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Introduction.

Let $X$ be a Kummer surface obtained by the minimal resolution of the
quotient surface of the product abelian surface $E\cross F$ by the inversion auto-
morphism, where $E$ and $F$ are arbitrarily fixed complex elliptic curves which
are not mutually isogenous. As is well-known, $X$ is an algebraic $K3$ surface.

This paper is concerned with Jacobian fiber space structures on $X$, $i.e.$ ,
elliptic fiber space structures with a section on $X$, or in other words, structures
as an elliptic curve over $C(P^{1})$ . By $\mathcal{J}_{X}$ we denote the set of all Jacobian
fibrations of $X$.

Let us recall that any elliptic fibration of $X$ is given by the morphism
$\Phi_{|\Theta|}$ : $Xarrow P^{1}$ defined by the complete linear system $|\Theta|$ which contains a divisor
having the same type as a non-multiple singular fiber of an elliptic surface.
By definition, an irreducible curve $C$ is a section of $\Phi_{|\Theta|}$ if and only if $C$

satisfies $C\cdot\Theta=1$ . We note that every section of $\Phi_{|\Theta|}$ is a nodal curve, $i.e.$ , a
non-singular rational curve whose self-intersection number is $-2$ . The group
Aut(X) acts on $\mathcal{J}_{X}$ in an obvious manner; $f:\Phi_{|\Theta|}arrow\Phi_{|f(\Theta)|}$ for $f\in Aut(X)$ .

By Sterk [12], the orbit space $\mathcal{J}_{X}/Aut(X)$ is finite, $i.e.$ , the number of
non-isomorphic Jacobian fibrations of $X$ is finite.

The purpose of this paper is to describe all Jacobian fibrations of $X$ modulo
isomorphism, or saying more clearly, to find a minimal complete set of repre-
sentatives of the orbit space $\mathcal{J}_{X}/Aut(X)$ .

As a first consequence of this paper, we see that $\mathcal{J}_{X}$ is divided into eleven
$Aut(X)$-stable subsets $\mathcal{J}_{1},$ $\cdots$ , $\mathcal{J}_{11}$ by types of the singular fibers, and the
Mordell-Weil grouP of its member is calculated for each $\mathcal{J}_{m}(m=1, \cdots , 11)$ as
follows (Table $A$ , Theorem (2.1) in \S 2). Here, for example, by $2I_{8}+8I_{1}$ we
mean two singular fibers of type $I_{8}$ (Kodaira’s notation) and eight singular fibers
of type $I_{1}$ .

We note that there exist infinitely many nodal curves on $X$ since $X$ has a
Jacobian fibration whose Mordell-Weil group is an infinite group by Table A.
From this fact we can construct infinitely many Jacobian fibrations of $X$.
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Table A.

$\mathcal{J}_{11}$

$2I_{4}^{*}+aI_{1}+bII$

$a+2b=4$

{id}

Let us note that $X$ is isomorphic to one of the following:

(i) Km $(E_{\sqrt{-1}}\cross E_{(-1+\sqrt{-3})/2})$ , (ii) Km $(E_{\rho}\cross E_{c-1+\sqrt{-3})/2})$ ,

(iii) Km $(E_{\sqrt{-1}}\cross E_{\rho’})$ , (iv) Km $(E_{\rho}\cross E_{\rho’})$ ,

where $E_{\xi}$ is the elliptic curve whose period is $\xi$ in the period domain $H/SL_{2}(Z)$

and $\rho$ and $\rho’$ are elements of $H/SL_{2}(Z)$ which are neither $\sqrt{-1}$ nor $(-1+\sqrt{-3})/2$ .
As a second consequence of this paper, we calculate the number of non-

isomorphic Jacobian fibrations of $X$ as follows.

Table B.

Outline of proof is as follows.
Via the natural rational map $\pi:E\cross F-->X$, we have 24 nodal curves on

$X,$ $i.e.$ , four branched nodal curves $E_{j}$ $(j=1, \cdots , 4)$ which come from $E$ , four
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branched nodal curves $F_{i}$ $(i=1, \cdots , 4)$ which come from $F$, and 16 exceptional
nodal curves $C_{ij}$.

First we prove the following Table $C$ concerning the intersection numbers
of nodal curves on $X$ (Lemma (1.6) and (1.7) in \S 1) by studying a certain
involution on $X$ which was first introduced by Nikulin [4].

Table C.

By using Table $C$ , we examine singular fibers and sections of Jacobian fibrations
of $X$ and we get Table A.

A divisor $\bigcup_{i}(E_{i}\cup F_{i})\cup\bigcup_{i}.{}_{j}C_{ij}$ on $X$ is called the natural double Kummer
pencil divisor, and a divisor on $X$ which has the same configuration as the
natural double Kummer pencil divisor is called a double Kummer pencil divisor.
Let us put $Aut_{N}(X):=\{f\in Aut(X);f^{*}|_{H^{2.0}(X)}=id\}$ .

Next we prove the following Lemma 1 (Lemma (1.8) and Corollary (1.13)

in \S 1) by using Torelli Theorem for complex tori of dimension 2.

LEMMA 1. The group $Aut_{N}(X)$ acts transrtively on the set of all double
Kummer pencil divisors on $X$.

Using Table A and Lemma 1, we prove the following

LEMMA 2. Let $\varphi$ be a Jacobian fibration of X. Then there exist a singular

fiber $\Theta$ of $\varphi$ and $g\in Aut_{N}(X)$ such that Supp $g(\Theta)$ is contained in the natural
double Kummer pencil divisor except for at most one component of $g(\Theta)$ .

By using Lemma 2 and by constructing certain automorphisms of $X$, we
determine a minimal complete set of representatives of the orbit space
$\mathcal{J}_{rn}/Aut_{N}(X)(m=1, \cdots , 11)$ . Finally by studying the quotient group $Aut(X)/$

$Aut_{N}(X)$ and the action of $Aut(X)/Aut_{N}(X)$ on $\mathcal{J}_{m}/Aut_{N}(X)$ , we determine a
minimal complete set of representatives of the orbit space $\mathcal{J}_{m}/Aut(X)(m=1,$ $\cdots$ ,
11). As a corollary, we get Table B.

The contents of this paper are as follows.
In \S 0, we fix some notation and recall some basic facts about Kummer

surfaces and elliptic $K3$ surfaces. Main references of this section are Morrison
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[11] and Shioda and Inose [8].

In \S 1, we prove Table $C$ and Lemma 1. We also study the quotient group
$Aut(X)/Aut_{N}(X)$ . In the course of proof, the condition that $E$ and $F$ are not
mutually isogenous is essential. As for \S 1, the author was very much inspired
by works of Nikulin [4] and Shioda and Mitani [7].

In \S 2, we classify all Jacobian fibrations of $X$ according to the types of
the singular fibers.

In \S 3 and 4, we determine a minimal complete set of representatives of the
orbit space $\mathcal{J}_{m}/Aut(X)(m=1, \cdots , 11)$ .

I would like to thank Prof. T. Terasoma for many valuable conversation
and suggestion and also thank Prof. T. Shioda and Prof. Y. Kawamata for
their advice and encouragement.

\S 0. Preliminaries.

Throughout this paper, we assume that the ground field is the complex
number field $C$ . For a divisor we use a capital letter, and for its cohomology
class the corresponding small letter, $e.g.,$ $d=c_{1}(O(D))$ . When a group $G$ acts
on a set $S$ , by a minimal complete set (resp. a non-minimal complete set) of
representatives of the orbit space $S/G$ , we mean a subset of $S$ which meets
each orbit of $S$ by $G$ at exactly one (resp. at least one) point.

1. Kummer surfaces. Let $A$ be an abelian surface. The Kummer surface
Km$(A)$ is the algebraic $K3$ surface obtained by the minimal resolution of the
quotient surface $A/\langle-id_{A}\rangle$ . Then we have the natural rational map $\pi_{A}$ : $A--\geq$

Km $A$ whose fundamental points are the 2-torsion points of $A$ , say $r_{k}(k=1,$ $\cdots$ ,
16), and we let $C_{k}$ denote the 16 nodal curves ( $i.e.$ , nonsingular rational curves
with self intersection number $-2$) on Km$(A)$ corresponding to $\gamma_{k}$ . Via the
morphism $\pi_{A}|A-\bigcup_{k}\{r_{k}\}$ , we get a natural homomorphism $\pi_{A*};$ $H^{2}(A, Z)arrow$

$(\oplus_{k}Zc_{k})^{\perp}\subset H^{2}(Km(A), Z)$ . The map $\pi_{A*}$ satisfies the following properties:
$\pi_{A*}x\cdot\pi_{A*}y=2x\cdot y$ ,
$\pi_{A*}$ preserves the Hodge decompositions, and
$\pi_{A*}$ is an isomorphism onto $(\oplus_{k}Zc_{k})^{\perp}$ .

