
J. Math. Soc. Japan
Vol. 42, No. 1, 1990

Reflective elastic waves at the boundary as a
propagation of singularities phenomenon

By Kazuhiro YAMAMOTO

(Received SePt. 25, 1987)
(Revised Sept. 5, 1988)

1. Introduction.

Let us consider an elastic body $\Omega$ in $R^{3}$ with a smooth boundary $\partial\Omega$ . If
the medium is isotropic, it is well known that the displacement $u(x, t)={}^{t}(u_{1}, u_{2}, u_{3})$

of $\Omega$ satisfies the following boundary value problem

(1.1) $\rho\partial^{2}u/\partial t^{2}=(\lambda+\mu)grad(divu)+\mu\Delta u$ in $\Omega\cross R$ ,

(1.2) $\sum_{i=1}^{3}n_{t}(x)\{\lambda(divu)\delta_{ij}+\mu(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial u_{i}})\}=0$ $(j=1,2,3)$ on $\partial\Omega\cross R$ ,

where $\rho$ is the density of the medium, $\lambda$ and $\mu$ are the “Lam\’e constants” which
are positive, and $n(x)=(n_{1}(x), n_{2}(x),$ $n_{3}(x))$ is the outer unit normal vector to the
boundary $\partial\Omega$ .

Solutions $u(t, x)$ of the boundary value problem (1.1) and (1.2) in the half
space $\Omega=\{x\in R^{3} : x_{3}>0\}$ are theoretical models of seismic waves. It is not dif-
ficult to show that the rotation of $u$ and the divergence of $u$ are solutions of
usual wave equations $\partial_{t}^{2}-(\mu/\rho)\Delta$ and $\partial_{t}^{2}-((\lambda+2\mu)/\rho)\Delta$ , respectively. By this ob-
servation and one from a seismogram it is said that there are two kind of
seismic waves with speeds $(\mu/\rho)^{1/2}$ and $((\lambda+2\mu)/\rho)^{1/2}$ , which are called an $S$

wave and a $P$ wave, respectively. By constructing a special solution of (1.1)

and (1.2) in the half space seismology insists the following two phenomena:

(1.3) If a $P$ wave only makes incidence to the boundary, then both a $P$ wave
and an $S$ wave reflect from the boundary.

(1.4) There are two kinds of $S$ waves. One of them is called an $SV$ wave, if
a reflective phenomenon for its incident wave is similar to one for an incident
$P$ wave. The other is called an $SH$ wave, if only an $S$ wave reflects for its
incident wave.

In this paper we shall prove (1.3) and (1.4) from the viewpoint of a prop-
agation of singularities of every solution to the boundary value problem (1.1)

and (1.2) with an arbitrary domain $\Omega$ in $R^{3}$ . Namely, we shall show the fol-
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lowing facts: Let $C_{in}^{(p)}$ be the incoming characteristic curve of $\partial_{t}^{2}-((\lambda+2\mu)/\rho)\Delta$

hitting on $x_{0}\in\partial\Omega$ at time $t_{0}$ with a direction $\omega\in S^{2}$ , and $C_{in}^{(S)}(\omega)$ be the incom-
ing characteristic curve of $\partial_{t}^{2}-(\mu/\rho)\Delta$ hitting on $x_{0}\in\partial\Omega$ at time $t_{0}$ with a direc-
tion $\omega_{+}$ decided from $\omega$ (see i) of Definition 2.2). We denote by $C_{out}^{(p)}$ and $C_{out}^{(S)}$

the outgoing characteristic curves of $\partial_{t}^{2}-((\lambda+2\mu)/\rho)\Delta$ and $\partial_{t}^{2}-(\mu/\rho)\Delta$ decided by
the rule of geometrical optics from $C_{in}^{(p)}$ and $C_{in}^{(S)}$ , respectively. If a solution
$u(x, t)$ of (1.1) and (1.2) is not $C^{\infty}$ on $C_{in}^{(p)}$ and is $C^{\infty}$ near $C_{in}^{(S)}$ , then $u(x, t)$ is
not $C^{\infty}$ on $C_{out}^{(p)}\cup C_{out}^{(s)}$ . This is a corollary of Theorem 4.1. On the other hand
if a solution of (1.1) and (1.2) is not $C^{\infty}$ on $C_{in}^{(S)}$ and is $C^{\infty}$ near $C_{in}^{(p)}$ , then we
have one of the following two phenomena; i) $u(x, t)$ is not $C^{\infty}$ on $C_{out}^{(p)}\cup C_{out}^{(s)}$ .
ii) $u(x, t)$ is not $C^{\infty}$ on $C_{out}^{(S)}$ and is $C^{\infty}$ near $C_{out}^{(p)}$ . This is a corollary of Theo-
rem 4.4. Thus we can give a proof of (1.3) and (1.4) from the viewpoint of a
propagation of singularities.

2. Definitions of rays.

In this section we shall define several rays which are used to explain reflec-
tive phenomena. First we remark that the principal symbol of the elastic wave
equation (1.1) has the following property;

(2.1) $\det(\rho\tau^{2}I_{3}-(\lambda+\mu)\xi^{t}\xi-\mu|\xi|^{2}I_{3})=\rho^{6}(\tau^{2}-\alpha^{2}|\xi|^{2})^{2}(\tau^{2}-\beta^{2}|\xi|^{2})$ ,

where $I_{3}$ is the $3\cross 3$ identity matrix, $\xi$ is a column vector of $R^{3}$ and $\alpha^{2}=\mu/\rho$ ,
$\beta^{2}=(\lambda+2\mu)/\rho$ . This fact also suggests that there are two kind of seismic waves
with speeds $\alpha$ and $\beta$ .

We say that a ray $\gamma(t)=(x(t), t, \xi(t), \tau(t))$ in $T^{*}(\Omega xR)$ parametrized by time
$t$ is an incoming (outgoing) ray to the boundary $\partial\Omega$ , if $x(t_{0})=x_{0}\in\partial\Omega$ and

(2.2) $n(x_{0}) \cdot\frac{dx}{dt}(t_{0})>0$ $(n(x_{0}),$ $\frac{dx}{dt}(t_{0})<0)$ .

First we shall define an incident $P(S)$ ray andits reflected $P(S)$ ray.

