-\int_{0}^{p}\rho A(p)d\rho$ ,

since $pA(p)arrow 0$ as $parrow 0$ . Define

$\varphi(p)=\{\begin{array}{l}pA(p),0,\end{array}$

$P>0$ ,

$P=0$ ,
and

$\psi(p)=\{$
$P^{2}A(P)- \int_{0}^{p}\rho A(p)d\rho$ , $P>0$ ,

$0$ , $P=0$ .
For the sake of convenience, we simply denote $\varphi(p)$ and $\psi(p)$ by $pA(p)$ and

$\int_{0}^{p}\rho E(\rho)d\rho$ , respectively.

REMARK 2.2. The equation (2.1) is equivalent to

(2.6) $E(|u’ )u’+ \frac{n-1}{r}A(|u’ )u’+f(r, u)=0$

for all $r>0$ with $u’\neq 0$ .

REMARK 2.3. This identity is a variant of Theorem 2.1 in Ni and Serrin
[9]. The conditions $(2.2)-(2.4)$ look too technical. However it is not difficult
to check them in the concrete examples (see, $e$ . $g.$ , the proof of Theorem 3.1 in
Section 7).

The following result is our main theorem.

THEOREM 2.2. Under the assumptions of Theorem 2.1, the following identity
holds

$\sigma(\sigma+1)\{(m-1)A(|u’(R)|)-E(|u’(R)|)\}R^{n-2\sigma-2}w(R)^{2}$

$+\{-R^{2}w’’(R)w(R)+2\sigma Rw’(R)w(R)\}\{E(|u’(R)|)-A(|u’(R)|)\}R^{n-2\sigma- 2}$

$+ \{-R^{2}w’(R)w(R)+(\frac{\lambda}{c}(\frac{n+k}{q+1}-2(1-c)\sigma)-(n-1)+2\sigma)Rw’(R)w(R)$

$+ \frac{\lambda}{c}(1-c)R^{2}w’(R)^{2}\}R^{n- 2\sigma-2}A(|u’(R)|)+\lambda cR^{n}\{cA(|u’(R)|)|u’(R)|^{2}$
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$- i_{0}^{|u’(R)|}\rho A(\rho)d\rho\}+R^{n}\{\frac{\lambda}{c}F(R, u(R))-u(R)f(R, u(R))\}$

(PII)

$= \frac{\lambda}{c}\int_{0}^{R}\{nF(r, u)+rF_{r}(r, u)-\frac{n+k}{q+1}uf(r, u)+\frac{(m+k)(1-\theta)}{m(q+1)}A(|u’|)|u’|^{2}$

$+n( \frac{1}{m}A(|u’|)|u’|^{2}-\int_{0}^{1u’\mathfrak{l}}pA(\rho)d\rho)\}r^{n-1}dr$

for all $R>0$ with $u’(R)\neq 0$ , where

$w(r)=r^{\sigma}u(r)$ , $\sigma=\frac{m+k}{q+1-m}$ ,

$q= \frac{(m-1)(n+k)(1-\theta)+\{(m-1)n+m+mk\}\theta}{n-m}$ $\lambda=\frac{c(q+1)\theta}{c(q+1)-(1-\theta)}$ ,

and $m,$ $k,$ $\theta,$ $c$ are arbltrary constants such that $1<m<n,$ $k>-m$ , OS \mbox{\boldmath $\theta$}$l, $c>0$ ,
$cm\geqq 1-\theta$ .

REMARK 2.4. Note that $q+1-m=(m+k)(m-1+\theta)/(n-m)>0,$ $c(q+1)-(1-\theta)$

$\geqq c(q+1-m)>0$ . Therefore $\sigma,$ $q$ and $\lambda$ are positive constants. In fact, the above
theorem holds for any choice of the constants $m,$ $k,$ $\theta,$ $c$ as long as the other
constants $\sigma,$ $q,$

$\lambda$ are well-defined. However, applications to partial differential
equations usually occur in the ranges restricted above.

REMARK 2.5. We should note that

$(m-1)A(p)-E(p)arrow 0$ as $parrow 0$

in the following important examples by choosing suitable $m$ .
(i) The generalized Laplacian: $A(p)=p^{\mu-2}$ .

Take $m=\mu$ , then $(m-1)A-E=0$ .
(ii) The generalized mean curvature operator: $A(p)=(1+p^{2})^{\mu/2-1}$ .

Take $m=2$ , then $(m-1)A-E=(2-\mu)(1+p^{2})^{\mu/2- 2}p^{2}arrow 0$ .
Therefore the coefficient of $R^{n- 2\sigma-2}w(R)^{2}$ in (PII) vanishes as $u’(R)arrow 0$ .

Actually we shall adjust $\lambda$ so as to eliminate this coefficient as $parrow 0$ , because
we can not get the precise information for $w(R)$ in the applications (see,
$e$ . $g.$ , the proof of Theorem 3.3 in Section 8). The arrangement of the left-
hand side of (PII) is closely related to Lemmas 4.1 and 4.2, which will appear
later.

REMARK 2.6. The case $\theta=1$ and $c=1/m$ is most important. In this situa-
tion $q=((m-1)n+m+mk)/(n-m),$ $\sigma=(n-m)/m$ and $\lambda=1$ .

REMARK 2.7. This theorem is very useful to obtain the non-existence theo-
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rems of the ground state in the anomalous case. The arguments employed in
Ding and Ni [2, Theorem 5.13] and their generalizations to quasilinear equations
in Ni and Serrin [10, Theorems 4.1, 4.2, 5.3, 5.4, 6.5, 6.6] are considerably
simplified by using the identity (PII). Furthermore we can naturally understand
the meaning and sharpness of the assumptions in those papers. We shall see
these facts in the subsequent sections.

PROOF OF THEOREM 2.1. It follows from the assumption $pA(p)arrow 0$ as $parrow 0$

that the function $\int_{0}^{1t1}pA(\rho)d\rho$ is continuously differentiable in $t\in(-\infty, \infty)$ . Thus

we have

$\int_{0}^{|u’|}\rho A(\rho)dp\in C^{1}((0, \infty))$

and

$\frac{d}{dr}\int_{0}^{1u’1}\rho A(\rho)d\rho=A(|u’|)u’u’$

which implies

$\frac{d}{dr}\int_{0}^{|u’|}\rho E(\rho)d\rho=\frac{d}{dr}\{A(|u’|)|u’|^{2}-\int_{0}^{|u’|}\rho A(\rho)d\rho\}$

$= \frac{d}{dr}\{(r^{1-n}u’)(r^{n-1}Au’)-\int_{0}^{1u’1}\rho A(\rho)d\rho\}$

$=(1-n)r^{-n}u’(r^{n-1}Au’)+r^{1-n}u’(r^{n-1}Au’)+r^{1-n}u’(r^{n-1}Au’)’-Au’u’$

$=(1-n)r^{-1}A|u’|^{2}-u’f$

by using (2.1). Consequently we obtain

$\frac{d}{dr}\{r^{n}(\int_{0}^{|u’|}pE(\rho)d\rho+F(r, u)+ar^{-1}A(|u’|)u’u)\}$

$= \frac{d}{dr}\{r^{n}\int_{0}^{|u’|}\rho E(\rho)dp+r^{n}F(r, u)+a(r^{n-1}Au’)u\}$

$=nr^{n-1} \int_{0}^{|u’|}\rho E(\rho)d\rho+r^{n}\frac{d}{dr}\int_{0}^{1u’I}\rho E(\rho)d\rho$

$+nr^{n-1}F+r^{n}(F_{r}+fu’)+a(r^{n-1}Au’)’u+ar^{n-1}A|u’|^{2}$

$=nr^{n-1} \int_{0}^{Iu’1}\rho E(\rho)d\rho+r^{n}\{(1-n)r^{-1}A|u’|^{2}-u’f\}$

$+nr^{n-1}F+r^{n}(F_{r}+fu’)-ar^{n-1}fu+ar^{n-1}A|u’|^{2}$

$=r^{n-1} \{n\int_{0}^{1u’1}\rho E(\rho)d\rho+(a+1-n)A|u’|^{2}+nF+rF_{r}-auf\}$

by virtue of (2.1). Integrating the above equality over $[0, R]$ , we get (PI) by
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noting (2.2), (2.3) and (2.4). Q. E. D.