Especially, the induced map $\pi_{A*};$ $T_{A}arrow T_{Km(A)}$ is an isomorphism which preserves
Hodge decomposition. Here, for an algebraic surface $Y$ such that $H^{2}(Y, Z)$ is
torsion free, we put:

$S_{Y}$ $:=the$ Neron Severi group of $Y$ (the algebraic lattice),
$T_{Y}$ $:=S_{Y}^{\perp}$ in $H^{2}(Y, Z)$ (the transcendental lattice).

For more detail, we refer the reader to Morrison [11], Shioda and Inose [8],

and $Pjatecki\hat{\iota}-\check{S}$apiro and afarevi [13].
Let $X$ be the Kummer surface Km $(E\cross F)$ where $E$ and $F$ are elliptic curves
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which are not mutually isogenous. The last condition on $E$ and $F$ is equivalent
to the condition that the Picard number of Km $(E\cross F)$ is 18. Throughout this
Paper we fix $E,$ $F$ and $X$ arbitranly.

We use the following notation.
$\pi$ $:=\pi_{ExF}$ : $E\cross F--\neq X$ (the natural rational map)

$\omega_{X}$ (resp. $\omega_{B\cdot F}$) $:=a$ nowhere vanishing holomorphic 2-form on $X$ (resp. $E\cross F$ ).

(These are determined up to non-zero scalar multiples, and satisfy $\pi_{*}C\omega_{E\cdot F}=$

$C\omega_{X}.)$

$\{P_{i}\}_{i\Rightarrow 1}\ldots.$ . (resp. $(Q_{i}\})$ $:=the$ set of the 2-torsion points on $E$ (resp. $F$ ).

$R_{ij}$ $:=(P_{i}, Q_{j})$ , $i,$ $j=1,$ $\cdots$ , 4. (These are the 2-torsion points on $E\cross F.$ )

$C_{ij}$ $:=the$ nodal curve on $X$ corresponding to $R_{ij}$ .
$E_{j}$ $:=\pi(E\cross Q_{j})$ , $F_{i}$ $:=\pi(P_{i}\cross F)$ . (These are nodal curves on $X.$ )

$B$ $;=i=1U^{4}(E_{i}\cup F_{i})$ .

We call a nodal curve which is in $B$ a special nodal curve, and a nodal
curve which is not in $B$ an ordinary nodal curve.

$K_{nat}$
$:=B\cup(U_{j}C_{ij})$ (the natural double Kummer $pen\dot{\alpha}l$ divisor).

$E$ $:=\pi(E\cross P),$ $F:=\pi(Q\cross F)$ , for fixed $P\neq P_{i},$ $Q\neq Q_{i}$ .
By definition, $E_{i},$ $F_{j},$ $C_{ij},$ $E,$ $F$ intersect as follows.

$i.e.$ ,
$C_{ij}\cdot C_{kl}=-2\delta_{ik}\delta_{jl}$ , $E^{2}=F^{2}=0$ , $E_{j}\cdot E_{\iota}=-2\delta_{jl}$ , $E\cdot F=2$ ,
$F_{i}\cdot F_{k}=-2\delta_{tk}$ , $E\cdot E_{l}=F\cdot F_{k}=0$ , $C_{ij}\cdot E_{l}=\delta_{jl}$ ,

(0.1)
$E\cdot F_{k}=F\cdot E_{l}=1$ , $C_{ij}\cdot F_{k}=\delta_{ik}$ , $E\cdot C_{ij}=F\cdot C_{ij}=0$

($\delta_{ij}=Kronecker’ s$ symbol).

We call a divisor consisting of 24 nodal curves which has the same type as
$K_{nat}$ a double Kummer pencjl divisor.

As for $H^{2}(X, Z),$ $H^{2}(E\cross F, Z)$ , we get the following:
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(0.2) (1) $H^{2}(E\cross F, Z)=S_{E\cross F}\oplus T_{E}$ . $F$ , $S_{E\nwarrow F}=(\begin{array}{ll}0 11 0\end{array})$ ,

$T_{E\cross F}=(\begin{array}{llll}0 0 1 00 0 0 1l 0 0 00 1 0 0\end{array})$ ,

(2) $\{e, f, c_{ij}\}$ is a basis of $S_{X}\otimes Q$ ,

(3) $e_{j}= \frac{1}{2}(e-\sum_{\ell=\iota}^{4}c_{ij})$ , $f_{i}= \frac{1}{2}(f-\sum_{j\approx 1}^{4}c_{ij})$ in $S_{X}$ .

2. Elliptic $K3$ surfaces. Let $Y$ be a $K3$ surface. We denote by $\mathcal{J}_{Y}$ the
set of all Jacobian fibrations of $Y,$ $i.e.$ , elliptic fibrations of $Y$ with a global
section. As is well-known, any elliptic fibration of $Y$ is given by the morphism
$\Phi_{|\Theta|}$ : $Yarrow P^{1}$ defined by the complete linear system $|\Theta|$ which contains a divisor
of the same type as a non-multiple singular fiber of an elliptic surface. (See
Table 1.) By definition, an irreducible curve $C$ is a section of $\Phi_{|\Theta|}$ if and only
if $C$ satisfies $C\cdot\Theta=1$ . We note that every section of $\Phi_{|\Theta|}$ is a nodal curve.
The biholomorphic automorphism group of $Y$ , Aut(Y), acts on $\mathcal{J}_{Y}$ in an obvious
manner; $f:\Phi_{|\Theta|}\mapsto\Phi_{|f(\Theta)|}$ for $f\in Aut(X)$ .

Let $C_{i}(i=1,2)$ be (not necessarily distinct) sections of $\varphi\in \mathcal{J}_{Y}$ . Then there
exists a unique symplectic automorphism $f$ of $Y(i.e.$ , an automorphism whose
action on $H^{2.0}(Y)=C\omega_{Y}$ is trivial) such that $f(C_{1})=C_{2}$ and $\varphi\circ f=\varphi$ . On each
non-singular fiber of $\varphi,$

$f$ acts as a translation. On a singular fiber, $f$ acts
by the rule in Table 1 (cf. Kodaira [10], p. 604). We call such $f$ a translation
automorphism of $\varphi$ . We denote by $M_{\varphi}(Y)$ a subgroup of Aut(Y) consisting of
all translation automorphisms of $\varphi$ . $M_{\varphi}(Y)$ is naturally identified with the
Mordell-Weil group of $Y$ considered as an elliptic curve over $C(P^{1})$ via $\varphi$ .

LEMMA (0.3) (Shioda [6], p. 23 or Shioda and Inose [8], $P\cdot 120$). Let $\varphi$ be
a Jacobian fibration of a $K3$ surface Y. Let $\Theta_{i}$ ($i=1,$ $\cdots$ , k) be all the singular

fibers of $\varphi$ . Then,
(1) $24=x_{top}(Y)= \sum_{i}\chi_{top}(\Theta_{i})$ ,

(2) $S_{Y}$ is generated by the classes of all irreducible components of $\Theta_{i}(i=1,$ $\cdots$ ,
k) and all sections of $\varphi$ . Hence, if one of $\Theta_{i}$ is neither of type $I_{1}$ nor of type
I, then $S_{Y}$ is generated by some classes of nodal curves.

(3) The Mordell-Weil group $M_{\varphi}(Y)$ is a finitely generated abelian group,
which satisfies the equality,

rank $M_{\varphi}(Y)= rankS_{Y}-2-\sum_{i}(m(\Theta_{i})-1)$ ,

where $m(\Theta_{i})$ denotes the number of irreducible components of $\Theta_{i}$ .



Jacobian fibrations 657



658 K. OGUISO

\S 1. Some properties on $X$.
First, we remark that the following natural exact sequence holds. Here for a

subset $Z\subset Y$ , we put $Aut(Y;Z):=\{f\in Aut(Y);f(Z)=Z\}$ .

(1.1) $1arrow\langle-id_{E\cross F}\ranglearrow Aut(E\cross F;U\{R_{ij}\})arrow^{-}Aut(X;UC_{ij})arrow 1$ .
For $f\in Aut(E\cross F;U\{R_{ij}\})$ , by $\overline{f}$ , we denote a corresponding element of
Aut(X; $UC_{ij}$). If $f_{*}\omega_{E\cross F}=\alpha\omega_{E\cross F}$ , we have $\overline{f}_{*}\omega_{X}=\alpha\omega_{X}$ .

(1.2) For $\Theta=(\begin{array}{ll}-1 00 1\end{array})\in Aut(E\cross F;U\{R_{ij}\})$ , we Put $\theta=\overline{\Theta}$ .

