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Consistency of Menas’ conjecture
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In this paper we will prove the consistency of the following conjecture of
Menas [8] with ZFC. Menas’ conjecture: For every regular uncountable
cardinal rc and $\lambda$ a cardinal $>\kappa$, if $X$ is a stationary subset of $P_{\kappa}\lambda$ then $X$ sPlits
into $\lambda<\kappa$ many disjoint stationary subsets. We will prove the consistency of the
conjecture by showing that it holds in $L$ , the class of constructible sets.

Baumgartner and Taylor [1] have shown the consistency of the failure of Menas’
conjecture with ZFC. Thus we can conclude that Menas’ conjecture is inde-
pendent of ZFC. Throughout this PaPer we let $\kappa$ denote a regular uncountable
cardinal and $\lambda$ a cardinal $>\kappa$ .

Baumgartner and DiPrisco proved that if $0^{\#}$ does not exist then every sta-
tionary subset of $P_{\kappa}\lambda$ splits into $\lambda$ many disjoint stationary subsets. In [6], we
have proved the following, strengthening their result slightly using generic
ultrapowers.

THEOREM 1. If there is a stationary subset of $P_{\kappa}\lambda$ which does not split into
$\lambda$ many disjoint stationary subsets, then $b^{\#}$ exists for every bounded subset $b$ of $\lambda$ .

The proof of Theorem 1 was based on the following two results.

THEOREM 2 (Foreman [2]). If I is a countably compleie $\lambda^{+}$-saturated ideal
on $P_{\kappa}\lambda$ then I is PreciPitous.

THEOREM 3 ([6]). If there is a precipitous ideal on $P_{\kappa}\lambda$ then $b^{\#}$ exists for
every bounded subset $b$ of $\lambda$ .

Let NS($\kappa$, $\lambda$) denote the nonstationary ideal on $P_{\kappa}\lambda$ . Thus $NS(\kappa, \lambda)$ is a $\kappa-$

complete normal idea. If $X$ is a stationary subset of $P_{\kappa}\lambda$ which does not split
into $\lambda$ many disjoint stationary subsets then $NS$( $\kappa,$

$\lambda$) $|X$ is a $\lambda$-saturated $\kappa$-com-
plete normal ideal on $P_{\kappa}\lambda$ where

NS(\kappa , $\lambda$) $|X=\{Y\subseteqq P_{\kappa}\lambda:Y\cap X\in NS(\kappa, \lambda)\}$ .
Thus by Theorem 2, the existence of a stationary subset of $P_{\kappa}\lambda$ which does not
split into $\lambda$ many disjoint stationary subsets implies the existence of a precipitous
ideal on $P_{\kappa}\lambda$ .
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Unfortunately the above results do not provide us wlth a method to split
stationary subsets of $9_{\kappa}\lambda$ into $\lambda^{<\kappa}$ many disjoint stationary subsets when $\lambda^{<\kappa}>\lambda$ .
The next result is the tool to overcome this difficulty.

LEMMA 4. If $\lambda^{<\kappa}=2^{\lambda}$ and $\kappa^{<\kappa}<2^{\lambda}$ then every stationary subset of $g_{\kappa}\lambda$ splits
into $\lambda^{<\kappa}$ many disjoint stationary subsets.

PROOF. We will use the following well-known result of Kueker [4].

Kueker’s Theorem: For every $W\subseteqq 9_{\kappa}\lambda,$ $W$ contains a $cub$ (closed and un-
bounded) subset of $g_{\kappa}\lambda$ iff there exists a function $f:[\lambda]^{<\omega}arrow\Xi_{\kappa}^{)}\lambda$ such that $\{s\in$

$f_{\kappa}\lambda:f’’[s]^{<\omega}19(s)\}\subseteqq W$ . For each $f:[\lambda]^{<\omega}arrow 9_{\kappa}\lambda$, we let $A(f)=\{s\in 9_{\iota}\lambda:f’’[s]^{<\omega}$

$\subseteqq 9(s)\}$ .
NOW assume $\lambda^{<\kappa}=2^{\lambda}$ and $\kappa^{<t}<\lambda^{<\kappa}$ . Let $X$ be a stationary subset of $g_{\kappa}\lambda$ .

Let $\langle f_{a} : \alpha<2^{\lambda}\rangle$ enumerate the functions from $[\lambda]^{<\omega}$ into $9_{\kappa}\lambda$ .
CLAIM 1. Given any function $f:[\lambda]^{<\omega}arrow 9_{\kappa}^{1}\lambda$ we have

$|\{\alpha<2^{\lambda} : A(f_{\alpha})\subseteqq A(f)\}|=2^{\lambda}$ .
PROOF OF CLAIM 1. For each $B\subseteqq[\lambda]^{<\omega}$ , choose $f_{B}$ : $[\lambda]^{<(t)}arrow 9_{\kappa}\lambda$ to be a

function such that $f_{B}(a)=f(a)$ for each $a\in B$ and $f_{B}(a)\supseteqq f(a)$ for each $a\in$

$[\lambda]^{<\omega}\backslash B$ . It is clear that for each $B\subseteqq[\lambda]^{<\omega},$ $A(f_{B})\subseteqq A(f)$ and $f_{B}\neq f_{B’}$ provided
$B\neq B’$ .

