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§ 0. Introduction.

In this paper, we consider a system of infinitely many hard balls with the
same diameter » moving discontinuously in R¢. We denote the configuration
space of hard balls by X:

1) X = {é={xi}: |xi—x;l2r, i#]},

the position of a ball being represented by its center.

The ball of the system moves by random jump under the hard core condi-
tion. The system is completely specified by the measure c¢(x, dy, £) which gives
the rate of the movement of the ball at the position x to the position y when
the entire configuration is & We shall consider the case where c¢(x, dy, &) is
given by

c(x, dy, &) =exp{— X O(ly—zD}p(lx—ydy,

zeé\(z)

where p(:) is a non-negative function on [0, o) such that Sndp(lxl)dx—_—l and

p(-)>0 on [0, 2h) for some >0 and @ is a measurable function on [0, <)
satisfying the following properties:

(0.1) ()= —-C for some constant C=0;
(9.2) D(a) = if and only if a<[0, 7);
(0.3) D(H)=0 on [#, o) for some constant 7=>7.

@ is regarded as a hard pair potential which is rotation invariant, stable and
of finite range.

In the previous paper we studied the case where r=7.

We construct the Markov process & which describes our system. This
process has the Gibbs state p associated with the potential @ as a reversible
measure.

The purpose of this paper is to show the ergodicity of the stationary Markov
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process in the case where the density of balls is sufficiently small. It is im-
portant to develop a topological argument on the configuration space to prove
the ergodicity. If the configuration space were connected, any configuration
would be attained from any other configuration by moving balls continuously.
However, due to the hard core potential, our configuration space is not con-
nected : it has more than one connected component. We prove that every pair
of different connected components, I, and [, say, are jointed to each other
with a chain of connected components I'y7=A4,, A4,, -, Ax=1I", in which 4; and
A4, are in “h-communication” (the precise definition is given in §2) for all ¢
with 0</<k—1. This means that any configuration is attained from any other
configuration by means of a finite number of jumps of magnitude equal or less
than A. This argument constitutes the most crucial part for our proof of
ergodicity.

In §1, we construct the Markov process describing our model by using Lig-
gett’s theorem and show that a Gibbs state is a reversible measure for the
process. In §2, using a lemma about the topological property of the configura-
tion space, we prove the ergodicity of the process. The proof of the lemma is
given in §3. In §4, we study the central limit theorem of the tagged particle
of our process. Kipnis-Varadhan [3] proved the central limit theorem for a
tagged particle of simple exclusion process on a lattice. Using the ergodicity
of the process and the same technique as employed in [3], we can discuss the
central limit theorem, except for the non-degeneracy problem of the covariance
matrix that remains open.

§1. Construction of a Markov process.

Let % be the set of all countable subsets & of R¢ satisfying #(ENK)< oo
for any compact subset KC R We regard £ M as a non-negative integer
valued Radon measure on R?: §(-)=310.,(-) and accordingly equip <% with the
vague topology. The space X defined by (1) is then a compact subset of .

For any é= and y=R?¢ we denote §&U{y} by &-y. Also we denote £\{z}
by &\z if z=&. For any Borel subset K of R¢ we denote by £x the restriction
of £ to K; £ is a Radon measure on K; however, we regard it as an ele-
ment of # in a natural way.

Let C(%) be the space of all real valued continuous functions on X with
supremum norm || |l«. We denote by Co(¥) the set of functions of C(ZX) each
of which depends only on the configurations in some compact set K:

Co(X)={feC(X): f(&)=f(ék) for some compact set K}.

It is easily seen that Co(¥) is dense in C(¥). We define g-fields $(%) and
Bx(X) by
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B(X)=0a(N,y: A= B(R?)),
and
Br(X)=0a(Ny: A= B(R%), ACK),

where N4(§) is the number of particles of & in A. The o-field 8(&¥) coincides
with the topological Borel field on 2.