We note that $\theta$ is an involution on $X$.
LEMMA (1.3). (1) $\theta_{*}|_{S_{X}}=id$ , $\theta_{*}|\tau_{X}=-id$ .
(2) $X^{\theta}$ ( $:=the$ set of fixed pojnts of $\theta$ ) $=B$ .

PROOF. (1) is obvious by (0.2). By definition, we have,

$(X-UC_{ij})^{\theta}=\pi$ ( $\{x\in E\cross F-UC_{ij}$ ; $\Theta x=x$ , or $-x\}$ ) $=B-\cup C_{if}$ .
On the other hand, since $\theta_{*}\omega_{X}=-\omega_{X},$ $X^{\theta}$ is a smooth closed submanifold of
X. Then we have $X^{\theta}=B$ . $\square$

LEMMA (1.4). Aut(X) $=Aut(X;B)$ , $i.e.$ , $f(B)=B$ for any $f\in Aut(X)$ .
PROOF. (Following Nikulin [4], p. 1424.) By (1.3) and by the fact that

$S_{X}\oplus T_{X}$ is of finite index in $H^{2}(X, Z)$ , we have $(f\theta)_{*}=(\theta f)_{*}$ on $H^{2}(X, Z)$ .
Then by Torelli Theorem for $K3$ surfaces, we have $f\theta=\theta f$. Combining this
with (1.3)(2), we get $f(B)=B$ . $\square$

Before proceeding, we remark the following.

(1.5) For nodal curves $D_{i}(i=1,2)$ on $X$ and for $f\in Aut(X)$ , we have $f(D_{1})=D_{2}$

if and only if $f_{*}(d_{1})=d_{2}$ where $d_{i}=c_{1}(\mathcal{O}_{X}(D_{i}))$ . (Note that $h^{0}(\mathcal{O}_{X}(D_{2}))=1.$ )

LEMMA (1.6). Let $D_{i}(i=1,2)$ be ordinary nodal curves on X. Then
$D_{1}\cdot D_{2}\equiv 0$ (mod2).

PROOF. If $D_{1}=D_{2}$ , then we have $D_{1}\cdot D_{2}=-2$ . Assume that $D_{1}\neq D_{2}$ . By
definition, we have

$D_{1}\cdot D_{2}=$
$\sum_{P\in D_{1}\cap D_{2}-B}$ mult $P(D_{1}, D_{2})+$

$\sum_{P_{0}\in D_{1}\cap D_{2}\cap B}$
$mult_{P_{0}}(D_{1}, D_{2})$ .

By (1.3), (1.5), we have $\theta(D_{i})=D_{i}(i=1,2)$ and $\theta$ acts on each $D_{i}$ as an invo-
lution. Then the first sum above is even since $mult_{P}(D_{1}, D_{2})=mult_{\theta(P)}(D_{1}, D_{2})$

and $\theta(P)\neq P$ if $P\in D_{1}\cap D_{2}-B$ . So, to prove (1.7) it is sufficient to show that
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$mult_{P_{0}}(D_{1}, D_{2})$ is even for each $P_{0}\in D_{1}\cap D_{2}\cap B$ . Assume that $mult_{P_{0}}(D_{1}, D_{2})=$

$2k+1(k=0,1, 2, )$ for some $P_{0}\in D_{1}\cap D_{2}\cap B$ . By repeating blowing up, we
get,

(Here $\epsilon_{i}$ $;=P(T_{P_{i-1}}(X))$ is the exceptional curve. For proper transforms of $D_{1}$

and $D_{2}$ , we use the same letters on each $X_{i}.$ ) On $X_{2k}$ we have $mult_{p_{2k}}(D_{1}, D_{2})$

$=1$ by construction. On the other hand, by the property of blowing up, $\theta$ also
acts on each $X_{i}$ and preserves $\epsilon_{i},$

$D_{1},$ $D_{2}$ , and $P_{i}$ . By construction, we see
easily that on $X_{2i}$ , $\theta|D_{1}$ and $\theta|D_{2}$ are involutions and $\theta|_{\epsilon_{2i}}$ is an identity.
Then on $X_{2k}$ , we get $T_{P_{2k}}(D_{1})=T_{P_{2k}}(D_{2})$ and $mult_{p_{2k}}(D_{1}, D_{2})\geqq 2$ . This is
contradiction. $\square$

LEMMA (1.7). Let $D$ be an ordinary nodal curve on X. Then, there exis $t$

two spedal nodal curves $E_{f}$ and $F_{i}$ such that $D\cdot E_{j}=D\cdot F_{l}=1$ . Moreover $D$ does
not meet the other srx specjal nodal curves.

PROOF. Since $\theta$ acts on $D=P^{1}$ as an involution, $D$ and $B$ meet at exactly
two points transversely. (cf. Nikulin [4], p. 1434). So to prove (1.7), it is
sufficient to show that the following 4 cases do not occur: (1) $D\cdot E_{i}=2$ (for

some $i$), (2) $D\cdot E_{i}=D\cdot E_{j}=1$ (for some $i\neq j$), (3) $D\cdot F_{i}=2$ (for some $i$), (4) $D\cdot F_{i}$

$=D\cdot F_{j}=1$ (for some $i\neq j$). For example, assume that (2) does occur. For
simplicity of notation, we also assume $i=1,$ $j=2$ . In $S_{X}$ we put,

$d=ae+bf+ \sum_{i,j}x_{ij}c_{ij}$ , $(a, b, x_{ij}\in Q)$ . (See (0.2).)

Since we have $-2x_{ij}=D\cdot C_{ij}\equiv 0$ (mod2) by (1.6), we get $x_{ij}\in Z$. By (0.1) and
(0.2), we get

$b+ \sum_{i}x_{ij}=\{01$ $(if(ifj=3,4)j=1,2)$
$a+ \sum_{j}x_{ij}=0$ $(i=1, 4)$ .

Then, we get $b-a=1/2$ . On the other hand, since we have $x_{ij}\in Z$, we get
$b-a\in Z$. Therefore (2) does not occur. Other cases also do not occur by a
similar reason. $\square$
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LEMMA (1.8). Let $D_{k}(k=1, \cdots , 16)$ be disjoint nodal curves on X. Then there
exists $f\in Aut(X)$ such that $f( \bigcup_{k}D_{k})=U_{i}.{}_{J}C_{ij}$ . Hence, combining this with (1.4),

we get $f(U_{k}D_{k}\cup B)=K_{nat}$ . Especially, $K_{D}=U_{k}D_{k}\cup B$ is a double Kummer Pencil
divisor.

PROOF. By Nikulin [1], p. 262, we have $\Sigma_{k=1}^{16}d_{k}\in 2\cdot S_{X}$ and hence there
exist an abelian surface $A$ and a rational map $\pi_{A}$ ; A— $X$ whose exceptional
curves are $D_{k}$ $(k=1, \cdots , 16)$ . Hence via $\pi_{A*}$ and $\pi_{*}$ , we have a Hodge isometry

$\psi_{T}$ : $\tau_{A^{arrow}}^{\sim}\tau_{E\cross F}$ . Then, by applying the theorem by Nikulin [3], p. 126, (or

Morrison [11], p. 112), $\psi_{T}$ is extended to a Hodge isometry $\psi:H^{2}(A, Z)$

$\simarrow H^{2}(E\cross F, Z)$ . So we can apply the theorem of Shioda [6], p. 48 and we get
$A\cong E\cross F$. (Remark that $Pic^{0}(E\cross F)\cong E\cross F.$ ) Therefore $f\in Aut(X)$ induced
from $F:A\cong E\cross F$ which preserves the origins satisfies (1.8). $\square$

Let $M$ be either an abelian surface or a $K3$ surface. Since $H^{2,0}(M)=C\omega_{M}$ ,
we get the homomorphism $\alpha_{M}$ : $Aut(M)arrow C^{\cross}$ characterized by $f_{*}\omega_{M}=a_{M}(f)\omega_{M}$ .
Putting $\Gamma_{M}:={\rm Im}(\alpha_{M})$ and $Aut_{N}(M):=Ker(\alpha_{M})$ (the symplectic automorphism
group of $M$ ), we have the following exact sequence.

(1.9) $1arrow Aut_{N}(M)arrow Aut(M)arrow\Gamma_{M}\alpha_{M}arrow 1$ .