NOW we are ready for the proof of the main theorem.

PROOF OF THEOREM 2.2. We nOte that

$\int_{0}^{p}\rho E(\rho)d\rho=Ap^{2}-\int_{0}^{p}\rho A(\rho)d\rho=(1-c)Ap^{2}+(cAp^{2}-\int_{0}^{p}\rho A(\rho)d\rho)$ .
Taking $a=(n+k)/(q+1)$ in (PI) and using the above equality, we have

(2.7) $P(R)= \int_{0}^{R}Q(r)dr$ ,

where

(2.8) $P(r)=r^{n}(1-c)Ap^{2}+r^{n}F+ \frac{n+k}{q+1}r^{n- 1}Auu’+r^{n}(cAp^{2}-\int_{0}^{p}\rho A(\rho)d\rho)$ ,

(2.9) $Q(r)=r^{n-1} \{n(\frac{1}{m}Ap^{2}-\int_{0}^{p}\rho A(p)d\rho)$

$+ \frac{(m+k)(1-\theta)}{m(q+1)}Ap^{2}+(nF+rF_{r}-\frac{n+k}{q+1}uf)\}$ ,

and $p=|u’$ . Here we use the following identity to get the coefficient of $Ap^{2}$ :

$\frac{n+k}{q+1}+1-n+\frac{n(m-1)}{m}=\frac{(m+k)(1-\theta)}{m(q+1)}$ .

We shall rearrange $P(r)$ . Introduce a change of variables,

$u=r^{-\sigma}w$ , $\sigma=\frac{m+k}{q+1-m}$ .

By direct calculation, for $r$ with $u’(r)\neq 0$ we obtain

$u’=-\sigma r^{-\sigma-1}w+r^{-\sigma}w’$ , $u’=\sigma(\sigma+1)r^{-\sigma-2}w-2\sigma r^{-\sigma-1}w’+r^{-\sigma}w’’$ ,

(2.10) $Ew’’+ \{(n-1)A-2\sigma E\}\frac{w’}{\gamma}+\sigma\{(\sigma+1)E-(n-1)A\}\frac{w}{r^{2}}+r^{\sigma}f=0$ ,

and

$P(r)=(1-c)(r^{n-2\sigma}(w’)^{2}-2\sigma r^{n-2\sigma-1}ww’+\sigma^{2}r^{n-2\sigma-2}w^{2})A$

(2.11)
$+ \frac{n+k}{q+1}(r^{n-2\sigma-1}ww’-\sigma r^{n-2\sigma-2}w^{2})A+r^{n}F+r^{n}(cAp^{2}-\int_{0}^{p}pA(p)dp)$ .

MultiPlying (2.10) by $-r^{n-2\sigma}w$ , and (2.11) by $\lambda/c$ , adding them up, we get

$\frac{\lambda}{c}P(r)=\sigma(\sigma+1)\{(m-1)A-E\}r^{n-2\sigma-Z}w^{2}-Er^{n- 2\sigma}ww’’$

(2.12) $+ \{-((n-19A-2\sigma E)+\frac{\lambda}{c}(-2\sigma(1-c)+\frac{n+k}{q+1})A\}r^{n-2\sigma-1}ww’$

$+ \frac{\lambda}{c}(1-c)r^{n-2\sigma}(w’)^{2}A+\frac{\lambda}{c}r^{n}(cp^{2}A-\int_{0}^{p}pA(\sigma)dp)+r^{n}(\frac{\lambda}{c}F-uf)$ .
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Here we have used the following identity to obtain the coefficient of $r^{n-2\sigma-2}w^{2}$ :

$- \sigma(\sigma+1)E+\sigma\{(n-1)+\frac{\lambda}{c}((1-c)\sigma-\frac{n+k}{q+1})\}A=-\sigma(\sigma+1)E+\sigma(\sigma+1)(m-1)A$ .

Thus we obtain (PII) by combining (2.7), (2.9) and (2.12). Q. E. D.

\S 3. Applications to the generalized Laplace equation.

In this section we state some results obtained by virtue of generalized
Pohozaev identities (PI) and (PII).

We shall treat the following generalized Laplace equation

(3.1) $div(|Du|^{m-2}Du)+f(|x|, u)=0$ , $x\in R^{n}$ ,

where $m$ is a constant. This equation corresponds to the case
(3.2) $A(p)=p^{m-2}$

in the equation (1.1). We are only interested in the positive radial solutions of
(3.1). Thus we consider the ordinary differential equation

$(F_{a})$ $\{r^{1-n}(r^{n-1}|u’|^{m-2}u’)’+f(ru(0)=\alpha>0,u^{+})=0$
, $r>0$ ,

where $u^{+}= \max\{u, 0\}$ . We shall assume throughout this paper that

$1<m<n$ .
We now collect the hypotheses which will be assumed under various cir-

cumstances (but not simultaneously) in the subsequent sections. Concerning the
equation $(F_{\alpha})$ , we introduce

(F.1) $\{foreveryM,R>0f(r,u)\in C((0,\infty)\cross[0,\infty)). and$

$\sup\{r^{-\nu}|f(r, u)| : 0<r\leqq R, 0\leqq u\leqq M\}<\infty$ ,

(F.2) $f(r, u)\geqq 0$ on $(0, \infty)\cross[0, \infty)$ ,

(F.3) $\{\inf\{r^{-\nu}f(r,u):0<r\leqq Rifm>2,thenforeveryL,M,R>0L\leqq u\leqq M\}>0$

,

(F.4) for every $L,$ $M,$ $R>0$ , $\sup$ { $r^{-\nu}|f_{u}(r,$ $u)|$ : $0<r\leqq R$ , L$ $u\leqq M$ } $<\infty$ ,

(F.5) $f_{r}(r, u)\in C((0, \infty)\cross[0, \infty))$ ,

(F.6) $nF(r, u)+rF_{r}(r, u) \leqq\frac{n-m}{m}uf(r, u)$ for all $u>0,$ $r>0$ ,

(F.7) $f(r, u)\geqq$ POS. Const. $r^{k}u^{q}$ for all $u>0$

and sufficiently large $r>0$ , where $k$ and $q$ are constants satisfying $k\geqq-m$ and
$q\neq m-1$ ,
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(F.8) $nF(r, u)+rF_{r}(r, u) \geqq\frac{n-m}{m}uf(r, u)$ for all $u>0,$ $r>0$

with the strict inequality holding for some sequence of values $u$ tending to zero
and all sufficiently large $r>0$ ,

(F.9) $uf(r, u)\geqq mF(r, u)$ for all sufficiently small $u>0$ and sufficiently

large $r>0$ ,

(F.2)* $\{$

there exists $\alpha_{0}>0$ such that $f(r, u)<0$ (resp. $f(r,$ $u)>0$)

for all $u>\alpha_{0}$ (resp. $u<\alpha_{0}$ ) and sufficiently small $r>0$ ; and
$f(r, \alpha_{0})=0$ for all sufficiently small $r>0$ ,

(F.7)* $f(r, u)\geqq$ POS. Const. $r^{k}u^{q}$ for sufficiently small $u>0$

and sufficiently large $r>0$, where $k$ and $q$ are constants satisfying $k\geqq-m$ and
$q\neq m-1$ , where $\nu$ is a constant satisfying $\nu>-m$ , and

$F(r, u)= \int_{0}^{u}f(r, \xi^{+})d\xi$ .

