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1. Introduction.

Let $G$ be a Fuchsian group acting on the unit disk $D$ . The group $G$ is
called type $(g, m)$ , if the quotient space $D/G$ is conformally equivalent to a
compact Riemann surface of genus $g$ with $m$ disjoint disks removed. Then the
Euler-Poincar\’e characteristic $\chi(D/G)$ is $2-2g-m$ . From now on we only con-
sider those types $(g, m)$ satisfying $\chi(D/G)<0$ or $2g+m\geqq 3$ . A Fuchsian group
is marked by choosing a system of generators. Let $G$ be a marked Fuchsian
group of type $(g, m)$ . Then all other marked Fuchsian groups of this type are
considered as deformations of $G$ and they form the Teichm\"uller space $T(g, m)$ .
The Teichm\"uller space $T(g, m)$ has the structure of a real analytic manifold of
dimension $6g-6+3m$ .

Keen [5] found that $9g-9+4m$ absolute values of traces of hyperbolic ele-
ments in a marked Fuchsian group give global real analytic coordinates for
$T(g, m)$ . These absolute values have a geometric interpretation on $D/G$ as
lengths of certain closed geodesics. But this number of parameters is not
minimal. Sepp\"al\"a and Sorvali [8] showed that $6g-4$ multipliers(corresponding

to absolute values of traces) of hyperbolic elements in a marked Fuchsian group
give global real analytic coordinates for $T(g, 0)$ . Recently S. Wolpert proved
the result, which is equivalent to the following: any $6g-6$ absolute values of
traces of elements in a marked Fuchsian group can not give global (even locally)

real analytic coordinates for $T(g, 0)$ . Hence either $6g-4$ or $6g-5$ is the mini-
mal number of such parameters for $T(g, 0)$ .

Sorvali [9] showed that $6g-6+3m$ multipliers of hyperbolic elements in a
marked Fuchsian group give global real analytic coordinates for $T(g, m)$ with
$gm\neq 0$ . In this case this number of these parameters is minimal.

In this paper, first we show that $3m-6$ absolute values of traces of hyper-
bolic elements in a marked Fuchsian group give global real analytic coordinates
for $T(O, m)$ (Theorem 4.1). Next for $T(g, 0)$ , we find $6g-4$ absolute values of
traces giving global real analytic coordinates by the same method used in the
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case of $T(O, m)$ (Theorem 5.1). Finally we show that $6g-6+3m$ absolute values
of traces give global real analytic coordinates for $T(g, m)$ with $m\neq 0$ (Theorem

6.3). Hence in the case of $m\neq$ {$)<$ we see that th\‘e minimal nuInber of these para-
meters is equal to the $dlmension_{<}$ ef $T\langle g_{J}mJ^{-}$ The method of proofs of our
theorems is due to an idea of Keen [4] and [5]. This is different from the
methods of Sepp\"al\"a and Sorvali [8] and Sorvali [9].

The author expresses the deepest gratitude to Professor H. Furusawa for
his encouragement and many valuable suggestions. He also thanks the referee
for valuable comments.

2. Definitions.

Every biholomorphic mapping $g$ of the unit disk $D$ is a linear transforma-
tion of the form $g(z)=(az+b)/(bz+a)$ , where $a,$ $b\in C$ and $|a|^{2}-|b|^{2}=1$ . Each
of the matrices

( $\frac{a}{b}$

$\frac{b}{a}$) and $(\begin{array}{ll}-a -b-\overline{b} -\overline{a}\end{array})$

of $SL(2, C)$ is called the matrix representation of $g$ . We call $a+a|$ the ab-
solute value of trace of $g$ and denote it by tr $(g)|$ . If $b\neq 0$ , then $\{z\in D$ $($

