Remarks on connections between the Leopoldt conjecture, p-class groups and unit groups of algebraic number fields

By Hiroshi Yamashita

(Received June 18, 1988)
(Revised Feb. 17, 1989)

Introduction.

Let p be a prime number. Leopoldt [8] showed that the p-adic rank r_{p} of the unit group of a totally real abelian number field K equals the number of non-trivial characters of K such that the p-adic L-functions associated to them have not value 0 at 1 . Moreover, he obtained the p-adic class number formula in case where the p-adic rank equals the total number of non-trivial characters which is equal to the rank of the unit group. The Leopoldt conjecture comes from this. This equality of the p-adic rank and the rank of the unit group for an abelian field was verified by Ax [1] for several special cases, and was proved completely by Brumer [2] in the general case.

We define the p-adic rank of the unit group of an algebraic number field to which we refered above. Let \mathcal{O} be an integral domain and \mathcal{K} be its field of quotients. For an \mathcal{O}-module M, we define the essential \mathcal{O}-rank of M to be the value of $\operatorname{dim}_{\mathscr{K}} M \otimes_{\bigcirc \mathcal{K}}$, and denote it by ess. \mathcal{O}-rank M.

Let k denote a finite algebraic number field throughout this paper. Let E_{1} be the group of units which are congruent to 1 modulo every prime \mathfrak{p} lying over p, and let $U_{p}(1)$ be the group of the local units u such that $u \equiv 1 \bmod p$. Then E_{1} is embedded into $\Pi_{p \mid p} U_{p}(1)$ by $\varepsilon \rightarrow(\varepsilon, \varepsilon, \cdots, \varepsilon)$. Denote by \vec{E}_{1} the closure of E_{1} in $\Pi U_{p}(1)$. Since $U_{p}(1)$ are multiplicative \boldsymbol{Z}_{p}-modules, where \boldsymbol{Z}_{p} is the ring of p-adic integers, \bar{E}_{1} is also a Z_{p}-module. We refer to the ess. \boldsymbol{Z}_{p}-rank of \bar{E}_{1} as the p-adic rank of the unit group of k, and denote it by r_{p} in this paper.

The Leopoldt conjecture predicts that the p-adic rank equals the essential Z-rank of the unit group in any algebraic number field. We know by Brumer [2] that this equality holds for an abelian extension of an imaginary quadratic number field, and also know by Miyake [10] for certain non-abelian extensions of imaginary quadratic number fields.

Let r be the essential Z-rank of the unit group of k, and we set $\delta_{p}=r-r_{p}$.

The Leopoldt conjecture is true if and only if $\delta_{p}=0$. We call this δ_{p} the defect value of the Leopoldt conjecture. Note that δ_{p} is a non-negative integer.

Throughout this paper, let E denote the group of units of k which are p-th powers at every infinite place. When p is odd, or when k is totally imaginary, E is the whole unit group. Let S be a finite set of finite places of k which contains the set P of all places lying over p. Let $U_{S}=\Pi_{p \in S} U_{\mathrm{p}}$, where U_{p} are the local unit groups. By embedding E into U_{S}, we consider E as a subgroup of U_{S}. Denote by E_{S} the closure of E in U_{S}. It is a totally disconnected compact group. Note that $E_{S}=E \cdot E_{S}^{n}$ for an arbitrary positive integer n.

Let ζ_{p} be a primitive p-th root of unity, and G be the Galois group $\operatorname{Gal}\left(k\left(\zeta_{p}\right) / k\right)$. For each $\sigma \in G$, there exists $m \in(\boldsymbol{Z} / p \boldsymbol{Z})^{\times}$such that $\zeta_{p}^{\sigma}=\zeta_{p}^{m}$, where $(\boldsymbol{Z} / p \boldsymbol{Z})^{\times}$is the multiplicative group of $\boldsymbol{Z} / p \boldsymbol{Z}$. Since $(\boldsymbol{Z} / p \boldsymbol{Z})^{\times}$is naturally embedded into the multiplicative group of \boldsymbol{Z}_{p}, we obtain a \boldsymbol{Z}_{p}-valued character ω of G by putting $\omega(\sigma)=m$. Let ε_{ω} be the idempotent of the group ring $\boldsymbol{Z}_{p}[G]$ associated to ω, that is $\varepsilon_{\omega}=(1 /|G|) \sum_{\sigma \in G} \omega(\sigma) \sigma^{-1}$.

Let C be the ideal class group of $k\left(\zeta_{p}\right)$, and let D be the subgroup generated by all of the extensions of ideals of S to $k\left(\zeta_{p}\right)$. Put $C_{S}=C / D \cdot C^{p}$; this is naturally considered a $\boldsymbol{Z}_{p}[G]$-module. Denote by $C_{S, \omega}$ the submodule of C_{S} generated by $\varepsilon_{\omega}(x), x \in C_{S}$. This is an ω-eigenspace, that is, the submodule consisting of $x \in C_{S}$ such that $x^{\sigma}=x^{\omega(\sigma)}$ for all $\sigma \in G$.

Let S_{∞} be the union of S and the set of all infinite places. Denote by $B_{S_{\infty}}(p)$ the subgroup of k^{\times} / k^{p} generated by all those $\alpha \in k^{\times}$which are locally p-th powers at every $\mathfrak{p} \in S_{\infty}$ and whose principal ideals (α) are p-th powers of ideals of k. We shall prove that $C_{S, \omega}$ and $B_{S_{\omega}}(p)$ are dual to each other (Proposition 1).

For an abelian group A, we denote the subgroups of p^{n}-torsion points by $t_{p}^{(n)}(A)$ and the union of $t_{p}^{(n)}(A)$ for $n=1,2,3, \cdots$ by $t_{p}(A)$. Let \boldsymbol{F}_{p} be the finite field with p-elements. We consider A / A^{p} an \boldsymbol{F}_{p}-linear space. If A is a torsion group, we call its dimension the p-rank of A and denote it by p-rank A.

Let $G_{P}^{a b}$ be the Galois group over k of the maximal abelian p-extension of k unramified outside P. We have the following formula of δ_{p} from Theorem I2 of Gras [5] if p is odd.

$$
\delta_{p}=p-\operatorname{rank} t_{p}\left(U_{P}\right)+p-\operatorname{rank} C_{P, \omega}-p-\operatorname{rank} t_{p}\left(k^{\times}\right)-p-\operatorname{rank} t_{p}\left(G_{P}^{a b}\right) .
$$

Therefore, if $p-\operatorname{rank} t_{p}\left(U_{P}\right)=p-\operatorname{rank} t_{p}\left(k^{\times}\right)$and $C_{P, \omega}=\{1\}$, then $\delta_{p}=0$. We obtain the same consequence also for $p=2$ from Theorem I3 of Gras [5] if k is totally imaginary. This sufficient condition for $\delta_{p}=0$ was shown in Gras [4], Miki [9] and Sands [12].

We shall refine the formula on δ_{p} (Theorem 2 $)$ and prove that there exists a certain unramified abelian p-extension over $k\left(\zeta_{p n}\right)$ whose Galois group is iso-
morphic to $\left(\boldsymbol{Z} / p^{n-a} \boldsymbol{Z}\right)^{\delta_{p}}$ if n is greater than a certain non-negative integer a determined only by k; here $\zeta_{p n}$ denotes a primitive p^{n}-th root of unity Theorem 3). It follows from this, in particular, that $\delta_{p}=0$ if there is a positive integer $n>a$ such that the ideal class group of $k\left(\zeta_{p n}\right)$ have no classes of order p^{n-a}. Moreover we see that the λ-invariant of the \boldsymbol{Z}_{p}-extension $\cup_{n \geq 1} k\left(\zeta_{p n}\right)$ over $k\left(\zeta_{p}\right)$ is greater than $\delta_{p}-1$ if $\delta_{p} \neq 0$. This was proved in Gillard [3] by using the Kummer pairing over $\cup k\left(\zeta_{p n}\right)$.

The purpose in the present paper is to study δ_{p} in connection with $t_{p}\left(E_{S}\right)$ and $C_{S, \omega}$, and to obtain sufficient conditions for $\delta_{p}=0$. Here we state out the main results.

Theorem 1. The Leopoldt conjecture for p is true for k if and only if there is a finite set S of finite places of k containing P and satisfying the following three conditions.
(1) $C_{S, \omega}$ vanishes.
(2) The p-ranks of $t_{p}\left(E_{S}\right)$ and $t_{p}(E)$ are equal.
(3) E^{p} contains $E_{s}{ }^{p} \cap E^{\prime p}$, where E^{\prime} is the whole unit group of k.

Corollary. Suppose k is totally imaginary when $p=2$. If $p-\operatorname{rank} t_{p}\left(U_{S}\right)=$ p-rank $t_{p}\left(k^{\times}\right)$and $C_{S, \omega}=\{1\}$, then the Leopoldt conjecture for p is true for every finite p-extensions of k unramified outside S.

