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§1. Introduction.

Let u=+1 be an algebraic number. The n-th Euler number H"(u) belonging
to u is defined by

Let p be a prime number and X a primitive Dirichlet character. Shiratani-
Yamamoto ([6]) constructed a p-adic interpolating function G,(s, u) of the Euler
numbers H™(u), and as its applications to the p-adic L-functions L,(s, X), they
derived an explicit formula for L,(0, X) including Ferrero-Greenberg’s formula
([2]), and gave an explanation of Diamond’s formula 1.

Let fy be the conductor of X. As analogous to the generalized Bernoulli
numbers, Tsumura ([10]) defined the n-th generalized Euler number HZ(u) for
X belonging to u by
Tt (I—w/)(@)e*uf2-21 = HPu
a.2=0 ( ea’l(‘—)—ufl :n2=0 :z(! )

(1.1)

tn

and he constructed a p-adic interpolating function /,(s, u, ¥), which is an exten-
sion of G,(s, X). Further, by considering the expansion of [,(s, u, X) at s=1,
he obtained some congruences for the generalized Euler numbers.

Sinnott ([7]) showed how to calculate the p-invariants of the I'-transforms
of rational functions, and gave a new proof of the well-known theorem of
Ferrero-Washington that Iwasawa’s pg-invariants are zero for the basic Z,-
extensions of all abelian number fields. By similar technique, an analytic prop-
erty of the interpolating power series of L,(s, X) was investigated in [8], and
a new proof of the Friedman’s result in was given in [9].

In the present paper, by similar methods used in [7], and [9] we shall
investigate an interpolating power series of the generalized Euler numbers. In
§ 2, we shall reconstruct the function [,(s, u, X) by constructing an interpolating
power series Fy .(T), and calculate the p-invariant of Fy, ,(T). (The power
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series Fy,.(T) becomes equal to the power series e, (T, 8) in if slight
modifications are made.) In §3, we shall investigate an analytic property of the
series Fy,,.(T). In §4, fixing a finite set S of prime numbers distinct from p,
we shall investigate the p-adic valuation of Hf,-ng,(u), Where w is the Teich-
miiller character for p and ¢ (resp. ¢) is a character of the second kind for
S (resp. p).

In the rest of this paper, we denote the set of positive integers by N as
usual, and put N=NU{0}. We fix a prime number p and denote by Q,, Z,
and C,, the p-adic rational number field, the ring of integers of @, and the
completion of the algebraic closure of Q,, respectively. We write | | for the
p-adic valuation of C, normalized by |p|=1/p. Let @ denote the algebraic
closure of the rational number field @ in the complex number field C. We fix
an embedding of @ into C, and regard @ also as a field contained in C,.  For
any Dirichlet characters X®, .-, X‘™  and any u=@Q, we write Q,(X, ---, (™, u)
for the field generated by u and the values of X, ... X over @Q,, and
Oyw,..xm,, for the ring of integers of Q,(X, ---, X ). In general, if R
is a ring, we write R* for the multiplicative group of units of R, R[T] for the
ring of polynomials in an indeterminate T with coefficients in R, and R[[T—1]]
for the ring of formal power series in an indeterminate T—1 with coefficients
in R. If F is a field, we write F(T) for the field of rational functions with
coefficients in F. Denoting the Teichmiiller character for p by w, we put {x)=
x/w(x) for any x&Z ;. A Dirichlet character always means a primitive one.

§2. An interpolating power series and the p-invariant.

Let X be a Dirichlet character with conductor f; and u+#1 an element of
Q. As in the introduction, we define the n-th generalized Euler number H7(u)
by (1.1} In what follows, we assume

2.1 H—uf22Y| > 1 for all NeN.

If g&N is any multiple of f,, we put

2.2 Ry = ST < @y, win,

which is independent of the choice of g.

PROPOSITION 2.1. Ry, (T) lies in Oy, J[T—17].