Before defining a linear operator on C(¥) which generates a Markov process,
we define the function %(x|&) for x={x,, x,, ---, x,} and é&.H by

W9 =exp{—3 T Mly—zD— 3 0(1y—z)),
yg’;i%?" yezx,2ef

where @ is a given measurable function on [0, o) satisfying (@.1)~(®.3). Let
p(+) be a non-negative function on [0, =) satisfying

(L.D) [ adrrtizn=1,
(L.2) [ edxlx i x) < oo,
1.3) p)>0 on [0, 2h) for some h>0.

Now, we define a linear operator on C.(X) by

Li®= 2 SRd{f(E"y)—f(&)}x(ylf\X).b(l x—ydy,

where

(S\X)'y, if xes: yéf;
&, otherwise.

g ={

Since L is dissipative and C,(X) is dense in C(¥), L has the smallest closed
extension L. Define bounded operators L;, on C(¥X) for j=(j, -, ja), b=
(kl’ Tty kd)ezd bY

Lf@ =1 07 3, FEN=FONI1e0p15—51)dy, if 5140,

€Nl
0, otherwise,
where
pra=\_ dxp(li—k=zx]),
(-1,1]
and
d /. 1 . 1
Ii= M1 (im0 int3g ]

Then, L;  satisfies the following conditions:

(L.4) LI@= 3 pulssf©, for feC);
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1.5) there is a constant M; such that for all j, k= Z*¢
ILjeflle = Millfllee,  for fEC(2);
(1.6) LjwLy,p»=2LjywLju,
for all 7, &, j/, K Z?¢ with d(I[;Ul,, [;\JI,)=7, where d(A;, A))=inf{|x—y]:
x4, yEA,}, for A,, A,CR%

From (1.5) and it is easily seen that there is a constant M, such that
for all j, k= Z?¢

ILjeLywf—LywLjsflle
j'-lzzézdpj"k'(fggg)x) ILj ef Il Lj, 2 flleo )g Ms.
Therefore, a slight modification of Liggett’s theorem implies that (L, 9(L))
generates a unique strongly continuous Markov semigroup T; on C(Z).

Since T, is a Feller semigroup, for each initial distribution g there existsa
Markov process (&;, P,), with semigroup T;, which is right continuous and has
left limits.

For any compact subset KCR?, we denote by M(K) and M(K, n) the set
of all finite subsets of K and the set of all subsets of K having n points re-

spectively.
An alternative description of H(K, n) is given by
{21}, if n=0,
1.7 MK, n) =
.7 (K, m) = { (K™Y/S., if n=1,

where (K™)'={(x, -+, x,)€K": x;#x; if i#j} and S, is the symmetric group
of degree n. By means of the factorization we introduce a measure Ag,,
on M(K)=\Us_o MK, n) (direct sum) such that

2K.Z(Q5) - 1 >

and

A, () = %Szdxldxz--- dx,  for a Borel set 4 in H(K, n), n=1,
where z=0 and 1 is a preimage of A by the factor mapping in the factoriza-
tion [1.7). The integral of a measurable function f on M(K) with respect to
this measure is denoted by S flx)d*x.

Now, we are going to define a Gibbs state. We will see that this Gibbs

state is a reversible measure for our process &;.

DEFINITION 1.1 ([2]). A probability measure g on X is called a (grand
canonical) Gibbs state with activity z=0, if for any compact subset K of R¢,
the restriction of g on Bx(%X) is absolutely continuous with respect to d*x and
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the density is given by
ox(x) = S”(K)zomdr;)xo_c In).

The activity z is the parameter which controls the density of particles.
Denote by 4(z) the set of all Gibbs states with activity z=0. This set G(z) is
convex and compact with respect to the topology of weak convergence, so any
element of G(z) is represented by the extremal points of &(z). We denote by
ex G(z) the set of all extremal points of &(z).

REMARK 1.1 ([4]). There exists a positive constant z, such that for any
z€(0, z,) G(z) consists of one element, i.e., #4(z)=1.

