Notes on C^{0} sufficiency of quasijets
 Dedicated to Professor Masahisa Adachi on his 60th birthday

By Satoshi KoIke

(Received Aug. 15, 1988)
(Revised March 20, 1989)

Let $\mathcal{E}_{[k]}(n, 1)$ be the set of C^{k} function germs: $\left(\boldsymbol{R}^{n}, 0\right) \rightarrow(\boldsymbol{R}, 0)$ for $k=1,2, \cdots, \infty, \omega$, and let $\mathcal{H}(n, 1)$ be the set of holomorphic function germs: $\left(\boldsymbol{C}^{n}, 0\right) \rightarrow(\boldsymbol{C}, 0)$. If for two function germs $f, g \in \mathcal{E}_{[k]}(n, 1)$ (resp. $\mathscr{H}(n, 1)$) there exists a local homeomorphism $\sigma:\left(\boldsymbol{R}^{n}, 0\right) \rightarrow\left(\boldsymbol{R}^{n}, 0\right)$ (resp. $\sigma:\left(\boldsymbol{C}^{n}, 0\right) \rightarrow\left(\boldsymbol{C}^{n}, 0\right)$) such that $f=g \circ \sigma$, we say that f is C^{0}-equivalent to g and write $f \sim g$. We shall not distinguish between germs and their representatives.

Consider the polynomial function $f:\left(\boldsymbol{R}^{2}, 0\right) \rightarrow(\boldsymbol{R}, 0)$ defined by

$$
f(x, y)=x^{3}+3 x y^{20}+y^{29} .
$$

Then we see that

$$
x^{3}+3 x y^{20} \stackrel{(\mathrm{i})}{=} x^{3}+3 x y^{20}+y^{29} \stackrel{(\mathrm{ii})}{=} x^{3}+y^{29}
$$

Here we interpret the above equivalences as follows (see [6], Example 4.3 also) :
(i) Put $w=j^{21} f(0)=x^{3}+3 x y^{20}$. Then w is C^{0}-equivalent to f. This follows from the Kuiper-Kuo theorem (see Lemma 5 in §3).
(ii) Put $z=x^{3}+y^{29}$. Then z is C^{0}-equivalent to f. Since z is weighted homogeneous of type $(1 / 3,1 / 29)$ with a finite codimension and the weight of the term $3 x y^{20}$ is $1 / 3+20 / 29>1$ (see V.I. Arnol'd [1]).

In the complex case, the equivalence (i) does not hold. For w is weighted homogeneous of type $(1 / 3,1 / 30)$ with an isolated singularity and the weight of the term y^{29} is $29 / 30<1$. Furthermore $y^{29} \notin \mathfrak{M}(\partial w / \partial x, \partial w / \partial y)$. Therefore w is not C^{0}-equivalent to $w+y^{29}=f$ (see M. Suzuki [16] or A. N. Varčenko [18]). (Of course, we can also see this directly by considering the C^{0}-type of $w^{-1}(0)$ and $f^{-1}(0)$, as germs at $0 \in \boldsymbol{C}^{2}$.) Even in the real case, the equivalence (i) does not hold, if we replace plus by minus (i.e. $w=x^{3}-3 x y^{20}$).

PROBLEM. Is there a unified discription for explaining the above interpretations?

[^0]The purpose of this paper is to give a weighted form of the Kuiper-Kuo type theorem for real analytic functions of at most three variables as an answer to the above problem, and the corresponding result for holomorphic functions of general n variables $(n \neq 3)$. We shall describe the results and corollaries in $\S 1$, and prove them in $\S 3$. In $\S 2$, we shall apply the real result for the above example, and explain our results.

The author would like to thank Professors M. Oka, M. Suzuki, and C.T.C. Wall for useful communications.

§ 1. Main results.

Let \boldsymbol{Q}^{+}(resp. \boldsymbol{R}^{+}) denote the set of positive rational numbers (resp. positive real numbers). For $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in \boldsymbol{Q}^{+} \times \cdots \times \boldsymbol{Q}^{+}$with $\min _{1 \leq j \leqslant n} \alpha_{j}=1$, we define the subset of \boldsymbol{Q}^{+}by

$$
I(\alpha)=\left\{\sum_{j=1}^{n} \alpha_{j} \beta_{j} \mid \beta_{j} \in \boldsymbol{N} \cup\{0\}(1 \leqq j \leqq n), \beta_{1}+\cdots+\beta_{n} \geqq 1\right\} .
$$

Which can be expressed as

$$
I(\alpha)=\{\alpha(1), \cdots, \alpha(N), \cdots\}, \quad \alpha(i)<\alpha(i+1) .
$$

We put $\delta_{N}=\alpha(N+1)-\alpha(N)>0$. Note that δ_{N} is constant for all large N.
Let $\alpha(N) \in I(\alpha)$, and f, g be C^{ω} functions where

$$
f(x)=\sum_{\beta \in \mathcal{B}} A_{\beta} x_{1}{ }^{\beta_{1}} \cdots x_{n}{ }^{\beta_{n}} \quad \text { and } \quad g(x)=\sum_{\gamma \in \Gamma} B_{\gamma} x_{1}^{\gamma_{1}} \cdots x_{n}^{\gamma_{n}} .
$$