We state our results.

THEOREM 3.1. Suppose that (F. $1$ ) $-(F.5)$ hold. Then there exists a unique
solution $u(r;\alpha)\in C([0, \infty))\cap C^{2}((0, \infty))$ of $(F_{\alpha})$ , and $u(r)=u(r;\alpha)$ satisfies the
generalized Pohozaev-type identities,

$R^{n} \{\frac{m-1}{m}|u’(R)|^{m}+F(R, u(R))+\frac{n-m}{m}R^{-1}|u’(R)|^{m-2}u’(R)u(R)\}$

(3.3)
$= \int_{0}^{R}\{nF(r, u(r))+rF_{r}(r, u(r))-\frac{n-m}{m}u(r)f(r, u^{+}(r))\}r^{n-1}dr$

and
$(m-2)\{-R^{2}w’(R)w(R)+2\sigma Rw’(R)w(R)\}R^{n-2\sigma-2}|u’(R)|^{m-2}$

$+\{-R^{2}w’’(R)w(R)+(4\sigma-2m\sigma-m+1)Rw’(R)w(R)$

(3.4) $+(m-1)R^{2}w’(R)^{2}\}R^{n-2\sigma-2}|u’(R)|^{m- 2}+R^{n}\{mF(R, u(R))-u(R)f(R, u^{+}(R))\}$

$=m \int_{0}^{R}\{nF(r, u(r))+rF_{r}(r, u(r))-\frac{n-m}{m}u(r)f(r, u^{+}\langle r))\}r^{n-1}dr$

where $R$ is an arbitrary positive number, $w(r)=r^{\sigma}u(r)$ and $\sigma=(n-m)/m$ .

REMARK 3.1. We note that

$\int_{0}^{R}F_{r}(r, u(r))r^{n}dr=\lim_{\deltaarrow 0}\int_{\delta}^{R}F_{r}(r, u(r))r^{n}dr$

$=F(R, u(R))R^{n}-n \int_{0}^{R}F(r, u(r))r^{n-1}dr-\int_{0}^{R}f(r, u^{+}(r))u’(r)r^{n}dr$

and
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$0 \leqq\int_{0}^{R}F(r, u(r))r^{n-1}dr\leqq\int_{0}^{R}F(r, \alpha)r^{n-1}dr\leqq\alpha\int_{0}^{R}f(r, \alpha)r^{n-1}dr<\infty$

$0 \leqq\int_{0}f(r, u^{+}(r))(-u’(r))r^{n}dr\leqq$ POS. Const. $\int_{0}^{R}\tilde{f}(r, \alpha)r^{n+(\nu+1)/(m-1)}dr<\infty$

by the assumptions (F.1), (F.2) and the estimate (c) of Proposition 6.1 in Section
6 together with the fact that $u(r)\leqq\alpha$ (see (6.1)), where

$f(r, \alpha)=\sup\{f(r, u);0\leqq u\leqq\alpha\}$ .
We shall investigate the properties of solutions of $(F_{\alpha})$ . The following

theorem gives a sufficient condition for the existence of ground states.

THEOREM 3.2. Suppose that (F. $1$ )$-(F.5)$ and (F.6) hold. Then, for every
$\alpha>0,$ $u(r;\alpha)$ is positive on $[0, \infty)$ .

Moreover if (F.7) with $q>m-1$ holds, then $u(r;\alpha)arrow 0$ as $rarrow\infty$ .
We shall also give some sufficient conditions for the solutions of the equa-

tion $(F_{a})$ having a zero.

THBOREM 3.3. Suppose that (F. $1$ ) $-(F.5)$ , (F.7) with $q\leqq((m-1)n+m+mk)/$

$(n-m)$ , (F.8) and (F.9) hold. Then, for every $\alpha>0,$ $u(r;\alpha)$ has a finite zero on
$[0, \infty)$ .

REMARK 3.2. Theorems 3.2 and 3.3 are closely related to Theorems 3.2 and
4.1 in Ni and Serrin [10].

We now explain the meaning of the above theorems. Consider the equation,

(3.5) $r^{1-n}(r^{n-1}|u’|^{m-2}u’)’+r^{k}(u^{+})^{q}=0$ , $u(O)=\alpha>0$ ,

where $1<m<n,$ $k>-m$ , and $q>m-1$ . For every $\alpha>0,$ $(3.5)$ has a unique solu-
tion $u=u(r;\alpha)\in C([0, \infty))\cap C^{2}((0, \infty))$ by Theorem 3.1. In view of Theorems
3.2 and 3.3, the structure of solutions is as follows;

(i) If $q\geqq((m-1)n+m+mk)/(n-m)$ , then $u(r;\alpha)$ is positive on $[0, \infty)$ and
tends to zero as $rarrow\infty$ for every $\alpha>0$ .

(ii) If $q<((m-1)n+m+mk)/(n-m)$ , then $u(r;\alpha)$ has a finite zero on $[0, \infty)$

for every $\alpha>0$ .
The case $f(r, u)=r^{k}u^{((m-1)n+m+mk)/(n-m)}$ lies on the borderline of the exist-

ence and non-existence. Here small perturbations can seriously affect the situa-
tion. If

$f(r, u)=K(r)u^{((m-1)n+m+mk)/(n-m)}$ ,

where $K(r)=Q(r)r^{k},$ $Q\in C^{1}([0, \infty)),$ $Q(r)>0$ and $Q’(r)\leqq 0$, then $u(r;\alpha)$ is posi-
tive on $[0, \infty)$ and tends to zero as $rarrow\infty$ for every $\alpha>0$ . On the other hand, if

$f(r, u)=\tilde{K}(r)u^{((m-1)n+m+mk)/(n-m)}$ ,
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where $\tilde{K}(r)=\tilde{Q}(r)r^{k},\tilde{Q}\in C^{1}([0, \infty)),\tilde{Q}(r)>0,\tilde{Q}’(r)\geqq 0$ and $\tilde{Q}’(r)\not\equiv 0$, then $u(r;\alpha)$

has a zero on $[0, \infty)$ for any $\alpha>0$ . These are obtained by applying Theorems
3.2 and 3.3.

The conditions for $K(r)$ and $\tilde{K}(r)$ in the above examples can be weakened
by Theorems 9.2 and 9.3 in Section 9.

We consider a different kind of perturbations to the nonlinearity $f(r, u)$

$=r^{k}u^{((m-1)n+m+mk)/(n-m)}$ . If
$f(r, u)=r^{k}u^{((m- 1)n+m+mk)/(n-m)}+\epsilon r^{k}u^{q’}$

where $\epsilon>0,$ $k>-m$ and $q’>((m-1)n+m+mk)/(n-m)$ , then $u(r;\alpha)$ is Positive
on $[0, \infty)$ and tends to zero as $rarrow\infty$ for every $\alpha>0$ by Theorem 3.2 (or Theo-
rem 9.2 in Section 9). On the other hand, if

$f(r, u)=r^{k}u^{((m- 1)n+m+mk)/(n- m)}-\epsilon r^{k}u^{q’}$ ,

where $\epsilon>0,$ $k>-m$ and $q’>((m-1)n+m+mk)/(n-m)$ , then $(F_{\alpha})$ has no ground
state in the class $C([0, \infty))\cap C^{2}(0, \infty))$ by the following result.

THEOREM 3.4. Suppose that (F.1), $(F.2)^{*}$ , (F.5), (F.7)* with $q\leqq$

$((m-1)n+m+mk)/(n-m)$ , (F.8) and (F.9) hold. Then $(F_{\alpha})$ does not admit any
positive solution in $C([0, \infty))\cap C^{2}((0, \infty))$ which tends to zero as $rarrow\infty$ .

\S 4. Preliminaries.

In thls section, we collect some fundamental facts which will be frequently
used in the proofs of the theorems stated in Section 3.

