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Introduction.

In the present paper we aim to establish a method of finite element ap-
proximations by which we can determine the modulus of quadrilaterals on
Riemann surfaces (cf. Mizumoto and Hara for other treatment). Our method
matches the abstract definition of Riemann surfaces, and also will offer a new
technique of high practical use in numerical calculation not only for the case
of Riemann surfaces but also for the case of plane domains.

Let 2 be a simply connected subdomain of a Riemann surface W whose
closure 2 is a compact bordered subregion of W. We assume that the boundary
a2 of Q is a piecewise analytic curve. We assign four points p,, ps, ps and p,
on 9f2 (in positive orientation w.r.t. 2), and the two opposite arcs C, (from p,
to p,) and C, (from p, to p,). Then we say that a quadrilateral Q with opposite
sides C, and C, is given.

We can conformally map the domain £ onto a rectangular domain R={w| 0<
Rew<1, 0<Imw <M} by a function w=%(p) so that p,, p., ps and p, are mapped
to tM, 0, 1 and 1+:M respectively. Let & be the class of all continuous func-
tions v on 2 with v=0 on C, and v=1 on C, which satisfy some restricted
conditions (see §2.1). Then the modulus M(Q)=M of the quadrilateral @ is
uniquely determined by @, and is given by

M(Q) = D(u) = r,?elél D)  (u=Rei(p)),

where by D(v) we denote the Dirichlet integral of v. Next we assign the two
opposite arcs C, (from p, to p,;) and 51 (from p, to p;) on 0£2. Then a quadri-
lateral § with the opposite sides C, and C, is defined. We can easily see that
MQ)=1/M (@). By making use of this relation Gaier [9] presented a method
to obtain upper and lower bounds for the modulus M(Q) in the case of some
restricted domain 2 (e.g. a lattice domain, etc.) by the finite difference and
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finite element approximations, which originates from Opfer [16], [17]. We
shall present a method to obtain fairly good upper and lower bounds for M(Q)
by our finite element approximation even in the case of a domain £ with cur-
vilinear boundary arcs, and with inner and corner singularities of high order.

It is characteristic of our method that we adopt ordinary triangular meshes
and linear elements on a subregion of every fixed parametric disk, our ap-
proximating functions of u=Ref(p) satisfy the boundary conditions exactly even
in the case of curvilinear boundary arcs, and express singular property exactly
near inner and corner singularities. Hence the approximations of high precision
of u are obtained, and the fairly good upper and lower bounds to M(Q) can be
evaluated exactly. It should be noted that we do not adopt any so-called refined
or curvilinear mesh near singularities.

§1 is devoted to construction of triangulations K and K’ of two kinds. K
is a triangulation of 2 and K’ is a modification of K.

In §2, we introduce and investigate two classes of element functions on K
and K’: the comparable class S=S(K) (with u) and the computable class S'=
S/(K"). Sc% and S’ is a collection of modifications v,=F(v,) of v,ES, where
F defines a one-to-one mapping of S onto S’. D(v;) can be numerically calculated.
We shall investigate estimates of differences of D(v,) and D(v}) (see Lemma 2.2).

The finite element approximations w, and u}, of u in S and S’ respectively
are defined by the minimalities:

D(w,) = min D(v,) and D(u})= min D(v})
VRES vhes’
respectively. u, can be obtained by solving a system of linear equations. §3
is devoted to error estimates of w, and u, for u. In Theorems and B.2, we
obtain error estimates:

Diw,—u) < Ch? and D(u,—u) < C'h* resp.,

where C and C’ are constants which depend only on the function u and the
smallest value of interior angles of triangles. Further, in we
obtain an estimate for D(u):

D(u) < D(up)+e(us),

where e(uj) is a quantity of O(h?) which can be numerically calculated.
Finally, in §4 we apply our results to numerical calculation of the modulus
of quadrilaterals, and we shall show that calculation results for some concrete
quadrilaterals are fairly good. With respect to the problems of this type, there
have been some investigations by means of finite difference or finite element

methods (cf. Gaier [9], Mizumoto [10], [11], [12], and Opfer [16], [17].

With respect to treatment at boundary singularities, there have been some
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investigations (cf. Akin [1], Babuska [2], Babuska and Rosenzweig [3], Babuska,
Szabo and Katz [4], Barnhill and Whiteman [5], Blackburn [6], Craig, Zhu and
Zienkiewicz [8], Opfer and Puri [18], Rivara [19], Schatz and Wahlbin [20],
[21], Thatcher [23], Tsamasphyros [24], Weisel [25], Whiteman and Akin [26],
and Yserentant [27]).

§1. Triangulation.

1. Collection @ of local mappings. Let £ be a simply connected subdomain
of a Riemann surface W whose closure 2 is a compact bordered subregion of W.
We assume that the boundary 0£ consists of a finite number of analytic arcs
meeting at vertices pj (k=1, ---, k), and there exist parametric disks V, (k=1, -,
k) with the centers p; and the local parameters z=¢.(p) by which Vi@ are
mapped onto sectors {|z|<r,}N{0=argz<B:} 0<B:=<27m, Br#m).

We assign four points p,, p», p; and p, on 02 (in the positive orientation
with respect to £), and the two opposite arcs C,(from p, to p,) and C, (from
ps to p,). Then we say that a quadrilateral Q with opposite sides C, and C, is
given,

By @={z=¢,p), U;; j=1, -+, m} we denote a finite collection of local
parameters z=¢;(p)(j=1, ---, m) and parametric disks U; (j=1, ---, m) on W
which satisfies the following conditions (i)~(v):

(i) By the mapping z=¢;(p) (=1, ---, m), U, is mapped onto a disk |z]
<p;. _

(ii) £ is covered by {U;}1..

(iii) If U;NU,+ @, then there exists a constant L (>1) such that for the
mapping {=f(2)=¢r-¢;'(2), 1/L<|d f/dz| <L on ¢;U;N\Uy).

Let p, (=5, ---, v) be the all vertices of 02 which are defined as points of
{pl/e}z=1_{1{71; p2) pS; p4}'
(iv) Each U; (j=1, ---, m) contains at most one p,(k=1, -, v)and if p,=

U; then ¢ (pz)=0.

(v) If U;ndl2+@ and U; does not contain any p,(k=1, -+, y), then
o U;NQ) is a half disk {|z]| <p;}N\{Imz>0}. If U; contains some p, (k=1, ---,
v), then ¢, (U,N2) is a sector {|z|<p;}N{0<argz<a;} 0<a;<27).