$|\overline{b}z+\overline{a}|=1\}$ is called the isometric circle of $g$ and denoted by $I(g)$ . These
transformations form a group, which is denoted by $M$. An element $g$ of $M$

is called hyperbolic, parabolic and elliptic if tr $(g)|>2,$ $=2$ and $<2$ , respectively.
A discrete subgroup $G$ of $M$ is called a Fuchsian group. A hyperbolic element
$g$ of $M$ has two disjoint fixed points $p(g)$ and $q(g)$ on the unit circle S. $q(g)$

$= \lim_{narrow\infty}g^{n}(z)$ for all $z$ in $D$ and $q(g)$ is called the attracting fixed point of $g$ .
$p(g)= \lim_{narrow\infty}g^{-n}(z)$ for all $z$ in $D$ and $p(g)$ is called the repelling fixed point of
$g$ . The circle in $D$ orthogonal to $S$ from $p(g)$ to $q(g)$ is called the axis of $g$

and denoted by $ax(g)$ .
Let $G$ be a Fuchsian group of type $(g, m)$ . Then $G$ has the following re-

presentation (see [2]):

$G=\langle A_{1},$ $B_{1},$ $\cdots$ , $A_{g},$ $B_{g},$ $E_{1},$ $\cdots$ , $E_{m}|$

$E_{m}\circ\cdots\circ E_{1}B_{g}^{-1}A_{g}^{-1}B_{g}A_{g}\circ\cdots\circ B_{1}^{-1}A_{1}^{-1}B_{1}A_{1}=I\rangle$ .
A Fuchsian group $G$ together with- a system of generators $S=(A_{\}},$ $B_{1},$ $\cdots$ , $A_{g}$ ,
$B_{g},$ $E_{1},$

$\cdots,$
$E_{m})$ is called a marked Fuchsian group $(G, S)$ . Two marked Fuch-

sian groups $(G_{1}, S_{1})$ with $S_{1}=(A_{11}$ , $\cdot$ .. , $E_{1m})$ and $(G_{2}, S_{2})$ with $S_{2}=(A_{Z1}$ , $\cdot$ .. , $E_{2m})$

are called conformally equivalent if there is an element $h$ of $M$ such that
$hA_{1i}h^{-}‘=A_{2i},$ $hB_{1i}h^{-1}=B_{2i}$ and $hE_{1j}h^{-I}=E_{2j}$ , $(i=1, \cdots , g;j=1, ’. , m)$ . The
equivalence class of $(G, S)$ is denoted by $[G, S]$ . The set of the equivalence
classes $[G, S]$ of marked Fuchsian groups of type $(g, m)$ is called the Teich-
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m\"uller space of type $(g, m)$ and denoted by $T(g, m)$ . We can introduce a
topology on $T(g, m)$ such that $T(g, m)$ becomes a real analytic manifold of
dimension $6g-6+3m$ (see [1]).

Keen [4] showed that every Fuchsian groups of type $(g, m)$ with $g,$ $m\geqq 0$

and $2g+m\geqq 3$ has the generators such that the fixed points of generators are
arranged clockwise on $S$ in the following order:

$p(C_{1})$ , $p(A_{1})$ , $q(B_{1})$ , $q(A_{1})$ , $p(B_{1})$ , $q(C_{1}),$
$\cdots,$

$p(C_{g})$ , $p(A_{g})$ ,

$q(B_{g})$ , $q(A_{g})$ , $p(B_{g})$ , $q(C_{g})$ , $p(E_{1})$ , $q(E_{1}),$
$\cdots,$

$p(E_{m})$ , $q(E_{m})$ ,

where $C_{i}=B_{i}^{1}A_{\ell}^{-1}B_{i}A_{i}$ for $i=1,$ $\cdot\cdot\sim,$ $g$ (see Figure 1). We call this property

Figure 1. $G$ has type $(2, 3)$ .

of fixed points the property $(*)$ . We may assume without loss of generality
that we only consider marked Fuchsian groups with the property $(*)$ .