LEMMA 4.1. Suppose that the function $w(r)\in C^{2}((0, \infty))$ is bounded and mono-
tone for sufficiently large $r>0$ , then there exists a sequence $r_{j}arrow\infty$ such that

(4.1) $w(r_{j})arrow C$

(4.2) $r_{j}w’(r_{j})arrow 0$

(4.3) $r_{j}^{2}w’(r_{j})arrow 0$

as $jarrow\infty$ , where $C$ is a constant.

PROOF. We have only two possibilities:

(i) $w’(r)\geqq 0$ for sufficiently large $r$ ,
(ii) $w’(r)\leqq 0$ for sufficiently large $r$ .

In both cases, we may assume that

(4.4) $w(r)arrow C$

as $rarrow\infty$ , since $w$ is bounded.
Set $w_{1}(r)=rw’(r),$ $r>0$ . (4.4) implies that



A generalized Pohozaev identity 551

$\lim_{rarrow}\inf_{\infty}|w_{1}(r)|=0$ .

Thus we have

(4.5) $\{$

in case (i) $w_{1}(r) \geqq\lim_{rarrow}\inf_{\infty}w_{1}(r)=0$ for large $r$ ,

in case (ii) $w_{1}(r) \leqq\lim\sup w_{1}(r)=0$ for large $r$ .
$rarrow\infty$

From (4.5) we assert that there exists a sequence $r_{j}arrow\infty$ such that $w_{1}(r_{j})arrow 0$ and
$r_{j}w_{1}’(r_{j})arrow 0$ by Lemma 5.25 of Ding and Ni [2]. Thus

$r_{j}w’(r_{j})=w_{1}(r_{j})arrow 0$

$r_{j}^{2}w’(r_{j})=r_{j}w_{1}’(r_{j})-w_{1}(r_{j})arrow 0$

as $jarrow\infty$ . Q. E. D.

LEMMA 4.2. Under the assumptions of Lemma 4.1, if $\gamma_{j}arrow\infty$ is a sequence
which satisfies (4.1) and (4.2), then

(4.6) $|u’(r)|^{m-2}r^{n-2\sigma-2}w(r)$

and

(4.7) $|u’(r)|^{m-2}r^{n-2\sigma-2}|rw’(r)|$

are bounded for $r=r_{f}$ , where

$u(r)=r^{-\sigma}w(r)$ , $\sigma=\frac{m+k}{q+1-m}$ ,

$q= \frac{(m-1)(n+k)(1-\theta)+\{(m-1)n+m+mk\}\theta}{n-m}$ ,

and $m,$ $k,$ $\theta$ are arbitrary constants such that $1<m<n,$ $k>-m,$ $0\leqq\theta l.$

PROOF. We note that $q>m-1,$ $\sigma>0,$ $-(1-\theta)\sigma\leqq 0$, and

$|u’|^{m-2}r^{n-2\sigma-2}=|r^{-\sigma}w’-ar^{-\sigma-1}w|^{m-2}r^{n-2\sigma-2}$

$=|rw’-\sigma w|^{m-2}r^{-(\sigma+1)(m-2)+n-8\sigma-2}$

$=|rw’-aw|^{m-t}r^{-(1-\theta)\sigma}\leqq|rw’-$ a $w|^{m-2}$

for sufficiently large $r$ . We divide the proof into the following two cases.

Case 1: $m\geqq 2$ or $C\neq 0$ . We have

$|u’|^{m-2}r^{n-2\sigma-2}w\leqq|rw’-aw|^{m-2}w$ ,
and

$|u’|^{m-2}r^{n-2\sigma-2}|rw’|\leqq|rw’-aw|^{m-2}|rw’|$ ,

for sufficiently large $r>0$ . Hence the boundedness of (4.6) and (4.7) holds by
virtue of (4.1) and (4.2).

Case 2: $1<m<2$ and $C=0$ . In this case, it must hold that $w’(r)\leqq 0$ for
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sufficiently large $r>0$ or $w’(r)\geqq 0$ for sufficiently large $r>0$ . Since $warrow 0$ mono-
tonically as $rarrow\infty,$ $w’$ and $w$ have opposite signs. Thus we obtain

$|rw’-\sigma w|\geqq|\sigma||w|$ , $|rw’-\sigma w|\geqq|rw’|$ ,
which implies

$|u’|^{m-2}r^{n-2\sigma-2}|w|\leqq\sigma^{m-2}|w|^{m- 1}$ , $|u’|^{m-2}r^{n-2\sigma-2}|rw’|$ ;$ $|rw’|^{m-1}$ ,

and the conclusion holds. Q. E. D.

\S 5. Asymptotic behavior.

In this section, we consider the asymptotic behaviors at $\infty$ of radial solu-
tions of (3.1). Although these are essentially in Ni and Serrin [10], we need
to extend them slightly for our purpose.

LEMMA 5.1. Suppose that $f(r, u)\in C((O, \infty)\cross[0, \infty))$ and $f(r, u)\geqq 0$ for $u$

near $0$ and sufficiently large $r$ . Let $u$ be a Posrtive radial solution of (3.1) defined
for $r\geqq r_{0}$ and tending to zero as $\gammaarrow\infty$ where $r_{0}>0$ . Then

(5.1) $u\geqq$ POS. Const. $\gamma^{-(n-m)/(m-1)}$ $u’\leqq$ Neg. Const. $r^{-(n-1)/(m-1)}$

for all sufficiently large $r$ .
PROOF. For a radial solution $u=u(\gamma)$ , we can write (3.1) in the following

form

(5.2) $(r^{n-1}|u’|^{m-2}u’)’+r^{n-1}f(r, u)=0$ .
Since $uarrow 0$ as $rarrow\infty$ , one can suppose without loss of generality that $f(r, u)\geqq 0$

for $u=u(r),$ $r\geqq r_{0}$ . Hence
$(r^{n-1}|u’m-2u’)’$ :Sl $0$ for rlll $r_{0}$

and $r^{n-1}|u’|^{m-2}u’$ is a decreasing function. Since $u’$ obviously cannot be every-
where non-negative, it follows that

(5.3) $r^{n-1}|u’|^{m-2}u’arrow$ negative limit (possibly $-\infty$ )

as $rarrow\infty$ , hence $u’<0$ for all suitably large $r$ . In particular for all large $r$, we
have

(5.4) $r^{n-1}|u’|^{m-2}u’\leqq-C$

where $C$ is some positive constant. Since $u’<0$, we get

$u’$ ;$ Neg. Const. $r^{-(n-1)/(m-1)}$

for sufficiently large $r$ . Integrating this inequality from a large fixed value $r$

to $\infty$ yields
$u\geqq Pos$ . Const. $r^{-(n-m)/(\tau n-1)}$
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for sufficiently large $r$ . Q. E. D.

The following theorems concerning the asymptotic behavior of solutions at
$\infty$ are generalizations of Theorems 2.2 and 6.2 of Ni and Serrin [10].

THEOREM 5.1. Suppose that (F.1) and (F.7) hold. Let $u$ be a posrtive radial
solution of (3.1) defined for $\gamma\geqq\gamma_{0}$ . Then $u$ has the asymptotic behavior

(5.5) $u=\{O((\log r)^{-(m-1)/(q-m+1)})O(r^{-(m+k)/(q-m+1)})$
at $r=\infty$ , if $m>-k$ ,

at $\gamma=\infty$ , if $m=-k$ .
Here and in what follows $u(r)=O(\xi(r))$ at $r=\infty$ implies $\lim\sup_{rarrow\infty}u(r)/\xi(r)$

$<\infty$ .
THEOREM 5.2. Suppose that (F.1), (F.7) with $q\leqq(m-1)(n+k)/(n-m)$ hold.

Then, for every $r_{0}>0$, there can exist no positive radial solution of (3.1) defined
on $[r_{0}, \infty)$ .

