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Introduction.

Let p be a prime number. Leopoldt showed that the p-adic rank 7,
of the unit group of a totally real abelian number field K equals the number
of non-trivial characters of K such that the p-adic L-functions associated to
them have not value 0 at 1. Moreover, he obtained the p-adic class number
formula in case where the p-adic rank equals the total number of non-trivial
characters which is equal to the rank of the unit group. The Leopoldt conjecture
comes from this. This equality of the p-adic rank and the rank of the unit
group for an abelian field was verified by Ax for several special cases, and
was proved completely by Brumer [2] in the general case.

We define the p-adic rank of the unit group of an algebraic number field
to which we refered above. Let © be an integral domain and X be its field of
quotients. For an O-module M, we define the essential ©@-rank of M to be the
value of dimy M&QeK, and denote it by ess. ©-rank M.

Let & denote a finite algebraic number field throughout this paper. Let E,
be the group of units which are congruent to 1 modulo every prime p lying
over p, and let U,(1) be the group of the local units u such that u=1 mod p.
Then E, is embedded into IT,,U,1) by e—(s, ¢, -, ¢). Denote by E, the
closure of E, in IIU(1). Since U1l) are multiplicative Z,-modules, where Z,
is the ring of p-adic integers, E, is also a Z,-module. We refer to the
ess. Z,-rank of E, as the p-adic rank of the unit group of 2, and denote it by
rp in this paper.

The Leopoldt conjecture predicts that the p-adic rank equals the essential
Z-rank of the unit group in any algebraic number field. We know by Brumer
that this equality holds for an abelian extension of an imaginary quadratic
number field, and also know by Miyake for certain non-abelian extensions of
imaginary quadratic number fields.

Let » be the essential Z-rank of the unit group of k, and we set §,=r—75.
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The Leopoldt conjecture is true if and only if d,=0. We call this J, the defect
value of the Leopoldt conjecture. Note that d, is a non-negative integer.

Throughout this paper, let E denote the group of units of % which are
p-th powers at every infinite place. When p is odd, or when % is totally
imaginary, E is the whole unit group. Let S be a finite set of finite places of
k which contains the set P of all places lying over p. Let Us=Il,esU,, where
U, are the local unit groups. By embedding E into Ug, we consider E as a sub-
group of Us. Denote by Eg the closure of E in Ug. It is a totally disconnected
compact group, Note that Es=F-FEZ for an arbitrary positive integer n.

Let {, be a primitive p-th root of unity, and G be the Galois group
Gal(k({,)/ k). For each =G, there exists me(Z/pZ )" such that {=_}, where
(Z/pZ)* is the multiplicative group of Z/pZ. Since (Z/pZ)* is naturally
embedded into the multiplicative group of Z,, we obtain a Z,-valued character
o of G by putting w(g)=m. Let g, be the idempotent of the group ring Z,[G]
associated to w, that is e,=1/|G|)Xsec w(0)o™ .

Let C be the ideal class group of 2({,), and let D be the subgroup generated
by all of the extensions of ideals of S to k({,). Put Cs=C/D-C?; this is
naturally considered a Z,[GJ]-module. Denote by Cgs , the submodule of Cg
generated by &,(x), x&Cs. This is an w-eigenspace, that is, the submodule
consisting of x&Cs such that x?=x¢ for all ¢=G.

Let S. be the union of S and the set of all infinite places. Denote by
Bs.(p) the subgroup of k*/kP generated by all those a=k> which are locally
p-th powers at every p<S. and whose principal ideals (a) are p-th powers of
ideals of 2. We shall prove that Cg, and Bg.(p) are dual to each other
(Proposition I)).

For an abelian group A, we denote the subgroups of p”-torsion points by
tim(A) and the union of ¢t§V(A4) for n=1, 2, 3, --- by t,(4). Let F, be the finite
field with p-elements. We consider A/A? an F-linear space. If A isa torsion
group, we call its dimension the p-rank of A and denote it by p-rank A.

Let G2° be the Galois group over %, of the maximal abelian p-extension of
k unramified outside P. We have the following formula of J, from Theorem
12 of Gras [5] if p is odd.

0p = p-rank t,(Up)+ p-rank Cp, ,—p-rank ¢ ,(k*)—p-rank ¢ ,(G#°).

Therefore, if p-rank ¢,(Up)=p-rank t,(k*) and Cp ,={l}, then d,=0. We obtain
the same consequence also for p=2 from Theorem I3 of Gras [5] if % is totally
imaginary. This sufficient condition for d,=0 was shown in Gras [4], Miki
and Sands [12].

We shall refine the formula on 9, and prove that there exists
a certain unramified abelian p-extension over k({,») whose Galois group is iso-
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morphic to (Z/p"-2Z)’» if n is greater than a certain non-negative integer a
determined only by k; here {,» denotes a primitive p*-th root of unity
3). It follows from this, in particular, that d,=0 if there is a positive integer
n>a such that the ideal class group of k({,») have no classes of order p"-¢.
Moreover we see that the A-invariant of the Z,-extension \U..,k({pn) over 2({,)
is greater than d,—1 if d,%#0. This was proved in Gillard by using the
Kummer pairing over \U&(,n).