REMARK 1.2 ([7]). Let G(z) consist of one element g. Then the following
limit exists,

p(2) = lim TKTS E(K)p(d6)

when K tends to R? in the sense of Van Hove. We call p(z) the particle den-
sity of p. Note that p(2)—0 as z—0. Also the following fact is known. For

any &>0,

y( EI(II(? p(z)l_s)——>0 as KT R%.

LEMMA 1.2. If p is a Gibbs state, then p is a reversible measure for &,
i.e.

Tif, &u=Xf, T, for any f, g=C(X), 120,
where {-, ->, is the L® inner product with respect to p.
PrROOF. Let j, keZ? and f, g=Cy(X). Since p; r=p:, ;, We have
(1.8) PirllLjs+ L )fy @p—<fy (Ljs+Le )& u}
:Sx#(df) R S dyf(§" gy 16N p(Ix—y1)

+{,mae 2 { dyremng@noienpis—yD

xefNIL pJ L

SNZCOIN I WETCHERICIESIESSD
@0 3 |, drf@e 18 0n1=D.

Choose a compact set K satisfying f(&x)=r(&), g(éx)=g(&) and B;(;UI,)CK,
where B;(A) is an open l-neighborhood of ACR? Then, by the definition of

a Gibbs state we have
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[ 3, [, dresna@nyienpiz=y)

2 %S d.x1 .. dan'K(xl oo n)tgl llj(xt>

n=0

Ayf (X1 Xn YNXHG(X 1 X XY X X \x) P X —Y])

<.,
=% (nznl)'gm dx 1---dxn_lgljdxnslkdya,((x,.-- %a)

Xf(xy o X 2)8(xy s X )XY | Xy -+ Xa-)D(| 22— 1)

Let us note that ox(x; -+ x)=0g(x1 ** Xa-DX(Xp| X1 -+ Xp-y) fOr x,€l;U1,. Us-
ing this relation, we have

9 (| wae 2 dyreng@roienniz—y)

€N I;1,

n
V4

g (n l)'SKn 1d 10 dxn-lgljdxnglkdya,((xl xn_l)

Xf(xl"'xn-l’y)g(xl"'xn)x(ylxl"'xn—l)x(xnlxl“‘xn—l)p(l Xn—Y |)

= Sxﬂ(dS)xe%Ikgljdyf(é‘)g(f’”'”)X(J’IS\x)P(Ix—yI)-
Hence, from and we have
L(Ljst+Laf, 8p=<f, Lis+Le)g,, for f, g=Cy(X), j, ke Z".
Therefore, <Lf, g>,=<f, Lg>, for f, g&Cy(X) and consequently
(Lf, &p=Xf, Lg>u, for f, gea(L).

Since L is the generator for T, is proved.

§2. Ergodicity of (&, P,)
The primary purpose of this section is to prove the following theorem.

THEOREM 2.1. If z>0 is sufficiently small and if #4(z)=1 and p=i(2),
then the Markov process (&, P,) is ergodic.

Let 7 be the strongly continuous semigroup on L, ) associated with
& and L be the generator of T,. To prove the ergodicity of the process
(&, P,) it is enough to show the following condition (C.1).

(C.1) If feL (%, p) satisfies T.f=f for any t=0 then f is constant.
We shall prove that the condition (C.1) holds for (&, P,), ps4(2), if 2>0
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is sufficiently small and #¢(z)=1. The following result ([1]) about Gibbs states
is very useful for the proof of (C.1). Let £.(%¥) be the o¢-field defined by

E(X) = p-completion of N o{Ng, Bg(X)),

K:compact

where 0(Ng, Bx(X)) is the o-field generated by Nx(§) and Bg(X). If pe
ex g(z) then p(A4)=0 or 1 for any A=E&A(X).

The following Lemma 2.1 follows from this result and Remark 1.2 im-
mediately. For meN we put

Kn={xcR%: |x|<+/d2™r}.