COROLLARY 5.1. Suppose that (F.1) and (F.7)* hold. Let $u$ be a positive
radial solution of (3.1) defined for $r\geqq r_{0}$ and tending to zero as $\gammaarrow\infty$ . Then $u$

has the asymptotic behavior
$u=O(r^{-(m+k)/(q-m+1)})$ at $r=\infty$ .

PROOF OF THEOREMS 5.1 AND 5.2. We have by (F.7)

(5.6) $f(r, u)$ I POS. Const. $r^{k}u^{q}$ for $r\geqq r_{1}$ ,

where $r_{1}(>r_{0})$ is sufficiently large. It follows from (5.2) that

(5.7) $(r^{n-1}|u’|^{m-2}u’)’=-r^{n-1}f(r, u)\leqq 0$ for $r\geqq r_{1}$ ,

which implies that $r^{n-1}|u’|^{m-2}u’$ is a decreasing function. Thus

(5.8) $r^{n-1}|u’|^{m-2}u’arrow C(\geqq-\infty)$ as $rarrow\infty$ ,

where $C$ is a constant. Suppose that $C\geqq 0$ . Then we have

(5.9) $u’(r)$ I $0$ for $r\geqq r_{1}$ ,

so $u(r)$ is non-decreasing. We have $u(r)\geqq u(r_{1})>0$ . Integrating (5.7) over
$[r_{1}, r]$ , we obtain

$-r^{n-1}|u’(r)|^{m-2}u’(r)=-r_{1}^{n-1}|u’(r_{1})|^{m-2}u’(r_{1})+ \int_{r_{1}}^{r}s^{n-1}f(s, u(s))ds$

$\geqq-r_{1}^{n-1}|u’(r_{1})|^{m-2}u’(r_{1})+Pos$ . $Const.\int_{r_{1}}^{r}s^{n-1+k}u(r_{1})^{q}ds$

$\geqq$ Const. $+Pos$ . Const. $r^{n+k}>0$

for sufficiently large $r$ . Thus

(5.10) $u’(r)<0$ for sufficiently large $r$ ,
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which contradicts (5.9). Therefore we see that $C<0$ and (5.10) holds.
Integrating (5.7) over $[r_{1}, r]$ gives

$-r^{n-1}|u’(r)|^{m-2}u’(r)+r_{1}^{n-1}|u’(r_{1})|^{m-2}u’(r_{1})= \int_{r_{1}}^{r}s^{n-1}f(s, u(s))ds$ .

Hence by (F.7)

$\int_{r_{1}}^{r}s^{n-1}f(s, u(s))ds\geqq$ POS. Const. $\int_{r_{1}}^{r}s^{n-1+k}u(s)^{q}ds$

$\geqq$ POS. Const. $u(r)^{q} \int_{r_{1}}^{r}s^{n-1+k}ds=Pos$ . $Const.(r^{n+k}-r_{1}^{n+k})u(r)^{q}$ ,

where we have used the fact that $u(s)>u(r)$ for $s<r$ . Choosing $r\geqq 2r_{1}$ and not-
ing again that $u’(r_{1})<0$, we have

$-r^{n-1}|u’(r)|^{m-2}u’(r)\geqq$ POS. Const. $(1-2^{-(n+k)})r^{n+k}u(r)^{q}$ ,
that is

(5.11) $-u^{-q/(m-1)}u’\geqq cr^{(1+k)/(m-1)}$ ,

where
$c=$ $\{$ POS. Const. $(1-2^{-(n+k)})\}^{1/(m-\iota)}$ .

Integrating (5.11) from $s_{0}=2r_{1}$ to $r(>s_{0})$ , we obtain

$\frac{m-1}{q+1-m}\{u(r)^{(m-1-q)/(m-1)}-u(s_{0})^{(m-1-q)/(m-1)}\}$

$\geqq\{$

$\frac{c(m-1)}{m+k}(r^{(m+k)/(m-1)}-s_{0^{(m+k)/(m-1)}})$ , if $k>-m$ ,

$c\log(r/s_{0})$ , if $k=-m$ .
When $q<m-1$ an immediate contradiction results by noting $u>0$ and letting

$rarrow\infty$ . If $q>m-1$ , then, for all sufficiently large $r$ , we have

(5.12) $u\leqq\{Pos$ .
$Const.(\log r)^{-(m-1)/(q+1-m)}PosConstr^{-(m+k)/(q+1-m)}$

, if $k>-m$ ,

if $k=-m$ .
This is the required estimate (5.5).

Next suppose that $m-1<q<(m-1)(n+k)/(n-m)$ . In this case (5.12) con-
tradicts the conclusion of Lemma 5.1, namely that

$u\geqq$ POS. Const. $r^{-(n-m)/(m-1)}$ .

Hence no solution of the type under consideration can exist.
It remains to show the same result when $q=(m-1)(n+k)/(n-m)$ . In this

case, using Lemma 5.1 and the hypothesis $f(r, u)\geqq Pos$ . Const. $r^{k}u^{(m-1)(n+k)/(n-m)}$ ,
we see that

$f(r, u)\geqq$ POS. Const. $r^{-n}$
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for all sufficiently large $r$ . Hence by (5.7)

$(r^{n-1}|u’|^{m-2}u’)’=-r^{n-1}f(r, u)\leqq-C_{0}r^{-1}$ ,

where $C_{0}$ is a positive constant. By integration from $s$ to $r$ , where $s$ is suitably
large and $r>s$ , we obtain

$r^{n-1}|u’(r)|^{m- 2}u’(r)-s^{n-1}|u’(s)|^{m-2}u’(s) \leqq-C_{0}\log(\frac{r}{s})$ .

It follows that $r^{n-1}|u’|^{m-2}u’$ tends to $-\infty$ as $rarrow\infty$ . By the argument used at
the end of the proof of Lemma 5.1 this in turn implies that $r^{n-m}u^{m-1}arrow\infty$ as
$rarrow\infty$ . On the other hand, since $q=(m-1)(n+k)/(n-m)$ in the present case,
the inequality (5.12) implies that $u=O(r^{-(n-m)/(m-1)})$ . The resulting contradic-
tion establishes that there can be no solutions of the type under consideration
even when $q=(m-1)(n+k)/(n-m)$ , and thus completes the proof of the theorems.
Q. E. D.

PROOF OF COROLLARY 5.1. It is obvious from the proof of Theorem 5.1.
Q.E.D.

\S 6. Initial value problems.

Most of the results in this section are extensions of some well-known theo-
rems in semilinear elliptic equations. We include a brief proof for each one of
them for the reader’s convenience.

PROPOSITION 6.1. Suppose that (F.1) and (F.2) hold, and $\alpha>0$ . Then the
following two conditions are equivalent:

(i) $u\in C([0, \infty))\cap C^{2}((0, \infty))$ satisfies $(F_{\alpha})$ ,

(ii) $u\in C([0, \infty))$ satisfies
(6.1) $u(r)= \alpha-\int_{0}^{r}\{\int_{0}^{t}(\frac{s}{t})^{n-1}f(s, u^{+}(s))ds\}^{1/(m-1)}dt$ .

Moreover in both cases, the following properties hold:

(a) $\lim_{rarrow 0}r^{n-1}|u’(r)|^{m- 2}u’(r)=0$ ,

(b) $u’(r)=- \{\int_{0}^{r}(\frac{s}{\gamma})^{n-1}f(s, u^{+}(s))ds\}^{1/(m-1)}\leqq 0$

for all $r>0$,
(c) $u’(r)=O(r^{(\nu+1)/(m-1)})$ at $r=0$ ,
(d) $u$ is non-increasing on $[0, \infty)$ , and furthermore if $f(r, u)>0$ on $(0, \infty)\cross$

$(0, \circ\circ)$ , then $u’(r)<0$ for all $r>0$ ,
(e) if $u(R)=0$ with $R>0$ , then $u’(R)<0$ ,
(f) if $\sup\{f(r, \xi):0\leqq\xi\leqq\alpha\}\in L_{1oc}^{1}([0, \infty))$ , then $u\in C^{1}([0, \infty))\cap C^{2}((0, \infty))$ and
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$u’(0)=0$,
(g) if $f(r, u)\in C([0, \infty)\cross[0, \infty))$ and $m\leqq 2$, then $u\in C^{2}([0, \infty))$ and $u’(O)=0$.
REMARK 6.1. This result is a generalization of Ni [7], and Ni and Yotsu-

tani [13, Proposition 4.1].