CLAIM 2. If $Y$ is an unbounded subset of $g_{\kappa}\lambda$ then $|Y|=2^{\lambda}$ .
PROOF OF CLAIM 2. Since $9_{\kappa}\lambda\subseteqq\bigcup_{l\in Y}9(s)$ , we must have $\lambda^{<\kappa}\leqq\kappa^{<\kappa}|Y|$ . But

since $\lambda^{<\kappa}=2^{\lambda}$ and $\kappa^{<\kappa}<\lambda^{<\kappa}$, we must have $|Y|=2^{\lambda}$ .
Suppose $X$ is a stationary subset of $g_{\kappa}\lambda$ . Now for each $\alpha<2^{\lambda}$ , we will

pick a sequence $\langle s_{\beta}^{\alpha} : \beta<\alpha\rangle$ of distinct elements from $X$ by induction on $\alpha$ .
We will describe the $\alpha$-th stage of induction. Since $X\cap A(f_{\alpha})$ is stationary, by

Claim 2 we have $|X\cap A(f_{a})|=2^{\lambda}$ . Hence $|X\cap A(f_{a})\backslash$ { $s^{\eta_{\beta}}$ : $\eta<\alpha$ and $\beta<\eta$ } $|=$

$2^{\lambda}$ . Pick $\alpha$ many distinct elements from $X\cap A(f_{\alpha})\backslash$ { $s^{\eta_{\beta}}$ : $\eta<\alpha$ and $\beta<\eta$ }. Let
these elements form $\langle s_{\beta}^{\alpha} : \beta<\alpha\rangle$ . For each $\gamma<2^{\lambda}$ , define $X_{\gamma}=\{s_{\gamma}^{a} : \gamma<\alpha<2^{\lambda}\}$ .
It is clear that $\langle X_{\gamma} : \gamma<2^{\lambda}\rangle$ are pairwise disjoint subsets of $X$. We will show
that $X_{\gamma}$ is a stationary subset of $9_{\kappa}\lambda$ for each $r<2^{2}$ .

Fix $\gamma<2^{\lambda}$ . Let $C$ be a cub subset of $9_{\kappa}\lambda$ . By Kuecker’s theorem there is
a function $f:[\lambda]^{<\omega}arrow 9_{\kappa}\lambda$ such that $A(f)\subseteqq C$ . By Claim 1 there is some $\alpha<2^{\lambda}$

such that $A(f_{\alpha})\subseteqq A(f)$ and $\alpha>\gamma$ . Thus $s_{\gamma}^{a}\in X_{\gamma}\cap A(f_{\alpha})\subseteqq X_{\gamma}\cap C$ . Hence $X_{\gamma}$ is a
stationary subset of $9_{\iota}\lambda$ . $\square$

The next result is a direct consequence of Theorem 1 and Lemma 4.
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THEOREM 5. If GCH (the generalized continuum hypothesis) holds and there
is a set $b$ of ordinals such that $b^{\#}$ does not exist then every stationary subset of
$g_{\kappa}\lambda$ splits into $\lambda^{<\kappa}$ many disjoint stationary subsets, provided $\sup b<\lambda$ .

COROLLARY 6. (i) $L|=Menas$ ’ conjecture; Hence Menas’ conjecture is con-
sistent with ZFC.

(ii) $L[U]kIfU$ is a normal measure on a measurable cardinal 6, then for
every regular uncountable cardinal $\kappa$ and $\lambda$ a cardinal $> \max(\kappa, \delta^{+})$ , every stationary
subset of $g_{\kappa}\lambda$ splits into $\lambda^{<x}$ many disjoint stationary subsets.

REMARK. We will improve (ii) in Corollary 12.

PROOF OF COROLLARY 6. (i) One instance of Theorem 5 says that if GCH
holds and $0^{\#}$ does not exist then Menas’ conjecture holds. This is also a direct
consequnce of the above mentioned result of Baumgartner and DiPrisco and
Lemma 4. Since GCH and $\neg\exists 0^{*}$ hold in $L$ , Menas’ conjecture holds in $L$ .

(ii) Since $U$ can be coded by a subset of $\delta^{+}$ in $L[U]$ , it is easy to see
that $L[U]F$ there is a subset $b$ of $\delta^{+}$ such that $b^{\#}$ does not exist. By Silver’s
work [9], we know that $L[U]\vdash GCH$ . Thus Theorem 5 implies that the con-
clusion holds. $\square$

In [7] we have discussed the following question: Can $q_{\kappa}\lambda$ be split into $\lambda^{<\iota}$

many disjoint stationary subsets.$P$ We gave an affirmative answer when rc is an
inaccessible cardinal. The following corollary of Lemma 4 answers this question
under GCH.