We say that f and g are $\alpha(N)$-equivalent, if

$$
\sum A_{\beta} x_{1}{ }^{\beta_{1}} \cdots x_{n}{ }^{\beta_{n}}=\Sigma B_{\gamma} x_{1}{ }^{\gamma_{1}} \cdots x_{n}{ }_{n}^{\gamma_{n}}
$$

where the summation in the left side member (resp. the right side member) is taken over all elements $\beta \in \mathfrak{B}$ with $\alpha_{1} \beta_{1}+\cdots+\alpha_{n} \beta_{n} \leqq \alpha(N)$ (resp. all elements $\gamma \in \Gamma$ with $\alpha_{1} \gamma_{1}+\cdots+\alpha_{n} \gamma_{n} \leqq \alpha(N)$). This relation $\widetilde{\alpha(N)}$ is an equivalence relation. Then we denote by $J_{\alpha}^{\alpha(N)}(n, 1)$ the quotient set of $\mathcal{E}_{[\omega]}(n, 1)$ and by $j_{\alpha}^{\alpha(N)} f(0)$ the equivalence class of f by the relation $\widetilde{\alpha(N)}$. We identify $j_{\alpha}^{\alpha(N)} f(0)$ with its polynomial representative

$$
\sum_{\beta} A_{\beta} x_{1}{ }^{\beta_{1}} \cdots x_{n}{ }^{\beta_{n}} \quad \text { where } \beta \in \mathfrak{B}, \alpha_{1} \beta_{1}+\cdots+\alpha_{n} \beta_{n} \leqq \alpha(N) .
$$

Let $f \in \mathcal{E}_{[\omega]}(n, 1)$ such that $0 \in \boldsymbol{R}^{n}$ is a singular point of f. For $\alpha(N) \in$ $I(\alpha)$ with $\alpha_{j}<\alpha(N)(1 \leqq j \leqq n)$, we define

$$
\tilde{\partial}_{\alpha(N)} f(x)=\left(\left|\frac{\partial f}{\partial x_{1}}(x)\right|^{(\alpha(N)-1) /\left(\alpha(N)-\alpha_{1}\right)}, \cdots,\left|\frac{\partial f}{\partial x_{n}}(x)\right|^{(\alpha(N)-1) /\left(\alpha(N)-\alpha_{n}\right)}\right)
$$

near $0 \in \boldsymbol{R}^{n}$.
Remark 1. If $0 \in \boldsymbol{R}^{n}$ is an isolated singular point of $H=j_{\alpha}^{\alpha(N)} f(0)$, then
we have $\alpha_{j}<\alpha(N)(1 \leqq j \leqq n)$. Therefore $\tilde{\partial}_{\alpha(N)} H(x)$ and $\tilde{\partial}_{\alpha(N)} f(x)$ are defined.
Notation. Let $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in \boldsymbol{Q}^{+} \times \cdots \times \boldsymbol{Q}^{+}$. We put

$$
|x|_{\alpha}=\sqrt{\left|x_{1}\right|^{2 / \alpha_{1}}+\cdots+\left|x_{n}\right|^{2 / \alpha_{n}}}
$$

for $x=\left(x_{1}, \cdots, x_{n}\right) \in \boldsymbol{R}^{n}$.
Let $J(\supset[0,1])$ be an open interval. Given a germ of C^{ω} function $F:\left(\boldsymbol{R}^{n} \times J,\{0\} \times J\right) \rightarrow(\boldsymbol{R}, 0)$. Let us consider the family of germs $f_{s}:\left(\boldsymbol{R}^{n}, 0\right) \rightarrow$ $(\boldsymbol{R}, 0), s \in J$ where $f_{s}(x)=F(x, s)$. We say the family $\left\{f_{s} \mid s \in J\right\}$ or $F:\left(\boldsymbol{R}^{n} \times J\right.$, $\{0\} \times J) \rightarrow(\boldsymbol{R}, 0)$ has no coalescing of critical points, if there exists $a>0$ such that

$$
\left|\operatorname{grad} f_{s}(x)\right| \neq 0 \quad \text { for } 0<|x|<a \text { and } s \in J .
$$

Put $\Lambda=\{0\} \times J \subset \boldsymbol{R}^{n} \times J$. Suppose F is non-singular outside Λ. Then the pair ($\boldsymbol{R}^{n} \times J-\Lambda, \Lambda$) is called (a_{F})-regular at $(0, s) \in \Lambda$, if for any sequence of points $\left\{p_{m}\right\}$ in $\boldsymbol{R}^{n} \times J-\Lambda$ tending to $(0, s) \in \Lambda$ such that the plane $T_{p_{m}} F^{-1}\left(F\left(p_{m}\right)\right)$ tends to τ, we have $\tau \supset \Lambda$. The pair ($\boldsymbol{R}^{n} \times J-\Lambda, \Lambda$) is called (a_{F})-regular, if it is (a_{F})-regular at any $(0, s) \in \Lambda$. In the complex case, we can define the concept of no coalescing of critical points and ($\left.a_{F}\right)$-regularity similarly.