For m, neN and é=%, we denote by A(K,, n, &) the interior of the configura-
tion space {xE M(Kn, n): X(x|Eks)#0}, that is,

A(Kn, 1, §) = {{xi} i |2 <V/d27r, d({x:}, Ex5)>7,

| xi—x;] >r, 1Zi<j<n}.

LEMMA 2.1. Suppose #G(z)=1 and let p be the unique Gibbs state of 4(z).
If feL¥%x, p) and if [ satisfies

2.1) o LN (@ Ege )= f(y-Exg)l =0,

i3]
ACKm.n, &)  JAKp.m,

for p-almost all & and for all m, nEN satisfying n/|Kn| <p(2)+e with some
positive constant ¢ (independent of m, n), then f is constant.

Let us remark that the condition implies that the function f is Cu(X)-

measurable.
By virtue of Lemma 2.1 the condition (C.1) follows from the following

condition (C.2) with a positive constant ¢>p(2):

(C.2) If feL¥%x, p) satisfies T.f=f for any t=0,
then holds for p-almost all £€X and
for all (m, n)eNXN satisfying n/|Kn|<c.

Since p(z) |0 as 20, follows if we show that there exists a con-
stant ¢>0 for which (C.2) holds. (In fact ¢ will be chosen so as to depend
only on h, » and d.)

To show (C.2) it is neccessary to develop a topological argument on the
configuration space. We introduce a notion about the configuration space which
is similar to (but weaker than) the connectedness.

DErFINITION 2.1. i) Two configurations §&%¥ and pE€X are said to be in
h-communication (denoted by §«h—7), if there exist x&§ and y<7y such that
|x—y|<h and &=v=1.
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ii) Two subsets /" and A of 2 are said to be in A-communication (denoted
by I'—h—A), if there exist £ and p< 4 such that é—h—7.

iii) A family of subsets {A())}e; of X is said to be in h-communication,
if for any j’, j”< ], there exists a sequence {j,, js, -, jq} such that

AG) —h = AG) — h— A(fo) « h = - b — A(g) b — A(").

Let {A4;};c; be the set of all connected components of A(K,, n, &). Then,
our key lemma is the following.

LEMMA 2.2. There exists a positive constant c¢(r, h) such that for all =X
and all m, neN satisfying n/|Kn|<c(r, h) {A;};es are in h-communication.

The proof of is given in §3.

We prove by showing (C.2) for c=c(r, h).
From the definition of L and Lemma 1.2, for g=Cy(%¥) we have

~%Lg, &u={ pdd I | 1e@—g@F 1y e0)p(1 51y,

Since f is T'-invariant for any =0, we see that Lf=0. Since L is the smallest
closed extension of L, we have

[ rao g e n—reriemniz—yhiy=o.
From the definition of Gibbs state and [1.3), we have

2.2 x|, A )= [ g Lica g (3™ = 0

SA(Km.n.e) T zEx

for all m, n=N and almost all £&¥. We define a non-negative function H on
MKy n)X MKy, n) by

H(x, _) = 2] Ei].—.[___llA(Km.n.f)(xl X1t Vi yn)leh(zi)(yi) .

The above sums run over all ordered n-tuples (x;, ---, x,) and (y,, --+, ¥,) such
that {x,, -, xz}=x and {y,, -, ¥»}=y. Employing this function and using
(2.2) repeatedly

(2.3) E)dl_J_]]f(z’EK%I)——f(.X'EK%L)‘H(Z’ 2):0’

SA(Km.n,é) IZSA(Km,n,
for all m, n=N and for almost all {=¥.

Since A(Kn, n, &) is open, for any x=A(K,, n, &), we can choose e(x)E
(0, h) such that I(x, e(x))C A, Kn, n), where I(x, &)={{y1, ", Va} EMKn, n):
| y;—x:| <e}. We abbreviate I(x, e(x)) to I(x). If x'<h—x? then H=1 on
I(xHxI(x*. From we have
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@4) qundilglcgz)dlﬂf(l'EKfn)—f(z'EKfn)l =0.