PROOF. We first show that (i) implies (ii). Put $U(s)=u(r),$ $s=r^{-(n-m)/(m-1)}$ ,
$U_{s}=dU(s)/ds$ . Then

$(|U_{s}|^{m-2}U_{s})_{s}=-(m-L)^{m}(n-m)^{-m}s^{-m(n-1)/(n-m)}f(s^{-(m- 1)/(n-m)}, U^{+})\leqq 0$ ,

for all $s\in(O, \infty)$ , and
$|i^{mU(s)=\alpha>0}$ .

Thus $|U_{s}|^{m-2}U_{s}$ is non-increasing in $s\in(O, \infty),$ $|U_{s}|^{m-2}U_{s}\geqq 0$ for all $s\in(O, \infty)$ ,

and $|U_{s}|^{m-2}U_{s}\downarrow 0$ as $sarrow\infty$ . Consequently we have

(6.2) $0= \lim_{sarrow\infty}|U_{s}(s)|^{m-1}=\lim_{rarrow 0}|(\frac{m-1}{n-m})^{m-1}r^{n-1}|u’|^{m-2}u’|=0$ ,

which implies (a). Multiplying $(F_{a})$ by $r^{n-1}$ , we have

(6.3) $(r^{n-1}|u’|^{m-2}u’)’=-r^{n-1}f(r, u)$ .

Integrating (6.3) over $[\epsilon, r]$ and letting $\epsilonarrow 0$ , we obtain (b) from (a). (c) is
obvious. Integrating (b) over $[0, r]$ and using $u(O)=\alpha$ , we have (6.1). (d), (f)

and (g) follow from (b) and $(F_{a})$ . We shall now show (e). Suppose that $u(R)=0$

and $u’(R)=0$ . It follows from (b) that f $(r, u(r))\equiv 0$ on $(0, R]$ . Thus $u’(r)\equiv 0$ on
$(0, R]$ by (b), which implies that $u(r)\equiv\alpha>0$ on $[0, R]$ . This is a contradiction.
It is readily seen that (ii) implies (i). Q. E. D.

For the existence and uniqueness of the solutions of the problem $(F_{\alpha})$ , we
have

PROPOSITION 6.2. SuPPose that $(F.1)-(F.4)$ hold. Then there exists a unique
solution of $(F_{a})$ , which has the properties $(a)-(g)$ of Proposition6.1.

PROOF. By Proposition 6.1, we only have to prove the uniqueness and ex-
istence of the solutions of the integral equation (6.1). We first show the uni-
queness. Let $u_{1}(r)$ and $u_{2}(r)$ be solutions of (6.1). We note that $u_{i}(r)(i=1,2)$

are non-increasing and $u_{i}(r)\leqq\alpha(i=1,2)$ for $r>0$ by (b) of Proposition 6.1.
Suppose that $u_{t}(r)>0$ on $[0, R_{i}](i=1,2)$ . Put $R= \min\{R_{1}, R_{2}\}$ . It holds from
(6.1) that
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$|u_{1}(r)-u_{2}(r)|$

$=|- \int_{0}^{r}\{(\int_{0}^{t}(\frac{s}{t})^{n-1}f(s, u_{1})ds)^{1/(m- 1)}-(\int_{0}^{t}(\frac{s}{t})^{n-1}f(s, u_{2})ds)^{1/(m-1)}\}dt|$

$\leqq\int_{0}^{r}|\int_{0}^{1}\frac{d}{d\theta}\{\int_{0}^{t}(\frac{s}{t})^{n-1}(\theta f(s, u_{1})+(1-\theta)f(s, u_{2}))ds\}^{1/(m- 1)}d\theta|dt$

$= \int_{0}^{r}\frac{1}{m-1}|\int_{0}^{1}\{\int_{0}^{t}(\frac{s}{t})^{n-1}(\theta f(s, u_{1})+(1-\theta)f(s, u_{2}))ds\}^{1/(m-1)- 1}$

$\{\int_{0}^{t}(\frac{s}{t})^{n- 1}(f(s, u_{1})-f(s, u_{2}))ds\}d\theta|dt$

$\leqq\int_{0}^{r}\frac{1}{m-1}\int_{0}^{1}\{\int_{0}^{t}(\frac{s}{t})^{n- 1}s^{\nu}s^{-\nu}(\theta f(s, u_{1})+(1-\theta)f(s, u_{2}))ds\}^{1/(m-1)-1}$

. $\{\int_{0}^{t}(\frac{s}{t})^{n-1}|f(s, u_{1})-f(s, u_{2})|ds\}d\theta dt$

$\leqq\int_{0}^{r}(m-1)- 1\{C_{1}\int_{0}^{t}(\frac{s}{t})^{n-1}s^{\nu}ds\}^{1/(m-1)- 1}t^{-n+1\{\int_{0}^{t}s^{n- 1}|f(S},$ $u_{1})-f(s, u_{2})|ds\}dt$

$= \int_{0}^{r}c_{2}r^{-(\nu+1)(m-2)/(m-1)-n+1\{\int_{0}^{t}s^{n-1}|f(s},$ $u_{1})-f(s, u_{2})|ds\}dt$

$=C_{2} J_{0}^{\tau}s^{n-1}|f(s, u_{1})-f(s, u_{2})|\{\int_{s}^{r}t^{-(\nu+1)(m-2)/(m-1)- n+1}dt\}ds$

$=C_{2} \int_{0}^{r}s^{-\nu}|f(s, u_{1})-f(s, u_{2})|S^{n+\nu-1\{\int_{s}^{r}t^{-(v+1)(m-2)/(m-1)-n+1}dt\}ds}$

$\leqq C_{8}\int_{0}^{r}G(s)|u_{1}(s)-u_{2}(s)|ds$ ,

for any $r\in(O, R]$ , where

$C_{1}=\{\begin{array}{l}\sup\{s^{-\nu}f(s,u)\cdot 0<s\leqq R,\epsilon\leqq u\leqq\alpha\}\inf\{s^{-\nu}f(s,u)\cdot 0<s\leqq R,\epsilon\leqq u\leqq\alpha\}\end{array}$ $ififm>21<m\leqq 2$
,

$C_{2}=(m-1)^{-1}(n+\nu)^{-1}C_{1}^{1f(m-1)-1}$ ,

$C_{3}=C_{2} \sup\{s^{-\nu}|f_{u}(s, u)| : 0<s\leqq R, \epsilon\leqq u\leqq\alpha\}$ , and

$G(s)=s^{n+\nu-1} \int_{s}^{R}t^{-(\nu+1)(m-2)/(m-1)-n+1}dt$ ,

with $\epsilon=\min\{u_{1}(R), u_{2}(R)\}$ . Since

$\int_{0}^{R}G(s)ds=\frac{m-1}{(n+\nu)(m+\nu)}R^{(m+\nu)/(m-1)}<\infty$ ,

by $n>m>1$ and $v>-m$ , we have

$|u_{1}(r)-u_{2}(r)|=0$ on $[0, R]$

by using Gronwall’s inequality.
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Define $R_{*}(u_{i})$ by $\inf\{r>0:u_{t}(r)=0\}(i=1,2)$ . This is well-dePned and $0<$

$R_{*}(u_{i})\leqq\infty(i=1,2)$ . It follows from the above argument that $0<R_{*}=R_{*}(u_{1})=$

$R_{*}(u_{2})\leqq\infty$ , and $u_{1}=u_{2}$ on $[0, R_{*})$ . If $R_{*}<\infty$ , then we obtain $u_{1}=u_{2}$ on $[R_{*}, \infty)$

as well, since $u_{1}$ and $u_{2}$ are decreasing and satisfy

$(r^{n- 1}|u_{1}’|^{m- 2}u_{1}’)’=(r^{n-1}|u_{2}’|^{m-2}u_{2}’)’=-r^{n-1}f(r, 0)$ in $(R_{*}, \infty)$

$u_{1}(R_{*})=u_{2}(R_{*})=0$ , $u_{1}’(R_{*})=u_{2}’(R_{*})$ .