Now we state the main results in this paper.
Proposition. Let $H \in J_{\alpha}^{\alpha(N)}(n, 1), G \in \mathcal{E}_{[\omega]}(n, 1)$ with $j_{\alpha}^{\alpha(N)} G(0)=0$, and let $F(x, s)=H(x)+s G(x)$ for $s \in J$. If there exist $C, a>0$ and $\varepsilon>1-\delta_{N}$ such that

$$
\left|\tilde{\partial}_{\alpha(N)} H(x)\right| \geqq C|x|_{\alpha}^{\alpha(N)-\varepsilon} \quad \text { for } \quad|x|<a,
$$

then F has no coalescing of critical points. Furthermore the pair $\left(\boldsymbol{R}^{n} \times J-\Lambda, \Lambda\right)$ is (a_{F})-regular.

Theorem 1. Let $H \in J_{\alpha}^{\alpha(N)}(n, 1)$ where $n \leqq 3$. If there exist $C, a>0$ and $\varepsilon>1-\delta_{N}$ such that

$$
\left|\tilde{\partial}_{\alpha(N)} H(x)\right| \geqq C|x|_{\alpha}^{\alpha(N)-\varepsilon} \quad \text { for } \quad|x|<a,
$$

then for any $G \in \mathcal{E}_{[\omega]}(n, 1)$ with $j_{\alpha}^{\alpha(N)} G(0)=0, H+G$ is C^{0}-equivalent to H.
REMARK 2. (1) If $0 \in \boldsymbol{R}^{n}$ is a regular point of H, then for any $G \in \mathcal{E}_{[\omega]}(n, 1)$ with $j_{\alpha}^{\alpha(N)} G(0)=0, H+G$ is C^{0}-equivalent to H (any $\alpha \in \boldsymbol{Q}^{+} \times \cdots \times \boldsymbol{Q}^{+}$and $\alpha(N) \in I(\alpha))$. This follows from the implicit function theorem.
(2) Since $1 \geqq \delta_{N}>0$, we have $\varepsilon>1-\delta_{N} \geqq 0$.
(3) In [7], the author proposed a partition problem on real analytic functions. In attempt to solve it, we have obtained this theorem.
(4) Thanks to J. Bochnak-J.-J. Risler [2] and T.C. Kuo [12], we think the system of weights in rational numbers only.

Problem. Does the above theorem also hold for $n \geqq 4$? (See Remark 5 in § 3 also.)

Let [] denote the Gauss symbol.
Corollary 1. Suppose $H \in J_{\alpha}^{\alpha(N)}(n, 1)$ ($n \leqq 3$) satisfies the hypothesis of Theorem 1. Then $H+G$ is C^{0}-equivalent to H for any $G \in \mathcal{E}_{[[\alpha(N)]+1]}(n, 1)$ with $j_{\alpha}^{\alpha(N)} G(0)=0$.

REmARK 3. If $\alpha_{1} \beta_{1}+\cdots+\alpha_{n} \beta_{n} \leqq \alpha(N)$, then $\beta_{1}+\cdots+\beta_{n} \leqq[\alpha(N)]$. Therefore we can define $J_{\alpha}^{\alpha(N)}(n, 1)$ in $\mathcal{E}_{[k]}(n, 1)$ for $k=[\alpha(N)],[\alpha(N)]+1, \cdots$.

In this paper, a polynomial $H\left(x_{1}, \cdots, x_{n}\right)=\sum_{\beta \in \mathfrak{B}} C_{\beta} x_{1}{ }^{\beta_{1}} \cdots x_{n}{ }^{\beta n}$ is called weighted homogeneous of type ($\alpha_{1} / r, \cdots, \alpha_{n} / r$) where $r, \alpha_{j}(1 \leqq j \leqq n) \in \boldsymbol{Q}^{+}$, if

$$
\min _{1 \leq j \leq n} \alpha_{j}=1 \quad \text { and } \quad \frac{\alpha_{1}}{r} \beta_{1}+\cdots+\frac{\alpha_{n}}{r} \beta_{n}=1
$$

for any multiindex $\beta=\left(\beta_{1}, \cdots, \beta_{n}\right) \in \mathfrak{B}$.
Corollary 2. Let $H:\left(\boldsymbol{R}^{n}, 0\right) \rightarrow(\boldsymbol{R}, 0)(n \leqq 3)$ be a weighted homogeneous polynomial of type ($\left.\alpha_{1} / r, \cdots, \alpha_{n} / r\right)$ with an isolated singularity, and let $G \in \mathcal{E}_{[[r]+1]}(n, 1)$ such that $j^{[r]+1} G(0)=\sum_{\beta \in \mathfrak{B}} A_{\beta} x_{1}{ }^{\beta_{1}} \cdots x_{n}{ }^{\beta_{n}}$. If $\sum_{j=1}^{n}\left(\alpha_{j} / r\right) \beta_{j}>1$ (resp. $\left.\sum_{j=1}^{n}\left(\alpha_{j} / r\right) \beta_{j} \geqq 1\right)$ for any $\beta \in \mathfrak{B}$, then $H+G$ is C^{0}-equivalent to H (resp. then there exists $\varepsilon>0$ such that $H+s G$ is C^{0}-equivalent to H for $|s|<\varepsilon$).

