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Introduction.

Let $P$ be a prime number. Leopoldt [8] showed that the $P$ -adic rank $r_{p}$

of the unit group of a totally real abelian number field $K$ equals the number
of non-trivial characters of $K$ such that the $P$ -adic $L$-functions associated to
them have not value $0$ at 1. Moreover, he obtained the $p$ -adic class number
formula in case where the $p$ -adic rank equals the total number of non-trivial
characters which is equal to the rank of the unit group. The Leopoldt conjecture
comes from this. This equality of the $P$ -adic rank and the rank of the unit
group for an abelian field was verified by Ax [1] for several special cases, and
Was Proved completely by Brumer [2] in the general case.

We define the $P$ -adic rank of the unit group of an algebraic number field
to which we refered above. Let $O$ be an integral domain and Jc be its field of
quotients. For an $O$-module $M$, we define the essential $O$-rank of $M$ to be the
value of $\dim_{j\zeta}M\otimes_{0}\mathscr{K}$ , and denote it by $ess$ . $O$-rank $M$.

Let $k$ denote a finite algebraic number field throughout this paper. Let $E_{1}$

be the group of units which are congruent to 1 modulo every Prime $p$ lying
Over $p$ , and let $U_{\mathfrak{p}}(1)$ be the group of the local units $u$ such that $u\equiv 1mod \mathfrak{p}$ .
Then $E_{1}$ is embedded into $\Pi_{\mathfrak{p}1p}U_{\mathfrak{p}}(1)$ by $\epsilonarrow$ ( $\epsilon,$

$\epsilon$ , $\cdot$ .. , e). Denote by $\overline{E}_{1}$ the
closure of $E_{1}$ in $\Pi U_{\mathfrak{p}}(1)$ . Since $U_{\mathfrak{p}}(1)$ are multiplicative $Z_{p}$-modules, where $Z_{P}$

is the ring of $P$ -adic integers, $E_{1}$ is also a $Z_{p}$-module. We refer to the
$ess$ . $Z_{p}$-rank of $\tilde{E}_{1}$ as the $P$ -adic rank of the unit group of $k$ , and denote it by
$r_{p}$ in this paper.

The Leopoldt conjecture predicts that the $p$ -adic rank equals the essential
$Z$-rank of the unit group in any algebraic number field. We know by Brumer
[2] that this equality holds for an abelian extension of an imaginary quadratic
number field, and also know by Miyake [10] for certain non-abelian extensions of
imaginary quadratic number fields.

Let $r$ be the essential $Z$-rank of the unit group of $k$ , and we set $\delta_{p}=r-r_{p}$ .
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The Leopoldt conjecture is true if and only if $\delta_{p}=0$ . We call this $\delta_{p}$ the defect
value of the Leopoldt conjecture. Note that $\delta_{p}$ is a non-negative integer.

Throughout this paper, let $E$ denote the group of units of $k$ which are
p-th powers at every infinite place. When $P$ is odd, or when $k$ is totally
imaginary, $E$ is the whole unit group. Let $S$ be a finite set of finite places of
$k$ which contains the set $P$ of all places lying over $p$ . Let $U_{S}=\Pi_{\mathfrak{p}\in s}U_{\mathfrak{p}}$ , where
$U_{\mathfrak{p}}$ are the local unit groups. By embedding $E$ into $U_{S}$ , we consider $E$ as a sub-
group of $U_{S}$ . Denote by $E_{s}$ the closure of $E$ in $U_{s}$ . It is a totally disconnected
compact group. Note that $E_{S}=E\cdot E_{s}^{n}$ for an arbitrary positive integer $n$ .

Let $\zeta_{p}$ be a primitive p-th root of unity, and $G$ be the Galois group
$Ga1(k(\zeta_{p})/k)$ . For each $\sigma\in G$ , there exists $m\in(Z/pZ)^{\cross}$ such that $\zeta_{p}^{\sigma}=\zeta_{p}^{m}$ , where
$(Z/pZ)^{\cross}$ is the multiplicative group of $Z/pZ$. Since $(Z/pZ)^{\cross}$ is naturally
embedded into the multiplicative group of $Z_{p}$ , we obtain a $Z_{p}$ -valued character
$\omega$ of $G$ by putting $\omega(\sigma)=m$ . Let $\epsilon_{\omega}$ be the idempotent of the group ring $Z_{p}[G]$

associated to $\omega$ , that is $\epsilon_{\omega}=(1/|G|)\Sigma_{\sigma\in G}\omega(\sigma)\sigma^{-1}$ .
Let $C$ be the ideal class group of $k(\zeta_{p})$ , and let $D$ be the subgroup generated

by all of the extensions of ideals of $S$ to $k(\zeta_{p})$ . Put $C_{s}=C/D\cdot C^{p}$ ; this is
naturally considered a $Z_{p}[G]$ -module. Denote by $C_{S.\omega}$ the submodule of $C_{s}$

generated by $\epsilon_{\omega}(x),$ $x\in C_{S}$ . This is an $\omega$-eigenspace, that is, the submodule
consisting of $x\in C_{S}$ such that $x^{\sigma}=x^{\omega(\sigma)}$ for all $\sigma\in G$ .

Let $S_{\infty}$ be the union of $S$ and the set of all inPnite places. Denote by
$B_{s_{\infty}}(p)$ the subgroup of $k^{\cross}/k^{p}$ generated by all those $\alpha\in k^{\cross}$ which are locally
p-th powers at every $\mathfrak{p}\in S_{\infty}$ and whose principal ideals $(\alpha)$ are p-th powers of
ideals of $k$ . We shall prove that $C_{S.\omega}$ and $B_{S\infty}(p)$ are dual to each other
(Proposition 1).

For an abelian group $A$ , we denote the subgroups of $p^{n}$-torsion points by
$t_{p}^{(n)}(A)$ and the union of $t_{p}^{(n)}(A)$ for $n=1,2,3$ , $\cdot$ .. by $t_{p}(A)$ . Let $F_{p}$ be the finite
field with $P$ -elements. We consider $A/A^{p}$ an $F_{p}$-linear space. If $A$ is a torsion
group, we call its dimension the $p$ -rank of $A$ and denote it by $P$ -rank $A$ .

Let $G_{P}^{\alpha b}$ be the Galois group over $k$ of the maximal abelian $p$ -extension of
$k$ unramified outside $P$. We have the following formula of $\delta_{p}$ from Theorem
I2 of Gras [5] if $P$ is odd.

$\delta_{p}=P$ -rank $t_{p}(U_{p})+P$ -rank $C_{P}$ , $.-P$ -rank $i_{p}(k^{\cross})-p$ -rank $t_{p}(G_{p^{b}})$ .
Therefore, if $P$ -rank $t_{p}(U_{P})=p$ -rank $t_{p}(k^{\cross})$ and $C_{P},.=\{1\}$ , then $\delta_{p}=0$ . We obtain
the same consequence also for $p=2$ from Theorem I3 of Gras [5] if $k$ is totally
imaginary. This sufficient condition for $\delta_{p}=0$ was shown in Gras [4], Miki [9]

and Sands [12].

We shall refine the formula on $\delta_{p}$ (Theorem 2) and prove that there exists
a certain unramified abelian $P$ -extension over $k(\zeta_{pn})$ whose Galois group is iso-
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morphic to $(Z/p^{n-a}Z)^{\delta_{p}}$ if $n$ is greater than a certain non-negative integer $a$

determined only by $k$ ; here $\zeta_{pn}$ denotes a primitive $p^{n}$-th root of unity (Theorem
3). It follows from this, in particular, that $\delta_{p}=0$ if there is a positive integer
$n>a$ such that the ideal class group of $k(\zeta_{pn})$ have no classes of order $p^{n-a}$ .
Moreover we see that the $\lambda$-invariant of the $Z_{p}$-extension $\bigcup_{n\geq 1}k(\zeta_{pn})$ over $k(\zeta_{p})$

is greater than $\delta_{p}-1$ if $\delta_{p}\neq 0$ . This was proved in Gillard [3] by using the
Kummer pairing over $\cup k(\zeta_{pn})$ .

The purpose in the present paper is to study $\delta_{p}$ in connection with $t_{p}(E_{S})$

and $C_{S.\omega}$ , and to obtain sufficient conditions for $\delta_{p}=0$ . Here we state out the
main results.

THEOREM 1. The Leopoldt conjecture for $p$ is true for $k$ if and only if
there is a finite set $S$ of finite places of $k$ containing $P$ and satisfying the follow-
ing three conditions.

(1) $C_{S.\omega}$ vanishes.
(2) The $p$ -ranks of $t_{p}(E_{S})$ and $t_{p}(E)$ are equal.
(3) $E^{p}$ contains $E_{S}^{p}\cap E^{\prime p}$ , where $E’$ is the whole unit group of $k$ .