The purpose in the present paper is to study 4, in connection with ¢,(Eg)
and Cg,,, and to obtain sufficient conditions for §,=0. Here we state out the
main results.

THEOREM 1. The Leopoldt conjecture for p is true for k if and only if
there is a finite set S of finite places of k containing P and satisfying the follow-
ing three conditions.

(1) Cg, o vanishes.

(2) The p-ranks of t,(Es) and t,(E) are equal.

(3) EP contains Es"NE'?, where E' is the whole unit group of k.

COROLLARY. Suppose k is totally imaginary when p=2. If p-rank,(Us)=
p-rank t,(k*) and Cs,,={1}, then the Leopoldt conjecture for p is true for every
finite p-extensions of k unramified outside S.

THEOREM 2. Let S be a finite set of finite places of k containing P, and let
S« be the union of S and the set of all infinite places. For a-kP?< Bg (D), there
exists an ideal a of k such that a?=(a); let AL denote the subgroup of the ideal
class group of k generated by all such ideals a. Then we have the following
equality

0, = p-rank t,(Ug)— p-rank ¢ ,(E)+ p-rank Cg ,— p-rank A
—p-rank t ,(Us/Es)+p-rank E'?/E?,

THEOREM 3. Let k be a finite algebraic number field such that 6,=1. Sup-
pose that E-tP(k*) is equal to the whole unit group of k. Let K, denote the
cyclotomic extension k(C,:) of k, where Cye is a primitive pi-th root of unity.
Let n be a positive integer satisfying K, #K,. Suppose that Q.Nk 1is totally
imaginary when p=2 and n=2. Then we have the following statements.

(1) Let a be the smallest non-negative integer such that x?*=1 for every
x<t,(Ep). If n>a, then there exists an unramified abelian extension M, of K,
whose Galois group Gal(M,/K,) is isomorphic to (Z/p" *Z)°» and in which every
place lying over p is completely decomposed over K,.

(2) Suppose t,(Ep)=tp(E). Let n be a positive integer such that there is a
ramified place in K,.,/K,. Let C, be the ideal class group of K,. Put t=
p-rank C2", s=p-rank C2"'—t and r=p-rank C,—t—s. Then there exists an
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unramified abelian extension M, of K, whose Galois group Gal(M,/K,) is iso-
morphic to (Z/p"Z)Yr and in which every place lying over p is completely de-
composed over K,. Moreover, if the p-ranks of the ideal class groupsof K, and
K, are equal, we have 0,<s-+min(z, ).

COROLLARY. Under the same assumptions as in (2) of Theorem 3, we have
0,=0 if s+min(r, $)=0.

In §1, we shall prove a basic formula of 4, and show Theorem 1 by virtue
of it. In §2, we shall show the formula of Theorem 2, which is a natural
consequence from §1. As an application of this formula, we shall show Prop-
osition 2. In the last section, we shall construct Kummer extensions of degree
p* % over K, by certain subgroups of E which are determined from t,(Es), and
prove Theorem 3.

The author is very grateful to the referee for looking the drafts over and
checking the results many times. v

1. The basic formula of 6, and the proof of Theorem 1.

For a place q&S, let Nq denote the absolute norm of q, and m, be the
highest power of p dividing Nq—1. Let T be the complement of P in S and
put Vs=II,ep Vo XIlser Ujts, where V, denote the subgroups of U, generated by
a primitive (Np—1)-th root of unity. Put Fg=FEsN\Vs and EszES/FS. Since
Us/Vs is a Zp-module, Eg is also a Z,-module. Set m=I.c.m.{Np—1|p=P}.
Note that Up is the direct product of the groups of the principal local units
U,1) for all pcP. We recall that E, is the closure of E, in Uf, where E, is
the group of units of %2 which are congruent to 1 modulo every p=P. Since
E,DE™ and EDE?, the subgroup Ep of E, is of finite index. Therefore we
have r,=ess. Z,-rank EF. It follows from this that

rp = €ss. Zy-rank Ep.

Let m: Es—Ep be the restriction onto Eg of the canonical projection from
Us to Up. Since Eg is compact, n(Eg) is also compact. Hence Er=n(Ejy),
because E is dense in n(Es). x induces the surjection #: F?s—fp defined by
#(eFs)=m(e)Fp, and the kernel of 7 is (EsN\Uyr- Vp): Fs/Fs, where Ur=II,erU,.
We see (EsN\Ur: Vp)"CEsN\VrCFs for n=lLc.m. {Np—1|p=P}-l.c.m.{m,|q=T}.
This means that ker# is finite. Hence we obtain the equality

ess. Zp-rank Eg=ess. Z,-rank Ep.
Therefore, the essential Z,-rank of Eg equals 7 -

LEMMA 1. We have the following equality of the p-adic rank v, of the unit
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group of k.
rp = p-rank Eg/Es” — p-rank t,(Es).