Remark 4 (J. Damon-T. Gaffney, [4], Corollary 5). If H has an algebraically isolated singularity, then the above corollary holds for general n variables case. (See the proof of Corollary 1 in $\S 3$ also.)

In the complex case, we define $I(\alpha), \delta_{N}, J_{\alpha}^{\alpha(N)}(n, 1), \tilde{\partial}_{\alpha(N)}$, and $\left|\left.\right|_{\alpha}\right.$ for a given system of the weights $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ with $\min _{1 \leq j \leq n} \alpha_{j}=1$, similarly as in the real case. Then we have the corresponding complex result to Theorem 1.

Theorem 2. Let $H \in J_{\alpha}^{\alpha(N)}(n, 1)$ where $n \neq 3$. If there exist $C, a>0$ and $\varepsilon>1-\boldsymbol{\delta}_{N}$ such that

$$
\left|\tilde{\partial}_{\alpha(N)} H(x)\right| \geqq C|x|_{\alpha}{ }^{\alpha(N)-\varepsilon} \quad \text { for } \quad|x|<a,
$$

then for any $G \in \mathscr{F}(n, 1)$ with $j_{\alpha}^{\alpha(N)} G(0)=0, H+G$ is C^{0}-equivalent to H.

§ 2. Applications.

Let $f:\left(\boldsymbol{R}^{n}, 0\right) \rightarrow(\boldsymbol{R}, 0)$ be a C^{ω} function with an isolated singularity. Then, for any $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in \boldsymbol{Q}^{+} \times \cdots \times \boldsymbol{Q}^{+}$with $\min _{1 \leq j \leq n} \alpha_{j}=1$, there exist $\alpha(N) \in$ $I(\alpha), C, a>0$, and $\varepsilon>1-\delta_{N}$ such that

$$
\left|\tilde{\partial}_{\alpha(N)} H(x)\right| \geqq C|x|_{\alpha}{ }^{\alpha(N)-\varepsilon} \quad \text { for } \quad|x|<a,
$$

where $H(x)=j_{\alpha}^{\alpha(N)} f(0)$. Therefore Theorem 1 asserts that given any system of weights, a C^{ω} function ($n \leqq 3$) with an isolated singularity has C^{0} finite
determinacy related to it.

Let us go back to the example in the introduction. We can interpret the equivalence (i) by applying Theorem 1 with the system of weights $\alpha=(1,1)$ ($\alpha(N)=21$), and the equivalence (ii) with $\alpha=(29 / 3,1)(\alpha(N)=29)$. Furthermore the theorem holds as $\varepsilon=1$ in both cases. For $\alpha=(1,1)$ and $\alpha(N)=21$ (resp. $\alpha=(29 / 3,1)$ and $\alpha(N)=29)$, let $h \in \mathcal{E}_{[\omega]}(2,1)$ with $j_{\alpha}^{\alpha(N-1)} h(0)=0$. Then it follows from the Kuiper-Kuo theorem and Corollary 2 that if all coefficients of terms of degree 21 (resp. 29) related to the weight $\alpha=(1,1)$ (resp. $\alpha=(29 / 3,1)$) in h are sufficiently small, then $f+h$ is C^{0}-equivalent to f. Namely, f is controling not only terms inside the shaded region in Figure, but also local terms on the boundary in the meaning of C^{0}-equivalence.

There are interesting works on the topological triviality of deformations of a complex function germ, assuring certain conditions on the Newton boundary (e. g. V.I. Arnol'd [1], A. G. Kouchnirenko [8], M. Oka [15], J. Damon-T. Gaffney [4], M. Buchner-W. Kucharz [3]). The works [3] and [4] contain the corresponding real results, too. On the other hand, E. Yoshinaga has established π-MAT (which is stronger than topological triviality) under assumptions on the Newton boundary in the real case ([19]). The approaches based on the Newton boundary are very effective for the problem of topological
triviality in the complex case. In fact, this is intrinsic in the semi-quasihomogeneous case (V.I. Arnol'd [1], M. Suzuki [16], A. N. Varčenko [18]). But the above example shows that this is not necessarily so in the real case. Therefore our results on C^{0} determinacy of analytic functions are formulated in terms of an arbitrary system of weights, without using the Newton boundary.

§3. Proof of the results.

Proof of Proposition. Let

$$
G(x)=\sum_{\beta \in \mathscr{F}} A_{\beta} x_{1}{ }^{\beta_{1}} \cdots x_{n}{ }^{\beta_{n}} \in \mathcal{E}_{[\omega]}(n, 1)
$$

with $j_{\alpha}^{\alpha(N)} G(0)=0$.
Lemma 1. There exist $K>0$ and a neighborhood W of 0 in \boldsymbol{R}^{n} such that

$$
|G(x)| \leqq K|x|_{\alpha}^{\alpha(N)+\delta_{N}} \quad \text { in } \quad W \text {. }
$$