Using the triangle inequality and Fubini’s theorem, we have [2.4) for any x?, x*
€ A(Kn, n, ) such that x'=y'<-h—y’—h— - —h—oy*=x? for a sequence
{y’}1<jcx of configurations in A(K,, n, §). Then, we obtain

[ ds), @91t =Fr-8) | =0 if Aymhodly.
J J

Therefore, it follows from that the condition (C.2) holds for ¢=
c(r, h). This implies [Theorem 2.1

§3. Proof of Lemma 2.2.

First of all, we introduce some notions about configurations. Let B be a
convex subset of K,, and k2 be a non-negative integer. A configuration {x;}%-,
in B is said to be standard in B if d(B¢ {x;}%-,)>2r and |x;—x;| >4r, for
1=<:/<j<k. Note that a standard configuration in B, is also standard in B, if
B,CB;. Also a configuration x< A(K,, n, &) is said to be B-standard if x"\B
is standard in B. We abbreviate a K,-standard configuration to a standard
configuration.

Let x be a configuration. A point x of x represents the ball of diameter »
and with center x. By the balls of x we mean all the balls of diameter »
whose centers are points of x. For a subset of B of R? a ball is said to be in
B (or on B) if the center of the ball is in B. It should be kept in mind that
the phrase “a ball (which is represented by a point of configuration) is in B (or
on B)” does not mean that the ball, as a set, is included in B.

If the number of balls in B (i. e. those whose centers are in B) is sufficiently
large, then there is no B-standard configuration. For each convex set B let
J(B) denote the largest number of balls in B for B-standard configurations, i.e.,

J1(B) = max{k=0: there exists a B-standard

configuration x with ng(x)==~k},

where ng(x) is the number of balls of x in B. If 2<J1(B), there exists a

B-standard configuration x with nz(x)=~k. Since J1(B,(b)) is determined by the

radius of B;(b), we abbreviate J1(B,(b)) to J1({). It is easily seen that

[—2r )d

2v/dr /-

For x€A(Kn, n, &), let A(x) be the connected component of A(K,, n, &

containing x. In the following discussion B will always be a convex subset
of K.

3.1) 20 = (
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LEMMA 3.1. Any standard configuration in B can be attained from any other
standard configuration in B by moving balls continuously within B preserving the
hard core condition and without being influenced by the boundary condition. To
be precise, if y and z are standard configuration in B such that np(y)=np(2),
then

Aly-w) = Az-w),

for any configuration w in K,\B.
This lemma will be proved later.

By all standard configuration are contained in one connected
component A* of A(Kn, n, &). For the connected components I, and I, of
A(Kn, n, &) we write I'yeI, if there exists a sequence of connected com-
ponents A, A,, ---, A, of A(K,, n, & such that

N—h—-Ay—ho>Ay—h—-—h->A,=1T,.

We introduce several numbers j,, /[, and c¢(r, A) which will be used in the
proof of Let 7, be an integer such that 2%0-*<r/h\V84/d<2%. Put
ly=2%r and c(r, h)=|Byz1,(0)|*. Then, j,=4 and c(r, h)| Ky |=2¢™"90,

We also denote the convex hull of ACR? by [A]. For a given ordered
sequence B,, B,, -+, B, of open balls, we define B[7], 2<i<k by B[i]=[B,\UB,]
ULB,UB;1\U -+ U[B;-,\UB;]. See, e.g. Figure 1.

o

Figure 1. Example of B[4].

To prove [Lemma 2.2, it is enough to prove the following lemma.

LEMMA 2.2, Let §é€X and m be an integer with m=j, If n<24m-jo,
then for any x& A(Kn, n, £) there exist a sequence of open balls By, B, -+, B,
and a sequence of configurations y', y*, -+, y* € A(Kn, n, &) such that for 1<i<k

(i) y* is Bj-standard,

(ii) Yhre® = xpur’,
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(iii) npine (3D =0 le  npu(y") = np(y9),
@iv) A(z)<——>/1(21)<_—>/1(22)<__>...(__._>A(2k):As.