COROLLARY. Suppose $k$ is totally imaginary when $p=2$ . If $p$ -rank $t_{p}(U_{S})=$

$p$ -rank $t_{p}(k^{\cross})$ and $C_{S.\omega}=\{1\}$ , then the Leopoldt conjecture for $p$ is true for every
finite $p$-extensions of $k$ unramified outside S.

THEOREM 2. Let $S$ be a finite set of finite places of $k$ containing $P$, and let
$S_{\infty}$ be the union of $S$ and the set of all infinite places. For $\alpha\cdot k^{p}\in B_{s_{\infty}}(p)$ , there
exists an ideal $\mathfrak{a}$ of $k$ such that $\mathfrak{a}^{p}=(\alpha)$ ; let $A\S_{\infty}^{0)}$ denote the subgroup of the ideal
class group of $k$ generated by all such ideals $\mathfrak{a}$ . Then we have the following
equality

$\delta_{p}=p$ -rank $t_{p}(U_{S})-p$ -rank $t_{p}(E)+p$ -rank $C_{S}$
, $.-P$ -rank $A\S_{\infty}^{(1)}$

$-p$ -rank $t_{p}(U_{S}/E_{S})+p$ -rank $E^{\prime p}/E^{p}$ .
THEOREM 3. Let $k$ be a finite algebraic number field such that $\delta_{p}\geqq 1$ . Sup-

pose that $E\cdot t_{p}^{(1)}(k^{\cross})$ is equal to the whole unit group of $k$ . Let $K_{t}$ denote the
cyclotomic extension $k(\zeta_{pt})$ of $k$ , where $\zeta_{pt}$ is a primitive $p^{t}$-th root of unity.
Let $n$ be a positive integer satisfying $K_{n+1}\neq K_{n}$ . Suppose that $Q_{n}\cap k$ is totally
imaginary when $p=2$ and $n\geqq 2$ . Then we have the following statements.

(1) Let $a$ be the smallest non-negative integer such that $x^{p^{a}}=1$ for every
$x\in t_{p}(E_{P})$ . If $n>a$ , then there exists an unramified abelian extension $M_{n}$ of $K_{n}$

whose Galois group $Ga1(M_{n}/K_{n})$ is isomorphic to $(Z/p^{n-a}Z)^{\delta_{p}}$ and in which every
place lying over $p$ is completely decomposed over $K_{n}$ .

(2) Suppose $t_{p}(E_{P})=t_{p}(E)$ . Let $n$ be a positive integer such that there is a
ramified place in $K_{n+1}/K_{n}$ . Let $C_{n}$ be the ideal class group of $K_{n}$ . Put $t=$

$p$ -rank $C_{n}^{p^{n}},$ $s=p$ -rank $C_{n}^{p^{n-1}}-t$ and $r=p$ -rank $C_{n}-t-s$ . Then there exis $ts$ an
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unramified abelian extension $M_{n}’$ of $K_{n}$ whose Galois group $Ga1(M_{n}’/K_{n})$ is iso-
morphic to $(Z/p^{n}Z)^{\delta_{P}}$ and in which every place lying over $p$ is completely de-
composed over $K_{n}$ . Moreover, if the $p$-ranks of the ideal class groups of $K_{n}$ and
$K_{n+1}$ are equal, we have $\delta_{p}\leqq s+\min(r, t)$ .

COROLtARY. Under the same assumptions as in (2) of Theorem 3, we have
$\delta_{p}=0$ if $s+ \min(r, t)=0$ .

In \S 1, we shall prove a basic formula of $\delta_{p}$ and show Theorem 1 by virtue
of it. In \S 2, we shall show the formula of Theorem 2, which is a natural
consequence from \S 1. As an application of this formula, we shall show Prop-
osition 2. In the last section, we shall construct Kummer extensions of degree
$p^{n-a}$ over $K_{n}$ by certain subgroups of $E$ which are determined from $t_{p}(E_{S})$ , and
prove Theorem 3.

The author is very grateful to the referee for looking the drafts over and
checking the results many times.

1. The basic formula of $\delta_{p}$ and the proof of Theorem 1.

For a place $q\in S$ , let $Nq$ denote the absolute norm of $q$ , and $m_{q}$ be the
highest power of $p$ dividing $Nq-1$ . Let $T$ be the complement of $P$ in $S$ and
put $V_{S}--\Pi_{\mathfrak{p}\in P}V_{\mathfrak{p}}\cross\Pi_{q\in T}U_{q}^{m_{q}}$ , where $V_{\mathfrak{p}}$ denote the subgroups of $U_{\mathfrak{p}}$ generated by
a primitive $(Np-1)$-th root of unity. Put $F_{S^{-}}-E_{s}\cap V_{S}$ and $\tilde{E}_{S}=E_{S}/F_{S}$ . Since
$U_{S}/V_{S}$ is a $Z_{p}$-module, $\tilde{E}_{S}$ is also a $Z_{p}$-module. Set $m=1$ . $c$ . $m.\{Np-1|p\in P\}$ .
Note that $U_{P}^{m}$ is the direct product of the groups of the principal local units
$U_{\mathfrak{p}}(1)$ for all $p\in P$. We recall that $\overline{E}_{1}$ is the closure of $E_{1}$ in $U_{P}^{m}$ , where $E_{1}$ is
the group of units of $k$ which are congruent to 1 modulo every $p\in P$. Since
$E_{1}\supset E^{m}$ and $E\supset E_{1}^{2}$ , the subgroup $E_{P}^{m}$ of $\overline{E}_{1}$ is of finite index. Therefore we
have $r_{p}=ess$ . $Z_{p}$-rank $E_{P}^{m}$ . It follows from this that

$r_{p}=ess$ . $Z_{p}$-rank $\tilde{E}_{P}$ .
Let $\pi:E_{S}arrow E_{P}$ be the restriction onto $E_{s}$ of the canonical projection from

$U_{S}$ to $U_{P}$ . Since $E_{S}$ is compact, $\pi(E_{s})$ is also compact. Hence $E_{P}=\pi(E_{S})$ ,
because $E$ is dense in $\pi(E_{s})$ . $\pi$ induces the surjection $\tilde{\pi}$ : $\tilde{E}_{S}arrow\tilde{E}_{P}$ defined by
$\tilde{\pi}(\epsilon F_{S})=\pi(\epsilon)F_{P}$, and the kernel of fi is $(E_{S}\cap U_{T}\cdot V_{P})\cdot F_{S}/F_{S}$ , where $U_{T}= \prod_{\mathfrak{p}\in T}U_{\mathfrak{p}}$ .
We see $(E_{S}\cap U_{T}\cdot V_{P})^{n}\subset E_{S}\cap V_{T}\subset F_{S}$ for $n=1.c.m.\{N\mathfrak{p}-1|\mathfrak{p}\in P\}\cdot 1.c.m.\{m_{q}|q\in T\}$ .
This means that $ker\tilde{\pi}$ is finite. Hence we obtain the equality

$ess$ . $Z_{p}$ -rank $\tilde{E}_{S}=ess$ . $Z_{p}$ -rank $\tilde{E}_{P}$ .
Therefore, the essential $Z_{p}$-rank of $\tilde{E}_{S}$ equals $r_{p}$ .

LEMMA 1. We have the following equality of the $p$-adic rank $r_{p}$ of the unit
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group of $k$ .
$r_{p}=P$ -rank $E_{s}/E_{S}^{p}-p$ -rank $t_{p}(E_{S})$ .

PROOF. If we prove $\tilde{E}_{S}/\tilde{E}_{S}\cong E_{s}^{p}/E_{s}^{p}$ and $t_{p}(\tilde{E}_{S})\cong t_{p}(E_{s})$ , the lemma follows
from the equality

$ess$ . $Z_{p}$-rank $\tilde{E}_{S}=P$ -rank $\tilde{E}_{S}/\tilde{E}_{s}^{p}-p$ -rank $t_{p}(\tilde{E}_{S})$ .
We shall show these isomorphisms. We observe $V_{S}^{p}=V_{S}$ and that $\{V_{s^{n}}|n$

$=1,2,$ 3, } forms a base for the open neighborhood system of unity in $V_{S}$ .
Hence for every $n,$ $V_{S}/V_{s^{n}}$ are finite abelian groups whose orders are prime to $p$ .
Since $F_{S}\cdot V_{S^{n}}/V_{s^{n}}$ are subgroups of $V_{S}/V_{s^{n}}$ , we have $F_{s^{p}}\cdot V_{s^{n}}/V_{S^{\hslash}}=F_{s}\cdot V_{S^{n}}/V_{s^{n}}$ .
Thus $F_{S}^{p}\cdot V_{S}^{n}=F_{S}\cdot V_{s}^{n}$ , and hence

$\bigcap_{n=1}^{\infty}(F_{S}^{p}\cdot V_{S}^{n})=\bigcap_{n=1}^{\infty}(F_{S}\cdot V_{S}^{n})$ .