Proof. Put $q=\left[\alpha(N)+\delta_{N}\right]$. Note that $q+1>\alpha(N)+\delta_{N}$ and $|x|_{\alpha} \geqq|x|$ for $|x| \leqq 1$. We denote by $G_{1}(x)$ the sum of all terms in $G(x)$ with $\beta_{1}+\cdots+\beta_{n} \leqq q$, and denote by $G_{2}(x)$ the sum of the remainder in $G(x)$. Then we have $G(x)=G_{1}(x)+G_{2}(x)$ and $j^{a} G_{2}(0)=0$. Thus there exist $K_{2}>0$ and a neighborhood W_{2} of 0 in \boldsymbol{R}^{n} such that

$$
\begin{equation*}
\left|G_{2}(x)\right| \leqq K_{2}|x|^{q+1} \leqq K_{2}|x|_{\alpha}^{q+1} \quad \text { in } \quad W_{2} \cap\{|x| \leqq 1\} \tag{3.1}
\end{equation*}
$$

Let $S(x)=x_{1} \beta_{1} \cdots x_{n}{ }^{\beta_{n}}$ where $\sum_{j=1}^{n} \alpha_{j} \beta_{j} \geqq \alpha(N)+\delta_{N} . \quad$ If we set $K_{1}=$ $\max _{|x|_{\alpha=1}}|S(x)|>0$, then we have

$$
\begin{equation*}
|S(x)| \leqq K_{1}|x|_{\alpha}^{\alpha(N)+\delta_{N}} \quad \text { for } \quad|x|_{\alpha} \leqq 1 . \tag{3.2}
\end{equation*}
$$

Since the number of terms in $G_{1}(x)$ is finite, the statement of this lemma follows from (3.1) and (3.2),

Let $H \in J_{\alpha}^{\alpha(N)}(n, 1)$ satisfy the hypothesis of Proposition.
Lemma 2. There exists $a_{0}>0$ such that

$$
|\operatorname{grad}(H+G)(x)| \geqq \frac{C}{2}|x|_{\alpha^{\alpha(N)-\varepsilon}} \quad \text { for } \quad|x|<a_{0}
$$

Proof. Put

$$
\begin{aligned}
W(x)= & \left(\left(\left|\frac{\partial H}{\partial x_{1}}(x)\right|+\left|\frac{\partial G}{\partial x_{1}}(x)\right|\right)^{(\alpha(N)-1) /\left(\alpha(N)-\alpha_{1}\right)}\right. \\
& \left.\cdots,\left(\left|\frac{\partial H}{\partial x_{n}}(x)\right|+\left|\frac{\partial G}{\partial x_{n}}(x)\right|\right)^{(\alpha(N)-1) /\left(\alpha(N)-\alpha_{n}\right)}\right)
\end{aligned}
$$

We first show the following

Assertion. There exists $a_{1}>0$ such that

$$
\left|\tilde{\partial}_{\alpha(N)}(H+G)(x)\right| \geqq \frac{1}{2}|W(x)| \quad \text { for } \quad|x|<a_{1} .
$$

Assume that the assertion does not hold. Then, by the curve selection lemma ([14]), there exists a C^{ω} curve $\lambda:[0, \rho) \rightarrow \boldsymbol{R}^{n}(\rho>0)$ with $\lambda(0)=0$ such that

$$
\begin{equation*}
\left|\tilde{\partial}_{\alpha(N)}(H+G)(\lambda(t))\right|<\frac{1}{2}|W(\lambda(t))| \quad \text { for } \quad t>0 \tag{3.3}
\end{equation*}
$$

Let us write
where

$$
\begin{array}{llll}
\lambda_{j}(t) & =a_{j}(1) t^{d_{j}(1)}+a_{j}(2) t^{d_{j}(2)}+\cdots, \\
a_{j}(i) \neq 0 & \text { if } & \lambda_{j} \not \equiv 0 & \text { (for any } i) \\
d_{j}(1)=\infty & \text { if } & \lambda_{j} \equiv 0 & (1 \leqq j \leqq n),
\end{array}
$$

and put $d=\min _{1 \leq j \leq n}\left\{d_{j}(1) / \alpha_{j}\right\}>0$.
By a similar argument as in Lemma 1, there exist $K, b>0$ such that

$$
\left|\frac{\partial G}{\partial x_{j}}(x)\right| \leqq K|x|_{\alpha}^{\alpha(N)+\delta_{N}-\alpha_{j}} \quad \text { for } \quad|x|<b(1 \leqq j \leqq n) .
$$

Therefore we have

$$
\begin{equation*}
O\left(\frac{\partial G}{\partial x_{j}}(\lambda(t))\right) \geqq d\left(\alpha(N)+\delta_{N}-\alpha_{j}\right) \quad(1 \leqq j \leqq n), \tag{3.4}
\end{equation*}
$$

where $O(Q(t))$ denotes the order of Q in t.
Furthermore it follows from the hypothesis of Proposition that

$$
\left|\tilde{\partial}_{\alpha(N)} H(\lambda(t))\right| \geqq C|\lambda(t)|_{\alpha}^{\alpha(N)-\varepsilon} \quad \text { for } \quad t \geqq 0 .
$$