In the latter case of (v), if pr#pi, Do, Ps, o and a;>x/2, then by the
mapping {={¢;(p)}*/*i, U;NL2 is mapped onto a half disk {|{|<p7/*/}N{Im {>0}.
In this case we define anew z=¢;(p) and p; by {={p;p)}*/*/ and p7/%i re-
spectively. Further, if U; contains some p, (k=1, 2, 3, 4), then by the mapping
E={pi(p)}=12%, U;N Q2 is mapped onto a sector {|C|<p3**/}N{0<argl{<n/2}.
In this case we define anew z=¢(p) and p; by {={¢,(p)}*/**s and p~/*%J re-
spectively. Then, the local parameter z=¢,(p) is no longer conformal at the
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center of U; except for the case when U, contains some p,(k=1, 2, 3,4) and
ij=7f/2.

2. Triangulation K associated to @. For the collection @ of local parameters
and parametric disks defined in § 1.1, and for a sufficiently small positive number
h, we construct a triangulation K=K" of 2 which satisfies the following con-
ditions (i)~(v). This is called a triangulation of 2 with width h associated to ©.

(i) The points p,, -+, p, are carriers of some 0-simplices of K.

(ii) K is the sum of subtriangulations K, ---, K» of K such that each 2-
simplex of K belongs to one and only one Kj;(j=1, ---, m), and the carrier |s|
of each 2-simplex s of K; is contained in U;.

If a 1-simplex e=K; does not belong to another K,(k=j), or a l-simplex
e belongs to K;NK, (j+ k) and the mapping ¢,°¢3® is an affine transformation,
then ¢ is said to be [limear. If each edge of a 2-simplex s=Kj; is linear and
¢,(s) is an ordinary triangle, then s is called a natural simplex.

(iii) Each 2-simplex s K; which has not a common edge with any 2-simplex
of another K, (k+7), is a natural simplex.

A 2-simplex of K, which has a common edge with a 2-simplex s K (j# k),
is said to be an adjoint (simplex) of s and is denoted by s’.

(iv) For each pair of a 2-simplex s=K; and its adjoint s'K, with a
common edge e, either one of the following three cases (a), (b), (c) occurs.

(a) Both s and s’ are natural simplices.

(b) ¢,(s) is a curvilinear triangle such that ¢;(¢) is a strict concave arc
w.r.t. ¢,s), ¢x(s’) is an ordinary triangle, and all edges of s and s’ except for
e are linear (cf. Figure 1). Then s is called a minor simplex. The case where
s’ is a minor simplex and s is its adjoint may also occur.

() ¢ji(s) is a curvilinear triangle such that ¢;(e) is a strictly convex arc
w.T.t. ¢;(5), ¢r(s’) is an ordinary triangle, and all edges of s and s’ except for
e are linear (cf. Figure 2). Then sis called a major simplex. The case where

’

s’ is a major simplex and s is its adjoint may also occur.

v5e) 5(e)

] \

Figure 1. Minor simplex s and its Figure 2. Major simplex s and its
adjoint s’. adjoint s’.
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If s is a minor or major simplex of Kj;, then it is assumed that |s’|CU;
for its adjoint s’.

(v) For each 2-simplex seK; (j=1, -+, m), d(¢,(s))<h, where throughout
the present paper we denote the diameter of a region G by d(G).

Next, we assume that for the fixed @ the class of the triangulations K=K"
satisfies the following condition (i’) and (ii’):

(i’) For each j=I1, ---, m the union of carriers of all minor and major
simplices of Kj;, and all their adjoints is contained in a closed subset R; of
U,;N2 which is independent of the individual triangulation K.

(ii’) The number N of minor and major simplices of K satisfies the inequality :

(1.1) N< M-%,

where M is a constant which is independent of the individual triangulation K.

3. Normal subdivision of triangulation K. For a triangulation K=K?"
of 2 with width A associated to @ we can construct a subdivision K=K "2,
called the normal subdivision of K=K" by the following procedure:

(i) K'is the sum of the subtriangulations K}, ---, K% which are the
subdivisions of K, ---, Kn respectively which are defined in the following (ii), (iii).

(ii) If s€K; is a 2-simplex which is not minor or major, then s is subdi-
vided to four 2-simplices s;, sz, s; and s, of K} so that ¢,(sy), ¢;(s2), ¢;(ss) and
¢,(s,) are mutually congruent ordinary triangles in Figure 3.

d=¢a) (a: simplex)

Figure 3. Normal subdivision of 2-simplex which is not minor or major.

(ili) Let seK; and s’ K, be a minor (or major) simplex and its adjoint,
and let e,, ¢, and e¢; be edges of s such that e, is the common edge of s and
s’. We subdivide the edges e,, ¢, and e¢; to two edges e;; and ey, ¢;; and e,
and es;; and ey, respectively so that ¢i(e;,) and @x(e.s), ¢ (ez,) and ¢y (ez.), and
¢i(es;) and @,(es) have the same length respectively. Then we subdivide the
simplex s to two minor (or major resp.) simplices s; and s, of K} and, two

natural simplices s; and s, of K} so that e;,, e.s, €1, €20, €3, and e;, are edges
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d=g¢; a) (a: simplex)

Figure 4. Normal subdivision of minor and major simplices.

of s;, s, and s; (cf. Figure 4). Here we note that such a subdivision is always
possible if 4 is sufficiently small.

We can see that the normal subdivision K'=>7, K} is a triangulation of
Q2 with width h/2+0(h?) associated to @ (cf. §1 of [15)).

4. Naturalized triangulation. For each minor (or major) simplex seK;
we define the naturalized simplex §s of s as the 2-simplex such that |s|C|}Ys]|
(l4s|cls| resp.) and ¢,(4s) is the ordinary triangle which has two common
sides with ¢;(s). Further we define a 2-simplex b{=p4(s) (B4=4#/((s) resp.) with
two edges whose carrier is the closed region |ks|—|s| (|s|—|4s| resp.). h4(s)
(#4(s) resp.) is called the deficient (excessive resp.) lune of s.