DEFINITION 2.1. Let $x_{0}$ be an arbitrary point of $\partial\Omega$ and $\omega$ be an element
of $S^{2}$ such that $n(x_{0})\cdot\omega>0$ .

i) The incoming half null bicharacteristic $\{(\beta\omega(t-t_{0})+x_{0}, t, -\epsilon\omega, \epsilon\beta)\in$

$T^{*}(\Omega\cross R):t<t_{0}\}$ of $\tau^{2}-\beta^{2}|\xi|^{2}$ is called an incident $P$ ray with a direction $\omega$

and is denoted by $\gamma_{\ell}^{(p)}(\omega)$ , where $\epsilon^{2}=1$ . By the geometrical optics the reflected
direction of $\omega$ at $x_{0}\in\partial\Omega$ is $\omega_{r}=\omega-2(n(x_{0})\cdot\omega)n(x_{0})$ . Thus the outgoing half null
bicharacteristic $\gamma_{r}^{(p)}(\omega)=\{(\beta\omega_{r}(t-t_{0})+x_{0}, t, -\epsilon\omega_{r}, \epsilon\beta)\in T^{*}(\Omega\cross R):t_{0}<f\}$ of $\tau^{2}-$

$\beta^{2}|\xi|^{2}$ is called a reflected $P$ ray of $7E^{p)}(\omega)$ .
(ii) Similarly $\gamma_{t}^{(S)}(\omega)=\{(\alpha\omega(t-t_{0})+x_{0}, t, -\epsilon\omega, \epsilon\alpha)\in T^{*}(\Omega\cross R):t<t_{0}\}$ and

$\gamma_{r}^{(S)}(\omega)=\{(\alpha\omega_{r}(t-t_{0})+x_{0}, t, -\epsilon\omega_{r}, \epsilon\alpha)\in T^{*}(\Omega\cross R):t_{0}<t\}$ are called an incident $S$
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ray with a direction $\omega$ and its reflected $S$ ray, respectively.

Let $\pi$ be the projection from $T^{\star}(R^{3}\cross R)$ to $T^{*}(\Omega\cross R)$ . Then we remark
that $\pi((x_{0}, t_{0}, -\epsilon\omega, \epsilon\beta))=\pi((x_{0}, t_{0}, -\epsilon\omega_{r}, \epsilon\beta))=(x_{0}, t_{0}, -\epsilon(\omega-(n(x_{0})\cdot\omega)n(x_{0})), \epsilon\beta)$ .
We shall define a transfered reflected ray. We consider a point $(x_{0},$ $t_{0}$ ,
$-\epsilon(\omega-(n(x_{0})\cdot\omega)n(x_{0}))+An(x_{0}),$ $\epsilon\beta)$ such that $\pi((x_{0}, t_{0}, -\epsilon\omega, \epsilon\beta))=\pi((x_{0},$ $t_{0}$ ,
$-\epsilon(\omega-(n(x_{0})\cdot\omega)n(x_{0}))+An(x_{0}),$ $\epsilon\beta))$ and $(\epsilon\beta)^{2}-\sigma^{2}|\epsilon(\omega-(n(x_{0})\cdot\omega)n(x_{0}))+An(x_{0})|^{2}$

$=0$ . Thus

(2.3) $A=\pm a(\omega)=\pm[\beta^{2}/\alpha^{2}-1+(n(x_{0})\cdot\omega)^{2}]^{1/2}$

Making use of $a(\omega)$ , we have the following

DEFINITION 2.2. Let $x_{0}\in\partial\Omega$ and $\omega\in S^{2}$ such that $n(x_{0})\cdot\omega>0$ .
i) The outgoing half null bicharacteristic $\gamma t^{)}(\omega)=\{(a^{2}\omega_{-}(t-t_{0})/\beta+x_{0},$ $t$ ,

$-\epsilon\omega_{-},$ $\epsilon\beta)\in T^{*}(\Omega\cross R):t_{0}<t\}$ of $\tau^{2}-\alpha^{2}|\xi|^{2}$ , where $\omega_{\underline{+}}=\omega-(n(x_{0})\cdot\omega)n(x_{0})\pm$

$a(\omega)n(x_{0})$ with $|\omega_{\pm}|=\beta/\alpha$ , is called the transfered reflected $S$ ray of the inci-
dent $P$ ray $\gamma_{i}^{(p)}(\omega)$ . The incoming half null bicharacteristic $\{(\alpha^{2}\omega_{+}(t-t_{0})/\beta+x_{0}$ ,
$t,$ $-\epsilon\omega_{+},$ $\epsilon\beta)\in T^{*}(\Omega\cross R):t<t_{0}\}$ is denoted by $\gamma_{in}^{(S}$ ‘ $(\omega)$ .

ii) If $\alpha^{2}>\beta^{2}(1-(n(x_{0})\cdot\omega)^{2})$ , then similarly we can define the transfered re-
flected $P$ ray $\gamma_{tr}^{(p)}(\omega)=\{(\beta^{2}\tilde{\omega}_{-}(t-t_{0})/\alpha+x_{0}, t, -\epsilon\omega_{-}, \epsilon\alpha)\in T^{*}(\Omega\cross R):t_{0}<t\}$ and the
incoming $P$ ray $\gamma_{in}^{(p)}(\omega)=\{(\beta^{z_{\tilde{\omega}_{+}}}(t-t_{0})/\alpha+x_{0}, t, -\epsilon\omega_{+}, \epsilon\alpha)\in T^{*}(\Omega\cross R):t<t_{0}\}$ for
the incident $S$ ray $\gamma_{i}^{(s)}(\omega)$ , where $\tilde{\omega}_{\pm}=\omega-(n(x_{0})\cdot\omega)n(x_{0})\pm[\alpha^{2}/\beta^{2}-1+(n(x_{0})\cdot\omega)^{2}]^{1/2}$ .
$n(x_{0})$ with $t0_{f}|=\alpha/\beta$ .

In Remark 3.1 we shall give precise meanings of these rays.

3. Reduction to the first order systems.

Throughout this paper we assume that a considered solution $u(x)$ of (1.1)

and (1.2) is an extensible distribution, $i$ . $e.$ , there exists a distribution $U(x, t)$ in
$R^{3}xR$ such that $U=u$ as an element of $g’(\Omega\cross R)$ .

Since (1.1) and (1.2) are rotation free, we may assume that $x_{0}=0\in\partial\Omega$ and $\Omega$

is defined by $\{x\in R^{3} : x_{3}>g(x’)\}$ in a neighbourhood $U_{0}$ of $0$ , where $x’=(x_{1}, x_{2})$

and $(\nabla g)(O)=(\partial g/\partial x_{1}(0), \partial g/\partial x_{2}(0))=0$ . Thus $n(O)=(O, 0, -1)$ . By making use
of the coordinate transformation $\gamma’=x’$ . $\gamma_{3}=x_{3}-g(x’)$ such that $\Omega\cap U_{0}$ is trans-
formed into $\{y:y_{3}>0\}$ and putting $U(y, t)={}^{t}(\Lambda(D_{y’}, D_{t})^{t}u,$ $D_{y_{3}}^{t}u)$ , where
$\Lambda(D_{y},, D_{t})$ is a scalar pseudodifferential operator with the symbol $\Lambda_{1}(\eta’, \tau)=$

$(\tau^{2}+|\eta’|^{2}+1)^{1/2}$ , the boundary value problem (1.1) and (1.2) is reduced to the
following one (see Section 1.1 of [6]).