Theorem 2. Let S be a finite set of finite places of k containing P, and let S_{∞} be the union of S and the set of all infinite places. For $\alpha \cdot k^{p} \in B_{S_{\infty}}(p)$, there exists an ideal \mathfrak{a} of k such that $\mathfrak{a}^{p}=(\alpha)$; let $A_{S_{\infty}}^{(0)}$ denote the subgroup of the ideal class group of k generated by all such ideals a. Then we have the following equality

$$
\begin{aligned}
\delta_{p}= & p-\operatorname{rank} t_{p}\left(U_{S}\right)-p-\operatorname{rank} t_{p}(E)+p-\operatorname{rank} C_{S, \omega}-p-\operatorname{rank} A_{S_{\infty}}^{(0)} \\
& -p-\operatorname{rank} t_{p}\left(U_{S} / E_{S}\right)+p-\operatorname{rank} E^{\prime p} / E^{p} .
\end{aligned}
$$

Theorem 3. Let k be a finite algebraic number field such that $\delta_{p} \geqq 1$. Suppose that $E \cdot t_{p}^{(1)}\left(k^{\times}\right)$is equal to the whole unit group of k. Let K_{t} denote the cyclotomic extension $k\left(\zeta_{p t}\right)$ of k, where $\zeta_{p t}$ is a primitive p^{t}-th root of unity. Let n be a positive integer satisfying $K_{n+1} \neq K_{n}$. Suppose that $\boldsymbol{Q}_{n} \cap k$ is totally imaginary when $p=2$ and $n \geqq 2$. Then we have the following statements.
(1) Let a be the smallest non-negative integer such that $x^{p a}=1$ for every $x \in t_{p}\left(E_{P}\right)$. If $n>a$, then there exists an unramified abelian extension M_{n} of K_{n} whose Galois group $\operatorname{Gal}\left(M_{n} / K_{n}\right)$ is isomorphic to $\left(\boldsymbol{Z} / p^{n-a} \boldsymbol{Z}\right)^{\delta_{p}}$ and in which every place lying over p is completely decomposed over K_{n}.
(2) Suppose $t_{p}\left(E_{P}\right)=t_{p}(E)$. Let n be a positive integer such that there is a ramified place in K_{n+1} / K_{n}. Let C_{n} be the ideal class group of K_{n}. Put $t=$ p-rank C_{n}^{p}, $s=p$-rank $C_{n}^{p n-1}-t$ and $r=p-\operatorname{rank} C_{n}-t-s$. Then there exists an
unramified abelian extension M_{n}^{\prime} of K_{n} whose Galois group $\operatorname{Gal}\left(M_{n}^{\prime} / K_{n}\right)$ is isomorphic to $\left(\boldsymbol{Z} / p^{n} \boldsymbol{Z}\right)^{\delta_{p}}$ and in which every place lying over p is completely decomposed over K_{n}. Moreover, if the p-ranks of the ideal class groups of K_{n} and K_{n+1} are equal, we have $\delta_{p} \leqq s+\min (r, t)$.

Corollary. Under the same assumptions as in (2) of Theorem 3, we have $\delta_{p}=0$ if $s+\min (r, t)=0$.

In $\S 1$, we shall prove a basic formula of δ_{p} and show Theorem 1 by virtue of it. In $\S 2$, we shall show the formula of Theorem 2, which is a natural consequence from §1. As an application of this formula, we shall show Proposition 2. In the last section, we shall construct Kummer extensions of degree p^{n-a} over K_{n} by certain subgroups of E which are determined from $t_{p}\left(E_{S}\right)$, and prove Theorem 3.

The author is very grateful to the referee for looking the drafts over and checking the results many times.

1. The basic formula of δ_{p} and the proof of Theorem 1.

For a place $\mathfrak{q} \in S$, let $N \mathfrak{q}$ denote the absolute norm of \mathfrak{q}, and $m_{\mathfrak{q}}$ be the highest power of p dividing $N q-1$. Let T be the complement of P in S and put $V_{S}=\Pi_{p \in P} V_{\mathrm{p}} \times \Pi_{q \in T} U_{\mathrm{q}}^{m_{\mathrm{q}}}$, where V_{p} denote the subgroups of U_{p} generated by a primitive $(N \mathfrak{p}-1)$-th root of unity. Put $F_{S}=E_{S} \cap V_{S}$ and $\tilde{E}_{S}=E_{S} / F_{S}$. Since U_{S} / V_{S} is a \boldsymbol{Z}_{p}-module, \tilde{E}_{S} is also a \boldsymbol{Z}_{p}-module. Set $m=1$. c. m. $\{N \mathfrak{p}-1 \mid \mathfrak{p} \in P\}$. Note that U_{P}^{m} is the direct product of the groups of the principal local units $U_{p}(1)$ for all $\mathfrak{p} \in P$. We recall that \bar{E}_{1} is the closure of E_{1} in U_{P}^{m}, where E_{1} is the group of units of k which are congruent to 1 modulo every $\mathfrak{p} \in P$. Since $E_{1} \supset E^{m}$ and $E \supset E_{1}^{2}$, the subgroup E_{P}^{m} of \bar{E}_{1} is of finite index. Therefore we have $r_{p}=$ ess. \boldsymbol{Z}_{p}-rank E_{P}^{m}. It follows from this that

$$
r_{p}=\text { ess. } \boldsymbol{Z}_{p} \text {-rank } \tilde{E}_{P}
$$

Let $\pi: E_{S} \rightarrow E_{P}$ be the restriction onto E_{S} of the canonical projection from U_{S} to U_{P}. Since E_{S} is compact, $\pi\left(E_{S}\right)$ is also compact. Hence $E_{P}=\pi\left(E_{S}\right)$, because E is dense in $\pi\left(E_{S}\right) . \quad \pi$ induces the surjection $\tilde{\pi}: \tilde{E}_{S} \rightarrow \tilde{E}_{P}$ defined by $\tilde{\pi}\left(\varepsilon F_{S}\right)=\pi(\varepsilon) F_{P}$, and the kernel of $\tilde{\pi}$ is $\left(E_{S} \cap U_{T} \cdot V_{P}\right) \cdot F_{S} / F_{S}$, where $U_{T}=\Pi_{p \in T} U_{p}$. We see $\left(E_{S} \cap U_{T} \cdot V_{P}\right)^{n} \subset E_{S} \cap V_{T} \subset F_{S}$ for $n=1 . c . m .\{N \mathfrak{p}-1 \mid \mathfrak{p} \in P\} \cdot 1$. c.m. $\left\{m_{\mathfrak{q}} \mid \mathfrak{q} \in T\right\}$. This means that ker $\tilde{\pi}$ is finite. Hence we obtain the equality

$$
\text { ess. } \boldsymbol{Z}_{p} \text {-rank } \tilde{E}_{S}=\text { ess. } \boldsymbol{Z}_{p} \text {-rank } \tilde{E}_{P}
$$

Therefore, the essential \boldsymbol{Z}_{p}-rank of \tilde{E}_{S} equals r_{p}.
Lemma 1. We have the following equality of the p-adic rank r_{p} of the unit
group of k.

$$
r_{p}=p-\operatorname{rank} E_{S} / E_{S}^{p}-p-\operatorname{rank} t_{p}\left(E_{S}\right) .
$$

Proof. If we prove $\tilde{E}_{S} / \tilde{E}_{S} \cong E_{S}{ }^{p} / E_{S}{ }^{p}$ and $t_{p}\left(\tilde{E}_{S}\right) \cong t_{p}\left(E_{S}\right)$, the lemma follows from the equality
ess. $\boldsymbol{Z}_{p-\mathrm{rank}} \tilde{E}_{S}=p-\operatorname{rank} \tilde{E}_{S} / \tilde{E}_{S}{ }^{p}-p-\operatorname{rank} t_{p}\left(\tilde{E}_{S}\right)$.
We shall show these isomorphisms. We observe $V_{s}{ }^{p}=V_{S}$ and that $\left\{V_{s}{ }^{n} \mid n\right.$ $=1,2,3, \cdots\}$ forms a base for the open neighborhood system of unity in V_{S}. Hence for every $n, V_{s} / V_{s}{ }^{n}$ are finite abelian groups whose orders are prime to p. Since $F_{S} \cdot V_{S}{ }^{n} / V_{S}{ }^{n}$ are subgroups of $V_{S} / V_{S}{ }^{n}$, we have $F_{S^{p}} \cdot V_{S}{ }^{n} / V_{S}{ }^{n}=F_{S} \cdot V_{s}{ }^{n} / V_{S}{ }^{n}$. Thus $F_{S}{ }^{p} \cdot V_{S}{ }^{n}=F_{S} \cdot V_{S}{ }^{n}$, and hence

$$
\bigcap_{n=1}^{\infty}\left(F_{s}{ }^{p} \cdot V_{S}{ }^{n}\right)=\bigcap_{n=1}^{\infty}\left(F_{S} \cdot V_{S}{ }^{n}\right) .
$$

This means the closures of $F_{S}{ }^{p}$ and F_{S} are equal. Since both of them are compact, we have $F_{s}{ }^{p}=F_{S}$. Hence $F_{s}{ }^{p m}=F_{s}$ for every positive integer m. Moreover, $t_{p}\left(F_{S}\right)=\{1\}$, because $t_{p}\left(F_{S}\right)$ is a finite abelian group.

We obtain the first isomorphism, $E_{S} / E_{S}{ }^{p} \cong \tilde{E}_{S} / \tilde{E}_{S}{ }^{p}$, because $E_{S}{ }^{p} \supset F_{S}{ }^{p}=F_{S}$. Let g be an element of E_{S} such that $g^{p m} \in F_{S}$ for a certain positive integer m. There is $h \in F_{S}$ such that $h^{p^{m}}=g^{p^{m}}$. We see $g \cdot h^{-1} \in t_{p}\left(E_{S}\right)$. This means $t_{p}\left(\tilde{E}_{S}\right)$ $\cong t_{p}\left(E_{S}\right) \cdot F_{S} / F_{S}$. Hence $t_{p}\left(\widetilde{E}_{S}\right) \cong t_{p}\left(E_{S}\right) / t_{p}\left(F_{S}\right)$. Thus we obtain the second isomorphism, $t_{p}\left(\tilde{E}_{S}\right) \cong t_{p}\left(E_{S}\right)$.
Q.E.D.