LEMMA (1.10). Let $D_{k}$ ( $k=1,$ $\cdots$ , l) be ordinary nodal curves on X Let us
put $D:=D_{1}+\cdots+D_{l}$ . If $D\cdot E_{j}\equiv D\cdot F_{l}\equiv 0$ (mod2) $(i, j=1, \cdots , 4)$ then $f_{*}(d)+d$

$\in 2\cdot S_{X}$ for any $f\in Aut_{N}(X)$ .
PROOF. For $f\in Aut_{N}(X)$ , we have $f_{*}|T_{X}=id$ . (Because we have $f_{*}(x)\cdot\omega_{X}$

$=f_{*}(x)\cdot f_{*}(\omega_{X})=x\cdot\omega_{X}$ for $x\in T_{X}$ and then we get $f_{*}(x)-x\in S_{X}\cap T_{X}=\{0\}.)$

Especially the induced map of $f_{*}$ on $T_{X}^{*}/T_{X}$ is identity. Here, for a non-
degenerate lattice $L$ , we set $L^{*}:=\{x\in L\otimes Q;x\cdot L\in Z\}=Hom_{Z}(L, Z)$ . Then
we see that the induced map of $f_{*}$ on $S_{X}^{*}/S_{X}$ is also identity by an easy lattice
theoretic consideration. Hence we have $f_{*}(x)-x\in S_{X}$ for all $x\in S_{X}^{*}$ . Let us
consider $d/2$ . Then $(d/2)\cdot C$ is an integer for every nodal curves on $X$ by the
assumption on $D$ and (1.6). On the other hand, by considering a Jacobian
fibration $\Phi_{1E\mathfrak{l}}$ , we see that $S_{X}$ is generated by some classes of nodal curves on
X. (See (0.3) (2).) Hence we have $d/2\in S\mathfrak{X}$ . Therefore we have $f_{*}(d/2)-d/2$

$\in S_{X}$ and $f_{*}(d)+d\in 2\cdot S_{X}$ . $\square$

LEMMA (1.11). Aut(X) $=Aut_{N}(X)\langle\overline{\xi}\rangle$ (semi-direct prOduct), where $\xi$ is the
element of Aut(X; $\bigcup_{i}.{}_{j}C_{ij}$) induced from $thp$ following $\xi\in Aut(E\cross F;U_{i.f}\{R_{ij}\})$

by (1.1).
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$\overline{|_{\xi}^{E\cross F}|^{\sqrt{-1}}\frac{EE}{(^{\sqrt{}\overline{-1}0}0\omega)}\cross\omega|-\frac{E_{\rho}\cross E_{\omega}}{(_{0\omega}^{10})}|\begin{array}{ll}E_{\sqrt{-1}}\cross E_{\rho} E_{\rho}\cross E_{\rho’} (^{\sqrt{-l}}0 l1) (_{0}^{-1} 01)\end{array}|}$

(By $E_{\xi}$ we denote the elliptic curve whose period is $\xi$ in $H/SL_{2}(Z)$ where $H$ is the
uPper half plane. And $\omega=(-1+\sqrt{-3})/2,$

$\rho,$
$\rho’\neq\sqrt{-1},$ $\omega$ in $H/SL_{2}(Z)$ . Since

$E$ and $F$ are not mutually isogenous, these cover all the cases.)

PROOF. By (1.9) it is sufficient to show that

$\alpha_{x}|<\overline{\xi}>:\langle\xi\ranglearrow^{\sim}\Gamma_{X}$ .

Since $E$ and $F$ are not isogenous, we easily show that

$a_{E\cross F}|<\xi>:\langle\xi\ranglearrow^{\sim}\Gamma_{ExF}$ .
So it is sufficient to show that if $\alpha\in\Gamma_{X}$ , then $a\in\Gamma_{E\cross F}$ . Let $f$ be an auto-
morpbism of $X$ such that $f_{*}\omega_{X}=\alpha\omega_{X}$ . Put $\varphi=f_{*}|T_{X}$ . Then $\tilde{\varphi}:=\pi_{*}^{-1_{Q}}\varphi^{\circ}\pi_{*}$ is
a Hodge isometry on $T_{E\cross F}$, and satisfies $\tilde{\varphi}\omega_{E\cross F}=\alpha\omega_{E\cross F}$. So it is sufficient to
show that there exists $g\in Aut(E\cross F)$ such that $g_{*}|T_{X}=\tilde{\varphi}$ To show this we
use the following theorem by Shioda [6], p. 53.

THEOREM (1.12). Let $A$ be a two dimensional complex torus. Let $\psi$ be a
Hodge isometry on $H^{2}(A, Z)$ such that det $\psi=1$ . Then there exists $g\in Aut(A)$

satisfying either $g_{*}=\psi$ or $g_{*}=-\psi$ .
We put $\psi=id_{S_{ExF}}\oplus\tilde{\varphi}$ Then $\psi$ is a Hodge isometry on $H^{2}(E\cross F, Z)$ and

preserves effective classes on it. So if we can prove that det $\psi=1,$ $i.e.$ ,

det $\tilde{\varphi}=1$ , we get $g\in Aut(E\cross F)$ such that $g_{*}|T_{X}=\tilde{\varphi}$ Assume that det $\tilde{\varphi}\neq 1$ .
Then we have det $\tilde{\varphi}=-1$ since $\tilde{\varphi}$ is an isometry on $T_{E\cross F}$ . Thus, putting

$\psi’=(\begin{array}{ll}0 11 0\end{array})\oplus\tilde{\varphi}$ , we see that $\psi’$ satisfies the condition of the above theorem.

Hence there exists $g’\in Aut(E\cross F)$ such that $g_{*}’=\psi’$ or $-\psi’$ . But this does not
happen since $E$ and $F$ are not isogenous. Therefore we have det $\tilde{\varphi}=1$ . $\square$

Combining (1.8) and (1.11), we get the following.

COROLLARY (1.13). There exists $f\in Aut_{N}(X)$ such that $f(K_{D})=K_{nat}$ (Here
$K_{D}$ is same as in (1.8).)

Finally, we quote two theorems by Nikulin [1], [2] as lemmas.

LEMMA (1.14). Let $Y$ be a $K3$ surface. Let $D_{k}$ ($k=1,$ $\cdots$ , l) be disjoint
nodal curves on Y. If $D:=\Sigma_{k=1}^{l}D_{k}\in 2\cdot S_{Y}$ , then $l=0,8$ or 16.

LEMMA (1.15). Let $Y$ be a $K3$ surface. If $f\in Aut_{N}(Y)$ is of finite order and



662 K. OGUISO

not identity. Then the order of $f$ and the number of the fixed points of $f$ are
as follows.

\S 2. Classification of $\mathscr{J}_{X}$ via types of the singular fibers.

We use the following notation in \S 2, 3, and 4. By $G_{i},$ $H_{i}$ $(i=1, \cdots , 4)$ we
denote the 8 special nodal curves such that either $\{G_{i}\}=\{E_{i}\}$ and $\{H_{i}\}=\{F_{i}\}$

or $\{G_{i}\}=\{F_{i}\}$ and $\{H_{i}\}=\{E_{i}\}$ as a set. For fixed $G_{i},$ $H_{i}$ $(i=1, \cdots , 4)$ , we denote
by $C^{ij}$ the nodal curve in $\{C_{ij}\}$ meeting both $G_{j}$ and $H_{i}$ . By $\{D^{ij}\}$ , where
$(i, j)$ moves some subsets of $\{$ 1, $\cdots$ , $4\}\cross\{1, \cdots , 4\}$ , we denote a collection of nodal
curves such that $D^{ij}$ meets $G_{j}$ and $H_{i}$ and $D^{ij}$ do not meet one another. By
$R^{ij},$ $Q^{ij}$ etc., we denote a nodal curve which meets $G_{j}$ and $H_{i}$ .

In this section we prove the following theorem.

THEOREM (2.1). (1) The set $\mathscr{J}_{X}$ is divided into eleven $Aut(X)$-stable subsets,
$\mathscr{J}_{1},$ $\cdots$ , $\mathscr{J}_{11}$ by the types of the singular fibers.

(2) For each $\mathscr{J}_{m}$ sections, Mordell-Weil groups, and configurations of sections
and singular fibers of its members are described as in the following Table 2.
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$G_{i}$ $H_{i}$

By $0$ (resp. $0$ , resp. o), we mean a nodal curve $G_{i}$ (resp. $H_{i}$ , resp. an ordinary
nodal curve).

$H,$ $D_{1}$ $D_{2}$

For example, by $\circ\cdots R^{2}\cdot.::\circ$ , we mean that a section $H_{3}$ meets a singular
$D$,

fiber of tyPe $I_{2}^{*}$ in $D_{1}$ and 2-section $G_{4}$ meets this singular fiber in $D_{2}$ and $D_{3}$ .

Let $\varphi$ be a Jacobian fibration of $X$.