This means the closures of $F_{s}^{p}$ and $F_{s}$ are equal. Since both of them are
compact, we have $F_{S}^{p}=F_{S}$ . Hence $F_{S}^{p^{m}}=F_{S}$ for every positive integer $m$ .
Moreover, $t_{p}(F_{S})=\{1\}$ , because $t_{p}(F_{s})$ is a finite abelian group.

We obtain the first isomorphism, $E_{S}/E_{S}^{p}\cong\tilde{E}_{S}/\tilde{E}_{S}^{p}$ , because $E_{s}^{p}\supset F_{s}^{p}=F_{s}$ .
Let $g$ be an element of $E_{s}$ such that $g^{p^{m}}\in F_{s}$ for a certain positive integer $m$ .
There is $h\in F_{S}$ such that $h^{p^{m}}=g^{p^{m}}$ . We see $g\cdot h^{-1}\in t_{p}(E_{S})$ . This means $t_{p}(\tilde{E}_{S})$

$\cong t_{p}(E_{S})\cdot F_{S}/F_{S}$ . Hence $t_{p}(\tilde{E}_{s})\cong t_{p}(E_{s})/t_{p}(F_{s})$ . Thus we obtain the second iso-
morphism, $t_{p}(\tilde{E}_{s})\cong t_{p}(E_{s})$ . Q. E. D.

We note $ess$ . $Z$-rank $E$ equals $p$ -rank $E/E^{p}-p$ -rank $t_{p}(E)$ . From this and
Lemma 1 follows a formula of $\delta_{p}$ :

$\delta_{p}=P$ -rank $E/E^{p}-p$-rank $E_{S}/E_{S}^{p}-p$ -rank $t_{p}(E)+P$ -rank $t_{p}(E_{S})$ .
Let $X$ be the complete system of representatives of $E/E^{p}$ in $E$. Since

$\bigcup_{\epsilon\in X}\epsilon E_{S}^{p}$ is a compact subset of $E_{s}$ containing $E$, it must be equal to $E_{S}$

itself. Hence we obtain a surjection $f$ from $E/E^{p}$ onto $E_{S}/E_{s}^{p}$ by $f(\epsilon E^{p})=$

$\epsilon E_{s}^{p},$ $\epsilon\in X$. Since $kerf=E\cap E_{S}^{p}/E^{p}$ , we have an exact sequence
$f$

(1.1) $1arrow E\cap E_{s}^{p}/E^{p}arrow E/E^{p}arrow E_{S}/E_{S}^{p}arrow 1$ .
Let $A_{s_{\infty}}^{(2)}$ denote the subgroup of $k^{\cross}/k^{p}$ generated by $E\cap E_{s}^{p}$ , where $S_{\infty}$ is the
union of $S$ and the set of all infinite places of $k$ . Then

(1.2) $P$ -rank $A9_{\infty}^{)}=p$ -rank $E\cap E_{S}^{p}/E^{p}-p$ -rank $E$ ‘ $p_{\cap E_{S}^{p}}/E^{p}$ ,

where $E’$ is the whole unit group of $k$ . We note that this last term $P$ -rank $E^{\prime p}$

$\cap E_{S}^{p}/E^{p}$ vanishes when $P$ is odd or when $k$ is totally imaginary.
We obtain the following basic formula of $\delta_{p}$ from the above formula of $\delta_{p}$ ,

the exact sequence (1.1) and the equality (1.2).
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(1.3) $\delta_{p}=P- rankt_{p}(E_{S})-p- rankt_{p}(E)+p- rankAb_{\infty}^{2)}+p- rankE^{;p}\cap E_{s}^{p}/E^{p}$ .
Since $t_{p}(E_{S})\supset t_{p}(E)$ , we see $P$ -rank $t_{p}(E_{S})-p$ -rank $t_{p}(E)\geqq 0$ . Hence $\delta_{p}$ vanishes
if and only if $P$ -rank $t_{p}(E_{s})=p$ -rank $t_{p}(E),$ $A\S_{\infty}^{2)}\cong\{1\}$ and $E^{\prime p}\cap E_{s^{p}}\subset E^{p}$ .

Let $C_{S.\omega}$ and $B_{s_{\infty}}(p)$ be as in the introduction. We shall show by using
the Kummer pairing that $C_{S.\omega}\cong\{1\}$ implies $A_{s_{\infty}}^{(2)}\cong\{1\}$ . We will prove the duality
between $C_{S.\omega}$ and $B_{s_{\infty}}(p)$ . Put $K=k(\zeta_{p})$ , where $\zeta_{p}$ is a primitive p-th root of
unity. Let $S_{K}$ be the set of all extensions to $K$ of every places contained in
$S_{\infty}$ . Let $B_{s_{K}}(p)$ be the subgroup of $K^{\cross}/K^{p}$ generated by those $\alpha\in K^{\cross}$ which
are locally p-th powers at every $\mathfrak{P}\in S_{K}$ and whose principal ideals $(\alpha)$ are p-th
powers of ideals of $K$. We recall that $C_{S}=C/D\cdot C^{p}$ , where $C$ is the ideal class
group of $K$ and where $D$ is the subgroup generated by all ideals of places of $S_{K}$ .

Let $L$ be the unramified abelian $p$ -extension of $K$ corresponding to $C_{s}$ by
class field theory. Let $\mathfrak{C}$ be the Galois group of $L/K$ and $\phi:C_{S}arrow \mathfrak{C}$ be the
isomorphism. Then we have the Kummer pairing

(1.4) $\langle c,\overline{\alpha}\rangle=^{p\sqrt{\alpha}^{\phi(c)-1}}$

where $\overline{\alpha}=\alpha K^{p}$ is the coset of $B_{S_{K}}(p)$ generated by $\alpha$ . This gives the perfect
duality, and the Galois group $G=Ga1(K/k)$ acts by

$\langle c^{\tau},\overline{\alpha}^{\tau}\rangle=\langle c,\overline{\alpha}\rangle^{\omega C\tau)}$ , $\tau\in G$ .
LEMMA 2. Let $N_{G}$ denote the norm map of $G$-module. Then $B_{s_{\infty}}(p)$ is

isomorphic to the subgroup $N_{G}(B_{s_{K}}(p))$ of $B_{S_{K}}(p)$ .

PROOF. Let $j:k^{\cross}/k^{p}arrow K^{\cross}/K^{p}$ be the homomorphism induced from the in-
clusion map from $k^{\cross}$ into $K^{x}$ . We see $j(B_{s_{\infty}}(p))^{|G\rceil}\subset N_{G}(B_{s_{K}}(p))\subset j(B_{s_{\infty}}(p))$ and
$kerj=k^{\cross}\cap K^{p}/k^{p}$ . Since the order of $G$ is prime to $p,$ $j$ maps $B_{s_{\infty}}(p)$ onto
$N_{G}(B_{S_{K}}(p))$ . On the other hand, $j$ is injective, because $N_{G}(kerj)=kerj$ and
$N_{G}(k^{\cross}\cap K^{p})\subset k^{p}$ . This completes the proof.

PROPOSITION 1. $B_{s_{\infty}}(p)$ is the dual of $C_{S.\omega}$ with respect to the pairing (1.4).

PROOF. We have
$\langle\epsilon_{\omega}(c),\overline{\alpha}\rangle^{|G|}=\langle c, N_{G}(\overline{\alpha})\rangle$ ,

for $c\in C_{S}$ and $\overline{\alpha}\in K^{\cross}/K^{p}$ . The proposition follows from this and Lemma 2.
Q. E. D.

LEMMA 3. For $\alpha\cdot k^{p}\in B_{s_{\infty}}(p)$ , there is an ideal $\mathfrak{a}$ of $k$ such that $\mathfrak{a}^{p}=(\alpha)$ .
Let $A\S_{\infty}^{0)}$ denote the subgroup of the ideal class group of $k$ generated by all such
ideals $\mathfrak{a}$ . Let $Ab_{\infty}^{1)}=(E\cap U_{s^{p}})\cdot k^{p}/(E\cap E_{s^{p}})\cdot k^{p}$ and $A_{\infty}^{2)}=(E\cap E_{S}^{p})\cdot k^{p}/k^{p}$ Then

(1.5) $B_{s_{\infty}}(p)cA_{s_{\infty}}^{(0)}\cross At_{\infty}^{1)}\cross At_{\infty}^{2)}$ .
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(1.6) $P$ -rank $C_{S.\omega}= \sum_{t\Rightarrow 0}^{2}p$ -rank $A\S_{\infty}^{t)}$ .