PROOF. Put g=f. If |u|<1, then [Z.I) implies |1—u#|=1, and so T#—
uL—:(l—u“)+E§§%<§)(T—-l)“e(Ox,u[[T—ljj)". Hence, Ryo(T) lies in

Oy, [[T—1]1. If |u]| >1, then |(1/u®)—1|=1, and so, (T /u)?—1<(0y, [[T—1]])*.
Hence, Ry, (T)=28zX(a)u T /(T /u)*—1)= 0, [[T—1]].
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Now, we recall some of the basic properties of the p-adic I'-transform.
If O is the ring of integers of a finite extension k of Q,, we denote by A,
the ring of O-valued measures on Z,. If a=4,, we put

T =3 (S (z)da(x))(T—D" e O[[T—171].

n=0 Zp

The map a—a(T) gives an isomorphism of A, with O[[T—1]]. If a=Z}, we
write a-a for the measure defined by a-a(X)=a(aX) for any compact and open
subset X of Z,. Then, (@)(T):a(T“'l), where we put T* = °,‘;=0(;>(T—1)"
for x&Z,.

We define the I'-transform I',: Z,—O of ac= A, by

Ta(s) = Szx<x>sda(x) .
D

We fix a topological generator u, of the multiplicative group 14+2pZ,. If x=
Z3, let I(x)eZ, be such that {(x>=ul*. We put

o

F(T) = EOGZ;(Z(;))da(x))(T—l)” e O[[T—17].
then. [o(s) = Fo(ud).

For any a=/,, we denote by & the measure on Z, obtained by restricting
a to Z3; and extending by 0. For any g(T)=O[[T—-1]], we put g(T)=g(T)—
(1/p)Zer18€T)=O[[T—17]. Then, we have

(@)(T) = (axT).
We also note that F(T)=FxT).

For any g(T)=O[[T~—11] and any Dirichlet character v with conductor p",
we put

(T) = /267, Lym) S0 (0)gC5aT),

where {,» is a primitive p”-th root of unity and (v, {prn)=28Zw7(a){%x. It
is easy to see that g,(T) is independent of the choice of {,». Let O denote
the ring of integers of the field £(,.), which contains the values of y. Then,
g, (T)€O0.[[T—-1]7]. For any a0 and any n< N, we have

(2.3) Fou?) = (T+d/dT)"(@)0-n(T)| 121 = (d/d2)"(&))0-n(€?)] 1m0

For any a=4, and any Dirichlet character ¢ of the second kind for p, we
denote by a,, the measure in /1% satisfying (@)(T):(a)q,(T)e O[[T—1]]. Then,
we have

2.4) - P (T) = Falp(uo)T).
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In what follows, we put Ay, ,=40, ,. Let ay, .4y, . be the measure satisfy-
ing @y, o(T)=Ry,.(T) and put

Fy,oi(T)=F, Zu(T> (= Fa%(T))

LEMMA 2.2. (1) If g&N is a common multiple of fy and p, then

g1 X(a)ut~°T*

a=0 Tg—ug
(a,p)=1

(2) If v is a Dirichlet character with conductor a power of p, then

Ry o(T) = =Ry, T)=Up)Ry, uo(T?).

(Rz.aW(T) = Ry o(T).

Proor. If g N is divisible by fy and p, then

S Ry T = 3 5 KT

{P=1 {Pp=1a=0 T2—us

e Xaus T
=? Z:Eg Té¢—us
Considering the special case g=f;p, we see that 3r_; Ry, o(ET)=pX(p)Ry, ,»(TP).
Hence, we obtain the assertion of (1).
As for (2), the assertion is obvious if v=1. Suppose that y+#1 and f,=p",
and put g=f«p". Then, a direct calculation shows
— 2" g-1 y Y a)X(b)ut LT
RedT) =1/, L) 3 2 2

b=0 TE&—u®
b, p)=1

g-1 £
_ XowouET «(T)=W/p) = RET).

3R

=0 T&—yus
Hence, we deduce our assertion.

In what follows, we put X,=Xw " for each n&N.