We note ess. \boldsymbol{Z}-rank E equals p-rank $E / E^{p}-p-\operatorname{rank} t_{p}(E) . \quad$ From this and Lemma 1 follows a formula of δ_{p} :

$$
\delta_{p}=p-\operatorname{rank} E / E^{p}-p-\operatorname{rank} E_{S} / E_{S}^{p}-p-\operatorname{rank} t_{p}(E)+p-\operatorname{rank} t_{p}\left(E_{S}\right) .
$$

Let X be the complete system of representatives of E / E^{p} in E. Since $\bigcup_{\varepsilon \in X} \varepsilon E_{S}{ }^{p}$ is a compact subset of E_{S} containing E, it must be equal to E_{S} itself. Hence we obtain a surjection f from E / E^{p} onto $E_{S} / E_{S}{ }^{p}$ by $f\left(\varepsilon E^{p}\right)=$ $\varepsilon E_{S}{ }^{p}, \varepsilon \in X$. Since $\operatorname{ker} f=E \cap E_{S}{ }^{p} / E^{p}$, we have an exact sequence

$$
\begin{equation*}
1 \longrightarrow E \cap E_{S}{ }^{p} / E^{p} \longrightarrow E / E^{p} \xrightarrow{f} E_{S} / E_{S}{ }^{p} \longrightarrow 1 . \tag{1.1}
\end{equation*}
$$

Let $A_{S_{\infty}}^{(2)}$ denote the subgroup of k^{\star} / k^{p} generated by $E \cap E_{S}{ }^{p}$, where S_{∞} is the union of S and the set of all infinite places of k. Then

$$
\begin{equation*}
p-\operatorname{rank} A_{S_{\infty}}^{(2)}=p-\operatorname{rank} E \cap E_{S}{ }^{p} / E^{p}-p-\operatorname{rank} E^{\prime p} \cap E_{S}{ }^{p} / E^{p}, \tag{1.2}
\end{equation*}
$$

where E^{\prime} is the whole unit group of k. We note that this last term p-rank $E^{\prime p}$ $\cap E_{S}{ }^{p} / E^{p}$ vanishes when p is odd or when k is totally imaginary.

We obtain the following basic formula of δ_{p} from the above formula of δ_{p}, the exact sequence (1.1) and the equality (1.2).

$$
\begin{equation*}
\delta_{p}=p-\operatorname{rank} t_{p}\left(E_{S}\right)-p-\operatorname{rank} t_{p}(E)+p-\operatorname{rank} A_{S_{\infty}}^{(2)}+p-\operatorname{rank} E^{\prime p} \cap E_{S}^{p} / E^{p} . \tag{1.3}
\end{equation*}
$$

Since $t_{p}\left(E_{S}\right) \supset t_{p}(E)$, we see $p-\operatorname{rank} t_{p}\left(E_{S}\right)-p-\operatorname{rank} t_{p}(E) \geqq 0$. Hence δ_{p} vanishes if and only if $p-\operatorname{rank} t_{p}\left(E_{S}\right)=p-\operatorname{rank} t_{p}(E), A_{S_{\infty}}^{(2)} \cong\{1\}$ and $E^{\prime p} \cap E_{S^{p}} \subset E^{p}$.

Let $C_{S, \omega}$ and $B_{S \omega}(p)$ be as in the introduction. We shall show by using the Kummer pairing that $C_{S, \omega} \cong\{1\}$ implies $A_{S_{\infty}}^{(2)} \cong\{1\}$. We will prove the duality between $C_{S, \omega}$ and $B_{S \omega}(p)$. Put $K=k\left(\zeta_{p}\right)$, where ζ_{p} is a primitive p-th root of unity. Let S_{K} be the set of all extensions to K of every places contained in S_{∞}. Let $B_{S_{K}}(p)$ be the subgroup of K^{\times} / K^{p} generated by those $\alpha \in K^{\times}$which are locally p-th powers at every $\mathfrak{B} \in S_{K}$ and whose principal ideals (α) are p-th powers of ideals of K. We recall that $C_{S}=C / D \cdot C^{p}$, where C is the ideal class group of K and where D is the subgroup generated by all ideals of places of S_{K}.

Let L be the unramified abelian p-extension of K corresponding to C_{S} by class field theory. Let © be the Galois group of L / K and $\phi: C_{S} \rightarrow \mathbb{C}$ be the isomorphism. Then we have the Kummer pairing

$$
\begin{equation*}
\langle c, \bar{\alpha}\rangle=p \sqrt{\alpha}^{\phi(c)-1}, \tag{1.4}
\end{equation*}
$$

where $\bar{\alpha}=\alpha K^{p}$ is the coset of $B_{S_{K}}(p)$ generated by α. This gives the perfect duality, and the Galois group $G=\operatorname{Gal}(K / k)$ acts by

$$
\left\langle c^{\tau}, \bar{\alpha}^{\tau}\right\rangle=\langle c, \bar{\alpha}\rangle^{\omega(\tau)}, \quad \tau \in G .
$$

Lemma 2. Let N_{G} denote the norm map of G-module. Then $B_{S_{\infty}}(p)$ is isomorphic to the subgroup $N_{G}\left(B_{S_{K}}(p)\right)$ of $B_{S_{K}}(p)$.

Proof. Let $j: k^{\times} / k^{p} \rightarrow K^{\times} / K^{p}$ be the homomorphism induced from the inclusion map from k^{\times}into K^{\times}. We see $j\left(B_{S_{\infty}}(p)\right)^{\left.\right|^{G}} \subset N_{G}\left(B_{S_{K}}(p)\right) \subset j\left(B_{S_{\infty}}(p)\right)$ and $\operatorname{ker} j=k^{\times} \cap K^{p} / k^{p}$. Since the order of G is prime to p, j maps $B_{S_{\infty}}(p)$ onto $N_{G}\left(B_{S_{K}}(p)\right)$. On the other hand, j is injective, because $N_{G}(\operatorname{ker} j)=\operatorname{ker} j$ and $N_{G}\left(k^{\times} \cap K^{p}\right) \subset k^{p}$. This completes the proof.

Proposition 1. $B_{S \infty}(p)$ is the dual of $C_{S, \omega}$ with respect to the pairing (1.4).
Proof. We have

$$
\left\langle\varepsilon_{\omega}(c), \bar{\alpha}\right\rangle^{|G|}=\left\langle c, N_{G}(\bar{\alpha})\right\rangle,
$$

for $c \in C_{S}$ and $\bar{\alpha} \in K^{\times} / K^{p}$. The proposition follows from this and Lemma 2.

> Q.E.D.

Lemma 3. For $\alpha \cdot k^{p} \in B_{S_{\infty}}(p)$, there is an ideal \mathfrak{a} of k such that $\mathfrak{a}^{p}=(\alpha)$. Let $A_{S_{\infty}}^{(0)}$ denote the subgroup of the ideal class group of k generated by all such ideals a. Let $A_{S_{\infty}}^{(1)}=\left(E \cap U_{S}{ }^{p}\right) \cdot k^{p} /\left(E \cap E_{S}{ }^{p}\right) \cdot k^{p}$ and $A_{S_{\infty}}^{(2)}=\left(E \cap E_{S}{ }^{p}\right) \cdot k^{p} / k^{p} \quad$ Then

$$
\begin{equation*}
B_{S_{\infty}}(p) \cong A_{S_{\infty}}^{(0)} \times A_{S_{\infty}}^{(1)} \times A_{S_{\infty}}^{(2)} . \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
p-\operatorname{rank} C_{S, \omega}=\sum_{i=0}^{2} p-\operatorname{rank} A_{S_{\infty}}^{(i)} \tag{1.6}
\end{equation*}
$$

Proof. Let $B_{S_{\infty}}^{0}(p)$ be the subgroup of $B_{S_{\infty}}(p)$ generated by $E \cap U_{s}{ }^{p}$. For each $\alpha \cdot k^{p} \in B_{S_{\infty}}(p)$, take an ideal \mathfrak{a} of k so that $\mathfrak{a}^{p}=(\alpha)$. Let c_{α} be the ideal class containing \mathfrak{a}. We define a surjection from $B_{S_{\infty}}(p)$ onto $A_{S_{\infty}}^{(0)}$ by $f(\bar{\alpha})=c_{\alpha}$. We see the kernel of f is $B_{S_{\infty}}^{0}(p)$, hence $B_{S_{\infty}}(p) / B_{S_{\infty}}^{0}(p) \cong A_{S_{\infty}}^{(0)}$. Since $B_{S_{\infty}}(p)$ is an elementary abelian p-group, we have

$$
B_{S_{\infty}}(p) \cong A_{S_{\infty}}^{(0)} \times B_{S_{\infty}}^{0}(p)
$$

Similarly, since $B{ }_{S_{\infty}}(p) / A_{S_{\infty}}^{(2)}=A_{S_{\infty}}^{(1)}$, we have

$$
B_{S_{\infty}}^{0}(p) \cong A_{S_{\infty}}^{(1)} \times A_{S_{\infty}}^{(2)} .
$$

Hence we obtain (1.5), (1.6) follows from (1.5) and Proposition 1, immediately. Q.E.D.