PROOF. Let $B_{s_{\infty}}^{0}(p)$ be the subgroup of $B_{s_{\infty}}(p)$ generated by $E\cap U_{S}^{p}$ . For
each $\alpha\cdot k^{p}\in B_{s_{\infty}}(p)$ , take an ideal $\mathfrak{a}$ of $k$ so that $a^{p}=(\alpha)$ . Let $c_{\alpha}$ be the ideal
class containing $\mathfrak{a}$ . We define a surjection from $B_{s_{\infty}}(p)$ onto $A_{s_{\infty}}^{(0)}$ by $f(a)=c.$ .
We see the kernel of $f$ is $B_{s_{\infty}}^{0}(p)$ , hence $B_{s_{\infty}}(p)/B\S_{\infty}(p)\cong A\S_{\infty}^{0)}$ . Since $B_{s_{\infty}}(p)$ is
an elementary abelian $p$ -group, we have

$B_{s_{\infty}}(p)0A\S_{\infty}^{0)}\cross B\S_{\infty}(p)$ .
Similarly, since $B_{s_{\infty}}^{0}(p)/A_{s_{\infty}}^{(2)}=A_{s_{\infty}}^{(1)}$ , we have

$B_{s_{\infty}}^{()}(p)\cong Ab_{\infty}^{1)}\cross Ab_{\infty}^{2)}$ .

Hence we obtain (1.5). (1.6) follows from (1.5) and Proposition 1, immediately.
Q. E. D.

PROOF OF THEOREM 1. Assume $S$ satisfies all of the conditions (1), (2) and
(3). By Proposition 1 and (1.5), we see that the condition (1) implies $A_{s_{\infty}}^{(2)}\cong\{1\}$ .
Hence, by the basic formula (1.3), we obtain $\delta_{p}=0$ from the conditions (2) and
(3). Conversely assume $\delta_{p}=0$ . Then, by the basic formula (1.3), we see that
the conditions (2) and (3) hold for any $S$ containing all places lying over $p$ .
Take a prime ideal from each ideal class $c$ of $k(\zeta_{p})$ and let $\mathfrak{p}_{c}$ denote its restric-
tion to $k$ . Let $S$ be the union of the set of all places of such prime ideals $\mathfrak{p}_{c}$

and the set of all places of $k$ lying over $p$ . This $S$ obviously satisfies the
condition (1), and is the desired finite set of places of $k$ . Q. E. D.

We prove the corollary to Theorem 1. Let $k_{S}$ be the maximal p-extension
of $k$ unramified outside $S$ , and put $G=Ga1(k_{S}/k)$ . $G$ is a pro-p-group. The
value of $\dim_{F_{p}}H^{2}(G, F_{p})$ equals the number of the relations of a minimal generator
system of $G$ as a pro-P-group (see Serre [13], Corollary to Proposition 27 in
Chap. I). Denote it by $r(G)$ . $G$ is a free pro-P-group if and only if $r(G)=0$ .
We note that the cohomological $P$ -dimension $cd_{p}(G)$ is less than 2 if and only
if $r(G)=0$ . If $G$ is a free pro-p-group, an arbitrary subgroup $H$ of $G$ is also
free, because $cd_{p}(H)\leqq cd_{p}(G)$ (see Serre [13], Proposition 14 in Chap. I).

Assume $k$ is totally imaginary when $p=2$ . We observe no infinite places
are ramified in $k_{S}/k$ . For such $k$ and $p$ , we obtain the following formula by
Corollary 2 of the main theorem of Neumann [11]:

$r(G)=p$ -rank $B_{s_{\infty}}(p)+p$ -rank $t_{p}(U_{s})-P$ -rank $t_{p}(E)$ .
Since $B_{s_{\infty}}(p)\cong C_{S.\omega}$ , we see $r(G)$ equal $0$ if and only if $C_{S.\omega}=\{1\}$ and
$p- rtkt_{p}(U_{S})=p- rankt_{p}(E)$ . Hence we have $C_{S.\omega}=\{1\}$ and $p- rankt_{p}(E_{s})=$

$P$ -rank $t_{p}(E)$ if $r(G)$ vanishes, because $P$-rank $i_{p}(U_{s})\geqq P$ -rank $t_{p}(E_{s})$ . It follows
from Theorem 1 that the Leopoldt conjecture is true for $k$ if $Ga1(k_{S}/k)$ is a
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free pro-p-group.
Let $K$ be a finite extension of $k$ contained in $k_{S}$ . Let $L$ be a Galois p-

extension of $K$ unramified outside $S$ . Let $L’$ be any conjugate field of $L$ over
$k$ . We observe that every ramified place of $k$ in $L’/k$ is contained in $S$ .
Thus the Galois closure of $L$ over $k$ is contained in $k_{S}$ . Hence $k_{S}$ is also the
maximal $p$ -extension of $K$ unramified outside $S_{K}$ , where $S_{K}$ denotes the set of
all extensions of places contained in $S$ . Assume $C_{S.\omega}=\{1\}$ and $p- rankt_{p}(U_{S})=$

$p$ -rank $t_{p}(E)$ for $k$ . Then $Ga1(k_{S}/k)$ is a free pro-p-group, and hence, $Ga1(k_{S}/K)$

is also free. It follows from this that the Leopoldt conjecture is true for $K$.
Q. E. D.

2. The proof of Theorem 2 and its application.

We recall that $A_{s_{\infty}}^{(1)}$ is the factor group $(E\cap U_{S}^{p})\cdot k^{p}/(E\cap E_{S}^{p})\cdot k^{p}$ . We have
an exact sequence of elementary abelian $p$ -groups

(2.1) $1arrow E^{;p}/E^{\prime p}\cap E_{s}^{p}arrow E\cap U_{S}^{p}/E\cap E_{s}^{p}-A\S_{\infty}^{1)}-1$ ,

where $E’$ is the whole unit group of $k$ . We can describe $E\cap U_{s}^{p}/E\cap E_{s^{p}}$ as
follows.

LEMMA 4. We have the following exact sequence.

$1arrow t_{p}^{(1)}(U_{S})\cdot E_{s}/E_{s}arrow t_{p}^{(1)}(U_{S}/E_{S})arrow E\cap U_{S}^{p}/E\cap E_{S}^{p}arrow 1$ .

PROOF. Let $W_{S}$ denote the subgroup of $U_{S}$ consisting of those elements
whose p-th powers are contained in $E_{S}$ . Obviously, $t_{p}^{(1)}(U_{S}/E_{S})=W_{S}/E_{S}$ . For
$u\in W_{S}$ , there are $\epsilon\in E$ and $\alpha\in E_{S}$ such that $u^{p}=\epsilon\cdot\alpha^{p}$ , because $E$ is dense in
$E_{s}$ . Let $f$ be a homomorphism from $W_{s}$ onto $E\cap U_{S}^{p}/E\cap E_{S}^{p}$ defined by $f(u)$

$=\epsilon\cdot(E\cap E_{S}^{p})$ . Since the kernel of $f$ is $t_{p}^{(1)}(U_{S})\cdot E_{S}$ , we have the exact sequence
by $f$ . Q. E. D.

PROOF OF THEOREM 2. The following equality follows from Lemma 4 and
the exact sequence (2.1).

(2.2) $p$ -rank $t_{p}^{(1)}(E_{S})=p$ -rank $t_{p}^{(1)}(U_{S})-p$ -rank $t_{p}^{(1)}(U_{S}/E_{S})$

$+p$ -rank $A\S_{\infty}^{1)}+p$ -rank $E^{\prime p}/E^{\prime p}\cap E_{S}^{p}$ .
We obtain the formula of Theorem 2 from the basic formula (1.3) as follows.
Eliminate the term $p$ -rank $t_{p}(E_{s})$ from (1.3) by using (2.2), and replace the term
$p$ -rank $A\S_{\infty}^{1)}+p$ -rank $A\S_{\infty}^{z)}$ with $p$ -rank $C_{S.\omega}-p$ -rank $A\S_{\infty}^{0)}$ by using (1.6). Q. E. D.

We recall the equivalent statement to the Leopoldt conjecture given by

Iwasawa [7]. Let $q$ be a finite place of $k$ such that $q1p$ , and $N\mathfrak{q}$ denote the
absolute norm of $\mathfrak{q}$ . If $n$ is a natural number, we shall denote by $(n)_{p}$ the
highest power of $p$ dividing $n$ . Let
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$e( q, a)=\max(p^{a}, (Nq-1)_{p})$

for a natural number $a$ . A finite abelian extension $K$ over $k$ will be called a
$(q, a)- field$ if $K/k$ is unramified outside $pq$ and if

$e(\mathfrak{q}, a)\leqq e(q;K/k)$

where $e(q;K/k)$ denote the ramification index of $q$ in $K/k$ . The Leopoldt
conjecture is equivalent to the existence of a $(q, a)- field$ for every $(q, a)$ such
that $Nq\equiv 1mod p$ and $p^{a}arrow\leq(N\mathfrak{q}-1)_{p}$ (see Iwasawa [7] and Sands [12]).