(3.1) $\{D_{y_{3}}U=M(y’,D_{y’},D_{t})UB(y’,D_{y’},D_{t})U=0 in y_{3}>0,$

on $y_{3}=0$ ,



4 K. YAMAMOTO

where $M(y’, D_{y’}, D_{t})$ is a pseudodifferential operator of order 1 with a form of
a $6\cross 6$ matrix and $B(y’, D_{y}, D_{t})$ is a pseudodifferential operator of order $0$ with
a form of a $3\cross 6$ matrix. Here the principal symbol $M_{1}(y’, \eta’, \tau)$ of $M(y’, D_{y’}, D_{t})$

satisfies that $\det(\eta_{3}I_{6}-M_{1}(y’, \eta’, \tau))=\{(\eta_{3}-a(y’, \eta’))^{2}+s(y’, \eta’, \tau)\}^{2}\{(\eta_{3}-a(\eta’, \tau))^{2}$

$+P(y’, \eta’, \tau)\}$ , where

(3.2) $a(y’, \eta’)=\langle\eta’, \nabla g\rangle/|G|^{2}$

(3.3) $s(y’, \eta’, \tau)=\{|\eta’|^{2}-\tau^{2}/\alpha^{2}-\langle\eta’, \nabla g\rangle^{2}/|G|^{2}\}/|G|^{2}$

(3.4) $P(y’, \eta’, \tau)=\{|\eta’|^{2}-\tau^{2}/\beta^{2}-\langle\eta’, \nabla g\rangle^{2}/|G|^{2}\}/|G|^{2}$

with $G={}^{t}(-\nabla g, 1)$ . Furthermore the principal symbol $(B_{1}, B_{2})(y’, \eta’, \tau)$ of
$B(y’, D_{y’}, D_{t})=(B_{1}, B_{2})(y’, D_{y’}, D_{t})$ is

(3.5) $\{B_{2}(y’B_{1}(y’, \eta’\eta^{\prime 1}\tau)=(\lambda+\mu)G^{t}G+\mu|G|^{2}I_{3}\tau)=(\lambda G^{t}\overline{\eta}+\mu\overline{\eta}{}^{t}G+\mu G\cdot\overline{\eta})\Lambda_{1}^{-1}$

where $\overline{\eta}=(\eta_{1}, \eta_{2},0)$ .
Since $u(x, t)$ is an extensible distribution, from Theorem 4.3.1 of [2] we

can regard $U(x, t)$ as an element of $C^{\infty}(\overline{R}_{+} ; 9’(R_{y’}^{2}\cross R))$ . In order to state theorems
on a Propagation of singularities we use the notation $WF(G)$ for a distribution
$G$ , which is the wave front set of Hormander (see (2.5.2) and Proposition 2.5.5
in [1] $)$ . For $F\in C^{\infty}(\overline{R}_{+} : 9’(R_{y’}^{2}\cross R_{t}))$ we say that $F$ is micro-locally smooth at
$\rho\in T^{*}(R_{y’}^{2}\cross R_{t})\backslash 0$ , if there exists a properly supported pseudodifferential operator
$A(y’, t, D_{y’}, D_{t})$ of order $0$ such that the principal symbol of $A$ is not zero at
$\rho$ and $(AF)(y, t)\in C^{\infty}([0, \epsilon]\cross R_{y’.t}^{3})$ for some $\epsilon>0$ .

We denote by $\rho_{0}(0, t_{0}, -\epsilon\eta_{0}’, \epsilon\tau_{0})\in T^{*}(\{y\in R^{3} : y_{3}=0\})$ such that $\epsilon^{2}=1$ and
$\tau_{0}|\eta_{0}’|(ps)(0, t_{0}, -\epsilon\eta_{0}’, \epsilon\tau_{0})\neq 0$ . In a conic neighbourhood of $\Gamma_{0}$ of $\rho_{0}$ we define
functions

(3.6) $a^{\pm}(y’, \eta’, \tau)=\{a\pm\epsilon(-s)^{1/2}a\pm is^{1/2} if s<O at \rho_{0},$

if $s>0$ at $\rho_{0}$ ,

(3.7) $b^{\pm}(y’, \eta’, \tau)=\{a\pm ip^{1/2}a\pm\epsilon(-p)^{1/2} if P<0 at \rho_{0}.$

if $p>0$ at $\rho_{0}$ ,

Making use of these functions, we define vector valued functions

(3.8) $c_{s_{j}^{\pm}(y’}\eta’,$ $\tau)=(^{t}w_{f}^{\pm}, a^{\pm t}w_{j}^{\pm})$ $(_{J}=1,2)$ ,

(3.9) ${}^{t}s_{3}^{\pm}(y’, \eta’, \tau)=(^{t}w_{3}^{\pm}, b^{\pm t}w_{3})$ ,

where

(3.10) $w_{1}^{\pm}={}^{t}(a^{\pm}\eta_{1}, a^{\pm}\eta_{2}, -|\eta’|^{2})\Lambda_{1}^{-2}$

(3.11) $w_{2}^{\pm}={}^{t}(-\eta_{2}, \eta_{1},0)\Lambda_{1}^{-1}$ $w_{s}^{\pm}={}^{t}(\eta_{1}, \eta_{2}, b^{\pm})\Lambda_{1}^{-1}$ .
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Then the $6\cross 6$ matrix $S_{0}(y’, \eta’, \tau)=(s_{1}^{+}, s_{2}^{+}, s_{3}^{+}, s_{1}^{-}, s_{2}^{-}, s_{3}^{-})$ is positlvely homo-
geneous of degree $0$ and is non-singular in $\Gamma_{0}$ .