We shall prove this lemma by induction. The following lemma plays an
important role for the proof.

LEMMA 3.2. Let Bl-':le(bl); Bzszz(bz)CKm for some 12211210, bl, szRd.
Take a Bi-standard configuration yE A(Kn, n, &). If ncp,up, ()<L —57), then
a B,-standard configuration is obtained from y by moving balls in [B,\UB,] into

B, by means of finitely many jumps of magnitude equal or less than h. To be
precise, there exists a By-standard configuration z such that

(i) A2) <— A(y),
(ii) ng,(2) = nrp,ue,(2) = nrs,ue, (),
(iif) Zpg = 218)UByY° = JiB UB,T".

PrOOF OF LEMMA 2.2’. We construct an increasing sequence Eq, Ey, -+, En_j,
of cubes in K, satisfying the following condition:

3.2) ngx) <24,  for 0<j<m—j,.
First, we put
En-j, = {(ay, -+, a))ER*: —2™r<a,<2™r, 1<i<d}.
(x)Sn<2¥m-joo, We de-

From the assumption of we have ng,_,
compose E,_;, into the disjoint union of congruent 2¢ cubes with edge length
2my. Pick up one of the cubes having the smallest number of balls of x and
denote it by Em-j-i. Then, ng,_; _(x)<2¢™"'~J0,  Repeating this procedure,
we can construct a sequence E,CE,C - CEn_;, satisfying the condition (3.2).

Let B; be the open ball inscribed in E; for 0<7/<m—j, and Bpn4,-;, be the
interior of K,. The radius of B; is 2%, for 0<i<m—j, Taking into
account and using (3.2) we have

2Jo+t-1_7\4 .

—Wd——) < 22 ,—5r), for 1Z<i<m+1—7,.
From (3.3) x is a Bestandard configuration satisfying ncg,ys,:(x)<31(l,—57).
Then, we can apply and see that there exists a B;-standard con-
figuration y' satisfying

(B.3)  mpalx) < 2¢ < (

A(y") <— A(x),
(3.4) np(y") = nrayus, (YY) = nes,upe(x) ,
(3.5) A’ég = YlBouB,2® = X[ByUB,I -

From and we have
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Nes,us, (YY) = np(¥)+nes,us,18,(3")
= Ngus, (%) + Nes,uB,neBous, (%) = Mpei(X) S TU2L—57).

Then, we can apply to obtain a B,-standard configuration y* satis-
fying
A(y®) < A",

ng,(y*) = nEBlule(.Xz) = nrp,u (YY),

| — 2 . 1
Ypg = YV'B1UB I = Y (B UB,I -

Repeating this procedure, we construct the sequence of configurations y*, %, -,
y™+i-jo, Since A(Kn, n, &) is open, there is no ball on the boundary 0K, of
K., therefore, y™*'-Jo is a standard configuration. Now, we have a sequence
%, ¥2, -+, y™*1-J0 of configurations satisfying the conditions (i)~(iv) in Lemma 2.2

PROOF OF LEMMA 3.1. This lemma is trivial when y=z or nz(y)=1. So,
we assume that y+#z and nz(y)=2. Suppose that yy and z<¢z satisfy |y—=z|
<2r. Since B;.(z)"\B,(z")=@ for any z’<z\z and [B,.(y)\UB . (2)]CB;.(2), we
have

3.6) [B:()UB(2)INB.(2")=@  for any 2’z \z.
On the other hand, from the convexity of B we have
d([B-(y)\UB.(2)], B) >r.

Hence, we can move the ball z to the position y continuously without being
influenced by balls with centers (z\z)-w. Therefore, A(z)=A((z\z)-y). Suppose
that (', z’)eyXz satisfies |y'—z'|<2r and (y’, 2’)#(y, 2). Then, from (3.6
y’#y. In the same way as we showed [3.6), we have

[Br(y,)UBT(Z,)]mBr(y) =@.