PROOF. If we prove Eg/Es=Es"/Es® and t,(Es)=t,(Es), the lemma follows
from the equality

ess. Z,-rank F?s = p-rank ES/Esp—p-rank tp(ﬁs) .

We shall show these isomorphisms. We observe Vs’=V,s and that {V*|n
=1,2,3,--} forms a base for the open neighborhood system of unity in Vj.
Hence for every n, Vs/ V™ are finite abelian groups whose orders are prime to. p.
Since Fg- Vg"/ V™ are subgroups of Vs/ V™, we have Fg?- V™ /Vr=Fg-Vs*/ V™
Thus Fs?-V"=Fs-Vs", and hence

AFS Vs = [\ (Fs- Vs,

This means the closures of F¢? and Fg are equal. Since both of them are
compact, we have Fs*=Fs. Hence Fs""=Fs for every positive integer m.
Moreover, t,(Fs)={1}, because t,(Fs) is a finite abelian group.

We obtain the first isomorphism, Es/Es?=Es/Es®, because Es*DFs’=Fs.
Let g be an element of Eg such that g?™<F; for a certain positive integer m.
There is h€Fs such that h?™=g?™. We see g-h'€t,(Eg). This means to(Es)
=t,(Es) Fs/Fs. Hence tp(Es)ztp(Es)/tp(Fs). Thus we obtain the second iso-
morphism, tp(Es)ztp(ES). Q.E.D.

We note ess. Z-rank E equals p-rank E/E?—p-rank{,(E). From this and
follows a formula of J,:

0p = p-rank E/E?—p-rank Eg/Eg" — p-rankt,(E)+p-rankt,(Es).

Let X be the complete system of representatives of E/E? in E. Since
Ueex eEs® is a compact subset of FEg containing E, it must be equal to Eg
itself. Hence we obtain a surjection f from E/E® onto Es/Es” by f(eE?)=
eEs?, e=X. Since ker f=ENE"/E?, we have an exact sequence

f
(1.1) 1 —> ENEs"/E? —> E/E? —> Eg/Es* —> 1.

Let A® denote the subgroup of k*/k? generated by ENEs”, where S. is the
union of S and the set of all infinite places of 2. Then

(1.2) p-rank AY = p-rank ENEs’/E?—p-rank E'?’N\Es*/E?,

where E’ is the whole unit group of 2. We note that this last term p-rank E'?
NEs?/EP vanishes when p is odd or when £ is totally imaginary.

We obtain the following basic formula of 8, from the above formula of 9,
the exact sequence and the equality [(1.2).
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(1.3) d,=p-rankt,(Es)—p-rankt,(E)+p-rank A@+p-rank E'?NEs"/E?.

Since t,(Es)Dt(E), we see p-ranki,(Egs)—p-ranki,(E)=0. Hence d, vanishes
if and only if p-rankt,(Es)=p-rankt,(E), A ={1} and E'?’NEgCE?.

Let Cs, and Bg.(p) be as in the introduction. We shall show by using
the Kummer pairing that Cg ,={1} implies A ={1}. We will prove the duality
between Cg , and Bg(p). Put K=£k({,), where {, is a primitive p-th root of
unity. Let Sk be the set of all extensions to K of every places contained in
S« Let Bg,(p) be the subgroup of K*/K? generated by those a=K™ which
are locally p-th powers at every B<Sk and whose principal ideals (a) are p-th
powers of ideals of K. We recall that Cs=C/D-C?, where C is the ideal class
group of K and where D is the subgroup generated by all ideals of places of Sk.

Let L be the unramified abelian p-extension of K corresponding to Cs by
class field theory. Let @ be the Galois group of L/K and ¢: Cs—€ be the
isomorphism. Then we have the Kummer pairing

(1.4) e, @>=rva PO,

where d=aK? is the coset of Bg, (p) generated by a. This gives the perfect
duality, and the Galois group G=Gal(K/k) acts by

7, ar) =L¢, @@, rei.

LEMMA 2. Let Ng denote the norm map of G-module. Then Bg. (p) is
isomorphic to the subgroup Ne(Bsg(p)) of Bs,(p).

PROOF. Let j: B*/kP—K*/K? be the homomorphism induced from the in-
clusion map from £* into K*. We see ]'(Bsw(p))‘a‘CNG(BSK(p))Cj(BSm(p)) and
ker j=k*NK?/k?. Since the order of G is prime to p, j maps Bg.(p) onto
Ne(Bsg(p)). On the other hand, j is injective, because Ng(ker j)=ker; and
Ne(R*NKP)Ck?. This completes the proof.

PROPOSITION 1. By (p) is the dual of Cs,, with respect to the pairing (1.4).
PROOF. We have
Cea(c), @' = <e, Ne(@)),

for ceCs and a=K*/K?. The proposition follows from this and
Q.E.D.