For each $i$ $(i=2, , g)$ , we see that the axes of $A_{1},$ $A_{i}$ and $A_{i}A_{1}$ are dis-
joint and that $p(A_{1}),$ $q(A_{1}),$ $p(A_{\ell}),$ $q(A_{i}),$ $q(A_{i}A_{1})$ and $p(A_{t}A_{1})$ are arranged clock-
wise on $S$ in this order. This is shown as follows: We normalize $q(A_{1})=-1$ ,
$p(A_{1})=1$ and ${\rm Im}(q(A_{\dot{t}}))={\rm Im}(p(A_{i}))$ . Let $r_{1}$ be the end point of $I(A_{1})$ lying in
the right side of $ax(A_{1})$ , and $s_{1}$ be the open arc on $S$ connecting $p(A_{1})$ and $r_{1}$

which does not contain $q(A_{1})$ . Let $r_{t}$ be the end point of $I(A_{l}^{-1})$ lying in the
right side of $ax(A_{t})$ , and $s_{i}$ be the open arc on $S$ connecting $q(A_{i})$ and $r_{i}$ which
does not contain $p(A_{t})$ (see Figure 2). Then $A_{i}A_{1}(s_{\ell})\subseteqq s_{i}$ and $(A_{i}A_{1})^{-1}(s_{1})=$

$A_{1}^{-1}A_{i}^{-1}(s_{1})\subseteqq s_{1}$ . Thus $q(A_{i}A_{1})$ lies in $s_{i}$ and $p(A_{i}A_{1})$ lies in $s_{1}$ . Hence $p(A_{1})$ ,
$q(A_{1}),$ $p(A_{i}),$ $q(A_{i}),$ $q\langle A_{i}A_{1}$ ) and $p(A_{\ell}A_{1})$ are arranged clockwise on $S$ in this
order. This order is preserved by every element of $M$.

Thus the system $(A_{1}, A_{i}, (A_{i}A_{1})^{-1})$ generates a marked Fuchsian group of
type $(0,3)$ with the property $(*)$ . Similarly we see that the following systems
of generators generate marked Fuchsian groups of type $(0,3)$ with the property
$(*)$ :
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Figure 2.

$(B_{1}^{-1}, A_{i}, B_{1}A_{i}^{-1})$ , $(B_{1}^{-1}, B_{i}^{-1}, B_{1}B_{i}),$ $(A_{1}, B_{i}^{-1}, A_{1}^{-1}B_{i})$ , $(A_{1}, E_{j}, (E_{j}A_{1})^{-1})$ ,

$(B_{1}^{-1}, E_{j}, B_{1}E_{j}^{-1})$ , $(E_{1}, E_{k}, (E_{k}E_{1})^{-1})$ , $(E_{2}, E_{l}, (E_{l}E_{2})^{-1})$ ,

for $i=2,$ $\cdots$ , $g;j=1,$ $\cdots$ , $m;k=2,$ $\cdots$ , $m;l=3,$ $\cdots$ , $m$ .

3. Keen’s results.

In this section, we consider marked Fuchsian groups of types $(0,3)$ and
$(1, 1)$ . The general marked Fuchsian group of type $(g, m)$ is obtained from
these basic groups by means of the amalgamated product. Thus these groups
are called building blocks. Keen showed the following two lemmas which play
an important role in this paper.

LEMMA 3.1 (Keen [4]). Let $G$ be a marked Fuchsian group of type $(0,3)$

and have a system of generators $(E_{1}, E_{2}, E_{3})$ (see Figure 3). Then the absolute
values of traces of $E_{1},$ $E_{2}$ and $E_{3}$ determine $G$ up to conjugation by a Mobius
transformation. If $G$ is normalized by conditions $q(E_{1})=-1,$ $p(E_{1})=1$ and $q(E_{2})$

$=i$ , then $E_{1}$ and $E_{2}$ have the following matnx representations:

$E_{1}=(_{\sqrt{t_{1}^{2}-1}}^{t_{1}}$ $\sqrt{t_{1}^{2}-1}t_{1})$

and

$E_{2}=(\begin{array}{ll}t_{2}+i\frac{t_{3}-t_{1}t_{2}}{\sqrt{t_{1}^{2}-1}} \frac{t_{3}-t_{1}t_{2}}{\sqrt{t_{1}^{2}-1}}i\sqrt{t_{2}^{2}-1}\frac{t_{3}-t_{1}t_{2}}{\sqrt{t_{1}^{2}-1}}+i\sqrt{t_{2}^{2}-1} t_{2}-i\frac{t_{3}-t_{1}t_{2}}{\sqrt{t_{1}^{2}-1}}\end{array})$ ,

where $2t_{\ell}=-|tr(E_{i})|$ for $i=1,2,3$ .
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Figure 3.

REMARK 3.2 (Keen [4]). We can not arbitrarily take the matrix representa-
tions of $E_{1},$ $E_{2}$ and $E_{3}$ . We have to take their matrices such that tr $(E_{1})tr(E_{2})$

tr $(E_{3})<0$ .
In Keen [4], $E_{1},$ $E_{2}$ and $E_{3}$ are represented by matrices such that tr $(E_{1})>0$ ,

tr $(E_{2})>0$ and tr $(E_{3})<0$ . However in this paper, we take their matrices whose
traces are all negative. Let

$( \frac{a}{b}$
$\frac{b}{a})$

be the matrix representation of $E_{2}$ in Lemma 3.1. A direct calculation gives

${\rm Re}(b)={\rm Im}(a)<{\rm Re}(a)<{\rm Im}(b)<0$ ,

which will be useful in later computations.

LEMMA 3.3 (Keen [4]). Let $G$ be a marked Fuchsian group of type $(1, 1)$

and have a system of generators $(A_{1}, B_{1}, E_{1})$ (see Figure 4). Then the absolute
values of traces of $A_{1},$ $B_{1}$ and $B_{1}A_{1}$ determine $G$ up to conjugation by a Mobius
transformation. If $G$ is normalized by conditions $q(A_{1})=-1$ , $p(A_{1})=1$ and
ax $(A_{1})\cap ax(B_{1})=\{0\}$ , then $A_{1}$ and $B_{1}$ have the following matrix representations:

$A_{1}=(_{\sqrt{t^{2}-1}}^{t}$ $\sqrt{t^{2}-1}t)$

and

$B_{1}=(_{\exp(-i\varphi)\sqrt{s^{2}-1}}^{S}\exp(i\varphi)\sqrt{s^{2}-1}s)$ ,

where $2t=-|tr(A_{1})|,$ $2s=-|tr(B_{1})|$ and $\varphi\in(0, \pi)$ is the intersection angle be-
tween ax $(A_{1})$ and ax $(B_{1})$ . This angle $\varphi$ is uniquely determined by

$\sqrt{(s^{2}-1)(t^{2}-1)}\cos\varphi=r-st$ ,

where $2r=|tr(B_{1}A_{1})|$ .
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Figure 4.

In Keen [4], $A_{1}$ and $B_{1}$ are represented by matrices such that tr $(A_{1})$ , tr $(B_{1})$

and tr $(B_{1}A_{1})$ are all positive.

4. A parametrization of type $(0, m)$ .
In this section, we observe the type $(0, m)$ . The case of $m=3$ is considered

in Lemma 3.1. Thus we consider the case of $m\geqq 4$ . Let $G$ be a marked Fuch-
sian group of type $(0, m)$ with m11114. We normalize $G$ as $q(E_{1})=-1,$ $p(E_{1})=1$

and $q(E_{2})=i$ . Under this situation, we find absolute values of traces of hyper-
bolic elements which uniquely determine $G$ .