Each triple of a minor (or major) simplex s€Kj, its adjoint s’ K, and its -
deficient lune h ¢ (excessive lune £¢ resp.) is denoted by (s, s’, b¢) ((s, s, #4) resp.),
and is called a triple for a minor (major resp.) simplex s or for a deficient
(excessive resp.) lune b ¢ (8¢ resp.) (cf. Figure 5), where it is always assumed that
[bélc|s’| for each (s, s’, h4).

¢Ab¥) oA 4¢)

Figure 5. Triple for a minor simplex (s, s/, b£) and triple for a
major simplex (s, s/, #4).

For simplicity of notation, we also denote b g=hg(s) or £4=%4(s) by 4=4(s).
If a minor or major simplex s is in Kj;, then we say that §=¢(s) is a lune of
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K; and write /=K.

Now we shall define the naturalized triangulation K’ associated to K.

First, K; (j=1, ---, m) are defined as triangulations such that the collection
of all 2-simplices of K consists of all 2-simplices of K; which are not minor
or major, and of all naturalized simplices of minor and major ones of K;. Then
the triangulation K’ is defined as the sum of K} (j=1, .-, m). We should note
that K’ is no longer a triangulation of @, and also is not an ordinary triangula-
tion.

5. Parametrization of lunar domains. Let (s, s, §) be an arbitrary triple
for a deficient or excessive lune ¢, and let ¢, and ¢, be two edges of ¢ such
that e,Cds. Further, let

1.2) 2 =1—t)z,+1z, (99}
and
(1.3) =1-05+tL (0=t£1)

be parameter representations of the oriented segments ¢,(—e,) and ¢(e,) re-
spectively. The representation [(1.3) induces a parameter representation of the
curve ¢;(e;):

(1.4) 2 = g(1-DG+18)  0=t<1),

where z=g(Q)=¢;°¢7'(). By and we obtain a parameter representa-
tion of the lunar domain ¢,(¢):

(1.5) z=2z(t, ) =1—1)z' +22"
= (1—1)((A—t)z+tz.)+rg((1—)C+1L,) 0=t<1, 02750,

6. Area of lune.

Lemma 1.1. Let (s, s’, §) be a triple for an arbitrary deficient or excessive
lune . Then, the estimate

g”(&y)
g'(&)?

holds, where throughout the present paper we denote the area of a region G by

AG), z=g@)=¢;o¢:" (L), hi=d(¢;¢)) and &, is one of the vertices of the lunar
domain @i(f).

See of for the proof.

(1.6 Alp0) = 2|

+0(hy))
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§2. Classes of functions.

1. Class . By & we denote the class of all continuous functions v on
=082 with v=0 on C, and v=1 on C,, for which the partial derivatives
dv/dx and oOv/dy with respect to the local parameter z=x-+¢y exist and are
continuous on £ at most except for a finite number of rectifiable curves on £,
and for which the Dirichlet integral

D(v) = Dy(v) = SSQ(<%>2+(2_;_>2> dxdy

is finite.

2. Subclass S of . We define a subclass S=S(K) of &, called the com-
parable class (with u), as the class of functions v, which satisfy the following
conditions (i)~(iv):

(i) 'UhE%.

(ii) If seK; (=1, ---, m) is a natural simplex, then

vn=ax+by+c on ¢is) (z=x+iy),

where a, b and ¢ are constants.
(iii) Let (s, s’, b¢) be a triple for a minor simplex s, and let ¢, and e, be
two edges of ¢ such that —e,Cds. Then '

vy =ax+by+c on ¢,(s),
v =aé+fn+r on @i(s) =),
and v, is a harmonic function in h¢4 which satisfies the boundary conditions:
vy =ax+by+c on ¢e;)
and
v =aé+Bn+r  on @iler),
where a, b, ¢, @, B and 7 are constants, and
C=1@ = grepi’(a)  (z=x+iy, {=E+in).

(iv) Let (s, s, £¢) be a triple for a major simplex s, and let ¢, and e, be
two edges of £/ such that ¢,Cds. Then

vy, =ax+by+c on ¢;(}s),
v =al+Bn+r  on @g(s’),
and v, is a harmonic function in #¢ which satisfies the boundary conditions:

vy, =ax+by+c on ¢je,)
and
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v =aé+Bn+r  on gile),

where a, b, ¢, @, B and 7 are constants, and {=§&+in is as in (iii).

3. Class S’ of functions. Let K’ be the naturalized triangulation associated
to K. For each function v,<S, we define the function vy on K’ associated to
v, as the function v} which satisfies the following conditions (i)~(iv):

(i) For each 2-simplex seKj (j=1, -+, m)

vh=ax+by+c on @4s),

where a, b and ¢ are constants.
(ii) If s=K is a natural simplex, then

Vi = Up on |s].
(iii) If (s, s’, pg) is a triple for a minor simplex s, then
vh=vn, on [s|Uls"|—[hl].

v) If (s, s’, £¢) is a triple for a major simplex s, then

vh = Ups on lys|uUls’].

We should note that the function v} is defined just twice on each deficient
lune b ¢, while it is never defined on any excessive lune #¢. In the former case,
for each triple (s, s’, h¢) we shall denote the function v; on fseKj and s'eK;
by vh.us and vj, o respectively.

The class of all functions v} associated to v,<S is denoted by S'=S"(K")
and called the computable class. Let vy and ¢, be two functions of S’. Then
the mixed Dirichlet integral Dg (vh, ¢) of v, and ¢}, is defined by

’ N ’ A av;t agb;L av;t a%
D(v3, ¢h) = Dy (v, ¢h) = > SS\S\(@X ox + ay ay )dxdy,

SeK'

and the Dirichlet integral Dg.(v}) of v}, is defined by
D}) = Dg:(vh) = Dg(vh, v3)",

where D(v}) can be numerically calculated.
We see that v,=F(v;) defines a one-to-one mapping of S onto S’.

4. Finite element interpolations. Let v be a function of ¥ We define

the finite element interpolation D of v in the class S as the function uniquely
determined by the following conditions (i) and (ii):

1) We shall use the common notations D(, ) and D( ) for both mixed and ordinary
Dirichlet integrals of functions of the classes S and S’.
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(i) v 8S;
(ii) o(p) = v(p) at carrier p of each O-simplex of K.