LEMMA 3. For a-k?&Bs (D), there is an ideal a of k such that a?=(a).
Let A§) denote the subgroup of the ideal class group of k generated by all such
ideals a. Let AR=(ENUP)-k?/(ENE")-k? and AR =(ENEs")-k?/k? Then

(1.5) Bs(p) = AR XALXAL,.
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(1.6) p-rank Cs o, = ;20 p-rank AP .

ProOOF. Let Bg.(p) be the subgroup of Bgs.(p) generated by ENUs®. For
each a-k?=Bg. (p), take an ideal a of %2 so that a?=(a). Let ¢, be the ideal
class containing a. We define a surjection from Bg (p) onto AE by f(@)=ca,.
We see the kernel of f is B§.(p), hence By, (p)/B3.(p)=A{. Since Bg(p) is
an elementary abelian p-group, we have

Bs.(p) = ASLXBS(D).

Similarly, since B (p)/A§=A§), we have
§(p) = AFLX AR

Hence we obtain [1.5). (1.6) follows from [I.5) and [Proposition I, immediately.
Q.E.D.

PROOF OF THEOREM 1. Assume S satisfies all of the conditions (1), (2) and
(3). By [Proposition 1] and [1.5), we see that the condition (1) implies A% ={1}.
Hence, by the basic formula (1.3), we obtain d,=0 from the conditions (2) and
(3). Conversely assume d,=0. Then, by the basic formula (1.3), we see that
the conditions (2) and (3) hold for any S containing all places lying over p.
Take a prime ideal from each ideal class ¢ of 2({,) and let p, denote its restric-
tion to k. Let S be the union of the set of all places of such prime ideals p,
and the set of all places of % lying over p. This S obviously satisfies the
condition (1), and is the desired finite set of places of k. Q.E.D.

We prove the corollary to [Theorem Il Let kg be the maximal p-extension
of & unramified outside S, and put G=Gal(kgs/k). G is a pro-p-group. The
value of dimeH *(G, F,) equals the number of the relations of a minimal generator
system of G as a pro-p-group (see Serre [13], to Proposition 27 in
Chap. I). Denote it by #(G). G is a free pro-p-group if and only if »(G)=0.
We note that the cohomological p-dimension c¢d,(G) is less than 2 if and only
if (G)=0. If G is a free pro-p-group, an arbitrary subgroup H of G is also
free, because cd,(H)=<cd,(G) (see Serre [13], Proposition 14 in Chap. I).

Assume £ is totally imaginary when p=2. We observe no infinite places
are ramified in kg/k. For such 2 and p, we obtain the following formula by
Corollary 2 of the main theorem of Neumann [11]:

7(G) = p-rank By (p)+p-rankt,(Us)—p-rankt,(E).

Since Bg (p)=Cs.., We see r(G) equal 0 if and only if Cg,={1} and
p-rankt,(Us)=p-rankt,(E). Hence we have Cg,={1} and p-rankit,(Es)=
p-rankt,(E) if r(G) vanishes, because p-ranki,(Usg)=p-rankt,(Eg). It follows
from that the Leopoldt conjecture is true for k if Gal(kgs/k) is a
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free pro-p-group.

Let K be a finite extension of %, contained in kg. Let L be a Galois p-
extension of K unramified outside S. Let L’ be any conjugate field of L over
k. We observe that every ramified place of 2 in L’/k is contained in S.
Thus the Galois closure of L over k is contained in ks. Hence kg is also the
maximal p-extension of K unramified outside Sk, where Sy denotes the set of
all extensions of places contained in S. Assume Cs ,={1} and p-rankt,(Ug)=
p-rankt,(E) for k. Then Gal(ks/k) is a free pro-p-group, and hence, Gal(kgs/K)
is also free. It follows from this that the Leopoldt conjecture is true for K.

Q.E.D.

2. The proof of Theorem 2 and its application.

We recall that A§ is the factor group (ENUs”)- k?/(ENEsY)-k?. We have
an exact sequence of elementary abelian p-groups

2.1) 1——> E'?/E'?"NEs" —> ENUs"/ENEs" —> Af) —> 1,

where E’ is the whole unit group of 2. We can describe ENUs’/ENES® as
follows.

LEMMA 4. We have the following exact sequence.
1 —t{P(Us)-Es/Es —> tP(Us/Es) —> ENUs*/ENEs® —> 1.

PROOF. Let Wy denote the subgroup of Us consisting of those elements
whose p-th powers are contained in Eg. Obviously, t’(Us/Es)=Ws/Es. For
usWsg, there are e FE and a=Eg such that u?=¢-a”, because E is dense in
Es. Let f be a homomorphism from Wy onto ENUs?/ENES® defined by f(u)
=¢-(ENEs”). Since the kernel of f is t{’(Us)- Es, we have the exact sequence
by f. Q.E.D.

PrROOF OF THEOREM 2. The following equality follows from and
the exact sequence [(2.1).