Proof of Theorem 1. Assume S satisfies all of the conditions (1), (2) and (3). By Proposition 1 and (1.5), we see that the condition (1) implies $A_{S_{\infty}}^{(2)} \cong\{1\}$. Hence, by the basic formula (1.3), we obtain $\delta_{p}=0$ from the conditions (2) and (3). Conversely assume $\delta_{p}=0$. Then, by the basic formula (1.3), we see that the conditions (2) and (3) hold for any S containing all places lying over p. Take a prime ideal from each ideal class c of $k\left(\zeta_{p}\right)$ and let \mathfrak{p}_{c} denote its restriction to k. Let S be the union of the set of all places of such prime ideals \mathfrak{p}_{c} and the set of all places of k lying over p. This S obviously satisfies the condition (1), and is the desired finite set of places of k.
Q.E.D.

We prove the corollary to Theorem 1. Let k_{S} be the maximal p-extension of k unramified outside S, and put $G=\operatorname{Gal}\left(k_{S} / k\right) . \quad G$ is a pro- p-group. The value of $\operatorname{dim}_{\boldsymbol{F}_{p}} H^{2}\left(G, \boldsymbol{F}_{p}\right)$ equals the number of the relations of a minimal generator system of G as a pro- p-group (see Serre [13], Corollary to Proposition 27 in Chap. I). Denote it by $r(G) . G$ is a free pro-p-group if and only if $r(G)=0$. We note that the cohomological p-dimension $\operatorname{cd}_{p}(G)$ is less than 2 if and only if $r(G)=0$. If G is a free pro-p-group, an arbitrary subgroup H of G is also free, because $\operatorname{cd}_{p}(H) \leqq \operatorname{cd}_{p}(G)$ (see Serre [13], Proposition 14 in Chap. I).

Assume k is totally imaginary when $p=2$. We observe no infinite places are ramified in k_{s} / k. For such k and p, we obtain the following formula by Corollary 2 of the main theorem of Neumann [11]:

$$
r(G)=p-\operatorname{rank} B_{S_{\infty}}(p)+p-\operatorname{rank} t_{p}\left(U_{S}\right)-p-\operatorname{rank} t_{p}(E) .
$$

Since $B_{S_{\omega}}(p) \cong C_{S, \omega}$, we see $r(G)$ equal 0 if and only if $C_{S, \omega}=\{1\}$ and $p-\operatorname{rank} t_{p}\left(U_{S}\right)=p-\operatorname{rank} t_{p}(E)$. Hence we have $C_{S, \omega}=\{1\}$ and $p-\operatorname{rank} t_{p}\left(E_{S}\right)=$ p-rank $t_{p}(E)$ if $r(G)$ vanishes, because $p-\operatorname{rank} t_{p}\left(U_{S}\right) \geqq p-\operatorname{rank} t_{p}\left(E_{S}\right)$. It follows from Theorem 1 that the Leopoldt conjecture is true for k if $\operatorname{Gal}\left(k_{s} / k\right)$ is a
free pro- p-group.
Let K be a finite extension of k contained in k_{s}. Let L be a Galois p extension of K unramified outside S. Let L^{\prime} be any conjugate field of L over k. We observe that every ramified place of k in L^{\prime} / k is contained in S. Thus the Galois closure of L over k is contained in k_{S}. Hence k_{S} is also the maximal p-extension of K unramified outside S_{K}, where S_{K} denotes the set of all extensions of places contained in S. Assume $C_{S, \omega}=\{1\}$ and $p-\operatorname{rank} t_{p}\left(U_{S}\right)=$ p-rank $t_{p}(E)$ for k. Then $\operatorname{Gal}\left(k_{S} / k\right)$ is a free pro- p-group, and hence, $\operatorname{Gal}\left(k_{S} / K\right)$ is also free. It follows from this that the Leopoldt conjecture is true for K.
Q.E.D.

2. The proof of Theorem 2 and its application.

We recall that $A_{S_{\infty}}^{(1)}$ is the factor group $\left(E \cap U_{s}{ }^{p}\right) \cdot k^{p} /\left(E \cap E_{s}{ }^{p}\right) \cdot k^{p}$. We have an exact sequence of elementary abelian p-groups

$$
\begin{equation*}
1 \longrightarrow E^{\prime p} / E^{\prime p} \cap E_{S}{ }^{p} \longrightarrow E \cap U_{S}{ }^{p} / E \cap E_{S}{ }^{p} \longrightarrow A_{\aleph_{\infty}}^{(1)} \longrightarrow 1, \tag{2.1}
\end{equation*}
$$

where E^{\prime} is the whole unit group of k. We can describe $E \cap U_{S}{ }^{p} / E \cap E_{S}{ }^{p}$ as follows.

Lemma 4. We have the following exact sequence.

$$
1 \longrightarrow t_{p}^{(1)}\left(U_{S}\right) \cdot E_{S} / E_{S} \longrightarrow t_{p}^{(1)}\left(U_{S} / E_{S}\right) \longrightarrow E \cap U_{S}^{p} / E \cap E_{S}^{p} \longrightarrow 1
$$

Proof. Let W_{S} denote the subgroup of U_{S} consisting of those elements whose p-th powers are contained in E_{S}. Obviously, $t_{p}^{(1)}\left(U_{S} / E_{S}\right)=W_{S} / E_{S}$. For $u \in W_{S}$, there are $\varepsilon \in E$ and $\alpha \in E_{S}$ such that $u^{p}=\varepsilon \cdot \alpha^{p}$, because E is dense in E_{S}. Let f be a homomorphism from W_{S} onto $E \cap U_{S}{ }^{p} / E \cap E_{S}{ }^{p}$ defined by $f(u)$ $=\varepsilon \cdot\left(E \cap E_{S}{ }^{p}\right)$. Since the kernel of f is $t_{p}^{(1)}\left(U_{S}\right) \cdot E_{S}$, we have the exact sequence by f.
Q.E.D.

Proof of Theorem 2. The following equality follows from Lemma 4 and the exact sequence (2.1).

$$
\begin{align*}
p-\operatorname{rank} t_{p}^{(1)}\left(E_{S}\right)= & p-\operatorname{rank} t_{p}^{(1)}\left(U_{S}\right)-p-\operatorname{rank} t_{p}^{(1)}\left(U_{S} / E_{S}\right) \tag{2.2}\\
& +p-\mathrm{rank} A_{S_{\infty}}^{(1)}+p-\operatorname{rank} E^{\prime p} / E^{\prime p} \cap E_{S}^{p} .
\end{align*}
$$

We obtain the formula of Theorem 2 from the basic formula (1.3) as follows. Eliminate the term p-rank $t_{p}\left(E_{S}\right)$ from (1.3) by using (2.2), and replace the term p-rank $A_{S_{\infty}}^{(1)}+p-\operatorname{rank} A_{S_{\infty}}^{(2)}$ with $p-\operatorname{rank} C_{S, \omega}-p-\operatorname{rank} A_{S_{\infty}}^{(0)}$ by using (1.6). Q.E.D.

We recall the equivalent statement to the Leopoldt conjecture given by Iwasawa [7]. Let \mathfrak{q} be a finite place of k such that $\mathfrak{q} X p$, and $N q$ denote the absolute norm of \mathfrak{q}. If n is a natural number, we shall denote by $(n)_{p}$ the highest power of p dividing n. Let

$$
e(\mathfrak{q}, a)=\max \left(p^{a},(N \mathfrak{q}-1)_{p}\right)
$$

for a natural number a. A finite abelian extension K over k will be called a (q, a)-field if K / k is unramified outside $p q$ and if

$$
e(\mathfrak{q}, a) \leqq e(\mathfrak{q} ; K / k)
$$

where $e(\mathfrak{q} ; K / k)$ denote the ramification index of \mathfrak{q} in K / k. The Leopoldt conjecture is equivalent to the existence of a (\mathfrak{q}, a)-field for every (\mathfrak{q}, a) such that $N q \equiv 1 \bmod p$ and $p^{a} \leqq(N q-1)_{p}$ (see Iwasawa [7] and Sands [12]).

Concerning with the ($q, 1$)-field, we obtain the following proposition from Theorem 2.

Proposition 2. Let T be the subset of $S \backslash P$ consisting of all places \mathfrak{q} such that ($\mathfrak{q}, 1$)-fields exist. Then

$$
\begin{aligned}
\delta_{p} \leqq & p-\operatorname{rank} t_{p}\left(U_{S}\right)-\# T+p-\operatorname{rank} C_{S, \omega}-p-\operatorname{rank} A_{S}^{(0)} \\
& -p-\operatorname{rank} t_{p}(E)+p-\operatorname{rank} E^{\prime p} / E^{p} .
\end{aligned}
$$

Proof. Let $\bar{k}_{S_{\infty}}^{a b}$ be the maximal abelian extension of k unramified outside S_{∞}, where S_{∞} is the union of S and the set of all infinite places. Let H be the absolute class field of k. We can prove $U_{S} / E_{S} \cong \operatorname{Gal}\left(\bar{k}_{S_{\infty}}^{a b} / H\right)$ by means of class field theory. Let $k_{S_{\infty}}^{a b}$ be the maximal p-extension of k contained in $\bar{k}_{S_{\infty}}^{a b}$. We note that $k_{S_{\infty}}^{a b}$ is a finite extension over $k_{P_{\infty}}^{a b}$, where P is the set of all places of k lying over p, because every \boldsymbol{Z}_{p}-extension of k are contained in $k_{P_{\infty}}^{o b}$ and $\operatorname{Gal}\left(k_{S_{\infty}}^{a_{\infty}} / k\right)$ is a finitely generated \boldsymbol{Z}_{p}-module. Hence we obtain

$$
p-\operatorname{rank} t_{p}\left(U_{S} / E_{S}\right)=p-\operatorname{rank} t_{p}\left(\operatorname{Gal}\left(\bar{k}_{S_{\infty}}^{a b} / H\right)\right) \geqq p-\operatorname{rank} \operatorname{Gal}\left(k_{S_{\infty}}^{a b} / k_{P_{\infty}}^{a b}\right) .
$$

Let $k(T)=\bigcup_{q \in T} k(\mathfrak{q})$, where $k(\mathfrak{q})$ is a $(\mathfrak{q}, 1)$-field. We observe $p-\operatorname{rank} \operatorname{Gal}\left(k(T) k_{P_{\infty}}^{a b} /\right.$ $\left.k_{P_{\infty}}^{a b}\right)=\# T$. Hence

$$
p-\operatorname{rank} t_{p}\left(\operatorname{Gal}\left(k_{S_{\infty}}^{a b} / k_{P_{\infty}}^{a b}\right)\right) \geq \# T .
$$

Therefore, we obtain the inequality.

$$
p-\operatorname{rank} t_{p}\left(U_{S} / E_{S}\right) \geqq \# T
$$

The proposition follows from Theorem 2.
Q.E.D.