5. Harmonic functions on a lune.

LEMMA 2.1. Let 4={¢(s) be a deficient or excessive lune of K;, let ¢, and e,
be two edges of ¢, and let q, and g, be two vertices of §. Let v, and v, be the
functions in the class C' on ¢ which satisfy the condition

vi(gy) = valg;) (=1, 2).
Further, let ¢ be the harmonic function in { which satisfies the boundary conditions

g=v; on e (I=1,2).
Then the inequalities

e o] man((G) ) () () e

= Dy(i)+Dy(ve)

hold.

If we set ¢,=dv, and ¢,=dv,, then the proof is reduced to one of Lemmal
2.1 of [15].

6. Difference of Dirichlet integrals of v, and vj}.

LEMMA 2.2. Let v, be an arbitrary function of the class S and let vi,=F(vy).
(i) The inequalities

(2.2) Dwn) = Dwi)+ 2 Day(va)
#IEK

o (h(g2)—vh(gn)?
< D(} ARE)): :
= Dot 2 B Al o)

. |@(g2)—s(g:)|* T
max {1, | B0 max | 7(2) )

hold, where

[05(g2)—¢s(g)|? o
[ @r(g2)—@r(g1)|? gﬁ%ﬂf (2)|2 < 14+kh,

g, and q. are the vertices of #¢, and k is a constant which depends only on the
transformations f(z2)=@,°3'(2).

(i)
(2.3) D) = D(wn)+ MZE}K(DM(V;L,hs)’i‘DbZ(U;z,s'))

= D)t 3 3 (AlpbO)-(a*+b)+Algao 0)- @+,
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where for each triple (s, s’, h@) the notations in (iii) of §2.2 are preserved.

If we set ¢,=dv, and ¢,=dv}, then the proof is reduced to one of Lemmal

2.2 of [15].

§ 3. Finite element approximations.

1. Formulation of problems. We can conformally map the domain £
defined in §1.1 onto a rectangular domain

R ={w]0<Rew<], 0<Imw <M}

by a function w=%(p») so that p,, p,, p; and p, are mapped to /M, 0, 1 and 1+
iM respectively. Then the modulus of the quadrilateral Q:

MQ)=M

is uniquely determined by Q. Our aim is to determine M(Q) by finite element =
method.

Now we assign the two opposite arcs 50 (from p. to p;) and 51(from D
to p;) on 82. Then a quadrilateral § with opposite sides C, and C, is defined.
We see that the domain 2 can be conformally mapped onto a rectangular domain

R =1{w]0<Rew<l, 0<Imw<1/M}

by a function w:f(p) so that p,, ps, p. and p, are mapped to /M, 0, 1 and 14
i/M respectively. Hence

(3.1) MQ) = 1\7%67)'

We characterize M(Q) by a minimal property.

LEMMA 3.1. Let u=Ref. Then the equalities

(3.2) M(Q) = D(u) = min D(v)
e

hold. The minimum of the right hand side of (3.2) is attained if and only if
v=u.

PrOOF. By *du we denote the conjugate differential of du. Then

*du =0 along 02—C,UC,, and

v—u=0 on C,UC, for each v=§.
Hence

(3.3) Dv—u, u) = Sag(v——u)*du =0.

This equality implies that
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D) = D(uw)+Dv—u) = D(u).
In the last inequality, the equality holds if and only if v=u.
The first equality of follows from the equalities

D(w) = Sagu*du - SC sdu = M.

1

We call u the harmonic solution in . Our aim is to obtain finite element
approximations of u in the classes S and S’, and error estimates of them for u.

2. Finite element approximation @, in S. By w, we denote the function
of S such that

3.4) D(w) = min D(v,).
vRES
Since SC%, we see that
(3.5) D(u) < D(ws).
We call w, the finite element approximation of u in S.
LEMMA 3.2. (i) The function w, has the minimal property
3.6) D(w,—u) = min D(v,—u),
vpeS

where the minimum s attained if and only if vy=ws.
(ii) The equality

3.7 Diw,—u) = D(wy)—D{(u)
holds.

PROOF. (i) First, by a method similar to [3.3), it is shown that
3.8 Dwy—wy, u) =0 for each v,&S.
By [3.4), standard arguments imply that
3.9) D(w,, vi—wy) =0 for each v,=S.
From (3.8) and (3.9), it follows that

D(u—v,) = D(u—wp)+Dwy—w,) = D(u—wy).

In the last inequality, the equality holds if and only if v,=w;,.
(ii) By D(w,—u, u)=0 and thus is obtained.

From (3.9) the following lemma immediately follows.

LEMMA 3.3. The equality
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(3.10) Dwnr—wr) = D(wy)—D(wy)
holds for each v,<S.

3. Finite element approximation u} in S’. By u} we denote the function
of S’ such that

(3.11) D(up) = min D(vy,).

vRES’
We call uj, the finite element approximation of w in S’. uj can be obtained by
solving a system of linear equations.

LEMMA 3.4. The equality
(3.12) D@h—ui) = D(i)—D(up)
holds for each v,&S’.
Proor. By [3.11), standard arguments imply that
(3.13) D(u}, vi—u}) =0 for each v,&S5’.
This implies [(3.12)
4. Lemma of Bramble and Zlamal. The following lemma is due to J.H.
Bramble and M. Zlamal (cf. [7)).

LEMMA 3.5. Let 4 be a closed triangle on the z-plane (z=x+:iy) with d(4)
<h and let v be a function of the class C* defined on 4 such that v=0 at each vertex
of 4. Then, the inequality

ov \2 ov\2 0%V \2 02 2 21 \2
@10 ([ (G +G5) )t = g (1 ((G) +2(505 ) +(55) Jones

holds, where B is an absolute constant and 6 is the smallest interior angle of the
triangle 4.

5. Pointwise estimate.

LEMMA 3.6. Let 4 be a closed curvilinear triangle on the z-plane (z=x-+1iy)
with d(4)< h which is the image of some 2-simplex s=K; (j=1, ---, m) by z=¢,(p),
and let v be a function of the class C* defined on 4 such that v=0 at each vertex
of 4. Then,

v
0x

0%
0x0y

ov < 4 (Iazv

ayl = “sin 6 e\l 9x

5y |+ 155

)(L+xh)

H
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on 4, where 0 is the smallest interior angle of the ordinary triangle which has
common vertices with 4, and k is a constant which depends only on the trans-

formations f(z)=¢r¢;'(2).

See of [15] for the proof, and also refer to of
Strang and Fix [22].

6. Smoothness of « on 0.

[

LEMMA 3.7. Let u be the harmonic solution in §. Then u-¢3' (j=1, ---, m)
are of the class C? on goj(Ujf\.@-) respectively.