From the argument of Section 1.3 of [6] (see also Section 2 in [5]) there
exists an elliptic pseudodifferential operator $S(y’, D_{y’}, D_{t})$ of order $0$ whose
principal symbol is equal to $S_{0}$ in $\Gamma_{0}$ such that the boundary value problem (3.1)

is micro-locally reduced to the following

(3.12) $\{D_{y_{3}}V-(\begin{array}{lllll}H 0 h^{+} H^{-} 0 h^{-}\end{array})VC(y’,D_{y}^{+}D_{t})V=G=F$

in $y_{3}>0$ ,

on $y_{3}=0$ ,

where $V=S^{-1}U,$ $C=BS,$ $\rho_{0}\not\in WF(G)$ and $F$ is smooth at $\rho_{0}$ . Moreover the prin-
cipal symbol of $H^{\pm}(y’, D_{y’}, D_{t})$ is a diagonal matrix $a^{\pm}(y’, \eta’, \tau)I_{2}$ and the
principal symbol of $h$ ‘ $(y’, D_{y’}, D_{t})$ is $b^{\pm}(y’, \eta’, \tau)$ , where $I_{2}$ is the $2\cross 2$ identity
matrix.

REMARK 3.1. We shall explain relations between rays defined in Section 2
and the Hamilton vector fields of $\eta_{3}-a^{\pm}(y’, \eta’, \tau)$ and $\eta_{3}-b^{\pm}(y’, \eta’, \tau)$ . Let $\chi$

be a coordinate transform of $T^{*}(R^{3}xR)$ induced from the coordinate transform
$y’=x’,$ $y_{3}=x_{3}-g(x’)$ , that is, $\chi(x, t, \xi, \tau)=(x’, x_{3}-g(x’),$ $t,$ $\xi’+(\nabla g)(x’)\xi_{3},$ $\xi_{3},$ $\tau)$ .
Then it is not difficult to show that the image $\chi(\gamma_{t}^{(p)}(\omega))(\chi(\gamma_{r}^{(p)}(\omega)))$ of $\gamma E^{p)}(\omega)$

$(\gamma_{r}^{(p)}(\omega))$ by $\chi$ is the half Hamilton vector field of $\eta_{3}-b^{+}(y’, \eta’, \tau)(\eta_{3}-b^{-}(y’, \eta’, \tau))$

starting at $(0, t_{0}, -\epsilon\omega, \epsilon\beta)((0, t_{0}, -\epsilon\omega_{r}, \epsilon\beta))$ and belonging to $T^{*}\{(y, t);y_{3}>0\}$ .
Similarly $\chi(\gamma_{in}^{(s)}(\omega))(\chi(\gamma_{tr}^{(s)}(\omega)))$ is the half Hamilton vector field of $\eta_{3}-a^{+}(y’, \eta’, \tau)$

$(\eta_{3}-a^{-}(y’, \eta’, \tau))$ starting at $(0, t_{0}, -\epsilon\omega_{+}, \epsilon\beta)((0, t_{0}, -\epsilon\omega_{-}, \epsilon\beta))$ and belonging
to $\tau*\{(y, t);y_{3}>0\}$ . The same facts hold for the incident $S$ ray $\gamma_{i}^{(S)}(\omega)$ , if
$\alpha^{2}>\beta^{2}(1-(n(0)\cdot\omega)^{2})$ .

Next we shall get a simple form of the boundary operator. Let $\rho_{0}$ be
$(0, t_{0}, -\epsilon\eta_{0}, \epsilon\tau_{0})$ with $\tau_{0}|\eta_{0}’|(ps)(0, t_{0}, -\epsilon\eta_{0}’, \epsilon\tau_{0})\neq 0$ and $E_{1}(y’, D_{y’}, D_{t})$ be a
pseudodifferential operator of order $0$ with a form of a $3\cross 3$ matrix whose
principal symbol of $E_{1}$ is non-singular at $\rho_{0}$ . Put $(E_{1}C)(y’, D_{y’}, D_{t})=(F^{+}, F^{-})$

$(y’, D_{y’}, D_{t})$ , where $F^{\pm}$ has a form of a $3\cross 3$ matrix. We can choose $E_{1}$ as
follows:

LEMMA 3.2. Then there exists a pseudodifferential operator $E_{1}(y’, D_{y’}, D_{t})$

satlsfying the above conditions such that in $\{y’=0\}\cap\Gamma_{0}$ the PrinciPal symbol of
$F^{\pm}$ is

(3.13) $(\begin{array}{lll}(\rho\tau^{2}-2\mu|\eta’|^{2})|\eta’|^{2}\Lambda_{1}^{-4} 0 2\mu b^{\pm}|\eta’|^{2}\Lambda_{1}^{-3}0 \mu a^{\pm}|\eta’|^{2}\Lambda_{1}^{-3} 0-2\mu a^{\pm}|\eta’|^{2}\Lambda_{1}^{-3} 0 (\rho\tau^{2}-2\mu|\eta’|^{2})\Lambda_{1}^{-2}\end{array})$
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PROOF. Define a pseudodifferential operator $E_{1}(y’, D_{y’}, D_{t})$ of order $0$ such
that in $\{y’=0\}\cap\Gamma_{0}$ the j-th column vectors $e_{j}(y’, \eta’, \tau)(]=1,2,3)$ of the prin-
cipal symbol of $E_{1}$ are equal to $e_{1}={}^{t}(\eta_{1}, -\eta_{2},0)\Lambda_{1}^{-1},$ $e_{2}={}^{t}(\eta_{2}, \eta_{1},0)\Lambda_{1}^{-1}$ and $e_{3}=$

${}^{t}(0,0,1)$ . Making use of (3.6) to (3.11) we can show that the principal symbol
of $E_{1}C$ is given by (3.13) at $y’=0$ . The proof is completed.

Let $T(y’, D_{y’}, D_{t})$ be a pseudodifferential operator of order $0$ with a form
of a $6\cross 6$ matrix whose principal symbol is the identity matrix in $\{y’=0\}\cap\Gamma_{0}$ ,

where $\Gamma_{0}$ is a conic neighbourhood of $\rho_{0}$ . Moreover we assume that $T$ has the

form $(\begin{array}{ll}A 0 \sim 0 B\end{array})\sim$ with $\tilde{A}=(\begin{array}{ll}A 00 1\end{array})$ and $\tilde{B}=(\begin{array}{ll}B 00 1\end{array})$ , where $A(y’, D_{y’}, D_{t})$ and

$B(y’, D_{y’}, D_{t})$ are pseudodifferential operators with a form of $2\cross 2$ matrices.
We can specify $T$ satisfying the following condition.

LEMMA 3.3. We assume that $\tau_{0}-2\alpha^{2}|\eta_{0}’|^{2}\neq 0$ . Then there exist a Pseudo-
differential oPerator $T(y’, D_{y’}, D_{t})$ of order $0$ satisfying the above conditions such
that the symbol of the sum of the second and fifth column vector of $(E_{1}CT)$ .
$(y’, D_{y’}, D_{t})$ belongs to $S^{-\infty}(\Gamma_{0})$ .