(2.2) p-ranktP(Eg) = p-rankt’(Ug)— p-rank t$’(Us/Es)
+p-rank AL +p-rank E'?/E'?PNES”.

We obtain the formula of from the basic formula (1.3) as follows.
Eliminate the term p-rankt,(Eg) from (1.3) by using [2.2), and replace the term
p-rank A§)+p-rank A with p-rank Cs ,—p-rank AL by using (1.6). Q.E.D.

We recall the equivalent statement to the Leopoldt conjecture given by
Iwasawa [7]. Let q be a finite place of %2 such that q/ p, and Nq denote the
absolute norm of q. If » is a natural number, we shall denote by (n), the
highest power of p dividing n. Let
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e(q, a) = max(p®, (Nqg—1),)

for a natural number a. A finite abelian extension K over %2 will be called a
(q, a)-field if K/k is unramified outside pq and if

e(q, a) < e(q; K/k)

where e(q; K/k) denote the ramification index of q in K/k. The Leopoldt

conjecture is equivalent to-the existence of a (q, a)-field for every (q, a) such

that Nq=1 mod p and p°<(Nq—1), (see Iwasawa and Sands [12]).
Concerning with the (q, 1)-field, we obtain the following praposition from

PROPOSITION 2. Let T be the subset of S\P consisting of all places q such
that (q, 1)-fields exist. Then

dp = p—ranktp(Us)—#T+p-rank Cs,o—p-rank AY’
—p-rankt,(E)+p-rank E'?/E? .
PROOF. Let %’ be the maximal abelian extension of 2 unramified outside
S, where S.. is the union of S and the set of all infinite places. Let H be the
absolute class field of k. We can prove Ug/Egs=Gal(E%/H) by means of class

field theory. Let k% be the maximal p-extension of 2 contained in 2%. We
note that 2% is a finite extension aver k3%, where P is the set of all places of

-3

k lying over p, because every Z,-extension of %k are contained in k%) and
Gal(k%®/k) is a finitely generated Z,-module. Hence we obtain

p-rankt,(Us/Es) = p-rankt,(Gal(k4/H)) = p-rank Gal(kg2/k2L).
Let R(T)=\U,er k(q), where k(q) is a (q, 1)-field. We observe p-rank Gal(k(T)kgL/
RE)=#T. Hence
p-rank?,(Gal(k3%/kgL)) = #T.
Therefore, we obtain the inequality.
p-rankt,(Us/Es) = #T .
The proposition follows from ‘ Q.E.D.

3. The construction of unramified extensions and the proof of Theorem 3.

In this section, we suppose that the defect value 4, of & is different from
0, and show that the existence of a characteristic unramified abelian p-extension
over 2(L,»), where {,.» is a primitive p™-th root of unity. We write ¢ for &,
in this section. '
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If F is a finite algebraic number field or its completion at a certain finite
place, we denote the exponent of the order of {,(F*) by e(F), that is, |{,(F*)]
=pe(F).

Let u be an element of #,(Es) and p® be the order of u. We see u=({,|p=S)
eUg, where {, are p®th roots of unity in k,. Since E is dense in Eg, there
exists e F for each integer m=1 such that

3.1 u=c¢c-a™, where acEg.

Set K,=k(L,n). Suppose that m satisfies the inequality m=<e(K,). Put L=
K.(*™+/¢). Then L/K, isa Kummer extension which is unramified outside p.
We consider the ramifications of places lying over p. Let  be a finite place
of K, lying over p. Let p be the restriction of  to » and ¢ an extension of
P® to L. Denote the p-components of ¥ and @ by u, and a,, respectively. Let
p® be the order of u,. The completion of K, at P is k,({,x). Since ¢ is a
product of a p°th root of unity and a®3™ <k, the completion of L at ¢ is
ky(Cpn, Cpo+m). Hence we have the following lemma.

LEMMA 5. Under the above notation, LB is completely decomposed in L/K,
if and only if b+m=Ze(ky(Lpn)).

We suppose that S satisfies the following condition.
(32> EmUsp - Ep.

Recall that E’ is the whole unit group of 2. Since E'CUg, we have E'’NE
=E? by Thus E'?=FE?, This implies E’=E-t{*(k*). Further, we have
ENE"=E? because ENUZ"DENE®. Hence by and the basic formula
(1.3), we obtain an equality

(3.3) 0 = p-rankit,(Eg)—p-rankt,(E).

LEMMA 6. Suppose 0=1 and that S satisfies (3.2). Then there is a subgroup
Ts of ty(Es) such that t,(Es) is a direct sum of Ts and t,(E).

ProoF. If t,(E)={1}, the statement is obvious. Assume ?,(E)# {1}, and
let p¢ be the order. Note that #,(E)#{l} means % is totally imaginary when
p=2. Hence E=E’.

We shall prove that the following equality holds for every positive integer £ :

to(E)Nt5(Es)P" = t,(E)P*.