PrOOF. (i) The case where U; contains some p,(k=1, 2, 3, 4).
Let us assume that U; contains p,. The other cases are also similar. Then,
0i(p1)=0, ;(U;N)={|z1 <p;}N\{0=argz=nr/2},

(3.15) uep;t = on {z|Imz=0, 0=<Rez=p;}
and
(3.16) % uep;' =0 on {z|Rez=0, 0<Imz=p;},

where by 9/0n we denote the inner normal derivative. By [3.15)and [3.16) we
see that ue@j;' can be harmonically continued to ¢;(U;)={|z|<p;} and thus
especially is of the class C? on goj(Ujf\Q).
(ii) The case where goj(U,-f\.@-):{ |zl <p;}N{0<argz<a;} and a,=x/2.
Let g be the function defined on D={Im{>0}N{|{|<p3/*} by gl)=
foe7'({*'). Since Reg=const. or Img=const. on {Im{=0}N{|{|<pj/*7}, g is
analytic on the closure D. Then

dToQD}l(Z) — ig(zn/aj)__?_zx/aj—l

dz dC aj
and
d2T°¢;1(2> —_ d2g T/ T 2 2(mja;i-1) ﬂ T/AG _7}-__ _ﬂ'-__ Tja;—2
dz* T de (z ])'(aj>z i dC(Z ) a,-(aj 1)2 !

on ¢;U,N2). Hence, a;<x/2 implies that d*j-¢3'(z)/dz* is continuous on
@ U;N2) and thus u-¢;'=Refe;' is of the class C* on ¢,({U;NQ).

(iii) The cases except (i) and (ii).

Since ue@~'=const. or du-p~'/dn=0 on ¢ (U;NC)={|z|<p;}N{Imz=0}, or
e, U,NC)=@, usp=" is harmonic on goj(U,f\Q).

7. Approximation by w,.

THEOREM 3.1. Let u be the harmonic solution in § defined in §3.1 and let



Modulus of quadrilaterals 309

wy, be the finite element approximation of w in S. Then,

01 D= gl (0], () vy o (o

m - 0%1 \? 0° 0%u \2
o3 max ((556) +2(5555) +H(550) )

where B and C are constants independent of the triangulation K and the function
u, 0 is the smallest value of interior angles of all triangles ¢ (s) (s€Kj; j=1, -,
m), by ¢,(K]) we denote the image set by ¢; of the carrier of K], and R;(j=

1, -+, m) are the closed subsets of U,N\Q2 defined in (i’) of §1.2.
Proor. First, by (i) of Lemma 3.2,

(3.18) Dlwy,—u) £ D(d—u).
Hence it is sufficient to estimate D@ —u).

We have
(3.19) Dla—u)= 3 3 Dai—u).

Jj=1 S€Kj

Here we note that by the u-@3' (j=1, -+, m) is of the class C*® on
¢, U;N2). Then, by Lemma 3.5,

(3.20) Da—u) = Sifzﬁ hzggsojm ((%%)2+2< aangy >2+(g2; )2) dxdy

for each natural simplex s of K;. For simplicity, we denoté the right hand
side of by I[¢i(s)].

For a triple (s, s/, ) for a minor simplex s, we denote the function #’ on
tseK; and s’ K] by @, and @i respectively. Then, by Lemma 2.1],

(3.21) Dyti—u) £ D(ttgs—u)+ Dy(f —u).
This inequality and imply that
(3.22)  Dyyo(i—u) < Dyslliys—u)+ Do (1 —u) < T [@,(85) ]+ [pe(s")].
Let (s, s/, ) be a triple for a major simplex s. Then, by

(3.23) Dy(a—u) < ITp;(3s)]+Dy(t—u)
and

(3.24) Dg(a—u) < I[pa(s')].

Let

#=ax+by+c on ¢;(is), and
f=al+Bn+r on @5,



310 H. Hara and H. MizumoTo

where a, b, ¢, a, 8 and 7 are constants. Then we define functions @, and @, .,
on s and s’+¢ respectively by

s =ax+by+c on ¢;s), and
By ve = al+Bn+7 on @x(s’+4).
Then, by
(3.25) Dyta—u) < Dftts—u)+Dy(fhg wo—u).

Further, by

hZ
(3.26) Dilti—u) = Alp/0))- fia max(| 5| +2] |+ |
J
and

By (3.18)~(3.27), Lemma 1.1 and [[1.1I), the estimate (3.17) is obtained.

8. Approximation by u}.

THEOREM 3.2. Let u be the harmonic solution in § defined in §3.1, let uj
be the finite element approximation of u in S’ and let ur=F'(u}).
(i) The estimate

m aZ 62 62
si ﬁzﬁ (A/ z SS%(K] ((5}%>2+2< axauy >2+<6y1ﬁ )2>dxdy
2 02U \2
+B thZI sr{?(%z)f(( gx ) +2( aizgy >2+<6ylz> >>
o B max((52)+(55))

holds, where A’, B’ and C’ are constants independent of the triangulation K and
the function and other notations ave the same as in Theorem 3.1.
(ii) The estimate

(328) D(uh—u) <

(3.29) D(u) < D(up)+e(up)
holds with

N & oy, (uage)—un(gy))?
=2 M‘;KjA(%(M» l0i(g2)—¢(g:)|?

| |0,g2)—04a)1? e
B PR eamrw i AL

where q, and q, are the vertices of #4, f(2)=¢r-¢;'(2), and e(u}) is a quantity of
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O(h®) which can be numerically calculated.
Proor. (i) First, note that
(3.30) D(upr—u) < 2D(w,—u)+2D(up—ws).
From Lemmas 2.1, 2.2 and B.3, and [3.IT), it follows that
(3.31) D(up—ws) = D(up)—D(wy)
= D(ui)—D(wn)-i-#EK Dyylur) < D(w;z)'_D(wh)‘i"#EKDw(uh)

= g]l b%}Kj(A(sbj(bﬂ))'(a’2+b’2)—|-x4(<,0k(|7é))'(6!’2-%',3’2))
2, Z, (A0 (@+b)+ Algs0) @+,
where for each triple (s, s/, h§) for bl K;
w, =a’'x+b’'y+c¢’ on ¢;(is) and
wr=a’s+B'n+r on @),
and for each triple (s, s/, £¢) for #{=K;
U, = ax+by+tc on ¢;(4s) and
un=af+fn+r on @i(s)

with constants a’, ', ¢’, a’, 8/, 7, a, b, c, a, B and 7.
In the inequality (3.31), we have