Thus the uniqueness holds.
It is easily seen from the above estimates that the existence follows from

the standard arguments. Q. E. D.

\S 7. Special case of the generalized Pohozaev identity.

In this section we shall give the proofs of Theorems 3.1 and 3.2 stated in
Section 3.

PROOF OF THEOREM 3.1. The existence and uniqueness of the solution of
$(F_{a})$ follow from Proposition 6.2. We shall show (3.3) and (3.4). Take $A(p)=$

$p^{m-2}$ , $a=(n-m)/m$ , $c=1/m$ , $\theta=1$ and $f(r, u^{+})$ instead of $f(r, u)$ in (PI) and
(PII). From (c) of Proposition 6.1, we see that $|u’|=O(r^{(\nu+1)/(m-1)})$ at $r=0$ .
Thus we have

(7.1) $r^{n} \int_{0}^{1u’\downarrow}\rho E(\rho)d\rho=\frac{m-1}{m}\gamma^{n}|u’|^{m}=O(r^{n+m(\nu+1)/(m-1)})$ at $r=0$ ,

and

(7.2) $r^{n- 1}A(|u’|)|u’|=r^{n-1}|u’|^{m-1}=O(r^{n+\nu})$ at $r=0$ .
Since $1<m<n$ and $-m<\nu$ , the assumptions (2.2), (2.3) and (2.4) in Theorem 2.1
are satisfied. Thus we obtain (3.3) from (PI). Similarly we obtain (3.4) from
(PII). Q.E. D.

PROOF OF THEOREM 3.2. Let $\alpha>0$ be arbitrary but fixed. Suppose that
there exists $R>0$ such that

$u(r;\alpha)>0$ for $r\in[0, R)$ , $u(R;\alpha)=0$ .
It follows from (3.3), (F.6) and (e) of Proposition 6.1 that

$0< \frac{m-1}{m}R^{n}|u’(R)|^{m}=\int_{0}^{R}\{nF(r, u)+rF_{r}(r, u)-\frac{n-m}{m}uf(r, u)\}r^{n- 1}dr\leqq 0$ ,

which is a contradiction. Thus $u(r;\alpha)$ is positive on $[0, \infty)$ .
Moreover if (F.7) holds, then $u(r;\alpha)arrow 0$ as $rarrow\infty$ by Theorem 5.1. Q. E. D.
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\S 8. Non-existence theorems for the ground state.

In this section we shall give the proofs of Theorems 3.3 and 3.4 stated in
Section 3.

PROOF OF THEOREM 3.3. Suppose that $u(r)=u(r;a)$ is a solution of $(F_{\alpha})$

which is positive on $[0, \infty)$ . Setting

(8.1) $w(r)=r^{\sigma}u(r)$ , $\sigma=(n-m)/m$ ,

we have (3.4) by $(F.1)-(F.5)$ and Theorem 3.1, and also

(8.2) $0<w(r)\leqq$ POS. Const. for $r\geqq 1$

by (F.7) with $q\leqq((m-1)n+m+mk)/(n-m)$ and Theorem 5.1. It follows from
(F.8) that there exist positive constants $C_{1}$ and $R_{1}$ such that

(8.3) the right-hand side of (3.4) $\underline{;;\geq}C_{1}>0$ for all $R>R_{1}$ .
Next, we claim that $w(r)$ has no local mlnimum for large $r>0$ . To see this,

suppose that $w(r)$ has a local minimum at $r=\rho$ which is so large that (F.9)

holds. Then we have

(8.4) $w(\rho)>0$ , $w’(\rho)=0$ , $w’’(\rho)\geqq 0$ .
It follows from (8.4) and (F.9) that

(8.5) the left-hand side of $(3.4)=-(m-1)p^{2}w’’(\rho)w(\rho)\rho^{n-2\sigma-2}|u’(\rho)|^{m-2}$

$+p^{n}\{mF(p, u(p))-u(\rho)f(p, u(\rho))\}\leqq 0$ ,

which contradicts (8.3), and our assertion is established.
It is now clear that we have only two possibilities:

(i) $w’(r)\geqq 0$ for sufficiently large $r$,
(ii) $w’(r)\leqq 0$ for sufficiently large $r$ .

Thus it follows from (8.2) and Lemmas 4.1 and 4.2 that there exlsts a sequence
$r_{j}arrow\infty$ such that

(8.6) $w(r_{j})arrow C$ ,

(8.7) $r_{j}w’(r_{j})arrow 0$ ,

(8.8) $r_{j}^{2}w’(r_{j})arrow 0$ ,

(8.9) $|u’(r_{j})|^{m-2}r_{j}^{n-2\sigma-2}w(r_{j})$ are bounded,

(8.10) $|u’(r_{j})|^{m-2}r_{j}^{n-2\sigma-2}|r_{j}w’(r_{j})|$ are bounded,

as $J^{arrow\infty}$ . Taking $R=r_{j}$ in (3.4), and letting $]^{arrow\infty}$ , we see from (F.9) and (8.3)

that $0\geqq C_{1}>0$, which is a contradiction. Q. E. D.

PROOF OF THEOREM 3.4. Suppose that $u(r)=u(r;\alpha)$ is a solution of $(F_{a})$
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which is positive on $[0, \infty)$ and tends to zero as $rarrow$ oo. We divide the proof
into the following two cases.

Case 1: $\alpha\neq\alpha_{0}$ . It follows from the assumption (F.2)* and the proof of
Proposition 6.1 that $r^{n-1}|u’(r)|^{m-2}u’(r)arrow 0$ as $rarrow 0$ . Thus we obtain (3.4) by
virtue of the proof of Theorem 3.1. It follows from Corollary 5.1 and the proof
of Theorem 3.3 that $u(r;\alpha)$ has a zero, which is a contradiction.

Case 2: $\alpha=\alpha_{0}$ . It follows from $(F.2)^{*}$ that

$(r^{n- 1}|u’|^{m-2}u’)’=-r^{n-1}f(r, u)>0$ (resp. $<0$)

for sufficiently small $r>0$ and $u(r)>\alpha$ (resp. $u(r)<a$ ). Thus $u(r)$ can not cross
the line $u=\alpha$ , which implies that $f(r, u(r))$ does not change sign near $r=0$ .
Therefore we have $r^{n-1}|u’(r)|^{m-2}u’(r)arrow 0$ as $rarrow 0$ by the proof of Proposition 6.1,
and we complete the proof by the same arguments as in Case 1. Q. E. D.

\S 9. Special nonlinearity.

AS a special case of $(F_{a})$ , we consider the following problem:

$(K_{a})$ $\{$

$r^{1-n}(r^{n-1}|u’|^{m-2}u’)’+ \sum_{i=1}^{I}K_{i}(r)(u^{+})^{qi}=0$ , $r>0$ ,

$u(0)=\alpha>0$ ,

where $u^{+}= \max\{u, 0\}$ . In this special case, we can improve Theorems 3.1-3.3
by using the idea introduced by Kusano and Naito [3] (see the proof of Theorem
9.1). The following hypotheses will be assumed under various circumstances
(but not simultaneously).