Thus, we can move the ball z’ to the position y’ continuously without being
influenced by balls with centers (z\z’)-y’-w. Therefore, A((z\z)-y)=A((z2\{z,2'})
-{y, ¥’}). Repeating this procedure, we obtain the configuration {y,, -, ¥,

Zg41, Zk} such that {yb ) yq}C.X; {Zq+17 ) Zk}ng

(3.7 Ay Y- 2gs1 - 2 w) = Az w),

and

(3.8) lz'—z"| > 2r, for all 2/, 27y -{zg+1, -+, 2z} With 2/#2",

where g=#{y<y:d(y, z2)<2r}. If ¢=k, we obtain Lemma 31 from [3.7)
When 0<¢g<k, we write y\{y1, =+, Y¢} ={¥gs1, ==+, ¥&}. Then, from for
any ¢ with ¢+1<i<k we can obtain the configuration {v,, -, ¥4, Zi41, ==+, 22}
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from {yi, -+, ¥i-1, 25, -+, 2z} by moving the ball z; to y; continuously within
B and without being influenced by the boundary condition. To be precise,
(3.9) Ay Vi Zigy - 2a W) = AY1 -+ Yio12i - 25 W),
for g+1<i<k—1 and
(3.10) AY-w) = A1 Y1 za-w).

Combining [(3.7), [3.9) and [(3.10) we complete the proof.
For the proof of [Lemma 3.2, we prepare the following two lemmas.

LEMMA A-1. Let B=B(b) with (=l,, For x<0B put x(a)=x—a(x—b)/l,
a<=[0,1]. Then,

d(B*N\B.(x)°, x(a)) > 7, if a>r?/l.

?
x(a)\
x b

Figure 2.

A-1 implies that even if balls are arranged closely on 0B as in
Figure 2, we can move the ball at x to x(a) by means of a jump of range a«
preserving the hard core condition. The proof of this lemma is easy, so we
omit the proof.

LEMMA A-2. Let B=DB,(b) with |=l,. Let y and z be standard configura-
tions in B with ng(y)=nglz)—1 and w be a configuration in K,\B with w\oB
+@ and y-wEA(Kn, n, &). If np(y)<T(—57),

AQy-w)<—h —> A(z-w x), for any xswMNadB.

PRrROOF. By and the premise ng(y)<J(/—5r) we can assume Y
is a standard configuration in B;.;.(b).
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For x€wNadB put x(a)=x—a(x—b)/l, ac[0, []. Since, [,>7r*/h\/8+/dr, we
have AAr>r?/l. Then, it follows from Lemma A-1 that

dwN\x, x(hAr)) > d(B°‘NB.(x)°, x(hAr)) > 7,
s0 that

Y ws T & MKy, 1, §).
Since |x—x(hA¥)|<h, we have
(3.11) Yow <— h —> y-w® AT

Since y is the standard configuration in B;_;,(b), there is no ball of y outside
B;_.+(b). Then, we have

(3.12) d(y-wN\x, x(a)) >rVa, for ac[hAr, 3],
and
(3.13) d(y, x(3r)) > 4r.

The condition implies that we can move the ball at x(h A7) to the posi-

tion x(3r) continuously along the line segment connecting these two points, so
that

(3.14) A w= =@y = [(y.w==60),

Also the condition implies that the configuration y-x(3») is standard in
B, so we have the following relation from

(3.15) A(y - w**C) = A(z-w>x).
Combining [(3.11), [3.14) and [3.15) we complete the proof.

Proor or LEMMA 3.2. For a<[0, 1] put

B(a) = Bi(b(a)),

where bla) = ab,+(1—a)b, and (a)= al,+{1—a)l,., Since [B,\UB,]\NB,C
Uaero,10B(a) there exists a<[0,1) such that x<dB(a), for any xeyn
([B,\UB,I\B,). First, we put

a; = min{a=0: d(Ycs,uz,15, 0B(a))=0},
and pick up one of the balls of ycsns,n5, 0n 0B(a;) and denote it by x,. Next,

we put

a; = min{a=za;: d(.yIZBlUBQII\Bl\{xl}; 0B(a))=0},

and pick up one of the balls of Yz 5,18, {x:} on 0B(a,) and denote it by x,.
"fRepeating this procedure, we can take x,, x,, -+, ¥, and O=a, <o, < -+ <, <
ar+1=1 such that



Ergodicity for an infinite particle system 695

{xl; Xay =ty xk} = .XEBIUsz\BI ’
{Xiy Xisa, -+, X} C[BiUB(a:)]°, 1Zi<k,
X; € aB(a;) R lélék .