A(%(b@ A(%’(bg))
Algs(s)) Alps(s))

2240000, s2ns0r g () 1 55)

Since we can easily verify that

(3.32)  Alesbo)-(a”+b"") = Dywn) =2 (Ds(@n—u)+Ds(u))

Alpi(ss) >l sing  (h=d(p 1),
by we have

P (2 W (2 CY) (|2
B by = Tty AewD = 27 (g0

with the notations in Lemma 1.1. (3.32) and (3.33) imply

+0(h))

3.30) 3 3 Alp,(b0)-(a+b")
J=1hteEK

=

hoz, 2 D=0tz E 8 A0 max((§“> +(24y),

sin 6 j=1ble ay
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where C is a constant depending only on the transformations of local parameters.
Since similar estimates for other terms of the right hand side of (3.31) are

obtained, from (3.31) it follows that

(3.35) Dl —) S o Dt =)+ o Dian—)

+2 z <A(go](€)) ra%g((gx) +(g§) )

+ Alga(0))- max (( ag> +(a”) ))-

(3.30), [(3.35), [Theorem 3.1, Lemma 1.1l and imply the estimate (3.28).
(ii) Lemmas B.2 (ii), 3.3 and 2.2 (i) imply the inequalities

D(u) < D(wr) < D(uy)

’ z . (u;L((]Z>—u;z(QI))2
= D)+ ng MEKJA((P](M» | 9(g2)—i(g:)]*

. |§0j(C]2>—90j((]1)|2 ’ 2
max {1, (B0 s max /(1)

9. Estimate of D(uj,—a’).

COROLLARY 3.1. Let u and uj be the same as in Theorem 3.2, @i be the
finite element interpolation of u in the class S, and 4'=F(&). Then, the estimate

(3.36) D(up,—a’) < A”h®
holds, where A” is a constant dependent only on u and € in Theorem 3.1.
Proor. First, by Lemma 2.2 (ii) and (3.33) we have
D(up—a') < D(up—a)+ bEK<DbZ<u;z,hs_72£8)+Dbl(u;z,s’_ﬁé’»

< Dyt 3 5 (85D by, —a)

Fvier;\ Alpis)) °
Alex(h 0) D
T Al gy D =)
< D=0+ = 3 5 (D)D)
Jj=1 EKj
(1+si1h0)1)(uh u)<2(1+—cl‘—)<0<uh W)+ D(u—n)),

where C is the same constant as in (3.34). Then, the proof of
and imply (3.36).
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§4. Applications.
1. Modulus of a quadrilateral. By and the equalities

4.1) D(u) = M(Q) = - i B

hold, where u=Ref and #i=Ref.

When we replace C, and C, by C, and C, respectively in the definition of
the classes §, S and S’ of functions, we obtain new classes &, S and §’ cor-
responding to &, S and S’ respectively. Let u}, and #}, be the finite element

approximations of » and # in the spaces S’ and S’ respectively. Then by (ii)
of we have the estimates

(4.2) D(u) = D(up)+e(uz)

and

4.3) D(ii) = D(iir)+e(iin

By [(4.1), (4.2) and we have upper and lower bounds for the modulus M(Q):
1

(4.4) < M(Q) = D(up)+e(uz).

D(#i3)+ (i) =

2. Numerical example 1 (the example of Gaier [9]). Let £ be the simply
connected domain on the z-plane defined by

= {z] 0<x<1, O<y<1}— «{ }—<x<1 <y<1}

and let C, and C, be the boundary parts of £ defined by

i %+i
c
C, - 14
2
11,
—2'+—2-l
Q
0 1 1
2

Figure 6. Numerical example 1 (Gaier’s example).
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K3¥(GY)

Ki(Gs)

L=0y(2)=b V2= +1)/2

K\(G))

1
Ky(Ge) 2

{=p(2)=avz—=1/2

K3(GD)

Figure 7. Triangulation of example 1.
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C,= {z10§x§%, yzO}U{zI x=0, 0§y§1}u{z' nggé, yzl}
and
ST

respectively, where z=x+7y. Let Q be the quadrilateral with the two opposite
sides C, and C,(cf. Figure 6). We aim to obtain good upper and lower ap-
proximate values of the modulus of Q.

We construct a triangulation of the closed region £ as in Figure 7. The
closed regions G, and G, are mapped onto the regions G¥ and G% respectively
by the local parameters {=¢.(z)=avz—1/2 and {=g4(z)=b¥z—(1+1)/2 (a=1
and b=e ""%) respectively, where a and b are so determined that |d{/dz|=1
on |z—1/2|=1/4 and |z—(1417)/2| =1/+/27 respectively. We construct ordinary
triangulations K% and K¥ of G¥ and G¥ as in Figure 7 respectively. By K,
and K, we denote the image triangulations of K% and K* by the mappings ¢3!
and ¢3' respectively. The triangulation K, of the region G,=2—(G,UG,) in
Figure 7 is so constructed that each 2-simplex s of K, is natural or minor
according as |s|N|K+K;|=@ or |s|N|K,+K,|+ @, where if some intersec-
tion is a point then it is interpreted to be vacuous, and the local parameter ¢4(z)
of K, is the identity mapping ¢,(z)=z.

Let u and # be the functions on the present 2 defined in §4.1, and let uj
and %} be the finite element approximations of u and # respectively in the
classes S/(K’) and S”(K") respectively, where K’ is the naturalized triangulation
associated to the present K. To attain our aim it is sufficient to make numerical
calculations of uj and #} (cf. Mizumoto and Hara [13], for the calculation
method).

Table 1 shows the exact value of the modulus M(Q) (see Gaier [9] for the
calculation method), Gaier’s computation results and the values of our finite
element approximations. Furthermore, computation results for the normal sub-
division K!(see Figure 8) of the present K are shown. We note that e(uy)=
e(#;,)=0 in the present example. It can be said that the both of upper and
lower bounds of M(Q) by our method are much closer to the exact value than
those by Gaier.