(K.1) $K_{i}\in C^{1}((0, \infty))$ and $K_{i}(r)=O(r^{\nu_{i}})$ at $r=0$ ,

on $(0, \infty)$ ; and
(K.2) $\{K_{i}\geqq 0ifm>2, then, for every R>0,\inf\{ \} _{>0},$

(K.3) $\int_{0}^{R}(r^{-\mu t}K_{i}(r))’r^{n+\mu\iota}dr\leqq 0$ for all $R>0$ ,

(K.4) $\sum_{i\sim 1}^{I}(r^{-\mu t}K_{i}(r))’\not\equiv 0$ ,

(K.5) $\int_{0}^{R}(r^{-\mu\iota}K_{i}(r))’r^{n+\mu t}dr\geqq 0$ for all $R>0$ ,

for all 1S $i\leqq I$ , where $q_{i},$ $\nu_{i},$ $\mu_{i}$ are constants satisfying

$q_{i}>m-1$ , $v_{i}>-m$ ,

$\mu_{i}=\{(\cdot n-m)q_{i}-((m-1)n+m)\}/m$ .
NOW we state our results.
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THEOREM 9.1. Suppose that (K.1) and (K.2) hold. Then there exists a unique
solution $u(r;\alpha)\in C([0, \infty))\cap C^{2}((0, \infty))$ of $(K_{\alpha})$ . Moreover, $u=u(r;\alpha)$ satisfies the
following generalized Pohozaev identity

$R^{n} \{\frac{m-1}{m}|u’(R)|^{m}+\sum_{i=1}^{I}\frac{1}{q_{i}+1}K_{i}(R)u^{+}(R)^{q_{i^{+1}}}+\frac{n-m}{m}R^{-1}|u’(R)|^{m-2}u’(R)u(R)\}$

(9.1) $= \sum_{i=_{1}}^{I}\frac{1}{q_{t}+1}u^{+}(R)^{q_{i^{+1}}}\int_{0}^{R}(r^{-\mu t}K_{i}(r))’r^{n+\mu t}dr$

$+_{t} \sum_{=1}^{I}\int_{0}^{R}\{\int_{0}^{r}(s^{-\mu\iota}K_{i}(s))’s^{n+\mu\iota}ds\}u^{+}(r)^{q_{i}}(-u’(r))dr$

and its variant

$(m-2)\{-R^{2}w’’(R)w(R)+2\sigma Rw’(R)w(R)\}R^{n- 2\sigma-2}|u’(R)|^{m-2}$

$+\{-R^{2}w’(R)w(R)+(4\sigma-2m\sigma-m+1)Rw’(R)w(R)+(m-1)R^{2}w’(R)^{2}\}$

. $R^{n-2\sigma-2}|u’(R)|^{m-2}+R^{n} \sum_{i=1}^{I}(\frac{m}{q_{i}+1}-1)K_{t}(R)u^{+}(R)^{q_{i^{+1}}}$

(9.2)

$= \sum_{i=1}^{I}\frac{m}{q_{i}+1}u^{+}(R)^{q_{i^{+1}}}\int_{0}^{R}(r^{-\mu_{i}}K_{i}(r))’r^{n+\mu t}dr$

$+m \sum_{i=1}^{I}\int_{0}^{R}\{\int_{0}^{r}(s^{-\mu t}K_{i}(s))’s^{n+\mu i}ds\}u^{+}(r)^{q_{i}}(-u’(r))dr$ ,

where $R$ is an arbitrary positive number, $w(r)=r^{\sigma}u(r)$ and $\sigma=(n-m)/m$ .
REMARK 9.1. By the definition of $\mu_{i}$ , we have

(9.3) $q_{i}=((m-1)n+m+m\mu_{i})/(n-m)$ .
AS a consequence of the above theorem, we obtain the following theorems.

THEOREM 9.2. Suppose that (K.1), (K.2) and (K.3) hold. Then, for every
$a>0,$ $u(r;\alpha)$ is positive on $[0, \infty)$ .

Moreover if there exist constants $C>0,$ $k>-m$ and $i$ with $1\leqq i\leqq I$ such that
$K_{i}(r)\geqq Cr^{k}$ for sufficiently large $r$, then $u(r;\alpha)arrow 0$ as $\gammaarrow\infty$ .

THEOREM 9.3. Suppose that (K.1), (K.2), (K.4) and (K.5) hold. Then, for
every $\alpha>0,$ $u(r;\alpha)$ has a finite zero on $[0, \infty)$ .

We now give the proofs of Theorems 9.1, 9.2 and 9.3.

PROOF OF THEOREM 9.1. We obtain the existence and uniqueness of the
solutions of $(K_{a})$ by (K.1), (K.2) and Theorem 3.1. We shall show (9.1). It
follows from (K.1), (K.2) and Theorem 3.1 that (3.3) and (3.4) hold. We note
that
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(9.4) $mF(r, u)-uf(r, u^{+})= \sum_{t=1}^{I}(\frac{m}{q_{i}+1}-1)K_{i}(r)u^{+}(r)^{q_{i^{+1}}}$

Rearranging the right-hand sides of (3.3) and (3.4), we have

$\{nF(r, u)+rF_{r}(r, u)-\frac{n-m}{m}uf(r, u^{+})\}r^{n- 1}$

$= \sum_{\iota=_{1}}^{I}\frac{1}{q_{i}+1}\{(-\mu_{i})K_{i}+K_{t}’r\}r^{n- 1}u^{+}(r)^{q_{i^{+1}}}$

$= \sum_{i\Leftarrow 1}^{I}\frac{1}{q_{i}+1}(r^{-\mu\ell}K_{i})’r^{n+/^{p}t}u^{+}(r)^{q\iota+1}$

$= \sum_{i=1}^{I}\frac{1}{q_{i}+1}(\int_{0}^{r}(s^{-\mu\iota}K_{i}(s))’s^{n+\mu t}ds)’u^{+}(r)^{q_{i^{+1}}}$

Thus the right-hand sides of (3.3) and (3.4) become that of (9.1) and (9.2) in
view of integration by parts, and the proof is complete. (The rearrangement of
the right-hand side was employed in Lemma 1 of Kusano and Naito [3].) Q.E.D.

PROOF OF THEOREM 9.2. The assertion follows obviously from (9.1) and
the proof of Theorem 3.2. Q. E. D.

PROOF OF THEOREM 9.3. It follows from (K.5) that

$\int_{0}^{r}(s^{-\mu t}K_{i}(s))’s^{n+\mu t}ds$ I $0$ for all $r>0$ ,

which implies, by integration by parts,

$r^{n}K_{i}(r) \geqq(n+\mu_{i})\int_{0}^{r}s^{n-\iota}K_{i}(s)ds$ .

Solving this integral inequality, we have

$K_{i}(r)\geqq Pos$ . Const. $r^{\mu i}$ for all $r\geqq 1$ .
Therefore $w(r)=r^{(n-m)/m}u(r)$ is bounded on $[1, \infty)$ by virtue of Theorem 5.1
and Remark 9.1. Thus we obtain the conclusion by (9.2), (9.4) and the argu-
ment similar to the proof of Theorem 3.3. Q. E. D.

\S 10. Concluding remarks.

In this paper we have established the generalized Pohozaev identities (PI)

and (PII). Although we have only applied them to the generalized Laplace equa-
tion, the identities are useful for other kind of equations ($e$ . $g.$ , prescribed mean
curvature equations). In fact, we can simplify the proofs of Theorems 4.1, 4.2,
5.3, 5.4, 6.5 and 6.6 in Ni and Serrin [10]. Moreover, it is not difficult to
generalize those results to the case $f(r, u)$ with the $r$-dependence instead of $f(u)$ .
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We should note that in that situation we shall need to assume further that
$|u’(r)|arrow 0$ as $rarrow\infty$ .
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