PROOF. $|Let$ $c_{j}(y’, D_{y’}, D_{t})$ be the j-th column vector of $E_{1}C$ and
$a_{tj}(y’, D_{y’}, D_{t})$ and $b_{ij}(y’, D_{y’}, D_{t})$ be the $(i, j)$ components of $A$ and $B$ , respec-
tively. Then the required condition is that the symbol of $c_{1}a_{12}+c_{2}a_{22}+c_{4}b_{12}+$

$c_{6}b_{22}$ belongs to $S^{-\infty}(\Gamma_{0})$ . We assume $b_{22}(y’, D_{y’}, D_{t})=1$ and fine the symbol of
${}^{t}(a_{12}, a_{22}, b_{12})$ with a form $\Sigma_{j=0}^{\infty}\beta_{f}(y’, \eta’, \tau)$ , where column vector $\beta_{j}$ is a posi-
tively homogeneous function of $(\eta’, \tau)$ of order $-J$ . From the assumption on
$\rho_{0}$ it follows that a $3\cross 3$ square matrix $(c_{10}, C_{20}, c_{40})$ , where $c_{j0}(y’, \eta’, \tau)$ is the
principal symbol of $c_{j}(y’, D_{y’}, D_{t})$ , is non-singular in a small conic neighbour-
hood $\Gamma_{0}$ of $\rho_{0}$ . Thus by calculuses of symbols of pseudodifferential operators
we can inductively decide $\beta_{j}(y’, \eta’, \tau)$ . In the case $j=0$ making use of (3.13)

and $a^{+}=-a^{-}$ at $y’=0$ , we can derive $\beta_{0}={}^{t}(0,1,0)$ at $y’=0$ by Cramer’s formula.
If we put $a_{11}=b_{11}=1$ and $a_{21}=b_{21}=0$ , we have all desired properties on $T$ . The
proof is completed.

Next we put $E_{2}(y’, D_{y’}, D_{t})$ to be a pseudodifferential operator with a form
of a $3\cross 3$ matrix whose principal symbol of $E_{2}$ is the identity matrix in $\{y’=0\}$

$\cap\Gamma_{0}$ . The desired $E_{2}$ satisfies the following

LEMMA 3.4. We assume that $\tau_{0}-\alpha^{2}|\eta_{0}’|^{2}>0$ and $\tau_{0}-2\alpha^{2}|\eta_{0}’|^{2}\neq 0$ . Then there
exists a pseudodifferential operator $E_{2}(y’, D_{y’}, D_{t})$ of order $0$ satisfying the above
conditions such that the symbols of $(1, 2)$ , $(1, 5)$ , $(2, 4)$ , $(2, 6)$ , $(3, 2)$ and $(3, 5)$ com-
ponents of $(E_{2}E_{1}CT)(y’, D_{y}, D_{t})$ belong to $S^{-\infty}(\Gamma_{0})$ .

PROOF. Let $b_{j}(y’, D_{y’}, D_{t})(j=1, , 6)$ be the $j$ -th column vector of $E_{1}CT$
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and $e_{j}(y’, D_{y}, D_{t})(j=1,2,3)$ be the j-th line vector of $E_{2}$ . By Lemma 3.3 the
required conditions are that the symbols of ${}^{t}e_{1}\cdot b_{2}={}^{t}e_{3}\cdot b_{2}={}^{t}e_{2}\cdot b_{4}=^{t}e_{2}\cdot b_{6}$ belong
to $S^{-\infty}(\Gamma_{0})$ . We shall fine the symbol of $e_{f}$ with a form $\Sigma_{k=0}^{\infty}e_{jk}(y’, \eta’, \tau)$ ,
where $e_{jk}$ is a positively homogeneous function of $(\eta’, \tau)$ of order $-k$ . From
(3.13) the principal symbol of $b_{2}$ is not zero vector. Thus we can put $e_{10}=$

$(1,0,0)-(^{t}b_{20}\cdot(1,0,0))^{t}b_{20}/|b_{20}|^{2}$ and $e_{30}=(0,0,1)-(^{t}b_{20}\cdot(0,0,1))^{t}b_{20}/|b_{20}|^{2}$ , where
$b_{j0}$ is the principal symbol of $b_{j}$ . Making use of calculuses of symbols of pseudo-
differential operators, we can inductively decide $e_{jk}$ for $j=1,3,$ $k\geqq 1$ . In order
to decide $e_{2}$ we first remark that in a conic neighbourhood $\Gamma_{0}$ of $\rho_{0}b_{40}$ and $b_{60}$

are linearly independent by (3.13) and the assumption on $\rho_{0}$ . Thus a linear
equation $(^{t}e_{2k}\cdot b_{40})(y’, \eta’, \tau)=f_{1}(y’, \eta’, \tau)$ , $(^{t}e_{2k}\cdot b_{60})(y’, \eta’, \tau)=f_{2}(y’, \eta’, \tau)$ is
solvable for any $C^{\infty}$ homogeneous function $(f_{1}, f_{2})$ of order $-k$ . In the case
$j=0$ we look for $e_{20}(y’, \eta’, \tau)$ with a form $(0,1,0)+X^{t}b_{40}+Y{}^{t}b_{60}$ . Then an
equivalent condition of ${}^{t}e_{20}\cdot b_{40}={}^{t}e_{20}\cdot b_{60}=0$ is that scalar functions $X(y’, \eta’, \tau)$

and $Y(y’, \eta’, \tau)$ satisfy a linear equation $(b_{40}\cdot b_{40})X+(b_{40}\cdot b_{60})Y=-(0,1,0)\cdot {}^{t}b_{40}$ ,
$(b_{40}\cdot b_{60})X+(b_{60}\cdot b_{60})Y=-(0,1,0)\cdot {}^{t}b_{60}$ . Since by (3.13) ${}^{t}b_{20}\cdot(1,0,0)=^{t}b_{20}\cdot(0,0,1)$

$=^{t}b_{40}\cdot(0,1,0)={}^{t}b_{60}\cdot(0,1,0)=0$ in $\{y’=0\}\cap\Gamma_{0}$ , the principal symbol of $E_{2}$ is the
identity matrix in $\{y’=0\}\cap\Gamma_{0}$ . The proof is completed.