3. The construction of unramified extensions and the proof of Theorem 3.

In this section, we suppose that the defect value δ_{p} of k is different from 0 , and show that the existence of a characteristic unramified abelian p-extension over $k\left(\zeta_{p n}\right)$, where $\zeta_{p n}$ is a primitive p^{n}-th root of unity. We write δ for $\boldsymbol{\delta}_{p}$ in this section.

If F is a finite algebraic number field or its completion at a certain finite place, we denote the exponent of the order of $t_{p}\left(F^{\times}\right)$by $e(F)$, that is, $\left|t_{p}\left(F^{\times}\right)\right|$ $=p^{e(F)}$.

Let u be an element of $t_{p}\left(E_{S}\right)$ and p^{a} be the order of u. We see $u=\left(\zeta_{p} \mid \mathfrak{p} \in S\right)$ $\in U_{S}$, where ζ_{p} are p^{a}-th roots of unity in k_{p}. Since E is dense in E_{S}, there exists $\varepsilon \in E$ for each integer $m \geqq 1$ such that

$$
\begin{equation*}
u=\varepsilon \cdot \alpha^{p m}, \quad \text { where } \quad \alpha \in E_{S} . \tag{3.1}
\end{equation*}
$$

Set $K_{n}=k\left(\zeta_{p n}\right)$. Suppose that m satisfies the inequality $m \leqq e\left(K_{n}\right)$. Put $L=$ $K_{n}\left({ }^{(2 m} \sqrt{\varepsilon}\right)$. Then L / K_{n} is a Kummer extension which is unramified outside p. We consider the ramifications of places lying over p. Let \mathfrak{P} be a finite place of K_{n} lying over p. Let \mathfrak{p} be the restriction of \mathfrak{i} to k and \mathscr{P} an extension of \mathfrak{F} to L. Denote the \mathfrak{p}-components of u and α by u_{p} and α_{p}, respectively. Let p^{b} be the order of u_{p}. The completion of K_{n} at \mathfrak{P} is $k_{p}\left(\zeta_{p n}\right)$. Since ε is a product of a p^{b}-th root of unity and $\alpha_{p}^{p_{p}^{m}} \in k_{p}$, the completion of L at \mathscr{P} is $k_{p}\left(\zeta_{p n}, \zeta_{p b+m}\right)$. Hence we have the following lemma.

Lemma 5. Under the above notation, \mathfrak{B} is completely decomposed in L / K_{n} if and only if $b+m \leqq e\left(k_{p}\left(\zeta_{p n}\right)\right)$.

We suppose that S satisfies the following condition.

$$
\begin{equation*}
E \cap U_{s}^{p}=E^{p} \tag{3.2}
\end{equation*}
$$

Recall that E^{\prime} is the whole unit group of k. Since $E^{\prime} \subset U_{S}$, we have $E^{\prime p} \cap E$ $=E^{p}$ by (3.2), Thus $E^{\prime p}=E^{p}$. This implies $E^{\prime}=E \cdot t_{p}^{(1)}\left(k^{\times}\right)$. Further, we have $E \cap E_{S}{ }^{p}=E^{p}$ because $E \cap U_{S}{ }^{p} \supset E \cap E_{S}{ }^{p}$. Hence by (1.2) and the basic formula (1.3), we obtain an equality

$$
\begin{equation*}
\delta=p-\operatorname{rank} t_{p}\left(E_{S}\right)-p-\operatorname{rank} t_{p}(E) \tag{3.3}
\end{equation*}
$$

Lemma 6. Suppose $\delta \geqq 1$ and that S satisfies (3.2). Then there is a subgroup T_{S} of $t_{p}\left(E_{S}\right)$ such that $t_{p}\left(E_{S}\right)$ is a direct sum of T_{S} and $t_{p}(E)$.

Proof. If $t_{p}(E)=\{1\}$, the statement is obvious. Assume $t_{p}(E) \neq\{1\}$, and let p^{d} be the order. Note that $t_{p}(E) \neq\{1\}$ means k is totally imaginary when $p=2$. Hence $E=E^{\prime}$.

We shall prove that the following equality holds for every positive integer t :

$$
t_{p}(E) \cap t_{p}\left(E_{S}\right)^{p^{t}}=t_{p}(E)^{p t}
$$

Firstly, we prove this equality for $t \leqq d$. Let η be a generator of $t_{p}(E) \cap$ $t_{p}\left(E_{S}\right)^{p^{t}} . \quad k\left({ }^{p^{t}} \sqrt{\eta}\right)$ is an unramified abelian p-extension over k in which every place in S is completely decomposed. We assume $k\left(p^{t} \sqrt{\eta}\right) \neq k$. Then, $k\left({ }^{p t} \sqrt{\eta}\right)$ must contain a primitive p^{d+1}-th root ζ. ζ^{p} is an element of $U_{S}{ }^{p}$, because every
place contained in S is completely decomposed in $k(\zeta) / k$. However, this is impossible, because $t_{p}(E) \cap U_{s}{ }^{p}=t_{p}(E)^{p}$ from the assumption (3.2). Therefore
 for $t \leqq d$.

In the case of $t>d$, the equality follows immediately because

$$
t_{p}(E) \cap t_{p}\left(E_{S}\right)^{p^{t}}=\left(t_{p}(E) \cap t_{p}\left(E_{S}\right)^{p}\right) \cap t_{p}\left(E_{S}\right)^{p^{t}}=\{1\} .
$$

Let $\left\{u_{0}, u_{1}, \cdots, u_{\dot{\delta}}\right\}$ be a basis of $t_{p}\left(E_{S}\right)$. For a primitive p^{d}-th root ξ of unity, there are $a_{i} \in \boldsymbol{Z}$ such that

$$
\xi=u_{0}^{a_{0}} \cdot u_{1}^{a_{1}} \cdot \cdots \cdot u_{\delta}^{a_{\delta}} .
$$

Put $I=\left\{i \mid a_{i}\right.$ is prime to $\left.p\right\}$. Since $\xi \notin t_{p}(E) \cap t_{p}\left(E_{S}\right)^{p}, I$ is not empty. Put $p^{a}=$ $\max \left\{\operatorname{ord}\left(u_{i}\right) \mid i \in I\right\}$. Then we see $\xi^{p a} \in t_{p}\left(E_{S}\right)^{p^{a+1}}$. By the fact that we proved above, this means $\xi^{p a}=1$. Hence there is $i \in I$ such that the orders of ξ and u_{i} are equal. This implies that there is a basis of $t_{p}\left(E_{S}\right)$ which contains ξ.
Q.E.D.

By this lemma and (3.3), we see

$$
\begin{equation*}
\boldsymbol{\delta}=p-\operatorname{rank} T_{S} . \tag{3.4}
\end{equation*}
$$

Let $u_{1}, \cdots, u_{\delta}$ be a basis of T_{S}. Then for each $m \geqq 1$, we obtain a system of units $\varepsilon_{1}, \cdots, \varepsilon_{\delta}$ of E such that

$$
u_{i}=\varepsilon_{i} \cdot \alpha_{i}^{p^{m}}, \quad \alpha_{i} \in E_{S},
$$

by means of (3.1), We fix one of such systems of units for each m. Let $T_{S, m}$ denote the subgroup of E generated by this system $\left\{\varepsilon_{1}, \cdots, \varepsilon_{\dot{o}}\right\}$.

We see $K_{m}=K_{n}$ for all integers m such that $n \leqq m \leqq e\left(K_{n}\right)$. Hence, in the following, we assume that n satisfies $e\left(K_{n}\right)=n$.

Lemma 7. (1) Suppose k contains $\sqrt{-1}$ when $p=2$. Then the 1 -cohomology group $H^{1}\left(\operatorname{Gal}\left(K_{n} / k\right), t_{p}\left(K_{n}^{\times}\right)\right)=\{0\}$.
(2) Suppose $p=2, k \nexists \sqrt{-1}$. For a positive integer n such that $n=e\left(K_{n}\right)$, we have $H^{1}\left(\operatorname{Gal}\left(K_{n} / k\right), t_{2}\left(K_{n}^{\times}\right)\right)=\{0\}$ if and only if $n=1$ or $k_{0}=k \cap \boldsymbol{Q}\left(\zeta_{2 n}\right)$ is imaginary.