The system $(E_{1}, E_{2}, (E_{2}E_{1})^{-1})$ generates a group of type $(0,3)$ with the pro-
perty $(*)$ . Then by Lemma 3.1, $E_{1}$ and $E_{2}$ are uniquely determined by tr $(E_{1})$

$(<-2)$ , tr $(E_{2})(<-2)$ and tr $(E_{2}E_{1})(<-2)$ . Next we will uniquely determine
$E_{3}$ . The fixed point $q(E_{3})$ is $\exp(i\theta)$ for some $\theta\in(0, \pi/2)$ . Let $Q$ be the linear
transformation which maps $-1,1$ and $\exp(i\theta)$ to $-1,1$ and $i$ , respectively.
The system $(QE_{1}Q^{-1}, QE_{3}Q^{-1}, Q(E_{3}E_{1})^{-1}Q^{-1})$ generates a group of type $(0,3)$

with the proPerty $(*)$ such that $q(QE_{1}Q^{-1})=-1,$ $p(QE_{1}Q^{-1})=1$ and $q(QE_{3}Q^{-1})=i$ .
Thus by Lemma 3.1, $QE_{3}Q^{-1}$ is determined by $tr(E_{1})(<-2),$ $tr(E_{3})(<-2)$ and
tr $(E_{3}E_{1})(<-2)$ . The matrix representations of $Q$ are

$\frac{\pm 1}{\frac 2\sin\theta(1+\sin\theta\overline{)}}(\begin{array}{ll}1+sin\theta -cos\theta-cos\theta 1+sin\theta\end{array})$ .

Thus if $\theta$ is obtained, then $E_{3}$ is uniquely determined. Now we will show that
$\theta$ is obtained from above traces and tr $(E_{3}E_{2})$ . Since both tr $(E_{2})$ and tr $(E_{3})$

are negative, tr $(E_{3}E_{2})$ is taken to be negative by Remark 3.2. Set $2k=tr(E_{3}E_{2})$ ,

$E_{2}=( \frac{a}{b}$
$\frac{b}{a}$) and $QE_{3}Q^{-1}=( \frac{p}{q}$ $\frac{q}{p})$ .

Then we have
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$E_{3}=(\begin{array}{ll}Re(p)+i\frac{Im(p)-lm(q)\omega sp}{sin\theta} Re(q)+i\frac{Im(q)-lm(p)\infty s\theta}{sin\theta}Re(q)-i\frac{Im(q)-Im(p)cos\theta}{sin\theta} Re(p)-i\frac{Im(p)-Im(q)\omega s\theta}{sin\theta}\end{array})$

and thus
a $\sin\theta+\beta\cos\theta=r$ ,

where
$\alpha={\rm Re}(a){\rm Re}(p)+{\rm Re}(b){\rm Re}(q)-k$ ,
$\beta={\rm Im}(a){\rm Im}(q)-{\rm Im}(b){\rm Im}(p)$ ,
$\gamma={\rm Im}(a){\rm Im}(p)-{\rm Im}(b){\rm Im}(q)$ .

Since ${\rm Re}(b)={\rm Im}(a)<{\rm Re}(a)<{\rm Im}(b)<0,$ ${\rm Re}(q)={\rm Im}(p)<{\rm Re}(p)<{\rm Im}(q)<0$ and $k<0$ ,
we obtain that

(1) $\alpha>\gamma>0$,
(2) $\gamma>\beta$ .

Thus

$\sin(\theta+\theta_{0})=\frac{\gamma}{\sqrt{\alpha^{2}+\beta^{2}}}$

where $\theta_{0}\in[0,2\pi)$ satisfies

$\cos\theta_{0}=\frac{\alpha}{\sqrt{\alpha^{2}+\beta^{2}}}$ and $\sin\theta_{0}=\frac{\beta}{\sqrt{\alpha^{2}+\beta^{2}}}$

Since $0<\theta+\theta_{0}<5\pi/2$ and $\gamma>0,$ $\theta+\theta_{0}$ is equal to $\theta_{1},$ $\theta_{2}$ or $\theta_{3}$ , where $0<\theta_{1}<\pi/2$

$<\theta_{2}<2\pi<\theta_{3}<5\pi/2$ and $\sin\theta_{i}=\gamma/\sqrt{\alpha^{l}+\beta^{2}}$ ; $i=1,2,3$ . Since $\cos\theta_{0}>0$ , $\theta_{0}$ is
either in $[0, \pi/2)$ or $(3\pi/2,2\pi)$ .