PROPOSITION 2.3. For each nEN, let f, denote the conductor of %,. Then,
we have

L "u?
Feulud) = o Hp o= 22200 by (9),
PrOOF. From and the definition of Fy (T), we have
S
Fy, o(u}) = (d/d2)"(ar, w)o-n(e")] 0.
== — ~
Since (ay,  )(T)=(ay, )(T)=Ry «T), shows that

P

(@1 2)o-n(T) = Ry, u(T)=2a(p)Ry,, u»(T?).

Hence, the assertion follows from the definition of the generalized Euler numbers
(1.1)

PROPOSITION 2.4. Let ¢ be a Dirichlet character of the second kind for p.
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Then,
Fxsa. uoT) = Fy, u(SD(uo)T) .

- T — o~
PROOF. shows that aye,.=(az..)e. Hence, the assertion follows
from

REMARK. From [Proposition 2.3| and Theorem 1 of [107, we see that the
function /,(u, s, X) in is equal to Fy, .(u3®).

Let = be a prime of Oy, For any xeC,—{0}, let ord,(x)=Q be such
that |x|=|xm|°md=¢®, For any power series f(T)=313_oa,(T—1)"+0 with a,<=
C, and |a,| <1 for all n= N, we define its p-invariant by p(f(T))=inf{ord,(a.)|n
€N, a,+#0}. We put further ord,(0)=p(0)=occ. Note that if f(T) is a poly-
nomial such that f(T)=37,b,T", then p(f(T))=min{ord,(b,)| 0<n<m}. Put
1. o=pFy,«(T). Then, we have the following

THEOREM 2.5. Suppose that u satisfies the condition (2.1). If |u|>1, then
sy u=—ord(uw). If |u|<l, then py w=ord(u). If |u|=1 and if X is even, then
pr.w=ord(1+u). Otherwise, prz,.=0.

ProOF. Theorem 1 of states that gy, =p(Ry o(T)+Ry.o(T-Y). Put
g=fyp. Then, a direct calculation shows

gj‘ Xa)u*(u* e~ —X(—=D)NT*+T-%)
= (TF—ut)T-*—u?)

a=0
(a, g)=1
gil a)u(u*E- DY —D)T e+ T4

0 (Tes—u®) Téus—-1) )

a=
(a,g)=1

@5) RpdT)+RzoT™) = —

If |u|>1, then

QUGS AT T
e =8 & (T /) =TT —(1/w)")

Since p((T/u)¥—1)T*—(1/u)¢))=0, we have
Ux,» = min{ord(u® 28(u*¢- 2 =Y(-1))| 1=a<g, (a, g)=1} = —ord,(u).
Next, suppose that |u|=<1. Then p((T*—u®)(T4u®—1))=0, hence we have
2.« = minford,(u*(w*¢-*—X(—1))| 1=a<g, (a, g)=1}.
If |u|<1, then gy, ,=ord(u). If |u|=1 and if X is even, then
t1.« = min{ord,(#**—1)| 1=a<g, (a, g)=1} = ord(u*—1).

Moreover, implies |u—1|=1 if |u|=1. Hence, gy, ,=ord,(14+u). If ju|=1
and if ¥ is odd, then we have

t1.» = minford(¥**+1)| 1=a<g, (a, g)=1}.
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If 2|g, then 4|f; or p=2, and so, 4| fyp% Then, implies |1—u*|=1 and
we deduce |14-u®|=1. Thus, we obtain py,,=0. If 2} g, then both %*+1 and
u*+1 belong to the set {u?*+1|1Za<g, (a, g)=1}. If |u®*+1|=1, then we
immediately have py,,=0. If [#*41|<1, then |u+1|=[(u*+1)+(u—1)|=1,
hence, |u*+1]=|u*(u+1)(u—1)4+(u*+1)|=1. Thus, we obtain gy, ,=0.

§3. Analytic property of the function Fy ,(z).