Proof. K_{n} / k is a cyclic extension when $p \geqq 3$, or when $p=2$ and $k \ni \sqrt{-1}$. Then the order of 1-dimensional cohomology group $H^{1}\left(\operatorname{Gal}\left(K_{n} / k\right), t_{p}\left(K_{n}^{\times}\right)\right)$equals that of the 0 -dimensional Tate cohomology group $H^{0}\left(\operatorname{Gal}\left(K_{n} / k\right), t_{p}\left(K_{n}^{\times}\right)\right)$. Hence the 1 -dimensional cohomology group vanishes. (1) is proved.

We shall prove (2). When $n=1$, the cohomology group is always trivial. We consider the case of $n \geqq 2$. Let \boldsymbol{Q}_{n} denote the 2^{n}-th cyclotomic field. There is an integer $s, 2 \leqq s \leqq n$, such that $k(\sqrt{-1})=K_{s}$ and $K_{s+1} \neq K_{s}$. Note that $k_{0}=$
$\boldsymbol{Q}_{s} \cap k$. We have a cohomology exact sequence

$$
\begin{aligned}
0 \longrightarrow & H^{1}\left(\operatorname{Gal}\left(K_{s} / k\right), t_{2}\left(K_{s}^{\times}\right)\right) \longrightarrow H^{1}\left(\operatorname{Gal}\left(K_{n} / k\right), t_{2}\left(K_{n}^{\times}\right)\right) \longrightarrow \\
& H^{1}\left(\operatorname{Gal}\left(K_{n} / K_{s}\right), t_{2}\left(K_{n}^{\times}\right)\right) .
\end{aligned}
$$

The last term of this exact sequence vanishes, because K_{s} contains $\sqrt{-1}$ and K_{n} / K_{s} is a cyclic extension. Further, we have

$$
H^{1}\left(\operatorname{Gal}\left(K_{\mathbf{s}} / k\right), t_{\mathbf{2}}\left(K_{s}^{\times}\right)\right) \cong H^{1}\left(\operatorname{Gal}\left(\boldsymbol{Q}_{\mathbf{s}} / k_{\mathrm{a}}\right), t_{\mathbf{t}}\left(\boldsymbol{Q}_{\mathbf{s}}^{\times}\right)\right) .
$$

Since $\boldsymbol{Q}_{\boldsymbol{s}} / k_{0}$ is a cyclic extension of degree 2 , we have the equality

$$
\left|H^{1}\left(\operatorname{Gal}\left(K_{n} / k\right), t_{2}\left(K_{n}^{\times}\right)\right)\right|=\left|H^{0}\left(\operatorname{Gal}\left(\boldsymbol{Q}_{s} / k_{0}\right), t_{2}\left(\boldsymbol{Q}_{s}^{\times}\right)\right)\right|=2 \cdot\left|N_{G}\left(t_{2}\left(\boldsymbol{Q}_{s}^{\times}\right)\right)\right|^{-1},
$$

where $G=\operatorname{Gal}\left(\boldsymbol{Q}_{s} / k_{0}\right)$ and N_{G} is the norm map. Let τ be the generator of G and ζ be a primitive 2^{s}-th root of unity. Then $H^{1}\left(\operatorname{Gal}\left(K_{n} / k\right), t_{2}\left(K_{n}^{\times}\right)\right) \cong\{1\}$ if and only if $\zeta^{1+\tau}=-1$. ζ^{τ} equals either ζ^{-1} or $\zeta^{\left(1+2^{s-1}\right)}$ because $k \nexists \sqrt{-1}$. In the case of $\zeta^{\top}=\zeta^{-1}$, we see $N_{G}\left(t_{2}\left(\boldsymbol{Q}_{s}^{\times}\right)\right)=\{1\}$ and k_{0} is real. In the other case, we see $\zeta^{\tau+1}=\zeta^{-2^{s-1}}=-1$ and that k_{0} is imaginary. Therefore, we complete the proof.

Lemma 8. Let n be a positive integer such that $n=e\left(K_{n}\right)$. Suppose that S satisfies (3.2) and that $k \cap \boldsymbol{Q}\left(\zeta_{2 n}\right)$ is totally imaginary when $p=2$ and $n \geqq 2$. Let m and l be integers such that $1 \leqq m \leqq e\left(K_{n}\right)$ and $m \leqq l$. Then we have $T_{s, l}^{p^{m}}=$ $T_{S, \imath} \cap K_{n}^{p^{m}}$ and an isomorphism

$$
T_{S, l} \cdot K_{n}^{p m} / K_{n}^{p m} \cong\left(\boldsymbol{Z} / p^{m} \boldsymbol{Z}\right)^{\delta} .
$$

Proof. By the exact sequence (1.1), we observe that E / E^{p} is isomorphic to $E_{S} / E_{S}{ }^{p}$ because $E \cap E_{S}{ }^{p} / E^{p}=\{1\}$ from the assumption (3.2), Hence the homomorphism f in (1.1) induces an isomorphism

$$
T_{S, l} \cdot t_{p}(E) \cdot E^{p} / E^{p} \cong t_{p}\left(E_{S}\right) \cdot E_{S}{ }^{p} / E_{S}{ }^{p}
$$

This isomorphism implies the following one.

$$
T_{S, 2} \cdot t_{p}(E) \cdot E^{p} / t_{p}(E) \cdot E^{p} \cong t_{p}\left(E_{S}\right) \cdot E_{S}{ }^{p} / t_{p}(E) \cdot E_{S}{ }^{p}
$$

Thus we obtain

$$
p-\operatorname{rank} T_{S, \imath} \cdot t_{p}(E) \cdot E^{p} / t_{p}(E) \cdot E^{p}=\delta
$$

Since $T_{s, t}$ is generated by just δ elements, this means

$$
\begin{equation*}
T_{S, \imath} \cap t_{p}(E) \cdot E^{p}=T_{s, l}^{p} . \tag{3.5}
\end{equation*}
$$

It follows from this that $t_{p}\left(T_{S, l}\right)=T_{S, \imath} \cap t_{p}(E) \subset t_{p}\left(T_{S, l}\right)^{p}$. Hence $T_{s, l}$ is $p-$ torsion free.

Next, we shall show the following equality for $m \geqq 2$.

$$
\begin{equation*}
T_{S, l} \cap t_{p}(E) \cdot E^{p^{m}}=T_{s, l}^{p^{m}} \tag{3.6}
\end{equation*}
$$

Let t be the maximal exponent of p such that

$$
T_{S, l} \cap t_{p}(E) \cdot E^{p^{m}} \subset T_{S, l}^{p^{t}}
$$

Assume $t<m$. Take $z \in T_{S, l} \cap t_{p}(E) \cdot E^{p^{m}}$ which is not contained in $T_{S, l}^{p^{p+1}}$. There are $\zeta \in t_{p}(E)$ and $y \in E$ such that $z=\zeta \cdot y^{p^{m}}$, and there is $w \in T_{S, l}$ such that $z=$ $w^{p^{t}}$. Hence $w=\zeta^{\prime} \cdot y^{p m-t}$ for a certain $\zeta^{\prime} \in t_{p}(E)$. By (3.5), we see that w is contained in $T_{s,}{ }^{p}$, hence $z \in T_{S},{ }^{p}{ }^{p+1}$. This contradicts the choice of z. Therefore we have the equality (3.6) because the converse inclusion is clear.

Now we shall prove the lemma by virtue of (3.5) and (3.6). For $\alpha \in T_{S, l} \cap$ $K_{n}^{p m}$, there is $\beta \in K_{n}$ such that $\alpha=\beta^{p m}$. By Lemma 7, the 1-dimensional cohomology group $H^{1}\left(\operatorname{Gal}\left(K_{n} / k\right), t_{p}\left(K_{n}^{\times}\right)\right)$is trivial. This implies that there are $\beta_{0} \in E^{\prime}$ and $\zeta \in t_{p}\left(K_{n}^{\times}\right)$such that $\beta=\zeta \cdot \beta_{0}$. Since (3.2) implies $E^{\prime}=E \cdot t_{p}^{(1)}\left(k^{\times}\right)$, we have $\alpha \in E^{p^{m}} \cdot t_{p}(E)$. Thus $T_{S, l} \cap K_{n}^{p^{m}} \subset t_{p}(E) \cdot E^{p^{m}}$. It follows from (3.5) and (3.6) that $T_{S, \imath} \cap K_{n}^{p^{m}}$ is contained in $T_{s, l}^{p^{m}}$. Since the converse inclusion is clear, the lemma is proved.

Proof of (1) of Theorem 3. We see that $K_{n} \neq K_{n+1}$ means $n=e\left(K_{n}\right)$. We see $E^{\prime p}=E^{p}$ from the assumption, $E \cdot t_{p}^{(1)}\left(k^{\times}\right)=E^{\prime}$. Let S be a finite set of finite places of k which contains all places lying over p and which satisfies $C_{S, \omega}=\{1\}$. (See the latter half of the proof of Theorem 1.) Then by Lemma 3, we have $E \cap U_{s}{ }^{p}=E^{\prime p}$, and hence $E \cap U_{s}{ }^{p}=E^{p}$. Thus the condition (3.2) holds for this S. Let p^{a} be the exponent of $t_{p}\left(E_{P}\right)$. Since $n>a$ by the assumption, we set $m=n-a$ and put $M_{n}=K_{n}\left({ }^{\left(p^{m}\right.} \sqrt{\varepsilon} \mid \varepsilon \in T_{S, m}\right)$. By Lemma 8, we have

$$
\operatorname{Gal}\left(M_{n} / K_{n}\right) \cong\left(\boldsymbol{Z} / p^{m} \boldsymbol{Z}\right)^{\delta} .
$$

By Lemma 5, M_{n} is an unramified extension of K_{n} in which every place lying over p is completely decomposed. This completes the proof.