Concerning with the $(q, 1)- field$ , we obtain the folIowing proposition from
Theorem 2.

PROPOSITION 2. Let $T$ be the subset of $S\backslash P$ ccpnsisting of all Places $q$ such
that $(q, l)$-fields exist. Then

$\delta_{p}\leqq P$ -rank $t_{p}(U_{S})-\# T+P$ -rank $C_{S.\omega}-p$ -rank $Ay$ )

$-p$ -rank $t_{p}(E)+P$ -rank $E^{\prime p}/E^{p}$ .

PROOF. Let $\overline{k}_{s_{\infty}}^{ab}$ be the maximal abelian extension of $k$ unramified outside
$S_{\infty}$ , where $S_{\infty}$ is the union of $S$ and the set of all infinite places. Let $H$ be the
absolute class field of $k$ . We can prove $U_{S}/E_{S}\cong Ga1(\overline{k}_{s_{\infty}}^{ab}/H)$ by means of class
field theory. Let kgg be the maximaI $P$ -extension of $k$ contained in $\vec{k}_{s_{\infty}}^{ab}$ . We
note that $k_{s_{\infty}}^{ab}$ is a finite extension over $k_{P}^{ab}\infty$

’ where $P$ is the set of all places of
$k$ lying over $p$ , because every $Z_{p}$-extension of $k$ are contained in $k_{P}^{ab}\infty$ and
$Ga1(k_{s_{\infty}}^{ab}/k)$ is a finitely generated $Z_{p}$-module. Hence we obtain

$parrow rankt_{p}(U_{S}/E_{S})=p$ -rank $t_{p}(Ga1(\overline{k}_{s_{\infty}}^{\alpha b}/H))\geqq p$ -rank $Ga1(k\S_{\infty}^{b}/k_{P}^{ab}\infty)$ .

Let $k(T)= \bigcup_{q\in T}k(q)$ , where $k(q)$ is a $(q, 1)- field$ . We observe $p$ -rank $Ga1(k(T)k_{P}^{ab}\infty/$

$k_{P}^{ab}\infty)=\# T$ . Hence
$p$ -rank $t_{p}$($Ga1$ ( $k$ gg/le$g));i: $\# T$ .

Therefore, we obtain the inequality.

$P$ -rank $t_{p}(U_{s}/E_{S})\underline{\underline{>}};\# T$ .
The proposition foIlows from Theorem 2. Q. E. D.

3. The construction of unramified extensions and the proof of Theorem 3.

In thls section, we suppose that the defect value $\delta_{p}$ of $k$ is different from
$0$ , and show that the existence of a characteristic unramified abelian p-extension
over $k(\zeta_{pn})$ , where $\zeta_{pn}$ is a $pri$mitive $P^{n}$-th root of unity. We write $\delta$ for $\delta_{p}$

in this section.
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If $F$ is a finite algebraic number field or its completion at a certain finite
place, we denote the exponent of the order of $t_{p}(F^{\cross})$ by $e(F)$ , that is, $|t_{p}(F^{\cross})|$

$=p^{e(F)}$ .
Let $u$ be an element of $t_{p}(E_{S})$ and $p^{a}$ be the order of $u$ . We see $u=(\zeta_{p}|p\in S)$

$\in U_{S}$ , where $\zeta_{\mathfrak{p}}$ are $p^{\alpha}$-th roots of unity in $k_{\mathfrak{p}}$ . Since $E$ is dense in $E_{S}$ , there
exists $\epsilon\in E$ for each integer $m\geqq 1$ such that

(3.1) $u=\epsilon\cdot\alpha^{p^{m}}$ , where $\alpha\in E_{S}$ .
Set $K_{n}=k(\zeta_{pn})$ . Suppose that $m$ satisfies the inequality $m\leqq e(K_{n})$ . Put $L=$

$K_{n}(^{p^{m}}\sqrt{\epsilon})$ . Then $L/K_{n}$ is a Kummer extension which is unramified outside $p$ .
We consider the ramifications of places lying over $p$ . Let $\mathfrak{P}$ be a finite place
of $K_{n}$ lying over $p$ . Let $\mathfrak{p}$ be the restriction of 8 to $k$ and P an extension of
$\mathfrak{P}$ to $L$ . Denote the $\mathfrak{p}$-components of $u$ and $\alpha$ by $u_{\mathfrak{p}}$ and $\alpha_{\mathfrak{p}}$ , respectively. Let
$p^{b}$ be the order of $u_{\mathfrak{p}}$ . The completion of $K_{n}$ at $\mathfrak{P}$ is $k_{\mathfrak{p}}(C_{pn})$ . Since $\epsilon$ is a
product of a $P^{b}$-th root of unity and $\alpha_{\mathfrak{p}}^{p^{m}}\in k_{\mathfrak{p}}$ , the completion of $L$ at P is
$k_{\mathfrak{p}}(\zeta_{pn}, \zeta_{p^{b+m}})$ . Hence we have the following lemma.

LEMMA 5. Under the above notation, $\mathfrak{P}$ is completely decomposed in $L/K_{n}$

if and only if $b+m\leqq e(k_{\mathfrak{p}}(\zeta_{pn}))$ .
We suppose that $S$ satisfies the following condition.

(3.2) $E\cap U_{S}^{p}=E^{p}$ .
Recall that $E’$ is the whole unit group of $k$ . Since $E’cU_{S}$ , we have $E^{\prime p}\cap E$

$=E^{p}$ by (3.2). Thus $E^{\prime p}=E^{p}$ . This implies $E’=E\cdot t_{p}^{(1)}(k^{\cross})$ . Further, we have
$E\cap E_{S}^{p}=E^{p}$ because $E\cap U_{S}^{p}\supset E\cap E_{S}^{p}$ . Hence by (1.2) and the basic formula
(1.3), we obtain an equality

(3.3) $\delta=p$ -rank $t_{p}(E_{S})-P$ -rank $t_{p}(E)$ .
LEMMA 6. Suppose $\delta\geqq 1$ and that $S$ satisfies (3.2). Then there is a subgroup

$T_{S}$ of $t_{p}(E_{S})$ such that $t_{p}(E_{S})$ is a direct sum of $T_{S}$ and $t_{p}(E)$ .
PROOF. If $t_{p}(E)=\{1\}$ , the statement is obvious. Assume $t_{p}(E)\neq\{1\}$ , and

let $p^{a}$ be the order. Note that $t_{p}(E)\neq\{1\}$ means $k$ is totally imaginary when
$p=2$ . Hence $E=E’$ .

We shall prove that the following equality holds for every positive integer $t$ :
$t_{p}(E)\cap t_{p}(E_{S})^{p^{t}}=t_{p}(E)^{p^{t}}$

Firstly, we prove this equality for $t\leqq d$ . Let $\eta$ be a generator of $t_{p}(E)\cap$

$t_{p}(E_{S})^{p^{i}}$ . $k(^{p^{t}}\sqrt{\eta})$ is an unramified abelian $P$ -extension over $k$ in which every
place in $S$ is completely decomposed. We assume $k(p^{t}\sqrt{\eta})\neq k$ . Then, $k(p^{t}\sqrt{\eta})$

must contain a primitive $P^{l+1}$(-th root $\zeta$ . $\zeta^{p}$ is an element of $U_{S}^{p}$ , because every
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place contained in $S$ is completely decomposed in $k(\zeta)/k$ . However, this is
impossible, because $t_{p}(E)\cap U_{S}^{p}=t_{p}(E)^{p}$ from the assumption (3.2). Therefore
$k(^{p^{t}}\sqrt{\eta})=k$ , namely $\eta\in t_{p}(E)\cap k^{p^{t}}=t_{p}(E)^{p^{t}}$ . We have proved the above equality
for $t\leqq d$ .