LEMMA (2.2). Let $\Theta$ be a stngular fiber of $\varphi$ . Then $\Theta$ is one of the follow-
ing form:

$11\propto,$ $\Pi\prec,$ $1_{*}\propto i\infty$

$G$

1 $bb=4,8,12$ $\theta$ ,

$H$

PROOF. For example, we show that $\Theta$ is neither of type $I_{10}^{*}$ nor of type
$I_{16}$ . If $\Theta$ is of type $I_{10}^{*}$ , then by (1.6) and (1.7), $\Theta$ is as follows:
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Then, by (1.6), a section of $\varphi$ must be either $H_{4}$ or $G_{4}$ . But this is impossible
because, by (1.7), we have $D_{i}\cdot H_{4}=1$ for $i=1,2$ , and $D_{j}\cdot G_{4}=1$ for $j=3,4$ . If
$\Theta$ is of type $I_{16}$ , then $\Theta$ contains $B$. So for any ordinary nodal curve $C,$ $C\cdot\Theta$

$\geqq 2$ holds. Hence $\varphi$ has no sections. $\square$

LEMMA (2.3). If all special curves are contained in some singular fibers of
$\varphi$ , then $\varphi\in \mathcal{J}_{1}$ or $\mathcal{J}_{2}$ or $\mathcal{J}_{3}$ . Moreover rank $M_{\varphi}(X)=2,2,4$ respectively.

PROOF. Let $C$ be a section of $\varphi$ . Let $\Theta_{1},$ $\cdots$ , $\Theta_{k}$ be the singular fibers of
$\varphi$ which are neither of type $I_{1}$ nor of type II. We note that $C$ meets each $\Theta_{i}$

in a simple component. Since $C$ is an ordinary nodal curve by the assumption,
$C$ meets each $\Theta_{i}$ in a special nodal curve. So we get $k=2$ because we have
$C\cdot B=2$ . Then types of $\Theta_{1}$ and $\Theta_{2}$ are either of (1) $I_{8},$ $I_{8}(2)I_{4},$ $I_{12}(3)IV^{*},$ $IV^{*}$

by (2.2). For each of three cases (1), (2), (3), by counting Euler number and
rank $M_{\varphi}(X)$ by (0.3) (1) and (3), we get the desired results. $\square$

Until (2.12) we assume that at least one of special nodal curves is not in
any singular fibers of $\varphi$ .

LEMMA (2.4). (1) rank $M_{\varphi}(X)=0$ .
Let $\Theta_{1},$ $\cdots$ , $\Theta_{k}$ be the singular fibers of $\varphi$ . Then,

(2) $24= \sum_{l}\chi_{top}(\Theta_{i})$ , $16= \sum_{i}(m(\Theta)-1)$ ,

(3) $\varphi$ has at least one singular fiber which is neither of type $I_{1}$ nor of type
II.

PROOF. If (1) holds, then (2) holds by (0.3) (1), (3). Then (3) holds since
$m(I_{1})=m(II)=1$ . Let us prove (1). Let $S_{1},$ $\cdots$ , $S_{l}$ be all the special nodal curves
not contained in any singular fibers of $\varphi$ . Let $C$ be an arbitrary smooth fiber
of $\varphi$ . We have $1\leqq\#(C\cap(S_{1}\cup\cdots\cup S_{l}))\leqq C\cdot(S_{1}+\cdots+S_{l})=m$ . Of course, $m$ is
independent of the choice of $C$ . By (1.3), any $f\in M_{\varphi}(X)$ acts on the finite set
$I_{C}=C\cap(S_{1}\cup\cdots\cup S_{l})$ as a permutation. So $f^{m!}$ fixes all the points of $I_{C}$ for
any $C$ . Therefore, by definition of $M_{\varphi}(X)$ , we get $f^{m\downarrow}=id$ on $X$. Hence we
have rank $M_{\varphi}(X)=0$. $\square$

Let $\Theta$ be a singular fiber of $\varphi$ which is neither of type $I_{1}$ nor of type II.

LEMMA (2.5). (1) $\Theta$ is one of the following form in (2.2):

$I_{2}$ , III, $II^{*},$ $III*,$ $I_{2b}^{\star}$ .
(2) All sections of $\varphi$ are special nodal curves.

PROOF. If $\Theta$ is either $I_{b}(3\leqq b)$ or $IV^{*}$ in (2.2), then $\Theta$ cannot meet any
special nodal curves. Then (1) holds. Hence all the simple components of $\Theta$

are ordinary nodal curves. Then (2) holds by (1.7). $\square$
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We continue the proof of (2.1), and consider the following two cases
separately:

Case (1). At least one of singular $fibe^{\iota}rs$ of $\varphi$ is either of type I2 or of type
III.

Case (2). Otherwise.

Case (1). We can see at once that either $(\#)$ or $(\#\#)$ holds:

$(\#)$ All the sections of $\varphi$ are $G_{3},$ $G_{4},$ $H_{3},$ $H_{4}$ and the remaining $G_{1},$ $G_{2},$ $H_{1},$ $H_{2}$

are in some fibers of $\varphi$ .
$(\#\#)$ All the sections of $\varphi$ are $H_{3}$ and $H_{4}$ . The curve $G_{4}$ is a 2-section of $\varphi$ .
The remaining $G_{1},$ $G_{2},$ $G_{3},$ $H_{1},$ $H_{2}$ are in some fibers of $\varphi$ .

LEMMA (2.6). Let $\varphi$ be a Jacobian fibration satisfying $(\#)$ . (We do not
assume that one of the singular fibers of $\varphi$ is of type I2 or of type III.) Then
$\varphi\in \mathcal{J}_{6}$ or $\varphi\in \mathcal{J}_{6}$ holds, and (2.1) (2) holds for this $\varphi$ .

PROOF. By the condition $(\#)$ , any singular fiber of $\varphi$ is one of the follow-
ing types in (2.5); $I_{2}$ , III, $I_{1},$ $I_{2}^{*},$ $I_{6}^{*}$ . (Remark that $\varphi$ has no singular fibers of type
II because $M_{\varphi}(X)$ has a torsion element.) Then $\varphi$ has either two singular fibers
of type $I_{2}^{*}$ or one singular fiber of type $I_{6}^{*}$ . As for the latter case, putting
$\alpha=\#I_{2},$ $\beta=\#III,$ $\gamma=\#I_{1}$ , we get by (2.4):

$16=10+\alpha+\beta,$ $24=12+2\alpha+3\beta+\gamma$ , and then, $\beta=\gamma=0,$ $\alpha=6$ .
Hence we have $\varphi\in \mathcal{J}_{5}$ . We show that (2.1) (2) holds for this $\varphi$ . Since
$\# M_{\varphi}(X)=4$ , and the group structure of $I_{6}^{*}$ is $C\cross(Z/2Z)^{2}$ , we have $M_{\varphi}(X)=$

$(Z/2Z)^{2}$ . Each of six singular fibers of type I2 meets four sections like either

(1)
$H^{\circ},.:c_{O^{*}}...\mapsto:..HG_{4}oo$

or (2)
$H_{l};-:Hc_{O},..\cdot.c_{O}o...\cdot 0^{4}$

and a singular fiber of type $I_{6}^{*}$ meets four sections like

Put the number of singular fibers of type $I_{2}$ like (1) (resp. like (2)) $m$ (resp. $n$ ).

Let us take $f\in M_{\varphi}(X)$ such that $f(H_{4})=G_{4}$ . Then we have $f(H_{3})=G_{3}$ , and $f$

has at least 2 fixed points on each of $mI_{2}$ , and on $I_{6}^{*}$ . Then we get $2m+2\leqq 8$

by (1.15). Similarly, by taking $g\in M_{\varphi}(X)$ such that $g(H_{3})=G_{4}$ , we get $2n+2\leqq 8$ .
Hence we have $n=m=3$ . (Remark that $m+n=6.$ ) For the former case, the
proof is similar. $\square$
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By a similar argument to (2.6), we get the following.

LEMMA (2.7). Let $\varphi$ be a Jacobian fibration satisfying $(\#\#)$ . Then $\varphi\in \mathcal{J}_{8}$

holds and (2.1) (2) holds for this $\varphi$ .

Case (2). Without loss of generality, we may assume that $H_{3}$ is a section
of $\varphi$ .

LBMMA (2.8). $\Theta$ is one of the following form in (2.2).

(1)
$\Re^{G}$

(2)

(4)

PROOF. If $\Theta$ is neither of (1), (2), (3), (4), $\Theta$ is either (5) or (6).

(5) (6)

If $\Theta$ is either (5) or (6), we easily show that $\varphi$ satisPes either $(\#)$ or $(\#\#)$ , and
then $\varphi$ has a singular fiber whose type is either I2 or III. Hence (2.8) holds.

$\square$

LEMMA (2.9). If $\varphi$ has a singular fiber of type(4) in (2.8), then $\varphi\in \mathcal{J}_{9}$ holds
and (2.1) (2) holds for this $\varphi$ .

PROOF. Immediate. $\square$

LEMMA (2.10). If $\varphi$ has a singular fiber of type (3) but not of type (4) in
(2.8), then $\varphi\in \mathcal{J}_{10}$ holds and (2.1) (2) holds for this $\varphi$ .