4. Theorems on reflective phenomena.

In this section we shall prove theorems on reflective phenomena of singu-
larities corresponding to (1.3) and (1.4) of Introduction. Let $\rho_{0}=(0, t_{0}, -\epsilon\eta_{0}’, \epsilon\tau)$

satisfy the conditions of Lemmas 3.2, 3.3 and 3.4. Denote $T^{-1}(y’, D_{y’}, D_{t})V(y, t)$

by $W(y, t)=^{t}(w_{1}, \cdots , w_{6})$ , where $T$ is a pseudodifferential operator of Lemma
3.3. Then $W(y, t)$ satisfies the following boundary value problem

(4.1) $D_{y_{3}}W-+(\begin{array}{llll}H 0 \tilde{h}^{+} \tilde{H}^{-} 0 \tilde{h}^{-}\end{array})W\sim=F_{1}$ in $y_{3}>0$ ,

(4.2) $C_{1}(y’, D_{y’}, D_{t})W=G_{1}$ on $y_{3}=0$ ,

where $C_{1}=E_{1}E_{2}BST,$ $\rho_{0}\not\in WF(G_{1})$ and $F_{1}$ is smooth at $\rho_{0}$ . Moreover the prin-
cipal symbol of $\tilde{H}^{\pm}(y’, D_{y’}, D_{t})$ is a diagonal matrix $a^{\pm}(y’, \eta’, \tau)I_{2}$ and the
principal symbol of $\tilde{h}^{\pm}(y’, D_{y’}, D_{t})$ is $b^{\pm}(y’, \eta’, \tau)$ . First we shall consider an
incident $P$ ray of singularities.

THEOREM 3.1. Let $u(x, t)$ be a solution of (1.1) and (1.2). We assume that
$\omega\in S^{2}$ satisfies ihat $0<n(0)\cdot\omega<1$ and $h(\beta^{2}/(1-(n(0)\cdot\omega)^{2}))\neq 0$ , where $h(s)=s^{3}-8\alpha^{2}s^{2}$

$+(24\alpha^{4}-16\alpha^{6}/\beta^{2})s-16\alpha^{6}+16\alpha^{8}/\beta^{2}$ . If $\gamma_{i}^{(p)}(\omega)\subset WF(u)$ and $\gamma_{in}^{(s)}(\omega)\cap WF(u)=\emptyset$ ,
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then $\gamma_{r}^{(p)}(\omega)\cup\gamma_{tr}^{(s)}(\omega)\subset WF(u)$ .

PROOF. Let us consider the problem in a conic neighbourhood $\Gamma_{1}$ of $\rho_{1}=$

$(0, t_{0}, -\epsilon\omega’, \epsilon\beta)$ , which satisfies the conditions of Lemmas 3.2, 3.3 and 3.4 by
$n(0)\cdot\omega=-\omega_{3}$ . From the hypothesises on $WF(u)$ of Theorem 4.1 and Theorem
2.5.11’ of [1] it follows that $WF(U)\cap\chi(\gamma_{in}^{(s)}(\omega))=\emptyset$ and $\chi(\gamma_{i}^{(p)}(\omega))\subset WF(U)$ , where
$U$ is a distribution appeared in (3.1) and $\chi$ is the coordinate transform of
$T^{*}(R^{3}xR)$ defined in Remark 3.1. Let $A(y, t, D_{y}, D_{t})$ be a pseudodifferential
operator of order $0$ such that the principal symbol of $A$ is not zero in a conic
neighbourhood $\Gamma$ of some point belonging to $\chi(\gamma_{i}^{(p)}(\omega))\cup\chi(\gamma_{in}^{(s)}(\omega))$ and the symbol
of $A$ vanishes in the complement of a conic neighbourhood of $\tilde{\Gamma}$ with $\Gamma\Subset\tilde{\Gamma}$ .
Then by the relation $AW=A(T^{-1}S^{-1})U$ and Proposition A.l of [4] it follows
that $WF(W)\subset\chi(\gamma_{i}^{(p)}(\omega))$ and $WF(W)\cap\chi(\gamma_{in}^{(s)}(\omega))=\emptyset$ . Since $W$ satisfies the hyper-
bolic equation (4.1) in $y_{3}>0$ , from Remark 3.1 we have that $(WF(w_{1})\cup WF(w_{2}))$

$\cap\chi(\gamma_{in}^{(s)}(\omega))=\emptyset$ and $WF(w_{3})\subset\chi(\gamma_{i}^{(p)}(\omega))$ . Thus making use of properties of funda-
mental solutions of first order hyperbolic equations which are satisfied by
${}^{t}(w_{1}, w_{2})$ and $w_{3}$ , we have that

(4.3) $\rho_{1}\not\in WF(w_{11y_{3}=0})\cup WF(w_{2Iy_{3}=0})$ , $\rho_{1}\in WF(w_{31y_{3}=0})$ .

Let $B_{3}(y’, D_{y’}, D_{t})$ be $(\begin{array}{ll}b_{14} b_{16}b_{34} b_{36}\end{array})$ , where $b_{ij}(y’, D_{y’}, D_{t})$ is the $(i, j)$ com-
ponent of $C_{1}$ . Then from Lemma 3.4, (4.2) and (4.3) on $y_{3}=0w_{3},$ $w_{4}$ and $w_{6}$

satisfy the following condition;

$B_{3}(\begin{array}{l}w_{4}w_{6}\end{array})=-(\begin{array}{l}b_{13}b_{33}\end{array})w_{3}+G_{2}$ ,

where $\rho_{0}\in WF(G_{2})$ . By (3.13) the principal symbol of $B_{3}$ is non-singular at $\rho_{1}$ .
Let us check the condition that the principal symbols of components of
$B_{3}^{-1t}(b_{13}, b_{33})$ are not zero at $\rho_{1}$ . By Cramer’s formula one of equivalent condi-
tions that the principal symbols of the first and second components of $B_{3}^{-1t}(b_{13}, b_{33})$

are not zero at $\rho_{0}$ is one that the principal symbols of $b_{13}b_{36}-b_{33}b_{16}$ and $b_{14}b_{33}$

$-b_{34}b_{13}$ are not zero at $\rho_{0}$ . From (3.13) the principal symbol of $b_{13}b_{36}-b_{33}b_{16}$ is
clearly not zero at $\rho_{0}$ . In $\{y’=0\}\cap\Gamma_{0}$ the principal symbol of $b_{14}b_{33}-b_{34}b_{13}$ is
equal to $(\tau^{2}-2\alpha^{2}|\eta’|^{2})^{2}-4\alpha^{4}(\tau^{2}-\beta^{2}|\eta’|^{2})^{1/2}(\tau^{2}-\alpha^{2}|\eta’|^{2})^{1/2}/(\alpha\beta)$ . Thus the condi-
tion that the principal symbol of $b_{14}b_{33}-b_{34}b_{13}$ is not zero at $\rho_{1}$ is equivalent to
one that $\tau^{2}h(\tau^{2}/|\eta’|^{2})/|\eta’|^{2}$ is not zero at $\rho_{1}$ . This condition is our assumption
$h(\beta^{2}/(1-(n(0)\cdot\omega)^{2}))\neq 0$ . Thus we can conclude $\rho_{1}\in WF(w_{41y_{3}=0})\cap WF(w_{61y_{3}=0})$ .
The argument of deriving (4.3) from the assumptions on $WF(u)$ is invertible.
Thus we can show that $\gamma_{r}^{(p)}(\omega)\supset\gamma_{tr}^{(s)}(\omega)\subset WF(u)$ . The proof is completed.