In the case of $\theta_{0}$ in $[0, \pi/2),$ (2) implies that $\sin\theta_{0}<\sin(\theta+\theta_{0})$ . Then we
can take $\theta$ as $\theta_{1}-\theta_{0}$ . On the other hand, (1) implies that $\sin(\theta_{0}+\pi/2)>\sin\theta_{2}$

and thus $\theta_{2}-\theta_{0}\not\in(0, \pi/2)$ . It is trivial that $\theta_{3}-\theta_{0}\not\in(0, \pi/2)$ . Hence $\theta$ is uni-
quely determined.

In the case of $\theta_{0}\in(3\pi/2,2\pi)$ , we uniquely determine $\theta$ as $\theta_{3}-\theta_{0}$ .
If $m=4$ , then $E_{4}$ is determined by the relation $E_{4}\circ\cdots\circ E_{1}=I$ . $lfm\geqq 5$ , then

we similarly determine $E_{4},$ $\cdots$ , $E_{m-1}$ . And $E_{m}$ is determined by the relation
$E_{m^{\circ 0}}\cdots E_{1}=I$ .

In our construction, these traces are real analytically corresponding to the
entries of $E_{1},$ $E_{2},$ $\cdots$ , $E_{m}$ up to conjugation by a M\"obius transformation. Now
we have the following theorem.

THEOREM 4.1. Let $G$ be a marked Fuchsian group of type $(0, m)$ . Then
absolute values of traces of the following $3m-6hyp$erbolic elements determine $G$

up to conjugation by a Mobius transformation,

(i) $E_{i}$ $i=1,$ $\cdots$ , $m-1$ ,
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(ii) $E_{i}E_{1}$ , $i=2,$ $\cdots$ , $m-1$ ,
(iii) $E_{i}E_{2}$ , $i=3,$ $\cdots$ , $m-1$ ,

where in the case of $m=3$ , (iii) is omitted. These values give global real analytic
coordinates for $T(O, m)$ .

5. A parametrization of type $(g, 0)$ .
Here we observe the type $(g, 0)$ . Let $G$ be a marked Fuchsian group of

this type. We normalize $G$ as $q(A_{1})=-1,$ $p(A_{I})=1$ and ax $(A_{1})\cap ax(B_{1})=\{0\}$ .
We find absolute values of traces of hyperbolic elements which uniquely deter-
mine $G$ by the following three steps.

The first step: Here we will determine $A_{1},$ $A_{2},$ $\cdots$ , $A_{g}$ and $B_{1}$ . The system
$(A_{1}, B_{1}, C_{1}^{-1}),$ $C_{1}=B_{1}^{-1}A_{1}^{-1}B_{1}A_{1}$ generates a group of type $(1, 1)$ with the property
$(*)$ . By Lemma 3.3, $A_{1}$ and $B_{1}$ are determined by $tr(A_{1})(<-2),$ $tr(B_{1})(<-2)$

and tr $(B_{1}A_{1})(>2)$ . Let $\varphi$ be the intersection angle between ax $(A_{1})$ and ax $(B_{1})$ .
Next we will see that $A_{2}$ is determined by tr $(A_{1})$ , tr $(A_{2})$ , tr $(A_{2}A_{1})$ and tr $(A_{2}B_{1}^{-1})$ .
The fixed point $q(A_{2})$ is $\exp(i\theta)$ for some $\theta$ in $(0, \pi)$ . We take $Q$ as in the
same manner stated in Section 4. Then by Lemma 3.1, $QA_{2}Q^{-1}$ is determined
by tr $(A_{1})(<-2)$ , tr $(A_{2})(<-2)$ and tr $(A_{2}A_{1})(<-2)$ . Since both tr $(A_{2})$ and
tr $(B_{1})$ are negative, tr $(A_{2}B_{1}^{-1})$ is negative by Remark 3.2. Set $2k=tr(A_{2}B_{1}^{-1})$,

$B_{1}=(_{\exp(-i\varphi)\sqrt{s^{2}-1}}^{S}\exp(i\varphi)\sqrt{s^{2}-1}s)$ and $QA_{2}Q^{-1}=( \frac{p}{q}$ $\frac{q}{l})$ .