Therefore, by the curve selection lemma, there exists k with $1 \leqq k \leqq n$ such that

$$
O\left(\left|\frac{\partial H}{\partial x_{k}}(\lambda(t))\right|^{(\alpha(N)-1) /\left(\alpha(N)-\alpha_{k}\right)}\right) \leqq d(\alpha(N)-\varepsilon) .
$$

Thus we have

$$
\begin{equation*}
O\left(\frac{\partial H}{\partial x_{k}}(\lambda(t))\right) \leqq d(\alpha(N)-\varepsilon)\left(\alpha(N)-\alpha_{k}\right) /(\alpha(N)-1) \tag{3.5}
\end{equation*}
$$

Note. For $1 \leqq j \leqq n$, we have

$$
d(\alpha(N)-\varepsilon)\left(\alpha(N)-\alpha_{j}\right) /(\alpha(N)-1)<d\left(\alpha(N)+\delta_{N}-\alpha_{j}\right) .
$$

Proof. Since $\varepsilon>1-\delta_{N}$ and $\alpha_{j} \geqq 1$, we have

$$
\begin{aligned}
& (\alpha(N)-\varepsilon) /(\alpha(N)-1)<\left(\alpha(N)+\delta_{N}-1\right) /(\alpha(N)-1) \\
= & 1+\delta_{N} /(\alpha(N)-1) \leqq 1+\delta_{N} /\left(\alpha(N)-\alpha_{j}\right)=\left(\alpha(N)+\delta_{N}-\alpha_{j}\right) /\left(\alpha(N)-\alpha_{j}\right) .
\end{aligned}
$$

It follows from Note and (3.4) that for any k satisfying the condition (3.5),

$$
\left\{\begin{array}{l}
O\left(\left|\frac{\partial H}{\partial x_{k}}(\lambda(t))+\frac{\partial G}{\partial x_{k}}(\lambda(t))\right|\right) \leqq d(\alpha(N)-\varepsilon)\left(\alpha(N)-\alpha_{k}\right) /(\alpha(N)-1), \\
O\left(\left|\frac{\partial H}{\partial x_{k}}(\lambda(t))\right|+\left|\frac{\partial G}{\partial x_{k}}(\lambda(t))\right|\right) \leqq d(\alpha(N)-\varepsilon)\left(\alpha(N)-\alpha_{k}\right) /(\alpha(N)-1)
\end{array}\right.
$$

Therefore we have

$$
\left\{\begin{array}{l}
O\left(\left|\frac{\partial H}{\partial x_{k}}(\lambda(t))+\frac{\partial G}{\partial x_{k}}(\lambda(t))\right|^{(\alpha(N)-1) /\left(\alpha(N)-\alpha_{k}\right)}\right) \leqq d(\alpha(N)-\varepsilon), \tag{3.6}\\
O\left(\left(\left|\frac{\partial H}{\partial x_{k}}(\lambda(t))\right|+\left|\frac{\partial G}{\partial x_{k}}(\lambda(t))\right|\right)^{(\alpha(N)-1) /\left(\alpha(N)-\alpha_{k}\right)}\right) \leqq d(\alpha(N)-\varepsilon) .
\end{array}\right.
$$

On the other hand, for any j not satisfying the condition (3.5), we have

$$
O\left(\frac{\partial H}{\partial x_{j}}(\lambda(t))\right)>d(\alpha(N)-\varepsilon)\left(\alpha(N)-\alpha_{j}\right) /(\alpha(N)-1)
$$

Therefore we have

$$
\left\{\begin{array}{l}
O\left(\left|\frac{\partial H}{\partial x_{j}}(\lambda(t))+\frac{\partial G}{\partial x_{j}}(\lambda(t))\right|^{(\alpha(N)-1) /\left(\alpha(N)-\alpha_{j}\right)}\right)>d(\alpha(N)-\varepsilon), \tag{3.7}\\
O\left(\left(\left|\frac{\partial H}{\partial x_{j}}(\lambda(t))\right|+\left|\frac{\partial G}{\partial x_{j}}(\lambda(t))\right|\right)^{(\alpha(N)-1) /\left(\alpha(N)-\alpha_{j}\right)}\right)>d(\alpha(N)-\varepsilon)
\end{array}\right.
$$

The conditions (3.4), (3.6) and (3.7) contradict (3.3), This completes the proof of Assertion.

Now we show Lemma 2 by using this assertion. For $|x|<a_{1}$, we have

$$
\left|\tilde{\partial}_{\alpha(N)}(H+G)(x)\right| \geqq \frac{1}{2}|W(x)| \geqq \frac{1}{2}\left|\tilde{\partial}_{\alpha(N)} H(x)\right| \geqq \frac{C}{2}|x|_{\alpha}^{\alpha(N)-\varepsilon} .
$$

Thus there exists $a_{0}>0$ such that

$$
|\operatorname{grad}(H+G)(x)| \geqq\left|\tilde{\partial}_{\alpha(N)}(H+G)(x)\right| \geqq \frac{C}{2}|x|_{\alpha}^{\alpha(N)-\varepsilon}
$$

for $|x|<a_{0}$.
Let $J(\supset[0,1])$ be an open interval. Consider the C^{ω} function $F:\left(\boldsymbol{R}^{n} \times J,\{0\} \times J\right) \rightarrow(\boldsymbol{R}, 0)$ defined by

$$
F(x, s)=H(x)+s G(x)
$$

Then we have
Lemma 3. There exists $a_{0}>0$ such that

$$
\left|\operatorname{grad}_{(x, s)} F(x, s)\right| \geqq \frac{C}{2}|x|_{\alpha}^{\alpha(N)-\varepsilon}
$$

for $|x|<a_{0}$ and $s \in J$. Furthermore $\left\{f_{s}\right\}$ has no coalescing of critical points.