In the case of $t>d$ , the equality follows immediately because

$t_{p}(E)\cap t_{p}(E_{S})^{p^{t}}=(t_{p}(E)\cap t_{p}(E_{S})^{p^{d}})\cap t_{p}(E_{s})^{p^{t}}=\{1\}$ .
Let $\{u_{0}, u_{1}, \cdot.. , u_{\delta}\}$ be a basis of $f_{p}(E_{S})$ . For a primitive $p^{d}$-th root $\xi$ of

unity, there are $a_{i}\in Z$ such that

$\xi=u_{0^{0}}^{a}\cdot u_{1}^{a_{1}}\cdot$ $u_{\delta^{\delta}}^{\alpha}$ .
Put $I=$ { $i|a_{i}$ is prime to $p$ }. Since $\xi\not\in t_{p}(E)\cap t_{p}(E_{s})^{p},$ $I$ is not empty. Put $p^{a}=$

$\max\{ord(u_{i})|i\in I\}$ . Then we see $\xi^{p^{a}}\in t_{p}(E_{S})^{p^{a+1}}$ . By the fact that we proved
above, this means $\xi^{p^{a}}=1$ . Hence there is $i\in I$ such that the orders of $\xi$ and
$u_{i}$ are equal. This implies that there is a basis of $t_{p}(E_{S})$ which contains $\xi$ .

Q. E. D.

By this lemma and (3.3), we see

(3.4) $\delta=p$ -rank $T_{S}$ .
Let $u_{1}$ , $\cdot$ .. , $u_{\delta}$ be a basis of $T_{S}$ . Then for each mllll, we obtain a system of
units $\epsilon_{1},$

$\cdots$ , $\epsilon_{\delta}$ of $E$ such that

$u_{i}=\epsilon_{i}\cdot\alpha_{i}^{p^{m}}$ , $\alpha_{i}\in E_{S}$ ,

by means of (3.1). We fix one of such systems of units for each $m$ . Let $T_{S.m}$

denote the subgroup of $E$ generated by this system $\{\epsilon_{1}, \cdots , \epsilon_{\delta}\}$ .
We see $K_{m}=K_{n}$ for all integers $m$ such that $n\leqq m\leqq e(K_{n})$ . Hence, in the

following, we assume that $n$ satisfies $e(K_{n})=n$ .
LEMMA 7. (1) Suppose $k$ contains A when $p=2$ . Then the l-cohomology

group $H^{1}(Ga1(K_{n}/k), t_{p}(K_{n}^{x}))=\{0\}$ .
(2) Suppose $P=2,$ $k\ni\sqrt{-1}$ . For a positive integer $n$ such that $n=e(K_{n})$ ,

we have $H^{1}(Ga1(K_{n}/k), t_{2}(K_{n}^{\cross}))=\{0\}$ if and only if $n=1$ or $k_{0}=k\cap Q(\zeta_{2n})$ is
imaginary.

PROOF. $K_{n}/k$ is a cyclic extension when $P\geqq 3$ , or when $p=2$ and $k\ni\sqrt{-1}$ .
Then the order of 1-dimensional cohomology group $H^{1}(Ga1(K_{n}/k), t_{p}(K_{n}^{\cross}))$ equals
that of the $0$-dimensional Tate cohomology group $H^{0}(Ga1(K_{n}/k), t_{p}(K_{n}^{x}))$ . Hence
the 1-dimensional cohomology group vanishes. (1) is proved.

We shall prove (2). When $n=1$ , the cohomology group is always trivial.
We consider the case of $n\geqq 2$ . Let $Q_{n}$ denote the $2^{n}$-th cyclotomic field. There
is an integer $s,$ $2\leqq s n,$ such that $k(\sqrt{-1})=K_{*}$ and $K_{s+1}\neq K_{S}$ . Note that $k_{0}=$
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$Q_{s}\cap k$ . We have a cohomology exact sequence

$0arrow H^{1}(Ga1(K_{s}[k), t_{2}(K_{s^{x}}))arrow H^{I}(Ga1(K_{n}/k), t_{2}(K_{n}^{x}))arrow$

$H^{1}(Ga1(K_{n}/K_{s}), t_{2}(K_{n}^{x}))$ .
The last term of this exact sequence vanishes, because $K_{s}$ contains $\sqrt{-1}$ and
$K./K_{s}$ is a cyclic extension. Further, we have

$H^{1}(Ga1(K_{s}/k), t_{2}(K_{s}^{\cross}))\cong H^{1}(Ga1(Q_{8}/k_{Q}), t_{2}(Q_{s}^{\cross}))$ .
Since $Q_{s}/k_{0}$ is a cyclic extension of degree 2, we have the equality

$|H^{1}(Ga1(K_{n}/k), t_{2}(K_{n}^{\cross}))|=|H^{0}(Ga1(Q_{s}/k_{0}), f_{2}(Q_{S}^{x}))|=2\cdot|N_{G}(t_{2}(Q_{s}^{\cross}))|^{-1}$ ,

where $G=Gal(Q_{s}/k_{0})$ and $N_{G}$ is the norm map. Let $\tau$ be the generator of $G$

and $\zeta$ be a primitive $2^{S}$-th root of unity. Then $H^{\iota}(Ga1(K_{n}/k), t_{2}(K_{n}^{\cross}))\cong\{1\}$ if
and only if $\zeta^{1+\tau}=-1$ . $\zeta^{\tau}$ equals either $\zeta^{-1}$ or $\zeta^{-(1+2^{S-1})}$ because $k\neq\sqrt{-1}$ . In
the case of $\zeta^{\tau}=\zeta^{-1}$ , we see $N_{G}(t_{2}(Q_{s}^{\cross}))=\{1\}$ and $k_{0}$ is real. In the other case,
we see $\zeta^{r+1}=\zeta^{-2^{S-1}}=-1$ and that $k_{0}$ is imaginary. Therefore, we complete the
proof.

LEMMA 8. Let $n$ be a Positive integer such that $n=e(K_{n})$ . Suppose that $S$

satisfies (3.2) and that $k\cap Q(\zeta_{2n})$ is totally imaginary when $p=2$ and $n\geqq 2$ . Let
$m$ and $l$ be integers such that $1\leqq m\leqq e(K_{n})$ and m$l. Then we have $T_{s}^{p_{l}^{m}}=$

$T_{S.l}\cap K_{n}^{p^{m}}$ and an isomorphism

$T_{S.l}\cdot K_{n}^{p^{m}}/K_{n}^{p^{m}}\cong(Z/p^{m}Z)^{\delta}$ .
PROOF. By the exact sequence (1.1), we observe that $E/E^{p}$ is isomorphic

to $E_{S}/E_{S}^{p}$ because $E\cap E_{S}^{p}/E^{p}=\{1\}$ from the assumption (3.2). Hence the
homomorphism $f$ in (1.1) induces an isomorphism

$T_{S.l}\cdot t_{p}(E)\cdot E^{p}/E^{p}\cong t_{p}(E_{S})\cdot E_{S}^{p}/E_{S}^{p}$ .
This isomorphism implies the following one.

$T_{S.l}\cdot t_{p}(E)\cdot E^{p}[t_{p}(E)\cdot E^{p}\cong t_{p}(E_{S})\cdot E_{S}^{p}/t_{p}(E\rangle\cdot E_{s^{p}}$ .
Thus we obtain

p–rank $T_{S.l}\cdot t_{p}(E)\cdot E^{p}/i_{p}(E)\cdot E^{p}=\delta$ .
Since $\tau_{s.?}$ is generated by just $\delta$ elements, this means

(3.5) $T_{S.l}\cap t_{p}(E)\cdot E^{p}=T_{S^{p}l}$ .

It follows from this that $t_{p}(T_{S.t})=T_{S.l}\cap t_{p}(E)\subset t_{p}(T_{s.\iota})^{p}$ . Hence $T_{S.l}$ is $p$ ,

torsion free.
Next, we shall sbow the following equahity for $m\geqq 2$ .
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(3.6) $T_{S}$
,
$,\cap t_{p}(E)\cdot E^{p^{m}}=T_{s,\iota}^{p^{m}}$

Let $t$ be the maximal exponent of $P$ such that

$T_{S,l}\cap t_{p}(E)\cdot E^{p^{m}}\subset T_{s}^{p_{l}^{t}}$

Assume t $<m$ . $Takez\in T_{S.l}\cap t_{p}(E)\cdot E^{p^{m}}whichisnotcontainedinT_{S}^{p_{l}^{t+1}}$ There
are $\zeta\in t_{p}(E)$ and $y\in E$ such that $z=\zeta\cdot y^{p^{m}}$ , and there is $w\in T_{s,\iota}$ such that $z=$

$w^{p^{t}}$ . Hence $w=\zeta’\cdot y^{p^{m-t}}$ for a certain $\zeta’\in t_{p}(E)$ . By (3.5), we see that $w$ is
contained in $T_{s^{p}\iota}$ , hence $z\in T_{S}^{p_{l}^{t+1}}$ This contradicts the choice of $z$ . Therefore
we have the equality (3.6) because the converse inclusion is clear.