PROOF. Immediate. $\square$

LEMMA (2.11). If $\varphi$ has a singular fiber of type(2) but neither of tyPe (3)

nor of type(4) in (2.8), then either $\varphi\in \mathcal{J}_{7}$ or $\varphi\in \mathcal{J}_{11}$ holds and (2.1) (2) also holds
for this $\varphi$ .

PROOF. We easily show that all the singular fibers of $\varphi$ which are neither
of type $I_{1}$ nor of type II are either (a) $I_{4}^{*},$ $I_{4}^{*}$ or (b) $I_{4}^{*},$ $I_{0}^{*},$ $I_{0}^{*}$ . When (a) holds,
obviously we have $\varphi\in \mathcal{J}_{11}$ and (2.1) (2) holds. When (b) holds, we easily see
that $H_{2},$ $H_{3}$ are sections of $\varphi$ and $H_{4}$ is a 2-section of $\varphi$ (by a suitable naming)

and a configuration of a singular fiber of type $I_{4}^{*}$ and $H_{2},$ $H_{3}$ , and $H_{4}$ is either
(c) or (d):



668 K. OGUISO

(c)

Assume that (c) holds. Take $f\in M_{\varphi}(X)$ such that $f(H_{2})=H_{3}$ . Then $f$ has at
least 10 fixed points on $X$. But this is impossible by (1.15). Hence (d) holds.
Since $M_{\varphi}(X)=Z/2Z,$ $\varphi$ has no singular fibers of type II. Therefore the remain-
ing singular fibers of $\varphi$ are two singular fibers of type $I_{1}$ . $\square$

LEMMA (2.12). If $\varphi$ has a singular fiber of tyPe (1) but neither of types(2),
(3), (4) in (2.8), then $\varphi\in \mathcal{J}_{4}$ holds and (2.1) (2) holds for this $\varphi$ .

PROOF. Immediate. $\square$

Hence (2.1) (1) is proved. And except for $\mathcal{J}_{1},$ $\mathcal{J}_{2}$ and $\mathcal{J}_{3}$ , (2.1) (2) is also
proved. We prove the rest in \S 3. Q. E. D.

REMARK (2.13). Any $\mathcal{J}_{m}(m=1, \cdots, 11)$ is non-empty. In fact we can con-
struct elements $\Phi=\Phi_{|\Theta|}$ belonging to each $\mathcal{J}_{m}$ as follows. Here $\Theta$ is represented
by bold-faced lines. Dotted lines (resp. dotted lines with index m) stand for
sections (resp. m-sections).

$\ovalbox{\tt\small REJECT}_{\iota}$

$H_{3}+C^{33}+G_{3}+C^{34}+G_{4}+C^{44}+H_{4}+C^{43}$ is an-
other singular fiber of type $I_{8}$ of $\Phi$ . $C^{13}$ ,
$C^{14}$ , $C^{23}$ , $C^{24}$ , $C^{31}$ , $C^{32}$ , $C^{41}$ , and $C^{42}$ are
sections of $\Phi$ which do not meet one another.

By (2.1) (1), there exists a nodal curve
$A^{44}$ such that $G_{4}+C^{44}+A^{44}+H_{4}$ is another
singular fiber of type $I_{4}$ of $\Phi$. $C^{14}$ , $C^{24}$ ,
$C^{34}$ , $C^{41}$ , $C^{42}$ , $C^{43}$ are sections of $\Phi$ which
do not meet one another.
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$\ovalbox{\tt\small REJECT}_{3}$

$G_{1}+G_{2}+G_{3}+2(C^{41}+C^{42}+C^{43})+3H_{4}$ is an-
other singular fiber of type $IV^{*}$ of $\Phi$ . $C^{ij}$

$(1\leqq i,j\leqq 3)$ are sections of $\Phi$ which do not
meet one another.

$J_{\epsilon}$

$\ovalbox{\tt\small REJECT}$

By (2.1), there exist four nodal curves
$M^{ij}(3\leqq i, j\leqq 4)$ such that $C^{34}+M^{43},$ $C^{43}+$

$M^{34},$ $C^{33}+M^{44},$ $C^{44}+M^{33}$ are other singular
fibers of type I2 of $\Phi$ . $C^{24}+C^{23}+C^{32}+C^{42}+$

$2(H_{2}+C^{22}+G_{2})$ is another singular fiber of
type $\iota_{2}*$ . We note that $M^{44}$ does not meet
$C^{ms}(1\leqq m, s\leqq 4)$ except for $C^{33},$ $C^{21}$ and
$C^{12}$ .

$\ovalbox{\tt\small REJECT}_{8}$
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By (2.1), there exist nodal curves $N^{44}$ and
$P^{44}$ such that $2G_{4}+C^{34}+C^{44}+N^{44}+P^{44}$ is
another singular fiber of type $I_{0}^{*}$ of $\Phi$ . We
note that $C^{24}$ is 2-section of $\Phi$ , and $C^{24}$ does
not meet $N^{44}$ .

$M^{44}$ is a nodal curve in the figure of $\mathcal{J}_{6}$

above.

$N^{44}$ is a nodal curve in the figure of $\mathcal{J}_{9}$

above.

REMARK (2.14). We could not determine the value of $a$ and $b$ except for
$\mathcal{J}_{1}$ and $\mathcal{J}_{2}$ . As for $\mathcal{J}_{8}$ , we could not determine which of $III^{*}+I_{2^{*}}+3I_{2}+I_{1}$ and
$III^{*}+I_{2^{*}}+2I_{2}+III$ actually occurs.

\S 3. A minimal complete set of representatives of $\mathscr{J}_{m}/Aut(X)(m=1,2,3)$ .
In this section we find a minimal complete set of representatives (M. S. R.)

of the orbit space $\mathscr{J}_{m}/Aut(X)$ and prove (2.1) (2) for $m=1,2,3$ . The cases for
$m=4,$ $\cdots$ , 11 will be treated in the next section.

We use the following notation in \S 3, 4.

$\{i, j, k\}=\{p, q, r\}=\{2,3,4\}$ .
For $E_{\xi}$ (see (1.11)), $P_{1},$ $\cdots$ , $P_{4}$ stand for the following 2-torsion points of $E_{\xi}$ .
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We say $X$ is of type (i), (ii), (iii) or (iv) if $E\cross F$ is isomorphic to $E_{\sqrt{-1}}\cross E_{\omega}$ ,
$E_{\rho}\cross E_{\omega},$ $E_{\sqrt{-1}}\cross E_{\rho}$ , or $E_{\rho}\cross E_{\rho’}$ . (See (1.11).)

We say an effective divisor $D$ on $X$ is extendable if there exists a double
Kummer pencil divisor $K_{D}$ such that Supp $D\subset K_{D}$ .

THEOREM (3.1). (I) Put $\varphi_{ip}^{(1)}=\Phi_{|\Theta_{ip}^{(1)}|}$ where

$\Theta j_{p}^{1)}=F_{1}+C_{11}+E_{1}+C_{i1}+F_{i}+C_{ip}+E_{p}+C_{1p}$ and $2\leqq i,$ $p\leqq 4$ .
(1) The set $\{\varphi_{ip}^{(1)}\}_{1\leqq i,p\xi 4}$ is an M. S. R. of $\mathcal{J}_{1}/Aut_{N}(X)$ .
(2) An M. S. R. of $\mathcal{J}_{1}/Aut(X)$ is given as follows where $\varphi_{ip}$

$:=\varphi_{ip}^{(1)}$ .

(II) Put $\varphi_{ijk}^{(2)}=\Phi_{1\Theta_{ijk^{1}}^{(2)}}$ where

$\Theta_{ijk}^{(2)}=E_{2}+C_{i2}+F_{i}+C_{i3}+E_{3}+C_{j3}+F_{j}+C_{j4}+E_{4}+C_{k4}+F_{k}+C_{k2}$ and

$\{i, j, k\}=\{2,3,4\}$ .
(1) The set $\{\varphi_{ijk}^{(2)}\}_{\{i.j.k)=t2.\.4\}}$ is an M. S. R. of $\mathcal{J}_{2}/Aut_{N}(X)$ .
(2) An M. S. R. of $\mathcal{J}_{2}/Aut(X)$ is given as follows where $\varphi_{ijk}$

$:=\varphi_{ijk}^{(2)}$ .

(III) Put $\varphi^{(3)}=\Phi_{|\Theta^{(3)}|}$ where $\Theta^{(3)}=F_{1}+F_{2}+F_{3}+2(C_{14}+C_{24}+C_{34})+3E_{4}$ , then
$\{\varphi^{(3)}\}$ is an M. S. R. of both $\mathcal{J}_{3}/Aut_{N}(X)$ and $\mathcal{J}_{3}/Aut(X)$ .