Proof. By modifying the proof of Assertion, it is easy to see that there exists $a_{1}>0$ such that

$$
\begin{aligned}
\left|\tilde{\partial}_{\alpha(N)}(H+s G)(x)\right| \geqq \frac{1}{2} \left\lvert\,\left(\left(\left|\frac{\partial H}{\partial x_{1}}(x)\right|+\left|\frac{\partial(s G)}{\partial x_{1}}(x)\right|\right)^{(\alpha(N)-1) /\left(\alpha(N)-\alpha_{1}\right)},\right.\right. \\
\left.\cdots,\left(\left|\frac{\partial H}{\partial x_{n}}(x)\right|+\left|\frac{\partial(s G)}{\partial x_{n}}(x)\right|\right)^{(\alpha(N)-1) /\left(\alpha(N)-\alpha_{n}\right)}\right) \mid
\end{aligned}
$$

for $|x|<a_{1}$ and $s \in J$. As in the proof of Lemma 2, there exists $a_{0}>0$ such that

$$
\left|\operatorname{grad}_{x} F(x, s)\right| \geqq \frac{C}{2}|x|_{\alpha}^{\alpha(N)-\varepsilon} \quad \text { for } \quad|x|<a_{0} \text { and } s \in J .
$$

Therefore Lemma 3 follows immediately.
It follows from Lemmas 1,3 that there exists $a_{2}>0$ such that

$$
|G(x)| /\left|\operatorname{grad}_{(x, s)} F(x, s)\right| \leqq \frac{2 K}{C}|x|_{\alpha}^{\varepsilon+\delta_{N}}
$$

for $0<|x|<a_{2}$ and $s \in J$. Therefore the pair $\left(\boldsymbol{R}^{n} \times J-\Lambda, \Lambda\right)$ is (a_{F})-regular. This completes the proof of Proposition.

Remark 5. In general, it does not seem that the following properties hold.
(1) The pair $\left(F^{-1}(0)-\Lambda, \Lambda\right)$ is Whitney (b)-regular (see J. Mather [13]).
(2) Let us consider the Kuo vector field $\{v(x)\}$ using F in the above proof (see T.C. Kuo [10]). Then $\{v(x)\}$ is a local Liapounov trivialization along A at a point $(0, s) \in \Lambda$ (see T.C. Kuo [11], Appendix 2).

Proof of Theorem 1. We recall King's results ([5]) on no coalescing of critical points:

Lemma 4. If $f_{s}:\left(\boldsymbol{R}^{n}, 0\right) \rightarrow(\boldsymbol{R}, 0)(n \leqq 3), s \in \boldsymbol{R}^{p}$ is a continuous family of germs of analytic functions with no coalescing of critical points, then there is a continuous family of homeomorphism germs $h_{s}:\left(\boldsymbol{R}^{n}, 0\right) \rightarrow\left(\boldsymbol{R}^{n}, 0\right)$ such that $f_{0}=f_{s} \circ g_{s}$ for all $s \in \boldsymbol{R}^{p}$.

Remark 6. (1) Lemma 4 for $n \geqq 5$ does not hold.
(2) Lemma 4 in the complex case holds for $n \neq 3$.

Let $J(\supset[0,1])$ be an open interval, and consider the function $F:\left(\boldsymbol{R}^{n} \times J,\{0\} \times J\right) \rightarrow(\boldsymbol{R}, 0)$ defined by

$$
F(x, s)=H(x)+s G(x)
$$

as above. Then it follows from Proposition and Lemma 4 that $H+G$ is C^{0} equivalent to H.

Proof of Corollary 1. We first recall the Kuiper-Kuo theorem (N. Kuiper [9], T. C. Kuo [10]):

Lemma 5. Let $H \in J^{r}(n, 1)$. If there exist $C, a, \varepsilon>0$ such that

$$
|\operatorname{grad} H(x)| \geqq C|x|^{r-\varepsilon} \quad \text { for } \quad|x|<a,
$$

then H is C^{0}-sufficient in $\mathcal{E}_{[r+1]}(n, 1)$ i.e. for any $G \in \mathcal{E}_{[r+1]}(n, 1)$ with $j^{r} G(0)=0$, $H+G$ is C^{0}-equivalent to H.

Fact. Put $\varepsilon_{0}=\varepsilon+\delta_{N}-1>0$. Then we have

$$
\alpha(N)-\varepsilon \leqq[\alpha(N)]-\varepsilon_{0} .
$$

Put $z=j^{[\alpha(N)]}(H+G)(0)$. Then, by Remark 3, we have $j_{\alpha}^{\alpha(N)} z(0)=H$. Therefore it follows from Theorem 1 that z is C^{0}-equivalent to H. On the other hand, by the proof of Lemma 2, we see that z satisfies the same hypothesis as H. Therefore it follows from Fact and Lemma 5 that z is C^{0}-equivalent to $H+G$. Thus $H+G$ is C^{0}-equivalent to H.