COROLLARY 7. If GCH holds then for any regular uncountable cardinal rc
and $\lambda>\kappa,$ $9_{\kappa}\lambda$ splits into $\lambda^{<\kappa}$ many disjoint stationary subsets.

PROOF. By the work of Jech and DiPrisco we know that $g_{\kappa}\lambda$ splits into $\lambda$

many disjoint stationary subsets (see Theorem 1 of [7]). Thus we may assume
that $\lambda^{<\iota}>\lambda$ . Using GCH we see that $\lambda^{<\kappa}=2^{\lambda}$ and $\kappa^{<\kappa}<\lambda^{<\kappa}$ . By Lemma 4 every
stationary subset of $B_{\kappa}\lambda$ splits into $\lambda^{<\kappa}$ many disjoint stationary subsets. $\square$

Recently Gitik [3] showed the consistency of a strong failure of Menas’
conjecture by proving the following theorem.

Gitik’s Theorem: If the existence of a supercompact cardinal is consistent
with ZFC, then it is consistent that for a regular cardinal $\kappa$ and some $\lambda>\kappa$ there
is a stationary subset $X$ of $9_{\kappa}\lambda$ such that $NS(\kappa, \lambda)|X$ is $\kappa^{+}$-saturated $i.e$ . $X$ does
not split into $\kappa^{+}$ many disjoint stationary subsets.

Gitik asks if the existence of such a nonsplitting set is consistent with GCH.
We give a partial answer to this question.
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THEOREM 8. If GCH holds below a regular uncountable cardinal $\iota$ and $\lambda^{<\kappa}$

$>\lambda$ , then for every stationary subset $X$ of $g_{\iota}\lambda,$ $NS(\kappa, \lambda)|X$ cannot be $\lambda^{+}$-saturated.

PROOF. Assume there is a stationary subset $X$ of $\Xi_{\kappa}^{)}\lambda$ such that NS(rc, $\lambda$) $|X$

is $\lambda^{+}$-saturated. By Lemma 4 and the hypothes$is$ of this theorem, it suffices to
prove that $2^{\lambda}=\lambda^{+}$ in order to derive a contradiction. The following lemma
completes our proof.

LEMMA 9. If GCH holds below $\kappa$ and $q_{\kappa}^{)}\lambda$ carries a $\kappa- complete\lambda$“-saturated
normal ideal, then $2^{\lambda}-\lambda^{+}$ .

This is Theorem 19 of [6]. Since the proof of this result is short we will
reproduce it here for completeness.

PROOF OF LEMMA 9. Let $I$ be a $\kappa$-complete $\lambda^{+}$-saturated normal ideal on
$g_{\kappa}\lambda$ . Let $G$ be a generic filter on $9(9_{\kappa}^{1}\lambda)/I$. Let $j:Varrow M\cong Ult(V, G)$ be the
canonical elementary embedding into the transitive collapse of $Ult(V, G)$ . Since
$\{s\in B_{\kappa}\lambda:2^{|S|}=|s|^{+}\}\in G$ , we must have $MF2^{|\lambda|}=|\lambda|^{+}$ . By the $\lambda^{+}$-saturatedness
of $I,$ $(|\lambda|^{+})^{M}=(\lambda^{+})^{V}$ . Hence $V[G]|=|9(\lambda)\cap M|\leqq|(\lambda^{+})|^{V}$.

For each $x\in 9(\lambda)\cap V$ , define $f_{x}$ : $9_{\iota}\lambdaarrow 9_{\kappa}\lambda$ by $f_{x}(s)=s\cap x$ . Thus, $[f_{x}]\in$

$9([id])\cap M$ where id denotes the identity function on $9_{\iota}\lambda$ . Furthermore, for
each distinct $x,$ $y\in 9(\lambda)\cap V,$ [ $f_{x}1\neq[f_{y}]$ . Using the fact [id] $=j’\lambda$ , we have
$V[G]F|9(\lambda)\cap V|\leqq|q)(\lambda)\cap M|$ . Thus we conclude $V[G]\triangleright|9(\lambda)\cap V|\leqq|(\lambda^{+})^{V}|$ .
This implies $VF2^{\lambda}=\lambda^{+}$ . $\square$

Recently we have learned the following result from Magidor which indicates
that consistency strength of the existence of precipitous ideal on $B_{\kappa}\lambda$ is quite
high.

THEOREM 10 (Magidor [5]). If $9_{\kappa}\lambda$ carries a Preciffitous ideal then there is
an inner model of a measurable cardinal, say $\delta$ such that $o(\delta)=\delta^{++}wh\ell reo(\delta)$ is
the Mitchell order of $\delta$ .

Theorem 10 together with Lemma 4 gives the following.

COROLLARY 11. If GCH holds and there is no inner model of a measurable
cardinal $\delta$ such that $o(\delta)=\delta^{++}$ then Menas’ conjecture holds.

We can now improve (ii) of Corollary 6 using the fact that $L[U]$ satisfies
the hypothesis of Corollary 11.

COROLLARY 12. $L[U]F$ If $U$ is a normal measure on some measurable
cardinal then Menas’ conjecture holds.
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