Let Fy, (T)=0y, ,[[T—1]] be as in the previous section. We put D=
{zeC,pllz—1|<1}. Then, Fy .(z) is an analytic function on D. Here and
throughout this section, “analytic” means “Krasner analytic” ([4]). By [Theoreml
2.5, Fy,.(T)=0 holds if and only if =0 or both X(—1)=1 and u=—1 hold. In
this section, by a method in [8], we prove the following

THEOREM 3.1. If u+0 and if either X(—1)=—1 or u#—1 holds, then Fy, ,(z)
has no analytic continuation to any quasi-connected subset of C, properly con-
taining D.

Proor. Let Ry (T) and ay, . be as in the previous section, and put

Rrw (T)=Rypo(T)+R,. T and g, =aza+arse(—1). Then, azy is an
P

even measure supported on Z; and we have (o/z_;/)Jr(T):}/??: ?T) and (1/2)I" o (s)
=14, ()=Fy .(u}). Now, we apply Theorem 1 or 2 of [8].

Case 1. |ul=1. Put F=0y,,/n0y, .. We first consider the case py,,=0.
Suppose that the assertion of does not hold. Then, it follows from
the first paragraph of Section 3 of that Fy, (T)modr €F(T), and Theorem
1 of [8] shows that T ”f?x\,f(T)modn: eF[T] for a sufficiently large n<N.
Putting g=/f.p, it follows from (2.5) that (T#—uf)T4u®—1)modr divides
2?{%,%2):1%(a)u“(u2(g‘“’—X(~1))(Tg+“~—Tg““)m0d7r in F[T]. Considering the
degrees of these polynomials, we deduce |u?*—X(—1)|<1 for any e with 1<a
<g and (a, g)=1. This contradicts to the fact that |u®*—X(—1)] =1 for some
a with 1<a<g and (a, g)=1, as is known from the proof of [Theorem 2.5.
Hence, must hold in the case gy, ,=0.

Next, if p¢y,,>0, then shows that X(—1)=1 and that py, ,=
ord,(14u). Applying the above argument to (14 u)"1Fy, .(T) and (1+u)“m+(T)
instead of Fy,.(T) and Ry . (T), we obtain the assertion of [Theorem 3.1

Case 2. |u|>1. In this case, putting g=fyp, we have

—~ -1 -aTa -1 o
Run= 5 ST - St T e
ot u @l D=1 m=0

=— 3 Umu"T™,

m=0
(m, g)=1
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and so,

3.1 Riu (M=— 3 Amu™T"+T").

(m, g)=1

In order to apply Theorem 2 of [8], we first prove the following

LEMMA 3.2. Let O be the ring of integers of a ﬁnité extension of Q,, and
let {an} and {bn} be sequences of O such that limy .« =liMy.wby,=0. If both
of the elements X0 An(T™+T"™) and Dp—obu(T™+T ™) in O[[T—1]] are
equal, then we have am=>by for all meN.

Proor. Put f(T)=m-oan(T™+T-™). It is sufficient to show that if
f(T)=0, then we have a,=0 for all meN. k

If ceZ,, let §, denote the Dirac measure of mass 1 supported at ¢. Then,
SAT)=T¢. Let a =/, be the measure satisfying &,(T)=f(T). Then, for any
neN and any integer [/, we have a,;([+p"Z,)=2% an. Now, assume

=:l(modpn)
that an»,#0 for some m,=N. Since limp..a,=0, there is an integer m,eN
such that |an|<|anm,l for any m>m,. Choose an integer n=N with p"—m,
>m,. Then, we have a;(m,+p"Z,)#0. In fact, if m,#0, then |a;(m,+p"Zp)|
=|n,tZn=i(@mgsmprtGomosmpn)| =| amy| #0, and if m,=0, then |a;(m+p"Z,)|
=|2(ay+ %=1 @mpn)| =12a,] #0. Hence, we have a,+0 if f(T)+0. Thus, we
conclude that if f(T)=0, then a,=0 for all meN. This completes the proof.