Proof of Corollary 2. Let $H:\left(\boldsymbol{R}^{n}, 0\right) \rightarrow(\boldsymbol{R}, 0)$ be a weighted homogeneous polynomial of type ($\alpha_{1} / r, \cdots, \alpha_{n} / r$) with an isolated singularity. Then we can define

$$
\tilde{\partial} H(x)=\left(\left|\frac{\partial H}{\partial x_{1}}(x)\right|^{(r-1) /\left(r-\alpha_{1}\right)}, \cdots,\left|\frac{\partial H}{\partial x_{n}}(x)\right|^{(r-1) /\left(r-\alpha_{n}\right)}\right)
$$

near $0 \in \boldsymbol{R}^{n}$. The next lemma follows from the proof of Theorem 3.1 in V.I. Arnol'd [1].

Lemma 6. If H has an isolated singularity, then there exist $C>0$ and a neighborhood U of 0 in \boldsymbol{R}^{n} such that

$$
|\tilde{\partial} H(x)| \geqq C|x|_{a}^{r-1} \quad \text { in } U
$$

Remark 7. Lemma 6 for homogeneous polynomials has been proved by N. Kuiper ([9], Theorem 4B).

Corollary 2 is an immediate consequence of Theorem 1 Corollary 1) and Lemma 6. Here note that "Theorem 1] as $\varepsilon=1$ " holds in this case.

Proof of Theorem 2. Let $J(\supset[0,1])$ be an open interval, and consider the function $F:\left(\boldsymbol{C}^{n} \times J,\{0\} \times J\right) \rightarrow(\boldsymbol{C}, 0)$ defined by

$$
F(x, s)=H(x)+s G(x)
$$

Then we see that F has no coalescing of critical points, by using the same argument as in the proof of Proposition. Therefore it follows from Remark 6 (2) that $H+G$ is C^{0}-equivalent to H in the case $n \neq 3$.

References

[1] V.I. Arnol'd, Normal forms of functions in the neighborhood of degenerate critical points, Uspekhi Mat. Nauk, 29 (1974), 11-49 = Russian Math. Surveys, 29 (1974), 19-48.
[2] J. Bochnak and J.-J. Risler, Sur les exposants de Łojasiewicz, Comment. Math. Helv., 50 (1975), 493-507.
[3] M. Buchner and W. Kucharz, Topological triviality of a family of zero-sets, Proc. Amer. Math. Soc., 102 (1988), 699-705.
[4] J. Damon and T. Gaffney, Topological triviality of deformations of functions and Newton filtrations, Invent. Math., 72 (1983), 335-358.
[5] H. King, Topological type in families of germs, Invent. Math., 62 (1980), 1-13.
[6] S. Koike, C^{0}-sufficiency of jets via blowing-up, J. Math. Kyoto Univ., 28 (1988), 605-614.
[7] S. Koike, A partition problem on analytic functions, Singularities and Differential Geometry, Hokkaido University Technical Report Series in Math., 7 (1988).
[8] A. G. Kouchnirenko, Polyhèdres de Newton et nombres de Milnor, Invent. Math., 32 (1976), 1-31.
[9] N. Kuiper, C^{1}-equivalence of functions near isolated critical points, Symposium on Infinite Dimensional Topology (Baton Rouge 1967), Ann. of Math. Stud., 69 (1972), 199-218.
[10] T.C. Kuo, On C^{0}-sufficiency of jets of potential functions, Topology, 8 (1969), 167-171.
[11] T. C. Kuo, Characterizations of v-sufficiency of jets, Topology, 11 (1972), 115-131.
[12] T.C. Kuo, Computation of Łojasiewicz exponent of $f(x, y)$, Comment. Math. Helv., 49 (1974), 201-213.
[13] J. Mather, Notes on topological stability, Harvard University notes, 1970.
[14] J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Stud., 61, 1968.
[15] M. Oka, On the bifurcation of the multiplicity and topology of the Newton boundary, J. Math. Soc. Japan, 31 (1979), 435-450.
[16] M. Suzuki, The stratum with constant Milnor number of a mini-transversal family of a quasihomogeneous function of corank two, Topology, 23 (1983), 101-115.
[17] J. Timourian, The invariance of Milnor's number implies topological triviality, Amer. J. Math., 99 (1977), 437-446.
[18] A. N. Varčenko, A lower bound for the codimension of the stratum $\mu=$ const in terms of the mixed Hodge structure, Vestnik Moskov. Univ., 37 (1982), 28-31.
[19] E. Yoshinaga, The modified analytic trivialization of real analytic families via blowing-ups, J. Math. Soc. Japan, 40 (1988), 161-179.

Satoshi Koike
Department of Mathematics
Hyogo University of Teacher Education
Hyogo 673-14
Japan

[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 63740040, 62540047, 63540043), Ministry of Education, Science and Culture.