PROOF. We give the proof only for (II), since the other cases are similar
and easier. Assume $\varphi\in \mathcal{J}_{2}$ . $ThenbyasuitableG_{i},$ $H_{i}andD^{ms}$ , we have $\varphi=\Phi_{|\Theta|}$ ,
where

$\Theta=G_{1}+D^{21}+H_{2}+D^{23}+G"+D^{13}+H_{1}+D^{12}+G_{2}+D^{32}+H_{3}+D^{31}$ .

The other singular fiber of type $I_{4}$ of $\varphi$ can be written as follows: $\Theta’=$

$G_{4}+D^{44}+H_{4}+R^{44}$ . Since $\varphi$ has at least one section, we put this section $D^{14}$

without loss of generality. (As for $D^{**}$ and $R^{**}$ , see \S 2.)
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CLAIM (3.2). $\Theta$ is extendable.

PROOF of (3.2). We consider the elliptic fibration $\Phi_{|L|}$ , where $L=$

$D^{12}+D^{13}+2(H_{1}+D^{14}+G_{4})+D^{44}+R^{44}$ . Then, $G_{2}$ and $G_{3}$ become sections of $\Phi_{1L}$ .
and $H_{4}$ becomes a 2-section. Hence we have $\Phi_{|L|}\in \mathcal{J}_{8}$ . By the way, any
component of a connected divisor $D=D^{23}+H_{2}+D^{21}+G_{1}+D^{31}+H_{3}+D^{32}$ does not
meet $L$ , and hence $D$ is contained in one singular fiber $L’$ of $\Phi_{|L|}$ . By The-
orem (2.1) $L’$ must be of type $III*$ , and then there exists a nodal curve $D^{41}$ .
Moreover, there exist at least two singular fibers of type I2, say, $Q^{43}+D^{42}$ , and
$Q^{42}+D^{43}$ . Then we have $\Phi_{12H_{4}+D^{41}+D^{42}+D^{43}+D^{44|}}\in \mathcal{J}_{4}$ . Hence, there exist nodal
curves $D^{11},$ $D^{22},$ $D^{33},$ $D^{34}$ , and $K_{\Theta}=U_{n.s\Leftarrow 1}^{4}D^{ns}\cup B$ becomes a double Kummer
pencil containing Supp $\Theta$ . Therefore the claim is proved. $\square$

Hence, by (1.13), there exists $h\in Aut_{N}(X)$ such that $h(K_{\Theta})=K_{nat}$ . Then,
putting $\Theta’=h(\Theta)$ (as a divisor), we have Supp $\Theta’\subset K_{nat}$ . So, if necessary,
composing a suitable $g\in Aut_{N}(X)$ induced by a translation on $E\cross F$, we get
$g(\Theta’)=\Theta_{ijk}$ for some $i,$ $j,$ $k$ . Therefore, to prove (1), it is sufficient to show
that if $\varphi_{ijk}$ and $\varphi_{ij^{r}k}$ ’ are in the same orbit, then $i=i’,$ $j=j’$ , and $k=k’$ hold.
Under the above assumption, we have $f(\Theta_{i’j’k’})=\Theta_{ijk}$ by some $f\in Aut_{N}(X)$ .
Since we have $f(B)=B$ , we get the following:

$f(C_{i’3}+C_{j’3}+C_{j’4}+C_{k’4}+C_{k’2}+C_{i’2})=C_{i3}+C_{j3}+C_{j4}+C_{k4}+C_{k2}+C_{i2}$ .
By the way, since $C_{i’3}+C_{j’3}+C_{j’4}+C_{k’4}+C_{k’2}+C_{i’8}$ satisPes the condition on
(1.10), we have the following:

$c_{t’3}+c_{j’3}+c_{j’4}+c_{k’4}+c_{k’2}+c_{i’2}+c_{i3}+c_{j3}+c_{j4}+c_{k4}+c_{k2}+c_{i2}\equiv 0$ $(mod 2\cdot S_{X})$ .

Since $\{i’, j’\}\cap\{i, j\}\neq\emptyset,$ $\{j’, k’\}\cap\{j, k\}\neq\emptyset,$ $\{k’, i’\}\cap\{k, i\}\neq\emptyset$ , we can put,

$\{i’, j’\}=\{x, y\}$ , $\{j’, k’\}=\{u, v\}$ , $\{k’, i’\}=\{a, \beta\}$ ,

$\{i, j\}=\{x, z\}$ , $\{j, k\}=\{u, w\}$ , $\{k, i\}=\{\alpha, \gamma\}$ .

Then we get, $c_{z3}+c_{y3}+c_{w4}+c_{v4}+c_{\gamma 2}+c_{\beta 2}\equiv 0(mod 2\cdot S_{X})$ . Therefore by (1.14),

we get $C_{z3}=C_{y3},$ $C_{w4}=C_{v4},$ $C_{\gamma 2}=C_{\beta 2}$ , $i.e.$ , $z=y,$ $w=v,$ $\gamma=\beta$ . Hence $k=k’$ ,
$i=i’$ and $j=j’$ hold. Next we prove (2). Since we have Aut(X) $=Aut_{N}(X)\cdot\langle\overline{\xi}\rangle$
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(cf. (1.11)), once an M. S. R. of $\mathcal{J}_{i}/Aut_{N}(X)$ is found, we can find an M. S. R.
of $\mathcal{J}_{l}/Aut(X)$ by only examing how $\overline{\xi}$ acts on $\mathcal{J}_{i}/Aut_{N}(X)$ . The automorphism
$\xi$ acts on $\mathcal{J}_{2}/Aut_{N}(X)$ as follows.

Type (i):

$\underline{\overline{\xi}}$ $\underline{\overline{\xi}}$

Type (ii): $\varphi_{14}arrow\varphi_{ras}arrow\varphi_{342}$ , $\varphi_{\iota\ell s}arrow\varphi_{324}arrow\varphi_{42}$

$\overline{\xi}$ $\overline{\xi}$ $\overline{\xi}$ $\xi$

Type (iii): $\varphi_{234}=\varphi_{us}$ , $\varphi_{324}\overline{arrow}\varphi_{\ell 23}$ , $\varphi_{ 4t}=\varphi_{\ell 3I}$

$\overline{\xi}$ $\xi$
$\overline{\xi}$

Type (iv): $\overline{\xi}=\theta$ acts as an identity on $\ovalbox{\tt\small REJECT} x$

Q. E. D.

Finally we prove the rest of (2.1) (2) for $\mathcal{J}_{2}$ and $\mathcal{J}_{3}$ . As for $\mathcal{J}_{1}$ , the proof
is similar for $\mathcal{J}_{2}$ and then omitted.

As for $\mathcal{J}_{2}$ , by (3.1) and (2.3) it is enough to show that $TorM_{\varphi}(X)=Z/2Z$

for
$\varphi=\Phi$ I $H_{1}+C12+G_{2}+CS2+H_{3}+C31+G_{1}+C21+H_{2}+C2S+G_{3}+CI3|$ .

Note that $\varphi$ has six sections $C^{14},$ $C^{24},$ $C^{34},$ $C^{41},$ $C^{42},$ $C^{43}$ . By Lemma (1.15) in
Cox and Zucker [9], p. 8, $f\in M_{\varphi}(X)$ defined by $f(C^{14})=C^{41}$ is a torsion element.
Hence $\varphi$ has no singular fibers of type II and then, by (2.3), $\varphi$ has eight
singular fibers of type $I_{1}$ . Therefore any element of $M_{\varphi}(X)$ has at least 8 fixed
points on $X$ and then Tor $M_{\varphi}(X)$ is 2-elementary. If $f$ and $g$ are 2-torsion
elements in $M_{\varphi}(X),$ $f\circ g$ acts on singular fibers of type $I_{1}$ as an identity. Hence
by (1.15), $f\circ g$ is an identity on $X$. Then we have $f=g$ . Therefore Tor $M_{\varphi}(X)$

$=Z/2Z$ holds.
As for $\mathcal{J}_{3}$ , if $M_{\varphi^{(3)}}(X)$ has a torsion, we get $TorM_{\varphi^{(3)}}(X)=Z/2Z$ like as

above. But this does not happen since the group structure of $\Theta^{(3)}$ is $C\cross Z/3Z$.
$\square$

COROLLARY (3.3). Let $D^{ns}(1\leqq n\neq s\leqq 4)$ be 12 disjoint nodal curves for
arbitrarily fixed $H_{n},$ $G_{n}(n=1,2,3,4)$ . (As for $D^{**}$ , see \S 2.) Then there exists
$\sigma\in Aut_{N}(X)$ such that $\sigma(H_{n})=G_{n},$ $\sigma(G_{n})=H_{n}$ and $\sigma(D^{ns})=D^{sn}$ for all $n,$ $s$ with
$1\leqq n\neq s\leqq 4$ . Especially, there exists $\sigma’\in Aut_{N}(X)$ such that $\sigma’(H_{n})=G_{n},$ $\sigma’(G_{n})$

$=H_{n}$ and $\sigma’(C^{ns})=C^{sn}$ for all $n,$ $s$ with $1\leqq n\neq s\leqq 4$ .