Then we have
a $\sin\theta+\beta\cos\theta=\gamma$ ,

where
$\alpha=2k-{\rm Re}(p)s-{\rm Re}(q)s\cos\varphi$ ,
$\beta={\rm Im}(p)s\sin\varphi$ ,
$\gamma={\rm Im}(q)s\sin\varphi$ .

Thus

$\sin(\theta+\theta_{0})=\frac{\gamma}{\sqrt{}\overline{\alpha^{2}+\beta^{z}}}$

where $\theta_{0}\in[0,2\pi)$ satisfies

$\cos\theta_{0}=\frac{\alpha}{\sqrt{\alpha^{2}+\beta^{2}}}$ and $\sin\theta_{0}=\frac{\beta}{\sqrt{}\alpha^{l}+\beta^{2}}$ .

Since $0<\sin(\theta+\theta_{0})<\sin\theta_{0}$ , we obtain that $\theta_{0}\in(0, \pi)$ and $\theta+\theta_{0}\in(\pi/2, \pi)$ . Thus
we uniquely obtain $\theta$ . Hence $A_{2}$ is uniquely determined.

If $g\geqq 3$ , then $A_{3},$ $\cdots$ , $A_{g}$ are similarly determined.
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The second step: In the case of $g=2$ , we skip this step. We will deter-
mine $B_{2},$ $B_{3},$ $\cdots$ , $B_{g-1}$ . The system $(A_{1}, B_{2}^{-1}, A_{1}^{-1}B_{2})$ generates a group of type
$(0,3)$ with the property $(*)$ . The fixed point $q(B_{2}^{-1})=\exp(i\theta)$ for some $\theta$ in
$(0, \pi)$ . We take $Q$ as in the same manner in Section 4. Then by Lemma 3.1,
$QB_{2}^{-1}Q^{-1}$ is determined by tr $(A_{1})(<-2)$ , tr $(B_{2})(<-2)$ and tr $(B_{2}A_{1}^{-1})(<-2)$ .
Moreover $\theta$ is obtained from above traces and tr $(B_{2}B_{1})(<-2)$ . Therefore $B_{2}$

is uniquely determined.
If $g\geqq 4$ , then we similarly determine $B_{3},$ $\cdots$ $B_{g-1}$ .
The third step: We will determine $B_{g}$ . After the above two steps $c_{g}=$

$B_{g}^{-1}A_{g}^{-1}B_{g}A_{g}$ is determined by the relation. We take tr $(B_{g})(<-2)$ and tr $(B_{g}A_{g})$

$(>2)$ . We construct the marked group of type $(1, 1)$ with the property $(*)$,
$\langle\tilde{A}_{g},\tilde{B}_{g},\tilde{C}_{g}^{-1}|\tilde{C}_{g}^{-1}\tilde{B}_{g}^{-1}\tilde{A}_{g}^{-1}\tilde{B}_{g}\tilde{A}_{g}=I\rangle$ which satisfies the following conditions:

$q(\tilde{A}_{g})=-1$ , $p(A_{g})=1$ , ax $(\tilde{A}_{g})\cap ax(\tilde{B}_{g})=\{0\}$ ,

tr $(\tilde{A}_{g})=tr(A_{g})$ , tr $(\tilde{B}_{g})=tr(B_{g})$ , tr $(B_{g}A_{g})=tr(B_{g}A_{g})$ .
The transformation $T$ which maps $q(C_{g}),$ $p(C_{g})$ and $q(A_{g})$ to $q(\tilde{C}_{g}),$ $p(\tilde{C}_{g})$ and
$q(\tilde{A}_{g})$ , respectively, is uniquely determined. These six fixed points are deter-
mined by tr $(B_{g})|,$ $|tr(B_{g}A_{g})|$ and absolute values of traces used in the first
and second steps. Thus $T$ is determined by these values. Hence we can deter-
mine $B_{g}=T^{-1}\tilde{B}_{g}T$ by these values.