Firstly, we prove this equality for t<d. Let n be a generator of #,(E)N
to(Es)?'. k(*'+/7) is an unramified abelian p-extension over £ in which every
place in S is completely decomposed. We assume k(*'+/y )#k. Then, k(*'v/7)
must contain a primitive p¢*'-th root {. {? is an element of Ug”, because every
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place contained in S is completely decomposed in %({)/k. However, this is
impossible, because t,(E)N\Us”=t,(E)® from the assumption Therefore
R(®'~/7)=Fk, namely net,(E)NEP'=t,(E)?'. We have proved the above equality
for 1<d.

In the case of t>d, the equality follows immediately because

to(EYNt(Es)?" = (t,(E)Nt,(Es) INtp(Es)? = {1},

Let {uo, uy, -+, us} be a basis of ¢,(Es). For a primitive p?-th root & of
unity, there are a;=Z such that

E: u%ﬂ.u?l. .uga_

Put I={i|a; is prime to p}. Since &&t,(E)Nty(Es)?, I is not empty. Put pe=
max{ord(u;)|i€I}. Then we see £P%<t,(Es)?*". By the fact that we proved
above, this means &?"=1. Hence there is /&I such that the orders of & and

u; are equal. This implies that there is a basis of #,(Es) which contains &.
Q.E.D.

By this lemma and (3.3), we see
3.4 0 = p-rank Tg.

Let u,, -+, us be a basis of Ts. Then for each m=1, we obtain a system of
units e, -+, g5 of E such that

m
Uy =¢g;al’, a;€Eg,

by means of We fix one of such systems of units for each m. Let Tg n
denote the subgroup of E generated by this system {e,, ---, &5}.

We see Kn,=K, for all integers m such that n<m<e(K,). Hence, in the
following, we assume that n satisfies e(K,)=n.

LEMMA 7. (1) Suppose k contains ~/—1 when p=2. Then the l-cohomology
group HNGal(K./k), t,(K;)={0}.

(2) Suppose p=2, kD~ —1. For a positive integer n such that n=e(K,),
we have HYGal(K,/k), to,(K;)={0} if and only if n=1 or ke=kNQL:r) is
imaginary.

PrOOF. K,/k is a cyclic extension when p=3, or when p=2 and kv —1.
Then the order of 1-dimensional cohomology group HGal(K,/k), t,(Ky)) equals
that of the 0-dimensional Tate cohomology group H°(Gal(K,/k), t,(Ky)). Hence
the 1-dimensional cohomology group vanishes. (1) is proved.

We shall prove (2). When n=1, the cohomology group is always trivial.
We consider the case of n=2. Let @, denote the 2*-th cyclotomic field. There
is an integer s, 2<s<mn, such that k(+~/—1)=K, and K,,,#K,. Note that k,=
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Q.NEk. We have a cohomology exact sequence
0 — HY(Gal(K,/k), t.(K;)) —> HYGal(K,/k), t:(K3)) —>
HYGal(K./Ky), t:(K7)).

The last term of this exact sequence vanishes, because K, contains +/—1 and
K./K, is a cyclic extension. Further, we have

HY(Gal(K,/ k), t(K)) = H (Gal(Qs/ ko), t2(Q5)).
Since Q,/k, is a cyclic extension of degree 2, we have the equality
| H (Gal(Kn/ k), t.(K7))| = | HYGal(@s/ ko), 1:(Q5))| = 2- | Ne(t(Q5)) 7,

where G=Gal(@,/k,) and N; is the norm map. Let r be the generator of G
and { be a primitive 2%-th root of unity. Then HYGal(K,/k), t.(K;)={1} if
and only if {**=—1.  equals either {"! or {~¢+%*"D because kv —1. In
the case of '={"*, we see Ng(t.(Q)={1} and k, is real. In the -other case,
we see {Ft'={"*"'=—1 and that k, is imaginary. Therefore, we complete the
proof.

LEMMA 8. Let n be a positive integer such that n=e(K,). Suppose that S
satisfies (3.2) and that ENQ(Lyn) is totally imaginary when p=2 and n=2. Let
m and [ be integers such that 1<m<e(K,) and m<l. Then we have Tsf’lm":
Ts. .NKP™ and an isomorphism

Ts..-KR™/KE"™ = (Z/p™Z).

Proor. By the exact sequence [L.I), we observe that E/E? is isomorphic
to Es/Es” because ENEG’/EP={1} from the assumption Hence the
homomorphism f in induces an isomorphism

Ts,1-tp(E)-E?/E? = t,(Eg)-Es®/Es”.
This isomorphism implies the following one. |
Ts.1to(E)- EP/t,(E)- E? = t,(Es)- Es”/ty(E)-Es”.
Thus we obtain
p-rank Ty, -tx(E)- E?/t5(E)-E? = 4.
Since Ts,: is generated by just & elements, this means
(3.5) Ts.Nty(E)-EP = Ts":.