On the polynomial $h(s)$ we have the following
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REMARK 4.2. $h(s)$ is a polynomial which apPears in the analysis of Ray-
leigh waves in the half space case (see [2]). It is easy to show that $h(s)=0$

has only one simple root in $0<s<\alpha^{2}$ . However we want to look for roots
which are greater than $\beta^{2}$ . Since $h(\beta^{2})=\lambda^{4}/(\lambda+2\mu)$ and $h’(s)\geqq 0$ for $\lambda\geqq 4\mu$ , if
$n(0)\cdot\omega$ is closed to $0$ or 1, $h(\beta^{2}/(1-(n(0)\cdot\omega)^{2}))$ is positive, and $h(s)$ is also posi-
tive for $s\geqq\beta^{2}$ if $\lambda\geqq 4\mu$ .

Next we shall consider an incident $S$ ray of singularities passing through
$(0, t_{0}, -\epsilon\omega, \epsilon\alpha)$ . First we show a simple case.

THEOREM 4.3. Let $u(x, t)$ be a solution of (1.1) and (1.2). We assume that
$0<n(0)\cdot\omega<1$ and $0<\alpha^{2}/(1-(n(0)\cdot\omega)^{2})<\beta^{2}$ . In this case the incoming ray $\gamma_{in}^{(p)}(\omega)$

and the transfered reflective ray $\gamma_{tr}^{(p)}(\omega)$ for the incident $S$ ray $\gamma_{i}^{(S)}(\omega)$ do not
exist. If $\gamma_{i}^{(S)}(\omega)$ is contained in $WF(u)$ , then $\gamma_{r}^{(s)}(\omega)$ is also contained in $WF(u)$ .

PROOF. By the argument of deriving (4.3) we only show that $\rho_{2}=$

$(0, t_{0}, -\epsilon\omega’, \epsilon\alpha)$ belongs to $WF(w_{4Iy_{3}=0})\cup WF(w_{5Iy_{3^{=}}0})$ . From the assumption
$\alpha^{2}/(1-(n(0)\cdot\omega)^{2})<\beta^{2}$ a point $(0, t_{0}, -\epsilon\omega, \epsilon\alpha)$ is not a zero point of $\tau^{2}-\beta^{2}|\xi|^{2}$ ,

that is, $p(O, -\epsilon\omega’, \epsilon\alpha)>0$ . Thus $w_{6}(y, t)$ is a solution of a backward parabolic
equation $(D_{y_{3}}-h^{-})w_{6}=0$ in $y_{3}>0$ . It follows that $\rho_{2}$ does not belong to
$WF(w_{61y_{3}=0})$ . We assume that $\rho_{2}$ does not belong to $WF(w_{41y_{3}=0})\cup WF(w_{51y_{3}=0})$ .
Let $\tilde{B}(y’, D_{y’}, D_{t})$ be a $3\cross 3$ square matrix whose first, second and third column
vector are equal to these of $C_{1}$ . Then by Lemma 3.4 the boundary condition
$C_{1}W=G_{1}$ is reduced to $\tilde{B}^{t}(w_{1}, w_{2}, w_{3})=\tilde{G}_{1}$ , where $\rho_{2}$ does not to $WF(\tilde{G}_{1})$ . By
(3.13) the principal symbol of $\tilde{B}$ is non-singular at $\rho_{0}$ . Thus we can conclude
that $\rho_{2}$ does not belong to $WF(w_{11y_{3}=0})\cup WF(w_{21y_{3}=0})$ . This is a contradiction
to $\gamma_{\iota}^{(S)}(\omega)\subset WF(u)$ . The proof is completed.

Second we shall consider a case $\beta^{2}<\alpha^{2}/(1-(n(0)\cdot\omega)^{2})$ . In this case there are
two reflective ray of singularities of $\gamma_{i}^{(S)}(\omega)$ and reflective phenomena are more
interested than $P$ singularitles case.

THEOREM 4.4. Let $u(x, t)$ be a solution of (1.1) and (1.2). We assume that
$0<n(0)\cdot\omega<1,$ $\beta^{2}<a^{2}/(1-(n(0)\cdot\omega)^{2})$ and $h(\alpha^{2}/(1-(n(0)\cdot\omega)^{2})\neq 0$ . If $\gamma_{i}^{(s)}(\omega)\subset WF(u)$

and $\gamma_{in}^{(s)}(\omega)\cap WF(u)=\emptyset$ , then one of the following two reflective phenomena oc-
curs: a) $\gamma_{r}^{(S)}(\omega)\cup\gamma_{tr}^{(p)}(\omega)\subset WF(u),$ $b)\gamma_{r}^{(S)}(\omega)\subset WF(u)$ and $\gamma_{tr}^{(p)}(\omega)\cap WF(u)=\emptyset$ .

PROOF. From the assumption on $WF(u)$ and the argument of deriving (4.3)

it follows that $\rho_{2}\in WF(w_{11y_{3}=0})\cup WF(w_{21y_{3}=0})$ and $\rho_{2}\not\in WF(w_{31y_{3}=0})$ . First we
assume $\rho_{2}\not\in WF(w_{1|y_{3}=0})$ . Then by Lemma 3.4 (4.2) is reduced to the following
equation on $y_{3}=0$ :

$(\begin{array}{ll}b_{14} b_{16}b_{34} b_{35}\end{array})(\begin{array}{l}w_{4}w_{6}\end{array})=G_{2}$ , $b_{22}w_{2}+b_{25}w_{5}=G_{3}$ ,
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where $b_{ij}(y’, D_{y’}, D_{t})$ is the $(i, j)$ component of $C_{1}(y’, D_{y’}, D_{t})$ and $\rho_{2}$ does not
belong to $WF(G_{2})\cup WF(G_{3})$ . By (3.13) and the condition $\rho_{2}\in WF(w_{21y_{3}=0})$ we
can conclude that $\rho_{2}\in WF(w_{5|y_{3}=0})$ and $\rho_{2}\not\in WF(w_{41y_{3}=0})\cap WF(w_{61y_{3}=0})$ . By the
argument of deriving (4.3) it follows that $\gamma_{r}^{(S)}(\omega)\subset WF(u)$ and $\gamma_{tr}^{(p)}(\omega)\cap WF(u)$