From these three steps we obtain the following theorem.

THEOREM 5.1. Let $G$ be a marked Fuchsian group of type $(g, 0)$ . Then the
absolute values of traces of the following $6g-4$ hyperbolic elements determine $G$

up to conjugation by a Mobius transformation,

(i) $A_{i},$ $B_{i}$ , $i=1,$ $g$ ,
(ii) $A_{i}A_{1},$ $A_{i}B_{1}^{-1}$ , $i=2,$ $\cdots$ , $g$ ,
(iii) $B_{i}B_{1},$ $B_{i}A_{1}^{-1}$ , $i=2,$ $\cdots$ , $g-1$ ,
(iv) $B_{1}A_{1},$ $B_{g}A_{g}$ ,

where in the case of $g=2$ , (iii) is omitted. These values give global real analytic
coordinates for $T(g, 0)$ .

Sepp\"al\"a and Sorvali [8] conjectured $6g-4$ is the minimal number of such
parameters.

6. A parametrization of type $(g, m)$ with $m\neq 0$.
Let $G$ be a marked Fuchsian group of type $(g, m)$ with $gm\neq 0$ . We nor-

mallze $G$ as $q(A_{1})=-1,$ $p(A_{1})=1$ and ax $(A_{1})\cap ax(B_{1})=\{0\}$ . Then using the
first and second steps in Section 5, we determine $A_{1},$ $B_{1},$ $\cdots$ , $A_{g},$ $B_{g}$ by 3+
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$3(2g-2)=6g-3$ traces. If $m=1$ , then $E_{1}$ is determined by the relation. If
$m\geqq 2$, then we determine $E_{f}$ by tr $(A_{1})(<-2)$, tr $(E_{f})(<-2)$ , tr $(E_{j}A_{1})(<-2)$

and tr $(E_{j}B_{1}^{-1})(<-2)$ for $j=1,$ $m-1$ . Hence we have the following theorem.

THEOREM 6.1. Let $G$ be a marked Fuchsian group of type $(g, m)$ with $gm$

$\neq 0$ . Then the absolute values of traces of the following $6g-6+3m$ hyperbolic
elements determine $G$ up to conjugation by a Mobius transformation,

(i) $A_{i},$ $B_{i},$ $E_{j}$ , $i=1,$ $g;j=1,$ $m-1$ ,
(ii) $A_{l}A_{1},$ $A_{i}B_{1}^{-1},$ $B_{i}B_{1},$ $B_{i}A_{1}^{-1}$ , $i=2,$ $g$ ,

(iii) $E_{j}A_{1},$ $E_{j}B_{1}^{-1}$ , $j=1,$ $m-1$ ,
(iv) $B_{1}A_{1}$ ,

where in the case of $g=1$ , (ii) is omitted and in the case of $m=1$ , both (iii) and
$E_{j}$ in (i) are omitted. These values give global real analytic coordinates for
$T(g, m)$ .

REMARK 6.2. In Theorems 4.1, 5.1 and 6.1, if all traces of (i) are taken
to be negative, then each one of (ii) and (iii) is negative and each one of (iv)

is positive.

Finally from Theorems 4.1 and 6.1, we conclude the following main theorem.

THEOREM 6.3. The Teichmiiller space $T(g, m)$ with $m\neq 0$ and $2g+m\geqq 3$ has
global real analytic coordinates which consist of $6g-6+3m$ absolute values of
traces of hyperbolic elements in marked Fuchstan groups.
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