3. Numerical example 2 (the case of a Riemann surface). Let D,={z] |z|
oo} —{z| 0= x<<oo, y=0} and C, be the upper boundary part of D, lying on
{z] 1<x<oo, y=0}, where z=x-7iy. Let D,={z| |z|<1l}—{z]0<x<1, y=0}
and let C, be the boundary part of D, defined by C,={z]| |z|=1, y=0}. Let &
be the simply-connected covering surface obtained by connecting D, and D,
crosswise along the segment {z|0<x<1, y=0} (cf. Figure 9). Let @ be the
quadrilateral with the opposite sides C, and C,. By symmetricity of @ we
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K¥(G%
1 —;—+i
! K{(Gy) -
C=py(2)=b¥z=1+1)/2
f > 1.
s T 1+
/] |
j ! Java
NS
PAVAVAYIAYA
b % "
VIV
/{ |
:
: |
0 / 1 1
K(Gy) Ky(G) 2
{=pu2)=avz—1/2
K¥GYH

Figure 8. Normal subdivision of example 1.



Modulus of quadrilaterals 317

Table 1. Modulus M(Q) of example 1 (the example of Gaier [9]).

Exact value M(Q)=D(u)=1.279262
fg-4 Upper bound=1. 49435 (0.21509)
Gaier’s B Lower bound=1.09543 (—0.18383)
computation o :
?Egz;liltet? 9N h=0-1 Upper bound=1. 32659 (0.04733)
Lower bound=1. 23368 (—0.04558)
Original triangulation (A=27%)
D(up)+e(un) D(up—a")
Upper —1.28396 = -4
bound =1.28396-+0 =1.65238x 10
=1.28396 (0.00470)
T D(#h~#)
Lower D)+ th) =5.26377x107°
bound — 1
0.7835994-0
Our
computation =1.27616 (—0.00310)
results R
Normal subdivision (h=275)
D(un)+e(un) D(up—4a")
Upper 12 . 5
bound =1. 2804640 =1.51604x 10
=1.28046 (0.00120)
1 D(ap—1#")
D(itp)+e(itn) =4.77743x107¢
Lower 1
bound . S
0.782185-+0
=1.27847 (—0.00079)

() : Deviation from exact value.

D,
Co

00Q0 [eY=X>1]
HXHIX X HHHKN X XXX

Figure 9. Numerical example 2 (the case of a Riemann surface).
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immediately see that M(Q)=1. We aim to obtain good upper and lower ap-
proximate values of AM(Q). The present example is one which exhibits re-
markable validity of our method. Namely, it is shown that an unbounded
covering surface over the z-plane with many inner and corner singularities of
high order, and with a curvilinear boundary is dealt with by our local treatment
method without use of any global conformal mapping.

We construct a triangulation of the bordered region 2 asin Figures 10 and
11. In Figure 10, the closed regions G,\UG:\U---\UG;, Gi\UG, and G, are mapped
onto the regions GYUGHU---UG¥, GFUGF and G¥ respectively by the mappings
{=¢(2)=(1/4)-log z, {=¢(z)=1/z and {=¢4(2)=+z respectively. Further, the
regions G¥, G¥, G¥ and G¥ are mapped onto the regions G¥*, G¥*, G¥* and G¥**
respectively by the mappings Z=¢yQ)= ¥, Z=¢Q)=e ""¢ ¥{—mi/2, Z=
Os(Q)=e"""*-/T—=3ri/4d and Z=¢({)=+"2 ¥ { respectively. Let @y(z)=¢s°¢:(2),
0(2)=io:(2), Ps(2)=¢so1(2) and @(2)=¢ro(2). We note that |[de,/dz|=1
on |z|=1/4, |d¢s/dll=1 on [{|=1/427, |d¢$./d{|=1 on |{—ni/2|=1/~/21,
|d¢s/dlI=1 on |{—3ri/4|=1/4, |d(@e-¢1")/d{|=1 on Re{=(1/4)log4, |d¢./d]
=1 on |{|=1/4and |d¢,/dz|=1 on |z|=1/4. We construct ordinary triangula-
tions K¥*, KF*, K¥*, K¥* and K¥§ of G¥*, GF*, G¥*, G¥* and G¥ as in Figure
11 respectively. By K, K,, K;, K, and K, we denote the image triangulations
of K¥*, K¥*, K¥, K¥* and K by the mappings ¢3', ¢, ¢3!, ¢7* and ¢3!
respectively, and the local parameters of K, K,, K;, K, and K, are Z=¢s(z), Z=
0u(2), Z=0(z), Z=¢,(z) and {=¢4(z) respectively. The triangulations K, and K,
of G, and G, respectively in Figure 11 are so constructed that each 2-simplex
s of K, and K, is natural or minor according as |s|N|K;+K,+K;|=@ or
IsIN| K+ K,+K;| # @, where the local parameter of K,+K; is {=¢,(z). Also
the triangulation K, of G, is so constructed that each 2-simplex s of K is
natural, minor or major according as [s|N|K,\+K;|=@, |sIN|K;|#@ or |s|N
| Ki|# @, where the local parameter of K; is {=¢,(z). Further, the triangula-
tion K of Gg is so constructed that each 2-simplex s of K is natural, minor
or major according as |s|N|K,+K,+K,| =@, |s|N|Ky| =@ or |s|N|K,+K,|
#+ @, where the local parameter of Kj is the identity mapping ¢s(z)=z.

Let u and # be the functions on the present £ defined in §4.1, and let u}
and #; be the finite element approximations of u and # respectively in the
classes S’(K’) and S"(K") respectively, where K’ is the naturalized triangulation
associated to the present K. To attain our aim it is sufficient to make numerical
calculations of u}, and #}.

Now the function u is obtained by the following procedure. Let 4 be the
rectangular domain

4d={W|0<ReW<1, 0<ImW <1},
and let /', and /", be the boundary parts of 4 defined by
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o= {W]0<ImW <1, ReW=0}
I'={W|0<ImW<1, ReW=1}.

and

The conformal map W={(p) such that  is conformally mapped onto 4 so that
Co and C, are mapped onto I’y and I'; respectively, is constructed by the com-
position of=the following mappings, and then u=Ref(p):

(IYfw=+7z;
) = ()"

Z_Zl . Zs_Zz — C“—Cl .C3_Cz
Z'“Zz Z3_Z1 C_Cz Ca—C1 ’
where {,=0, {;=—1, {,=1, Z,=1, Z,=—1 and Z,=1/F with 1/k=3+2/2;
1 (gZ dz
2K
where K=K (k) and K’=K"’(k) are the complete elliptic integrals.
Table 2 shows the values of our finite element approximations. Furthermore,

(iif)

) W=—r (' 2 —(K+iK")),

Table 2. Modulus M(Q) of example 2 (the case of a Riemann surface).