NOW we shall prove the lemma by virtue of (3.5) and (3.6). For $a\in T_{S,l}\cap$

$K_{n}^{p^{m}}$ , there is $\beta\in K_{n}$ such that $\alpha=\beta^{p^{m}}$ . By Lemma 7, the 1-dimensional co-
homology group $H^{1}(Ga1(K_{n}/k), t_{p}(K_{n}^{\cross}))$ is trivial. This implies that there are
$\beta_{0}\in E’$ and $\zeta\in t_{p}(K_{n}^{\cross})$ such that $\beta=\zeta\cdot\beta_{0}$ . Since (3.2) implies $E’=E\cdot i_{p}^{(1)}(k^{\cross})$ , we
have $\alpha\in E^{p^{m}}\cdot t_{p}(E)$ . Thus $T_{S.l}\cap K_{n}^{p^{m}}\subset t_{p}(E)\cdot E^{p^{m}}$ . It follows from (3.5) and
(3.6) that $T_{S.l}\cap K_{n}^{p^{m}}$ is contained in $T_{s,\iota^{m}}$ . Since the converse inclusion is clear,

the lemma is proved.

PROOF OF (1) OF THEOREM 3. We See that $K_{n}\neq K_{n+1}$ means $n=e(K_{n})$ . We
see $E^{\prime p}=E^{p}$ from the assumption, $E\cdot t_{p}^{(1}$

‘ $(k^{\cross})=E’$ . Let $S$ be a finite set of
finite places of $k$ which contains all places lying over $P$ and which satisfies
$C_{S},.=\{1\}$ . (See the latter half of the proof of Theorem 1.) Then by Lemma 3,
we have $E\cap U_{S}^{p}=E^{\prime p}$ , and hence $E\cap U_{s}^{p}=E^{p}$ . Thus the condition (3.2) holds
for this $S$ . Let $p^{a}$ be the exponent of $t_{p}(E_{P})$ . Since $n>a$ by the assumption,
we set $m=n-a$ and put $M_{n}=K_{n}(^{p^{m}}\sqrt Er|\epsilon\in T_{S.m})$ . By Lemma 8, we have

$Ga1(M_{n}/K_{n})\cong(Z/p^{m}Z)^{\delta}$ .

By Lemma 5, $M_{n}$ is an unramified extension of $K_{n}$ in which every place lying
over $P$ is completely decomposed. This completes the proof.

We proceed to the proof of (2) of Theorem 3. Let $L_{n}$ be the maxlmal
unramified abelian $P$ -extension of $K_{n}$ . By class field theory, $Ga1(L_{n}/K_{n})$ is
isomorphic to the $P$ -class group of $K_{n}$ . Let $X(L_{n})$ be the character group of
$Ga1(L_{n}/K_{n})$ . For each $\sigma\in Ga1(L_{n+1}/K_{n+1})$ , $res(\sigma)$ denotes the restriction of $\sigma$

onto $L_{n}$ . Then for $x\in X(L_{n}),$ $x\circ res$ is a character of $Ga1(L_{n+1}/K_{n+1})$ . Let ext
denote the homomorphism from $X(L_{n})$ to $X(L_{n+1})$ defined by ext(X) $=x\circ res$ for
$\chi\in X(L_{n})$ . We note that the corresponding abelian extension of $K_{n+1}$ to $ext(\chi)$

is an abelian extension of $K_{n}$ .
NOW suppose that $t_{p}(E_{p})=t_{p}(E)$ . Let $l$ be a positive integer. We recall

$T_{s.\iota}\cdot E_{S}^{p^{l}}=T_{S}\cdot E_{s}^{p^{l}}$ for a certain subgroup $T_{S}$ of $t_{p}(E_{s})$ . Let $\pi$ be the canonical
projection from $U_{s}$ to $U_{P}$ . We showed in \S 1 that $\pi$ maps $E_{s}$ onto $E_{p}$ . Thus we
have $\pi(T_{S.l})\subset\pi(T_{s})\cdot E_{P}^{p^{l}}=t_{p}(E)\cdot E_{P}^{p^{l}}$ . Let $\{\epsilon_{1}, \cdots , \epsilon_{\delta}\}$ be a set of generators of
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$T_{S.l}$ . Take $\zeta_{i}\in t_{p}(E)$ for each $\epsilon_{i}$ so that $\pi(\epsilon_{i})\in\zeta_{i}\cdot E_{P}^{p^{l}}$ , and put $\epsilon_{i}’=\epsilon_{i}\cdot\zeta_{i}^{-1}$ . Let
$T_{\acute{S}.l}$ be the subgroup of $E$ generated by $\{\epsilon_{1}’, \cdots , \epsilon_{\delta}’\}$ . Note $\pi(\epsilon)\in E_{P^{p^{l}}}$ for $\epsilon\in T_{S.l}’$ .

LEMMA 9. Assume $S$ satisfies (3.2). Assume $t_{p}(E_{P})=t_{p}(E)$ and $n=e(K_{n})$ .
Assume also that $k\cap Q(\zeta_{2n})$ is totally imaginary when $p=2$ and $n\geqq 2$ . Let $m$

and $l$ be integers such that $1\leqq m\leqq n$ and $m\leqq l$ . Put $M_{n.l}^{(m)}=K_{n}(p^{m}\sqrt{\epsilon}|\epsilon\in T_{S.l}’)$ .
Then $M_{n,l}^{(m)}$ is an unramified extension of $K_{n}$ in which every place lying over $p$

is completely decomposed and $Ga1(M_{n,l}^{(m)}/K_{n})$ is isomorphic to $(Z/p^{m}Z)^{\delta}$ .

PROOF. Since $\pi(\epsilon)\in E_{P}^{p^{m}}$ for each $\epsilon\in T_{\acute{S}.l},$ $K_{n}(^{p^{m}}\sqrt{\epsilon})$ is an unramified ex-
tension of $K_{n}$ in which every place lying over $p$ is completely decomposed.

Put $N_{n}=K_{n}(p^{m}\sqrt{\alpha}|\alpha\in T_{S,l})$ . We have $M_{n.l}^{(m)}K_{n+m}=N_{n}K_{n+m}$ because $K_{n}(^{p^{m}}\sqrt{\epsilon_{i}’})$

$cK_{n}(^{p^{m_{\sqrt{\epsilon_{i}}}}}, p^{m}\sqrt{\zeta_{i}})$ for each generator $\epsilon_{i}’$ of $T_{S,l}’$ , where $\zeta_{i}\in t_{p}(E)$ . Since the
character group of $Ga1(N_{n}K_{n+m}/K_{n+m})$ is isomorphic to $T_{S.l}K_{n+m}^{p^{m}}/K_{n+m}^{p^{m}}$ , we
have $[N_{n}K_{n+m} : K_{n+m}]=p^{\delta m}$ by Lemma 8. Hence $[M_{n,l}^{(m)} : K_{n+m}\cap M_{n,l}^{(m)}]=p^{\delta m}$ .
On the other hand, we see $[M_{n,l}^{(m)} : K_{n}]\leqq p^{\delta m}$ , because $T_{\acute{S},l}$ is generated by $\delta$

elements. Therefore we have $[M_{n,l}^{(m)} : K_{n}]=p^{\delta m}$ . Thus we obtain [ $T_{S.l}K_{n}^{p^{m}}$ :
$K_{n}^{p^{m}}]=p^{\delta m}$ , and this implies the following isomorphism.

(3.7) $T_{\acute{S}.l}K_{n}^{p^{m}}/K_{n}^{p^{m}}\cong(Z/p^{m}Z)^{\delta}$ .

Since $Ga1(M_{n,l}^{(m)}/K_{n})$ is the dual group of $T_{S.l}’K_{n}^{p^{m}}/K_{n}^{p^{m}}$ by the Kummer pairing,
we obtain an isomorphism

$Ga1(M_{n.l}^{(m)}/K_{n})\cong(Z/p^{m}Z)^{\delta}$ . Q. E. D.