Let V be the torsion subgroup of Z;. Lemma 1 of states that there is
a rational number =1 such that

Vi@ = {1, —1}r%

Now, we continue to prove [Theorem 3.1 in the case |u|>1. From
and Theorem 2 of [8], it is sufficient to show that there exists an
integer n= N prime to g which does not belong to rZ. Indeed, for any k<N,
the integer kg-+1 is prime to g, but not all of the integers of this form belong
to r2.

Case 3 |u|<1. From Lemma 2.2 _ a dlrect calculation shows that Ry w-«(T)
=—X(— l)Rx T, namely ax u-1=—X(— 1)ay « Hence, the case |u|<1 is
reduced to Case 2.

§4. p-adic valuation of the generalized Euler numbers.

Let S={{,, ---, I;} be a finite set of prime numbers distinct from p. Let X
be a Dirichlet character with conductor f, and we assume, in this section, that
u=Q satisfies
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4.1) ll_ufxllNlu-[tthN] >1

for all Ny, ---, N;, NEN.

Let ¥ be the set of Dirichlet characters of the second kind for S, namely
Dirichlet characters of the form IIi.,¢:, where ¢; is a Dirichlet character of
the second kind for /;. We denote by @ the set of Dirichlet characters of the
second kind for p.

In this section, we prove the following theorem, which is an analogous
result on Euler numbers to that on Bernoulli numbers described in the last
paragraph of Section 3 of [3] or in (1)2) of [9].

THEOREM 4.1. If the condition (4.1) is satisfied, then, for almost all ¢V,
we have

4.2) 0rdﬂ<’1—:fanWH%n¢¢<u)> = U1

for all =@ and all n=N. (Here and throughout this section, “almost all” means
“all but finitely many”.) In particular, if |u|+1, then, (4.2) holds for all ¢V,
all o=@ and all nEN, except for the case that n=0, Ipp=1 and |u|>1, in
which case, we have ord.((u/(1—u))H* u))=0.

ProOF. Fix ¢¥, o=@ and n< N arbitrarily, and denote the conductor of
X.¢¢ simply by f.
In the case |u|##1 and n=1, we see from Lemma 1 of and
2.5 that, for any sufficiently large N=N,
u y/?¥-a

SpN-1
T Hhape) = 2 Tngpla)a® 77 (moda e 02p.4)

= %57y ¢ (a)a"ﬂi(modﬁ"x 410 450 )

= (a’;‘)l:l nPQ l*upr ’ Xpp,ule
(Note that, though the case p=2 is excluded in [10], Lemma 1 of it is valid
also in this case.) Taking account of again, we see

Irg Lnh (a)a"———“upr—a = |7m|#tu
@i n@P 1—ufey | T
Hence, we obtain (4.2)
Next, we consider the case |u|#1 and #n=0. Since Hjy,(u)=

120 Xdp(a)u’ -1, it is easy to deduce the required assertion.
In the case |u|=1, we use a method in [9]. For that purpose, we first
introduce notations and propositions without assuming |u|=1.
We put Zs=Il;esZ; and [s=Il;es!. For each meN, let u, denote the
group of m-th root of unity in @ and put gs=\s_oiz. Put k=Q,(X, u) and
ks=k(ps).
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For any kgs-valued measure vy on Zj, its Fourier transform 9: ps—ks is
defined by Q(C)zsz C%dy(x). 1If there exists R(T)=kg(T) such that $({)=R(C)
S

holds for almost all {&pus, we call v a rational function measure and R(T) the
associated rational function of v. Any rational function in k5(T) can occur as
the associated rational function of a certain kg-valued rational function measure
on Zs ({97, §2).

Let vy, . be a rational function measure on Zg whose associated rational
function is Ry (T). We assume that, in the case |u|+#1, Ry, ({)=%0y. () holds
for all {eus. For any ¢=¥, regarding ¢ as a character of Z§, we put

va,u(¢) = SZ§¢(x)dvx,u(x).
For any S'CS, we put
w‘sr = {(;)E?Fl Zlfz¢ if /=S’ and l/l/fx(,r, if lES-—S’}.
PROPOSITION 4.2. For almost all $=¥s, we have
Uu
4.3) Iy, @)= WH%(H)-

If |\u|#1, then (4.3) holds for all $=¥s.