$=\emptyset$ .
Second we assume that $\rho_{2}$ belongs to $WF(w_{1|y_{3}0}=)$ . Then making use of

Lemma 3.4 and $C_{1}W=G_{1}$ on $y_{3}=0$ , we have

$(\begin{array}{ll}b_{14} b_{16}b_{34} b_{36}\end{array})(\begin{array}{l}w_{4}w\end{array})=-(\begin{array}{l}b_{11}b_{31}\end{array})w_{1}+G_{4}$ on $y_{3}=0$ ,

where $\rho_{2}\not\in WF(G_{4})$ . Thus by the same way of proving Theorem 4.1 we get $\rho_{2}\in$

$WF(w_{41y_{3}=0})\cup WF(w_{61y_{3}=0})$ . It implies that $\gamma_{r}^{(s)}(\omega)\cup\gamma_{tr}^{(p)}(\omega)\subset WF(u)$ . The proof
is completed.

REMARK 4.4. In the case $\beta^{2}=\alpha^{2}/(1-(n(0)\cdot\omega)^{2})\rho_{2}$ is a glancing point of
$\tau^{2}-\beta^{2}|\xi|^{2}$ , that is, $p(O, t_{0}, -\epsilon\omega’, \epsilon\alpha)=0$ . Thus if $\Omega$ is concave, it seems that
there exist singularities of $u(x, t)$ propagating on $\partial\Omega$ instead of a transfered $P$

ray of singularities. This example is shown in [8].

5. Half space case.

We assume $\partial\Omega$ is a hyperplane in $R^{3}$ . Then in a conic neighbourhood of
$(0, t, \xi’, \tau)$ such that $\tau|\xi’2(\tau^{2}-\alpha^{2}|\xi’2)(\tau^{2}-\beta^{2}|\xi’2)\# 0$ , the problem (1.1) and
(1.2) is micro-locally reduced to the problem (3.12), where the full symbols of
$H^{\pm}(D_{y}, D_{t})$ and $h^{\pm}(D_{y’}, D_{t})$ are $\pm aI_{2}=\pm(\tau^{2}/\alpha^{2}-|\xi’|^{2})^{1/2}I_{2}$ and $\pm b=$

$\pm(\tau^{2}/\beta^{2}-|\xi’|^{2})^{1/2}$ , respectively and the full symbol of $C$ is given by (3.13). Let
$V=S^{-1t}(\Lambda^{t}u, D_{x_{3}}{}^{t}u)=^{t}(v_{1}, \cdots, v_{6})$ , where the full symbol of $S=(s_{1}^{+}, s_{2}^{+}, s_{3}^{+}, s_{1}^{-}, s_{2}^{-}, s_{3}^{-})$

is given by $s_{j}^{\pm}={}^{t}(^{t}w_{j}^{\pm}, \pm a{}^{t}w_{f}^{\pm})(]^{=1},2)$ and $s_{3}^{\pm}={}^{t}(^{t}w_{3}, \pm bw^{\frac{\neq}{3}})$ with $w_{1}^{\pm}={}^{t}(\pm a\xi_{1}$ ,
$\pm a\xi_{2},$ $-|\xi’|^{2})\Lambda_{1}^{-2},$ $w_{2}^{\neq}={}^{t}(-\xi_{2}, \xi_{1},0)\Lambda_{1}^{-1}$ and ${}^{t}w \frac{\neq}{3}={}^{t}(\xi_{1}, \xi_{2}, \pm b)\Lambda_{1}^{-1}$ . By the form
of the symbol of $S(D_{y’}, D_{t})$ it follows that

(5.1) $\hat{v}_{2}(\xi’, x_{3}, \tau)=\Lambda_{1}(-a\xi_{2}, a\xi_{1},0, -\xi_{2}\Lambda_{1}, \xi_{1}\Lambda_{1},0)(\begin{array}{l}\Lambda_{1}j\grave{f}D_{x_{3}}\hat{u}\end{array})/(2a|\xi’|^{2})$

$=\Lambda_{1}^{\wedge}2(D_{x_{3}}+a)(rotu(\xi’, x_{3}, \tau))_{3}/(2a|\xi’|^{2})$ ,

where $\text{\^{u}}(\xi’, x_{3}, \tau)$ and $\hat{v}_{2}(\xi’, x_{3}, \tau)$ is the partial Fourier transforms with respect
to $(x’, t)$ of $u(x, t)$ and $v_{2}(x, t)$ , respectively, and $(rotu(\xi’\wedge, x_{3}, \tau))_{3}$ is the third
component of the partial Fourier transform of the rotation of $u(x, t)$ with re-
spect to $(x’, t)$ . Similarly we have

(5.2) $v_{5}(\xi’, x_{3}, \tau)=-\Lambda_{1}^{2}(D_{x_{3}}-a)(rotu)/(2a\wedge|\xi’|^{2})$ .

Making use of (5.1) and (5.2), we have that $S^{t}(0, v_{2},0,0, v_{5},0)={}^{t}(\Lambda u_{H}, D_{x_{3}}u_{H})$ ,
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where $\text{\^{u}}_{H}=^{t}(-\xi_{2}|\xi’|^{-2}(rotu)_{3}, \xi_{1}\wedge|\xi’|^{2}(rotu)_{3}\wedge,0)$ . Since $v$ and $(0, v_{2}, C, 0, v_{5},0)$

micro-locally satisfies the same boundary value problem, we can conclude that
$u-u_{H}$ micro-locally satisfies the boundary value problem (1.1) and (1.2) and $u_{H}$

micro-locally satisfies the following boundary value problem:

$\{\partial u_{H}/\partial x_{3}=0(\partial_{t}^{2}-\alpha^{2}\Delta)u_{H}=0 in x_{3}>0,$

on $x_{3}=0$ .
Here we used that $(\partial_{t}^{2}-\alpha^{2}\Delta)(rotu)=0$ in $x_{3}>0,$ $D_{x_{3}}(rotu)_{3}=a|\xi’|^{2}\Lambda_{1}^{2}(v_{2}-v_{4})$ and
the boundary condition of ${}^{t}(0, v_{2},0,0, v_{5},0)$ is $\alpha^{2}|\xi’|^{2}\Lambda_{1}^{-3}a(C_{2}-C_{5})(\xi’, 0, \tau)=0$ .
This is a reason why in Theorem 3.4 there are two ways of reflective pheno-
mena.
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