Take $\epsilon\in T_{S.n+1}’$ and let $x_{\epsilon}^{(n)}$ be the Kummer character defined by $x_{\epsilon}^{(n)}(\sigma)=$

$p^{n_{\sqrt{\epsilon}^{(\sigma-1)}}}$ for $\sigma=Ga1(L_{n}/K_{n})$ . Since $K_{n}(^{p^{n}}\sqrt{\epsilon})\subset L_{n}$ , we have $\chi_{\epsilon}\in X(L_{n})$ . Let
$x_{\epsilon}^{(n+1)}$ denote the Kummer character defined by $\chi_{\epsilon}(n+1)(\sigma)=^{p^{n+1}}\sqrt{\epsilon}^{(\sigma-1)}$ for $\sigma\in$

$Ga1(L_{n+1}/K_{n+1})$ . Suppose that there is $\theta\in X(L_{n})$ such that $\theta^{p}=x_{\epsilon}^{(n)}$ . Then
$ext(\theta^{p})=x_{\epsilon}^{(n+1)p}$ . Hence there is $\eta\in X(L_{n+1})$ such that $ext(\theta)\cdot\eta=x_{\epsilon}^{(n+1)}$ and $\eta^{p}$

$=1$ . Let $K_{n+1}(\eta)$ be the intermediate field of $L_{n+1}/K_{n+1}$ corresponding to $\eta$ .
Since $K_{n+1}(^{p^{n+1}}\sqrt{\epsilon})\subset L_{n}\cdot K_{n+1}(\eta)$ and since $K_{n+1}(\eta)\subset L_{n}\cdot K_{n+1}(^{p^{n+1}}\sqrt{\epsilon})$ , we have
$K_{n+1}(^{p^{n+1}}\sqrt{\epsilon})$ is an abelian extension of $K_{n}$ if and only if $K_{n+1}(\eta)$ is abelian
over $K_{n}$ .

LEMMA 10. Suppose $S$ satisfies (3.2). Let $n$ be a positive integer such that
$n=e(K_{n})$ . Suppose that $k\cap Q(\zeta_{pn+1})$ is totally imaginary when $p=2$ and $n\geqq 2$ .
Take $\epsilon\in T_{S.n+1}’$ so that $\epsilon\not\in\tau_{\acute{s}^{p}n+1}$ . Then $K_{n+1}(^{p^{n+1}}\sqrt{\epsilon})/K_{n}$ is never an abelian
extension.

PROOF. It follows from (3.7) that $K_{n+1}(p^{n+1}\sqrt{\epsilon})/K_{n+1}$ is a cyclic extension
of degree $p^{n+1}$ . Let $\tau$ be a generator of the Galois group such that $\tau(^{p^{n+1}}\sqrt{\epsilon})$
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$=^{p^{n+1}}v\overline{\epsilon}\cdot\zeta$ for a certain primitive $P^{n+1}$-th root $\zeta$ of unity. Let $\sigma$ be an ex-
tension to $K_{n+1}(^{p^{n+1}}\sqrt{\epsilon})$ of a generator of the Galois group of $K_{n+1}/K_{n}$ . Let
$a$ be an integer such that $\zeta^{\sigma}=\zeta^{\alpha}$ . Since $\epsilon^{\sigma}=\epsilon$ , we have $x_{\epsilon}^{(n+1)}(\sigma\tau\sigma^{-1})=x_{\epsilon}^{(n+1)}(\tau)^{\alpha}$ .
Hence $\sigma\cdot\tau\cdot\sigma^{-1}=\tau^{\alpha}$ . Assume that $K_{n+1}(^{p^{n+1}}\sqrt{\epsilon})/K_{n}$ is abelian. Then $a\equiv 1$

$mod p^{n+1}$ . Therefore $\sigma$ has to be the identity in $K_{n+1}$ . However, this is not
the case. Hence $K_{n+1}(^{p^{n+1}}\sqrt{\epsilon})/K_{n}$ is not abelian. Q. E. D.

LEMMA 11. Assume $S$ satisfies (3.2). Assume $t_{p}(E_{P})=t_{p}(E)$ . Let $n$ be a
Positive integer such that $n=e(K_{n})$ . Assume also that $k\cap Q(\zeta_{2n+1})$ is totally
imaginary when $p=2$ and $n\geqq 2$ . Put $M_{n.n+1}^{(n)}=K_{n}(^{p^{n}}\sqrt{\epsilon}|\epsilon\in T_{\acute{S}.n+1})$ ; this is a
subfield of the P–Hilbert class field $L_{n}$ of $K_{n}$ . Let $X(L_{n})$ be the character group
of $Ga1(L_{n}/K_{n})$ and $X(M_{n.n+1}^{(n)})$ be that of $Ga1(M_{n.n+1}^{(n)}/K_{n})$ . If $t_{p}^{(1)}(X(L_{n+1}))\subset$

$ext(X(L_{n}))$ , we have $X(M_{n,n+1}^{(n)})\cap X(L_{n})^{p}=X(M_{n.n+1}^{(n)})^{p}$ .
PROOF. We have $M_{n,n+1}^{(n)}\subset L_{n}$ by Lemma 9. Take $\theta\in X(L_{n})$ and $\epsilon\in T_{S.n+1}’$

so that $\theta^{p}=x_{\epsilon}^{(n)}$ . Then there is $\eta\in t_{p}^{(1)}(X(L_{n+1}))$ such that $ext(\theta)=\eta\cdot x_{\epsilon}^{(n+1)}$ .
Since the $p$ -ranks of $t_{p}^{(1)}(X(L_{n+1}))$ and $t_{p}^{(1)}(ext(X_{n}(L_{n})))$ are equal, we have $x_{\epsilon}^{(n+1)}$

$\in ext(X(L_{n}))$ . This means that $K_{n+1}(^{p^{n+1}}\sqrt{\epsilon})/K_{n}$ is abelian. By Lemma 10,
we have $\epsilon\in T_{\acute{S}.n+1}^{p}$ , that is $x_{\epsilon}^{(n)}\in X(M_{n,n+1}^{(n)})^{p}$ . Q. E. D.

PROOF OF (2) OF THEOREM 3. We have shown in the proof of (1) of Theorem
3 that there exists a finite set $S$ of finite places of $k$ containing $P$ and satisfy-
ing (3.2). Take such an $S$ and put $M_{n}’=M_{n.n+1}^{(n)}$ . Then we obtain the first
assertion by Lemma 9.

Let $\phi_{n}$ : $C_{n}arrow Ga1(L_{n}/K_{n})$ be the isomorphisms defined by class field theory.
$C_{n}$ and $X(L_{n})$ are dual to each other by the pairing

$\langle\chi c\rangle_{n}=x(\phi_{n}(c))$

where $\chi\in X_{n}(L_{n})$ and $c\in C_{n}$ . Hence they are of the same type as finite abelian
groups. We have the following equalities.

$t=p$ -rank $X(L_{n})^{p^{n}}$

$s=p$ -rank $X(L_{n})^{p^{n-1}}-t$ ,

$r=p$ -rank $X(L_{n})-t-s$ .
Moreover, ext is the dual map of the norm map $N_{K_{n+1}/K_{n}}$ : $C_{n+1}arrow C_{n}$ ,
because

$\langle ext(\chi), c\rangle_{n+1}=\langle\chi, N_{K_{n+1}/K_{n}}(c)\rangle_{n}$

for $\chi\in X(L_{n+1})$ and $c\in C_{n+1}$ .
Since there is a ramified place in $K_{n+1}/K_{n}$ , we see $N_{K_{n+1}/K_{n}}$ is surjective.

Thus ext is injective. This implies $i_{p}^{(1)}(X(L_{n+1}))\subset ext(X(L_{n}))$ , because the P-
ranks of $C_{n}$ and $C_{n+1}$ are equal by the assumption.
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Put $Y=X(M_{n,n+1}^{(n)})$ . Since $Y\cong(Z_{p}/p^{n}Z_{p})^{\delta}$ by Lemma 9, we obtain

$\delta\leqq p$ -rank $X(L_{n})^{p^{n-1}}=s+t$ .
Next we shall prove $\delta\leqq r+s$ . Let ( $p^{n-a_{1}},$ $\cdots$ , $p^{n-a_{\gamma}},$ $\cdots$ , $p^{n},$ $\cdots$ , $p^{n},$ $p^{n+b_{1}}$ ,

, $p^{n+b_{t}})$ be the type of $X(L_{n})$ as an abelian group, where $a_{1}\geqq\cdots\geqq a_{r}\geqq 1$ and
$1\leqq b_{1}\leqq\cdots\leqq b_{t}$ . There are three subgroups $X_{1},$ $X_{2}$ and $X_{3}$ of $X(L_{n})$ such that
$X(L_{n})$ is a direct product of them and

$X_{1}\cong Z/p^{n-\alpha_{1}}z\cross\cdots\cross Z/p^{n-a_{T}}Z$ ,

$X_{2}\cong(Z/p^{n}Z)^{s}$ ,

$X_{3}\cong Z/p^{n+b_{1}}Z\chi\ldots\cross Z/p^{n+b_{\zeta}}Z$ .
Then $Y$ is contained in $X_{1}xX_{2}\cross X_{3}^{p}$ . Since $Y\cap X(L_{n})^{p}=Y^{p}$ by Lemma 11, we
have

$P$ -rank $Y/Y^{p}\leqq p$ -rank $X_{1}\cross X_{2}\cross X_{3}^{p}/X_{1}^{p}\cross X_{2}^{p}\cross X_{s}^{p}=r+s$ .

Thus we have proved (2) of Theorem 3.
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