ProoF. For any ¢=¥, choose n,,¢4, -, n:,, &N such that the conductor
fg of ¢ divides Fy=II{.,7"¢. As in the proof of Proposition 2.2 of [9], we
have :

Iy, ()= Ce%gl, ay(8)0x, «(©),

where a,Q)=1/F;252;" (x)C~2. 1f { is a Fy-th root of unity whose order

x=0

z,lg)=1
is not divisible by f;, tS};en a,({)=0. Since vy,, isa rational function measure
with the associated rational function Ry, .(T), there is an integer L <N, divisible
only by the primes in S, such that £y, ,({)=Ry, () for all {&us—py;. Now, there
are only finitely many ¢ with fy|L. If fyf L, then we have {*#1 for any
F 4-th root of unity { whose order is divisible by f,. Hence,

(4.4 Iy ()= CE#ZM ayQOR % uCT) o1

Put g=f;F,. Then, a direct calculation shows

Id(a)yus-°Te
Tg_ ug

4.5) S 0 QR = 5

= =1
rry (@, lg)=1

In the case ¢p=¥s, we have

(4.6) 2 ay(QR 1. LT) = Ryy, u(T).
tetpy
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Since Ryy, o(1)=(u/(1—u2¢))H}y(u), we see that holds for any ¢=¥s
with f,/ L.

If |ul#1, (4.4) holds for all ¢=¥, and so, if ¢=¥s, we see from
that holds. This completes the proof.

PROPOSITION 4.3. For almost all $=¥ we have
(47) ordn(va,u(Sb)) = ﬂx,u .
If |ul#1, then, (4.7) holds for all $=¥.

PrOOF. Let v§, be the measure on Zg obtained by restricting vy, . to Z§
and extending by 0. Let ¢(x) be the characteristic function on Z§. Then,

¢ xX)= a:L ",
( ) E,El o
Where ag—lslz:f;=1 C— . Put

(a,lg)=1
Riu(T): E a;RX.u(CT)-
CG/”IS

Then, v¥, is a rational function measure whose associated rational function is
R} (T). Let vf,°o(—1) be the measure on Z; defined by v§ ,(—1)(X)=1F ,(—X)
for any compact and open subset X of Z5. Then, v§,(—1) is also a rational
function measure whose associated rational function is R¥ ,(T%). Put g=fls.
Then, a direct calculation shows

g

1 X(a)us~°Te

o T&—us

REW(T) =

1M

~8
2

(a,

and in the same way as we have shown [Proposition 2.1, we see that R} ,(T)<=

O1..[[T—1]]. From the remark after of [9], we have, for almost
all ¥,

ord(I"y, () = p(RE «(T)+R% «(T™)).
Further, in the same way in the proof of [Theorem 2.5, we see
ﬂ(‘}e)t u(T)‘l‘R))ck, u(T‘l)) = Ut u.

Hence, (4.7) holds for almost all ¢<=¥.

In the case |u|#1, (4.4) holds for all $=¥. Hence, we see from and
that (4.7) holds for all ¢=¥.

PROPOSITION 4.4. Suppose that py, ,#oco. Then, for almost all $<¥s,
(4.8) Frgo(T)/m#tu € (0y,y,L[T—11D".
If |ul=#1, then (4.8) holds for all ¢=Vs.

Proor. If p divides fy, then p divides f,,, and [Proposition 2.3 shows
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Frg,o()=(u/(1—u’2¢))H},(u). Hence, by Propositions 4.2 and 4.3, we have
4.9) ord.(Frg, (1)) = pt2,4

for almost all ¢=¥s. Now, shows pty,u=ftzs... Hence,

holds for all ¢=¥ s satisfying
Unless p divides fy, then p divides fy, for any p=®@—{1}. For any ¢=¥,
we have ¢=¥ if and only if [s5|fy.4. Hence, for almost all ¢=¥s, we have

(410) Ordr.(Flgat}', 1) = Lro u-

From [Proposition 2.4 and [Theorem 2.5, we see that is equivalent to [(4.8).
Therefore, holds for almost all ¢p=¥s.