Let y% 0</<k and z%, 1<i<k+1 be B(a;)-standard configurations such that

i — i —
Y Bap® = Y 'iBUBCapI® = {xivn, =5 X} *YtB,UBy1¢
2zt e = t ce={ } .
2°Bap® = Z'[ByUBep = X4, 5 Xt YiBUB,1% )

and let y’=y and z**' be a B,-standard configuration satisfying (ii) and (iii) in

Then, it is enough to observe the following two relations
and [3.16) to finish the proof of

(3.15) A(zi) = A(z*Y), for 0k,
(3.16) A <—h — A(3Y), for 1<i<k.

Since y* and z'*' are [ B, B(a;)]-standard, [3.15) follows from Lemma 3.1, and
follows from A-2 directly.

§4. Asymptotics for a tagged particle.

In this section, we study the behavior of a tagged particle in our process.
In order to follow the motion of a tagged particle it is convenient to regard
the process & as a Markov process (x,, .) on the locally compact space R?X2,,
where
Xo=A{ncX: "B, 0)=7}.

x. is the position of the tagged particle and 7, is the entire configuration seen
from the tagged particle. We can see that %, is a Markov process whose
generator L is the smallest closed extension of the operator given by

£f = e = Fpitalpp(ul
+5

S {fp> )= fFpI(y I pna)p(lz—y dy,
2€y JRA\B . (0)
where

o = {xs+u}, if p={x}.

We denote by S, the semigroup with generator .~ and by (%, P) the associated
process with initial distribution .

By Remark 1.2, if z&(0, z,), then #4(z)=1 and so #<= ¢(z) is shift invariant
and rotation invariant. For such a ¢ we put

2o(dn) = const. X(0| n)uldn),
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where const. is the normalizing constant which makes g, a probability measure
on X,.

Using the same argument as and [Theorem 2.1, we have the
following lemma.

LEMMA 4.1. If z&(0, z,) is sufficiently small (hence #4(z)=1) and if p=a(z),
then (., PJ,) is an ergodic veversible Markov process.

The process x, is driven by the process 7, in the following way. Let Ae
B(R?%) and put

Ay ={nE2Xy: p=r_,7n for some ucR*\{0}},
4= {(n, 9 nEXII(AX L),
I'y={(n, e(@x2)\: {=7_,n for some uc A}.

We can prove that 4, and I', are measurable subsets of 2, and X,X 2,
respectively. Put

G, = QO {P},-completion of a(n;: s&[0, t+e])},
N, t]xA4) = SE(ZO tjlpA(ns_, 7s) for t>0.
Then N((0, t]X A) is an F;-adapted o-finite random measure and
xo= x| [ ulN@sdu.

Using the same argument as for Theorem 2.4 of [3], we have the following
result.

THEOREM 4.1. If z>07is sufficiently small and if #4(z)=1 and p<4(z), then
Axy22 —> 0B, as 2—0

in the sense of distribution in the Skorohod space, where B, is a d-dimensional
Brownian motion and ¢ is a non-negative constant given by

or = [ aul, dpauticu Ip(ul=2 | duSiF, P,

ro,

Fop = { | duwsp(uul ).

REMARK 4.1. An application of the method of yields that the limiting
process is of the form DB, where D is a symmetric and nonnegative definite
d X d matrix; however, by the rotation invariance of x, the matrix D must be
a constant multiple of the unit matrix. Unfortunately, we have not proved the
strict positivity of the constant ¢.
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