We proceed to the proof of (2) of Theorem 3. Let L_{n} be the maximal unramified abelian p-extension of K_{n}. By class field theory, $\operatorname{Gal}\left(L_{n} / K_{n}\right)$ is isomorphic to the p-class group of K_{n}. Let $X\left(L_{n}\right)$ be the character group of $\operatorname{Gal}\left(L_{n} / K_{n}\right)$. For each $\sigma \in \operatorname{Gal}\left(L_{n+1} / K_{n+1}\right)$, res (σ) denotes the restriction of σ onto L_{n}. Then for $\chi \in X\left(L_{n}\right), \chi_{\text {ores }}$ is a character of $\operatorname{Gal}\left(L_{n+1} / K_{n+1}\right)$. Let ext denote the homomorphism from $X\left(L_{n}\right)$ to $X\left(L_{n+1}\right)$ defined by $\operatorname{ext}(\chi)=\chi_{\circ}$ res for $\chi \in X\left(L_{n}\right)$. We note that the corresponding abelian extension of K_{n+1} to $\operatorname{ext}(\mathcal{\chi})$ is an abelian extension of K_{n}.

Now suppose that $t_{p}\left(E_{P}\right)=t_{p}(E)$. Let l be a positive integer. We recall $T_{S, l} \cdot E_{S}{ }^{p l}=T_{S} \cdot E_{S}{ }^{p l}$ for a certain subgroup T_{S} of $t_{p}\left(E_{S}\right)$. Let π be the canonical projection from U_{S} to U_{P}. We showed in $\S 1$ that π maps E_{s} onto E_{p}. Thus we have $\pi\left(T_{S, l}\right) \subset \pi\left(T_{S}\right) \cdot E_{P}{ }^{p l}=t_{p}(E) \cdot E_{P}{ }^{p l}$. Let $\left\{\varepsilon_{1}, \cdots, \varepsilon_{\delta}\right\}$ be a set of generators of
$T_{S, l}$. Take $\zeta_{i} \in t_{p}(E)$ for each ε_{i} so that $\pi\left(\varepsilon_{i}\right) \in \zeta_{i} \cdot E_{P}{ }^{p l}$, and put $\varepsilon_{i}^{\prime}=\varepsilon_{i} \cdot \zeta_{i}^{-1}$. Let $T_{S, l}^{\prime}$ be the subgroup of E generated by $\left\{\varepsilon_{1}^{\prime}, \cdots, \varepsilon_{\delta}^{\prime}\right\}$. Note $\pi(\varepsilon) \in E_{P}{ }^{p^{l}}$ for $\varepsilon \in T_{S, l}^{\prime}$.

Lemma 9. Assume S satisfies (3.2). Assume $t_{p}\left(E_{P}\right)=t_{p}(E)$ and $n=e\left(K_{n}\right)$. Assume also that $k \cap \boldsymbol{Q}\left(\zeta_{2 n}\right)$ is totally imaginary when $p=2$ and $n \geqq 2$. Let m and l be integers such that $1 \leqq m \leqq n$ and $m \leqq l$. Put $M_{n, l}^{(m)}=K_{n}\left({ }^{p m} \sqrt{\varepsilon} \mid \varepsilon \in T_{S, l}^{\prime}\right)$. Then $M_{n, l}^{(m)}$ is an unramified extension of K_{n} in which every place lying over p is completely decomposed and $\operatorname{Gal}\left(M_{n, l}^{(m)} / K_{n}\right)$ is isomorphic to $\left(\boldsymbol{Z} / p^{m} \boldsymbol{Z}\right)^{\delta}$.

Proof. Since $\pi(\varepsilon) \in E_{P}{ }^{p^{m}}$ for each $\varepsilon \in T_{S, l}^{\prime}, K_{n}\left(p^{m} \sqrt{\varepsilon}\right)$ is an unramified extension of K_{n} in which every place lying over p is completely decomposed. Put $N_{n}=K_{n}\left({ }^{p^{m}} \sqrt{\alpha} \mid \alpha \in T_{S, l}\right)$. We have $M_{n, l}^{(m)} K_{n+m}=N_{n} K_{n+m}$ because $K_{n}\left({ }^{p m} \sqrt{\varepsilon_{i}^{\prime}}\right)$ $\subset K_{n}\left({ }^{p m} \sqrt{\varepsilon_{i}},{ }^{p m} \sqrt{\zeta_{i}}\right)$ for each generator ε_{i}^{\prime} of $T_{S, l}^{\prime}$, where $\zeta_{i} \in t_{p}(E)$. Since the character group of $\operatorname{Gal}\left(N_{n} K_{n+m} / K_{n+m}\right)$ is isomorphic to $T_{S, l} K_{n+m}^{p m} / K_{n+m}^{p m}$, we have $\left[N_{n} K_{n+m}: K_{n+m}\right]=p^{\delta m}$ by Lemma 8. Hence $\left[M_{n, l}^{(m)}: K_{n+m} \cap M_{n, l}^{(m)}\right]=p^{\delta m}$. On the other hand, we see $\left[M_{n, l}^{(m)}: K_{n}\right] \leqq p^{\delta m}$, because $T_{S, l}^{\prime}$ is generated by δ elements. Therefore we have $\left[M_{n, l}^{(m)}: K_{n}\right]=p^{\delta m}$. Thus we obtain $\left[T_{S, l}^{\prime} K_{n}^{p m}\right.$: $\left.K_{n}^{p^{m}}\right]=p^{\delta m}$, and this implies the following isomorphism.

$$
\begin{equation*}
T_{S, l}^{\prime} K_{n}^{p^{m}} / K_{n}^{p^{m}} \cong\left(\boldsymbol{Z} / p^{m} \boldsymbol{Z}\right)^{\delta} \tag{3.7}
\end{equation*}
$$

Since $\operatorname{Gal}\left(M_{n, l}^{(m)} / K_{n}\right)$ is the dual group of $T_{S, l}^{\prime} K_{n}^{p^{m}} / K_{n}^{p^{m}}$ by the Kummer pairing, we obtain an isomorphism

$$
\operatorname{Gal}\left(M_{n, l}^{(m)} / K_{n}\right) \cong\left(\boldsymbol{Z} / p^{m} \boldsymbol{Z}\right)^{\delta} . \quad \text { Q.E.D. }
$$

Take $\varepsilon \in T_{S, n+1}^{\prime}$ and let $\chi_{\varepsilon}^{(n)}$ be the Kummer character defined by $\chi_{\varepsilon}^{(n)}(\sigma)=$ ${ }^{p} \sqrt{\varepsilon^{(\sigma-1)}}$ for $\sigma=\operatorname{Gal}\left(L_{n} / K_{n}\right)$. Since $K_{n}\left({ }^{p n} \sqrt{\varepsilon}\right) \subset L_{n}$, we have $\chi_{\varepsilon} \in X\left(L_{n}\right)$. Let $\chi_{\varepsilon}^{(n+1)}$ denote the Kummer character defined by $\chi_{\varepsilon}^{(n+1)}(\sigma)={ }^{p^{n+1}} \sqrt{\varepsilon}^{(\sigma-1)}$ for $\sigma \in$ $\operatorname{Gal}\left(L_{n+1} / K_{n+1}\right)$. Suppose that there is $\theta \in X\left(L_{n}\right)$ such that $\theta^{p}=\chi_{\varepsilon}^{(n)}$. Then $\operatorname{ext}\left(\theta^{p}\right)=\chi_{\varepsilon}^{(n+1) p}$. Hence there is $\eta \in X\left(L_{n+1}\right)$ such that $\operatorname{ext}(\theta) \cdot \eta=\chi_{\varepsilon}^{(n+1)}$ and η^{p} $=1$. Let $K_{n+1}(\eta)$ be the intermediate field of L_{n+1} / K_{n+1} corresponding to η. Since $K_{n+1}\left(p^{n+1} \sqrt{\varepsilon}\right) \subset L_{n} \cdot K_{n+1}(\eta)$ and since $K_{n+1}(\eta) \subset L_{n} \cdot K_{n+1}\left(p^{n+1} \sqrt{\varepsilon}\right)$, we have $K_{n+1}\left(p^{n+1} \sqrt{\varepsilon}\right)$ is an abelian extension of K_{n} if and only if $K_{n+1}(\eta)$ is abelian over K_{n}.

Lemma 10. Suppose S satisfies (3.2). Let n be a positive integer such that $n=e\left(K_{n}\right)$. Suppose that $k \cap \boldsymbol{Q}\left(\boldsymbol{\zeta}_{p n+1}\right)$ is totally imaginary when $p=2$ and $n \geqq 2$. Take $\varepsilon \in T_{S, n+1}^{\prime}$ so that $\varepsilon \notin T_{S, n+1}^{\prime}$. Then $K_{n+1}\left({ }^{p+1} \sqrt{\varepsilon}\right) / K_{n}$ is never an abelian extension.