It follows from this that t,(Ts ;)=Ts Nt,(E)Ct,(Ts,1)?. Hence Ts, is p-
torsion free. :
Next, we shall show the following eguality for m=2.
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(3.6) Ts. Nt (E)-EP" = TsH".
Let ¢ be the maximal exponent of p such that
Ts.Nt(E)-EP™ C T .

Assume t<m. Take z& Ts,;Nt,(E)- E?™ which is not contained in Ts%"". There
are {=t,(E) and y=E such that z={-y?™, and there is weTy,; such that z=
w?’. Hence w={ - y?™ " for a certain {'ct,(E). By [3.5), we see that w is
contained in T%, hence z& Tsf’fﬂ. This contradicts the choice of z. Therefore
we have the equality because the converse inclusion is clear.

Now we shall prove the lemma by virtue of and [3.6). For a=Ts, N
K?™, there is B K, such that a=8?". By [Lemma 7, the 1l-dimensional co-
homology group HGal(K,/k), t,(K;)) is trivial. This implies that there are
B.=E’ and {=t,(K;) such that B={-f,. Since [3.2) implies E'=E-t;’(k*), we
have acEP™-t,(E). Thus Ts NKP"Ct,(E)-E?™. It follows from and
that Ts.NKP™ is contained in Ts?™. Since the converse inclusion is clear,
the lemma is proved.

PrROOF OF (1) OF THEOREM 3. We see that K,+ K,., means n=e¢(K,). We
see E'’=F? from the assumption, E-t{°(k*)=E’. Let S be a finite set of
finite places of 2 which contains all places lying over p and which satisfies
Cs.o={1}. (See the latter half of the proof of [Theorem 1.) Then by Lemma 3,
we have ENUg?=E'?, and hence ENUg’=E?. Thus the condition holds
for this S. Let p® be the exponent of ¢{,(Ep). Since n>a by the assumption,
we set m=n—a and put M,=K,(*?"V ¢ |¢e€Ts. »). By [Lemma 8 we have

Gal(M,/K,) = (Z/p™Z).

By Cemma 5, M, is an unramified extension of K, in which every place lying
over p is completely decomposed. This completes the proof.

We proceed to the proof of (2) of [Theorem 3 Let L, be the maximal
unramified abelian p-extension of K,. By class field theory, Gal(L,/K,) is
isomorphic to the p-class group of K,. Let X(L,) be the character group of
Gal(L,/K,). For each ¢=Gal(L,,,/K,,.), res(g) denotes the restriction of ¢
onto L,. Then for X X(L,), X-res is a character of Gal(L,.,,/K,,.). Let ext
denote the homomorphism from X(L,) to X(L,,,) defined by ext(X)=X-res for
X=X(L,). We note that the corresponding abelian extension of K,., to ext(X)
is an abelian extension of K.

Now suppose that ¢,(Ep)=t,(E). Let [ be a positive integer. We recall
Ts,l-ES”l:TS-ES”l for a certain subgroup T of 7,(Es). Let w be the canonical
projection from Ug to Up. We showed in § 1 that # maps F; onto E,. Thus we
have n(Ts..)Cn(Ts)-Ep?'=t,(E)-Ep?'. Let {e,, -+, &5} be a set of generators of
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Ts.;. Take {;=t,(E) for each ¢; so that m(e;)=l;-Ex?’, and put ej=¢;-{7%. Let
T%.; be the subgroup of E generated by {e}, ---, ¢}}. Note z(e)sEp?' for e= T4 ;.

LEMMA 9. Assume S satisfies (3.2). Assume t,(Ep)=t,(E) and n=e(K,).
Assume also that kNQL:n) is totally imaginary when p=2 and n=2. Let m
and | be integers such that 1<m<n and m<l. Put M{W=K,P"Ve |e€T§,).
Then MS™ is an unramified extension of K, in which every place lying over p
is completely decomposed and Gal(M™/K,) is isomorphic to (Z/p™Z ).

PROOF. Since n(e)e EpP™ for each e= T, K.(P™+/ ¢) is an unramified ex-
tension of K, in which every place lying over p is completely decomposed.
Put N,=K,(?"va|acTs,;). We have M\ K, n=N,K,.n because K,(?"V¢})
CK.(*"Ve;, P™"V/{;) for each generator ¢; of T% ,, where {;=t,(E). Since the
character group of Gal(N,K,im/Knim) is isomorphic to Ts K2Im/K2, we
have [NoKnim: Knsn]=p"™ by [Lemma 8 Hence [M ™ : K,.m MW ]=p"
On the other hand, we see [M, ™ : K, :|<p5m because T% , is generated by 4
elements. Therefore we have [M, ™ : K,]=p°™. Thus we obtain [Ts KP™:
K?™]=p%™, and this implies the following isomorphism.

3.7 Ts. KP"/KF" =(Z/p"Z) .

Since Gal(M ™ /K,) is the dual group of T4 ,KP™/KP™ by the Kummer pairing,
we obtain an isomorphism

Gal(M ™ /K,) = (Z/p™Z). Q.E.D.