Finally, if [u]|+#1, we see from Propositions and that, for all ¢p=¥s,
or holds. Hence, [4.8) holds for all =¥ 5. This completes the proof.

PROOF OF THEOREM 4.1 IN THE CASE |u|=1. Again, we fix ¢=¥, o=@
and ne N, and write f for the conductor of X,¢e.
We first assume that ¢=¥s. Suppose that n=1 in the first place.

Case 1. py,.=0. Let p be the prime ideal of Oy 4.4 ». From Lemma 1 of
[10], we have, for any sufficiently large NEN,

U fpN-1 ufr¥-a
1:u—fH7?n‘/"P(u) = GEO Xngbgﬁ(a)a"T_u—mr (mod p)
SN yufrv-a
- ¢ ag)‘0 1x¢(a) 1—ure? (mod p).

a,p)=

Hence, we have (u/(1—u/))H} 4,(u)=Ryy, (1)=Fyy (1) (modp). Therefore, if
¢ satisfies [4.8), we have |[(u/(1—u/)HZ 4,(u)] =|Fyy. (1) =1 and holds.
Case 2. py,,>0. In this case, states that X is even and that

Lr.w=ord(14+u), and (4.1) implies 2/} fp. Choose N,=N arbitrarily. Then,
Lemma 1 of [107 shows that, for any sufficiently large NN, we have

u o1 ufrV-a .
T Bl = 2 Tndpla)a” 75 (mod p™)
_ N a"u/?M - f o (—1)( fp¥ —a)"uc R
= a.2=1 X.p(a) T (mod p¥o)
p¥-n/2 a(yfpV-2a_4 1 )
=3 Tugp(aar (lf_ufpf L (mod p9).

Since 2/ fp¥, we have |u/?"2241|<|u+1]. If u=-1, then HZ 4, (u)=0, and
holds. If u#—1, choose the above N, such that pYoc(14+u)p. Then,
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U n . pN-1/2 a(upr—za+1)
Ay ig ) The) = 2, Tndpla)a” 7wy s (mod )
(rp¥-nr2 “(upr'“—[—l)
= 4 mod
(a?’;)l . gb( ) pr)(l+ ) ( P)
1 ro¥-1 ulp¥-a

I

ﬁ— E ng( ) oV (mod p).
Thus, we have shown (u/(l—uf)(1+u))H;‘nM(u)z(l/(l—}-u))Fw, «(1) (mod p).
Therefore, if ¢ satisfies holds.

Next, we consider the case n=0. If p|fy,, then Propositions 2.3 and 2.4
show that Fyy, (p(ue))=(u/(1—u’)Hy,(u). In the case ¢y, u—-oo we have Hjy,(u)
=0, and holds. In the case py,,#o, if ¢ satisfies [4.8), then [4.2) holds.
If pffz, then and Propositions and 4.3 show that
ord(u/(A—u’)H 3y y(u)=ftr4, o=z . holds for almost all ¢’<¥s. Further, we
aote that such ¢ is unique in @ if it exists.

Thus, we conclude that for almost all ¢=¥s, (4.2) holds for all =@ and
all neN.

Finally, let S’ be a proper subset of S. If S’ is empty, then ¥ is empty
or a set consisting of only one element. If ¥g is an infinite set, then each
element ¢ of ¥ is expressed as ¢=q¢s s, where ¢g (resp. ¢s ) is a Dirichlet
character of the second kind for S’ (resp. S—S’), and it is easy to see that ¢
depends only on the set S’. Hence, putting ¥s={¢¢5s'|p=¥ s} and applying
the above argument to S’, ¥y and X¢ instead of S, ¥'s and X, we deduce that,
for almost all ¢=¥ s, (4.2) holds for all o=@ and all n=N.

Thus, we complete the proof of [Theorem 4.1.
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