Proof. It follows from (3.7) that $K_{n+1}\left(p^{n+1} \sqrt{\varepsilon}\right) / K_{n+1}$ is a cyclic extension of degree p^{n+1}. Let τ be a generator of the Galois group such that $\tau\left({ }^{p^{n+1}} \sqrt{\varepsilon}\right)$
$=p^{n+1} \sqrt{\varepsilon} \cdot \zeta$ for a certain primitive p^{n+1}-th root ζ of unity. Let σ be an extension to $K_{n+1}\left({ }^{p n+1} \sqrt{\varepsilon}\right)$ of a generator of the Galois group of K_{n+1} / K_{n}. Let a be an integer such that $\zeta^{\sigma}=\zeta^{a}$. Since $\varepsilon^{\sigma}=\varepsilon$, we have $\chi_{\varepsilon}^{(n+1)}\left(\sigma \tau \sigma^{-1}\right)=\chi_{\varepsilon}^{(n+1)}(\tau)^{a}$. Hence $\sigma \cdot \tau \cdot \sigma^{-1}=\tau^{a}$. Assume that $K_{n+1}\left(p^{n+1} \sqrt{\varepsilon}\right) / K_{n}$ is abelian. Then $a \equiv 1$ $\bmod p^{n+1}$. Therefore σ has to be the identity in K_{n+1}. However, this is not the case. Hence $K_{n+1}\left(p^{n+1} \sqrt{\varepsilon}\right) / K_{n}$ is not abelian.
Q. E. D.

Lemma 11. Assume S satisfies (3.2). Assume $t_{p}\left(E_{P}\right)=t_{p}(E)$. Let n be a positive integer such that $n=e\left(K_{n}\right)$. Assume also that $k \cap \boldsymbol{Q}\left(\zeta_{2 n+1}\right)$ is totally imaginary when $p=2$ and $n \geqq 2$. Put $M_{n, n+1}^{(n)}=K_{n}\left({ }^{(n n} \sqrt{\varepsilon} \mid \varepsilon \in T_{S, n+1}^{\prime}\right)$; this is a subfield of the p-Hilbert class field L_{n} of K_{n}. Let $X\left(L_{n}\right)$ be the character group of $\operatorname{Gal}\left(L_{n} / K_{n}\right)$ and $X\left(M_{n, n+1}^{(n)}\right)$ be that of $\operatorname{Gal}\left(M_{n, n+1}^{(n)} / K_{n}\right)$. If $t_{p}^{(1)}\left(X\left(L_{n+1}\right)\right) \subset$ $\operatorname{ext}\left(X\left(L_{n}\right)\right)$, we have $X\left(M_{n, n+1}^{(n)}\right) \cap X\left(L_{n}\right)^{p}=X\left(M_{n, n+1}^{(n)}\right)^{p}$.

Proof. We have $M_{n, n+1}^{(n)} \subset L_{n}$ by Lemma 9. Take $\theta \in X\left(L_{n}\right)$ and $\varepsilon \in T_{S, n+1}^{\prime}$ so that $\boldsymbol{\theta}^{p}=\boldsymbol{\chi}_{\varepsilon}^{(n)}$. Then there is $\eta \in t_{p}^{(1)}\left(X\left(L_{n+1}\right)\right)$ such that $\operatorname{ext}(\theta)=\eta \cdot \chi_{\varepsilon}^{(n+1)}$. Since the p-ranks of $t_{p}^{(1)}\left(X\left(L_{n+1}\right)\right)$ and $t_{p}^{(1)}\left(\operatorname{ext}\left(X_{n}\left(L_{n}\right)\right)\right)$ are equal, we have $\chi_{\varepsilon}^{(n+1)}$ $\in \operatorname{ext}\left(X\left(L_{n}\right)\right)$. This means that $K_{n+1}\left(p^{n+1} \sqrt{\varepsilon}\right) / K_{n}$ is abelian. By Lemma 10, we have $\varepsilon \in T_{S}^{\prime p}{ }_{n+1}$, that is $\chi_{\varepsilon}^{(n)} \in X\left(M_{n, n+1}^{(n)}\right)^{p}$.
Q. E.D.

PRoof of (2) of Theorem 3. We have shown in the proof of (1) of Theorem 3 that there exists a finite set S of finite places of k containing P and satisfying (3.2). Take such an S and put $M_{n}^{\prime}=M_{n, n+1}^{(n)}$. Then we obtain the first assertion by Lemma 9.

Let $\phi_{n}: C_{n} \rightarrow \operatorname{Gal}\left(L_{n} / K_{n}\right)$ be the isomorphisms defined by class field theory. C_{n} and $X\left(L_{n}\right)$ are dual to each other by the pairing

$$
\langle\chi, c\rangle_{n}=\chi\left(\phi_{n}(c)\right)
$$

where $\chi \in X_{n}\left(L_{n}\right)$ and $c \in C_{n}$. Hence they are of the same type as finite abelian groups. We have the following equalities.

$$
\begin{aligned}
& t=p-\operatorname{rank} X\left(L_{n}\right)^{p n} \\
& s=p-\operatorname{rank} X\left(L_{n}\right)^{p n-1}-t \\
& r=p-\operatorname{rank} X\left(L_{n}\right)-t-s
\end{aligned}
$$

Moreover, ext is the dual map of the norm map $N_{K_{n+1} / K_{n}}: C_{n+1} \rightarrow C_{n}$, because

$$
\langle\operatorname{ext}(\chi), c\rangle_{n+1}=\left\langle\chi, N_{K_{n+1} / K_{n}}(c)\right\rangle_{n}
$$

for $\chi \in X\left(L_{n+1}\right)$ and $c \in C_{n+1}$.
Since there is a ramified place in K_{n+1} / K_{n}, we see $N_{K_{n+1} / K_{n}}$ is surjective. Thus ext is injective. This implies $t_{p}^{(1)}\left(X\left(L_{n+1}\right)\right) \subset \operatorname{ext}\left(X\left(L_{n}\right)\right)$, because the p ranks of C_{n} and C_{n+1} are equal by the assumption.

Put $Y=X\left(M_{n, n+1}^{(n)}\right)$. Since $Y \cong\left(\boldsymbol{Z}_{p} / p^{n} \boldsymbol{Z}_{p}\right)^{\boldsymbol{j}}$ by Lemma 9, we obtain

$$
\delta \leqq p-\operatorname{rank} X\left(L_{n}\right)^{p n-1}=s+t .
$$

Next we shall prove $\delta \leqq r+s$. Let ($p^{n-a_{1}}, \cdots, p^{n-a_{r}}, \cdots, p^{n}, \cdots, p^{n}, p^{n+b_{1}}$, $\left.\cdots, p^{n+b_{t}}\right)$ be the type of $X\left(L_{n}\right)$ as an abelian group, where $a_{1} \geqq \cdots \geqq a_{r} \geqq 1$ and $1 \leqq b_{1} \leqq \cdots \leqq b_{t}$. There are three subgroups X_{1}, X_{2} and X_{3} of $X\left(L_{n}\right)$ such that $X\left(L_{n}\right)$ is a direct product of them and

$$
\begin{aligned}
& X_{1} \cong \boldsymbol{Z} / p^{n-a_{1}} \boldsymbol{Z} \times \cdots \times \boldsymbol{Z} / p^{n-a_{r}} \boldsymbol{Z}, \\
& X_{2} \cong\left(\boldsymbol{Z} / p^{n} \boldsymbol{Z}\right)^{s}, \\
& X_{3} \cong \boldsymbol{Z} / p^{n+b_{1}} \boldsymbol{Z} \times \cdots \times \boldsymbol{Z} / p^{n+b_{t}} \boldsymbol{Z} .
\end{aligned}
$$

Then Y is contained in $X_{1} \times X_{2} \times X_{3}^{p}$. Since $Y \cap X\left(L_{n}\right)^{p}=Y^{p}$ by Lemma 11, we have

$$
p-\operatorname{rank} Y / Y^{p} \leqq p-\operatorname{rank} X_{1} \times X_{2} \times X_{3}^{p} / X_{1}^{p} \times X_{2}^{p} \times X_{3}^{p}=r+s .
$$

Thus we have proved (2) of Theorem 3,

References

[1] J. Ax, On the units of an algebraic number field, Illinois J. Math., 9 (1965), 584589.
[2] A. Brumer, On the units of algebraic number fields, Mathematika, 14 (1967), 121124.
[3] R. Gillard, Formulations de la conjecture de Leopoldt et étude d'une condition suffisante, Abh. Math. Sem. Univ. Hamburg, 48 (1979), 125-138.
[4] G. Gras, Remarques sur la conjecture de Leopoldt, C.R. Acad. Sci. Paris (A), 274 (1972), 377-380.
[5] -, Groupe de Galois de la p-extension abélienne p-ramifiée maximale d'un corps de nombres, J. Reine Angew. Math., 333 (1982), 86-132.
[6] -, Une interpretétation de la conjecture de Leopoldt, C.R. Acad. Sci. Paris (I), 302 (1986), 607-610.
[7] K. Iwasawa, On Leopoldt's conjecture (in Japanese), Seminar Note on Algebraic Number Theory, Sūrikaiseki-kenkyūsho, Kyoto, 1984.
[8] H. W. Leopoldt, Zur Arithmetik in abelschen Zahlkörpern, J. Reine. Angew. Math., 209 (1962), 54-71.
[9] H. Miki, On the Leopoldt conjecture on the p-adic regulators, J. Number Theory, 26 (1987), 117-128.
[10] K. Miyake, On the units of an algebraic number field, J. Math. Soc. Japan, 34 (1982), 515-525.
[11] O. Neumann, On p-closed algebraic number fields with restricted ramifications, Math. USSR-Izv., 9 (1975), 243-254.
[12] J. W. Sands, Kummer's and Iwasawa's version of Leopoldt's conjecture, Canad. Math. Bull., to appear.
[13] J.P. Serre, Cohomologie galoisienne, Lecture Notes in Math., 5, Springer, 1964.

Hiroshi Yamashita
Kanazawa Women's College
Kanazawa 920-13
Japan