Take e= T o, and let X{™ be the Kummer character defined by X (g)=
PP e for ¢=Gal(L,/K,). Since K,(*"+ ¢)CL,, we have L.=X(L,). Let
X+ denote the Kummer character defined by X*2(¢)=P""'4/¢ ™ for g
Gal(L,4,/K,:+1). Suppose that there is d<X(L,) such that 6°=X. Then
ext(0?)=x{"*»?, Hence there is n=X(L,,,) such that ext(f).-p="*> and »?
=1. Let K, (n) be the intermediate field of L,.;/K,;, corresponding to 7.
Since Kn4:(P""'V € )T Ly Knii(n) and since Ky ()T Ly Kuyi(P" '), we have
K,.:(P""'+/ &) is an abelian extension of K, if and only if K,..(n) is abelian
over K,.

LEMMA 10. Suppose S satisfies (3.2). Let n be a positive integer such that
n=e(K,). Suppose that kNQL,n+1) is totally imaginary when p=2 and n=2.

Take e = T4 nyy so that e TEP . Then Kny(P" 'V e)/K, is never an abelian
extension.

ProOOF. It follows from that K,.:(P""'v €)/ K4, is a cyclic extension
of degree p™*'. Let r be a generator of the Galois group such that z(?""'v/¢)
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v ¢ -{ for a certain primitive p**'-th root £ of unity. Let ¢ be an ex-
tension to K,.(P"**v¢) of a generator of the Galois group of K,../K.. Let
a be an integer such that {’={* Since e°=¢, we have X**V(gra~)=X+(7)2,
Hence ¢:7-67'=7% Assume that K,.,(?"*'v/¢)/K, is abelian. Then a=1
mod p™*'. Therefore ¢ has to be the identity in K,,,, However, this is not
the case. Hence K,.,(?"*'v/¢)/K, is not abelian. Q.E.D.

__pntl

LEMMA 11. Assume S satisfies (3.2). Assume t,(Ep)=t,(E). Let n be a
positive integer such that n=e(K,). Assume also that ENQLn+1) is totally
imaginary when p=2 and n=2. Put M. =K,*"V e |e=T ns1); this is a
subfield of the p-Hilbert class field L, of K,. Let X(L,) be the character group
of Gal(L,/Kn) and X(M7%41) be that of Gal(Mi™./Ky). If t§(X(Lau)C
ext(X(Ln)), we have X(Mz" )ONX(Ln)? = XMy 1",

Proor. We have M%), ,CL, by Lemma 9. Take 6=X(L,) and e=Té nsy
so that #P=%{™. Then there is npetP’(X(L,+,)) such that ext(f)=xn -2 0.
Since the p-ranks of #{"(X(L,+.)) and t5P(ext(X,(L,))) are equal, we have X{**P

cext(X(L,). This means that K,,, ("™~ ¢)/K, is abelian. By Lemma 10,
we have e T4 ,,,, that is XM e X(M,™),0)P. Q.E.D.

PrOOF OF (2) oF THEOREM 3. We have shown in the proof of (1) of
3 that there exists a finite set S of finite places of 2 containing P and satisfy-
ing [3.2). Take such an S and put M;=MS™,,. Then we obtain the first
assertion by [Lemma 9.

Let ¢,: C,—Gal(L,/K,) be the isomorphisms defined by class field theory.
C, and X(L,) are dual to each other by the pairing

Xy > =Ugalc))

where X X,(L,) and ceC,. Hence they are of the same type as finite abelian
groups. We have the following equalities.

t = p-rank X(L,)*",
s = p-rank X(L,)?" '—t¢
r = p-rank X(L,)—t—s.

)

Moreover, ext is the dual map of the norm map Nk, /x,: Cari—Cy,
because

extX), cyns1 = X, Nip1x,(E0n
for XeX(L,4,) and c=C,yy.
Since there is a ramified place in K,.,/K,, we see Nx, ,,/x, iS surjective.
Thus ext is injective. This implies {{°(X(Lp41))Cext(X(L,)), because the p-
ranks of C, and C,,, are equal by the assumption.
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Put Y=XM™,,). Since Y=(Z,/p"Z,)° by Lemma 9, we obtain
0 < p-rank X(L,)?" ' = s+t.

Next we shall prove 0<r-+s. Let (p" %1, -, pP0r o  pHP .o HP pPHIL
-, p™*0) be the type of X(L,) as an abelian group, where a,=---=a,=1 and

1<bh,<---<b,. There are three subgroups X;, X, and X, of X(L,) such that
X(L,) is a direct product of them and

X, = Z/p"MZX - XZ[p WL,
Xo=(Z/p"Z),
X = Z/pMNnZX - X Z/p"0 L.
Then Y is contained in X, X X,X X%, Since YNX(L.)?=Y? by Lemma 11, we

have
prankY /Y ? < prank X, X X, X X5/ XX XP X X} = r+s.

Thus we have proved (2) of [Theorem 3.
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