Exact value M@)=D(u)=1.0
Original triangulation (2=0.141421)
U D(up)+e(un) D(up—1')
oo =1.00484+0.103287x 1072 |  =3.53832x 10~
=1.00587 (0. 00587)
I S D(ity—i')
D(ity)+e(ity) =3.53824 1074
Lower 1
bound — }
Finite el . 1.00484+0. 103287 x 1072
mite elemen
approxima- =0.994164 (—0.005836)
tions
Normal subdivision (£=0.0707107)
U D(ut)+e(un) D(up—14")
et =1.00128+-0. 255952 10~ | =3.42089x 107
=1.00154 (0. 00154)
1 D(up,—u')
D7) +e(ith) =3.42716x 10-°
Lower 1
bound —_
1. 00128+-0. 255957 x 103
=0.998466 (—0.001534)

( ) : Deviation from exact value.
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computation results for the normal subdivision K* of the present K are shown.
It can be said that the both of upper and lower bounds of M(Q) are close to
the exact values.

4, Numerical example 3 (the case of an unbounded domain; cf. §4.3 of
[15]). Let 2={z|y>0}, and let C, and C, be the boundary parts of £ defined
by Co={z|—3=x<-1, y=0} and C,={z|1<x<3, y=0} respectively, where
z=x-+iy. Let @ be the quadrilateral with the two opposite sides C, and C,
(cf. Figure 12). We obtain good upper and lower approximate values of the
modulus of Q. See §4.3 of for the details. Table 3 shows the exact
value of the modulus M(Q) which can be calculated by making use of a complete
elliptic integral, and the values of our finite element approximations.

Q
CQ Cl

WA /444248 ¥ /42748

Figure 12. Numerical example 3 (the case of an unbounded domain).

Table 3. Modulus M(Q) of example 3 (the case of an unbounded domain).

Exact value { M(Q)=D (u)=0.781701
Original triangulation (A=0.213758)
U D(un)+e(un) D(up—a")
b —0.782184-10.429347x 107?|  =1.41568x 105
| —=0.782613 (0. 000912)
| 1 D@t —#")
D(ity)+e(iir,) =3. 77307 x 10~°
Lower
bound — 1
. 1. 2808784-0. 150405 x 10-5
Finite element
approxima_ :O. 780714 (—O. 000987)
tions —
Normal subdivision (A=0.106879)
U D(up)+e(uh) D(up—1")
b =0.781968-+-0.107413%10-8|  =1.25553x 10"
=0.782075 (0. 000374)
1 D(iy,—1i")
D(ity)+e(ih) =3.37903%x 10~°
Lower 1
bound —
1. 2795064-0. 381486 x 10-¢
=0.781551 (—0. 000150)

( ): Deviation from exact value.
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5. Numerical example 4 (the case of a curvilinear domain; cf. §4.4 of

[15]). Let 4
2 2
Q= {z L4, y>0},

16 " 15
ivI5 ivI5
Co C;
Q Q2
—4 -1 C, 1 3 4 —4 -1 1 Cs 3 4

Figure 13. Numerical example 4 (the Figure 14. Numerical example 4 (the

case of a curvilinear domain: quadri- case of a curvilinear domain: quadri-

lateral Q). lateral Q7).

Table 4. Modulus M(Q) of example 4 (the case of a curvilinear domain).

Exact value M(Q)=D(u)=1.539330
Original triangulation (A=0.138840)
U D(up)+e(un) D(up—a")
pope —1.540588--0.572262x 107 =1.33022x 10~
=1.540645 (0.00132)
- D(ap,—u')
D(at,)+e(ity) —1.39974x 1075
Lower 1
bound —
.. \ 0. 649700+0. 225117 x 103
Finite element .
approxima- =1.538639 (—0.00069)
tion —
‘ Normal subdivision (A=0.069420)
U D(up)+=(uh) D(up—a')
e —1.539652-+0. 142916 1074  =3.47448x 103
=1.539666 (0. 00034)
1 D(ay—4")
D(ap,)+e(ith) =1.19267x 10"
Lower 1
bound —
0. 649652-0. 558093 x 10~
=1.539153 (—0.00018)

( ): Deviation from exact value.
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and let C, and C, be the boundary parts of £ defined by

2 2
Co={z]3=5xZ4, yZO}U{Z‘ f—6+—%=1’ ng}

and
Ci={z| —1=x<1, y=0}

respectively, where z=x-+:y. Let @ be the quadrilateral with the opposite
sides C, and C, (cf. Figure 13).

Further, let Cj and C! be the boundary parts of 2 defined by

Ci={z]1£x<3, y=0}
and

x2 yZ
! - —_ — -l = >
Ci = {z] —4=x=—1, y=0hU{e| T+ =1, y20}

respectively, where z=x-+7y. Let Q' be the quadrilateral with the opposite
sides C{ and Ci(cf. Figure 14).

We obtain good upper and lower approximate values of the modulus of @
and @Q’. See §4.4 of for the details. Tables 4 and 5 show the exact

Table 5. Modulus M(Q’) of example 4 (the case of a curvilinear domain).

Exact value M(Q") =D (u)=1. 839350
§ Original triangulation (2=0.138840)
U D(up)+<(un) D(up—a')
] =1.84197640. 351532 10|  =5. 86445 10~
=1.842328 (0. 00298)
| 1 D(ay—i)
D(iiy)+(itr) =2.73084x 103
i Lower 1
| bound —
Finite cloment 0. 544588+0. 145580 % 103
m men
approxima. =1.835760 (—0.00359)
tion —
Normal subdivision (A=0.069420)
. D(up)+<(up) D(up—a")
o] =1.840016-+0. 875764 1071|  =b5.22641x 10"
=1.840104 (0. 00075)
1 D(iip—4")
D(ap)+-<(ty) =3.00439x 10
Lower 1
bound —
0.543904+0. 361871 x 10~*
=1.838437 (—0.00091)

( ): Deviation from exact value.
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values of the modulus M(Q) and M(Q’) respectively (see §4.4 of [15] for the
calculation method) and the values of our finite element approximations.
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