PROOF. We consider the Jacobian fibration $\varphi=\Phi_{\Lambda}$ , where

$\Lambda:=|D^{23}+H_{2}+D^{24}+G_{4}+D^{34}+H_{3}+D^{32}+G_{2}+D^{42}+H_{4}+D^{43}+G_{3}|$ .
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Then $D^{12},$ $D^{13},$ $D^{14},$ $D^{21},$ $D^{31}$ and $D^{41}$ are sections of $\varphi$ and we have $\varphi\in \mathcal{J}_{2}$ . Let
us take three elements $f_{n}(n=2,3,4)\in M_{\varphi}(X)$ such that $f_{n}(D^{1n})=D^{n1}$ . By Cox
and Zucker (loc. cit.), $f_{2},$ $f_{3}$ and $f_{4}$ are torsion elements of $M_{\varphi}(X)$ . Therefore
we have $f_{2}=f_{3}=f_{4}$ . Putting $\sigma=f_{2}=f_{3}=f_{4}$ , we have $\sigma(H_{n})=G_{n},$ $\sigma(G_{n})=H_{n}$

and $\sigma(D^{ns})=D^{sn}$ for all $n,$ $s$ with $1\leqq n\neq s\leqq 4$ . $\square$

COROLLARY (3.4). Let $A^{11},$ $B^{11},$ $D^{1S},$ $D^{S1}(2\leqq s\leqq 4)$ be 8 disjoint nodal curves
on $X$ for arbitranly fixed $H_{n},$ $G_{n}(n=1,2,3,4)$ . Then,

(1) $\Phi_{1}$ $:=\Phi_{1A^{11}+\Sigma_{s=2^{D^{1S}+2H_{1}1}}^{4}}$ and $\Phi_{2}:=\Phi_{1B^{11}+\Sigma_{s=2^{D^{1S}+2H_{1}1}}^{4}}$ are elements of $\mathcal{J}_{4}$ .
(2) If any non-singular fiber of $\Phi_{1}$ is isomorPhc to $E$ , then any non-singular

fiber of $\Phi_{2}$ is isomorPhc to $F$.

PROOF. (1) is obvious. Let us consider the Jacobian fibration $\Phi_{3}$ $:=$

$\Phi_{|A^{11}+B^{11}+H_{1}+G_{1}|}\in \mathcal{J}_{2}$ , and the involution $\sigma\in M_{\Phi_{3}}(X)$ . Without loss of generality,
we may assume that there exist 6 nodal curves $D^{ns}(2\leqq n\neq s\leqq 4)$ and
$\Sigma_{n=2}^{4}(H_{n}+G_{n})+\Sigma_{2\leqq n\neq S\leqq 4}D^{ns}$ is another singular fiber of type $I_{12}$ of $\Phi_{3}$ . By Cox
and Zucker (loc. cit.), 6 sections $D^{1S},$ $D^{s1}(s=2,3,4)$ satisfy $\sigma(D^{1s})=D^{s1}$ . More-
over we have $\sigma(B^{11})=A^{11}$ and $\sigma(H_{1})=G_{1}$ . Therefore $\sigma$ translates a Jacobian
fibration $\Phi_{2}$ to a Jacobian fibration $\Phi_{4}$ $:=\Phi_{|A^{11}+\Sigma_{s}Ds1+2G_{1}|}$ . On the other hand,
it is clear that if any non-singular fiber of $\Phi_{1}$ is isomorphic to $E$ , then any
non-singular fiber of $\Phi_{4}$ is isomorphic to $F$ by (1.13) since $A^{11} \cup\bigcup_{s=2}^{4}(D^{1S}\cup D^{s1})$

is extendable to a double Kummer pencil divisor. $\square$

\S 4. A minimal complete set of representatives of $\mathscr{J}_{m}/Aut(X)(m=4, \cdots , 11)$ .
LEMMA (4.1). For a fixed ordered pair $(i, j, k, p, q, r)$ where $\{i, j, k\}=$

$\{p, q, r\}=\{2,3,4\}$ , there exists a unique nodal curve $R_{ijkpqr}$ such that $R_{ijkpqr}$

meets both $E_{1}$ and $F_{1}$ and does not meet any $C_{ns}(1\leqq n, s\leqq 4)$ except for $C_{ip}$ ,
$C_{jq}$ and $C_{kr}$ . Moreover $R_{ijkpqr}$ is characterized in $S_{X}$ by the following equality.

$r_{ijkpqr}=e+f-c_{ip}-c_{jq}-c_{kr}$ .

PROOF. The curve $M^{44}$ in (2.13) satisfies the condition on $R_{ijkpqr}$ if we
put $H_{4}=F_{1},$ $G_{4}=E_{1},$ $H_{1}=F_{i},$ $G_{2}=E_{p},$ $H_{2}=F_{j},$ $G_{1}=E_{q},$ $H_{3}=F_{k}$ and $G_{3}=E_{r}$ .
Let us show the uniqueness of $R_{ijkpqr}$ . Put $r_{ijkpqr}=ae+bf+\Sigma_{n.s}x_{n\}c_{ns}$ where
$a,$ $b,$ $x_{ns}\in Q$ . By the condition on $R_{ijkpqr}$ and $R_{ijkpqr}^{2}=-2$ , and (0.2) (3), we
get $r_{ijkpqr}=\pm(e+f-c_{ip}-c_{jq}-c_{kr})$ . Since $R_{ijkpqr}\cdot E\geqq 0$ , we have $r_{ijkpqr}=$

$e+f-c_{ip}-c_{jq}-c_{kr}$ . Hence by (1.5), $R_{ijkpqr}$ is unique. $\square$

THEOREM (4.2). (IV) Put $\varphi_{\iota}^{(4)}=\Phi_{|\Theta_{i}^{(4)}|}(i=1,2)$ where $\Theta_{1}^{(4)}=2F_{1}+C_{11}+C_{12}$

$+C_{13}+C_{14},$ $\Phi_{2}^{(4)}=2E_{1}+C_{11}+C_{21}+C_{31}+C_{41}$ . Then $\{\varphi_{1}^{(4)}, \varphi_{2}^{(4)}\}$ is an M. S. R. of
both $\mathscr{J}_{4}/Aut_{N}(X)$ and $\mathscr{J}_{4}/Aut(X)$ .
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(V) Put $\varphi_{ip}^{(5)}=\Phi_{|\Theta_{ip}^{(5)}|}$ where

$\Theta_{ip}^{(5)}=C_{k1}+C_{j1}+C_{1q}+C_{1r}+2(E_{1}+C_{i1}+F_{i}+C_{ip}+E_{p}+C_{1p}+F_{1})$ and
$2\leqq i,$ $p\leqq 4$ .

(1) The set $\{\varphi l_{p}^{5)}\}_{2\leqq i.p\leqq 4}$ is an S. R. (a non-minimal set of representatives)

of $\mathcal{J}_{5}/Aut_{N}(X)$ .
(2) The set $\{\varphi_{22}^{(5)}\}$ is an M. S. R. of both $\mathcal{J}_{5}/Aut_{N}(X)$ and $\mathcal{J}_{5}/Aut(X)$ .
(VI) Put $\varphi_{ip}^{(6)}=\Phi_{|\Theta_{ip}^{(6)}|}$ where

$\Theta 1_{p}^{6)}=C_{k1}+C_{j1}+C_{1q}+C_{1r}+2(E_{1}+C_{11}+F_{1})$ and $2\leqq i,$ $p\leqq 4$ .
(1) The set $t\varphi_{ip}^{(6)}\}_{2\leqq i.p\leqq 4}$ is an M. S. R. of $\mathcal{J}_{6}/Aut_{N}(X)$ .
(2) An M. S. R. of $\mathcal{J}_{6}/Aut(X)$ is given as follows where $\varphi_{ip}$

$:=\varphi t_{p}^{6)}$ .

(VII) Put $\varphi l_{jp}^{7)}=\Phi_{1\Theta l_{jp^{1}}^{7)}}$ where

$\Theta_{ijp}^{(7)}=C_{ip}+C_{kp}+C_{j1}+C_{k1}+2(E_{p}+C_{1p}+F_{1}+C_{11}+E_{1})$ and
$2\leqq i\neq j\leqq 4,2\leqq p\leqq 4$ .

(1) The set $\{\varphi 1_{jp}^{7)}\}_{2\leqq i\neq j\leqq 4,2\leqq p\leqq 4}$ is an S. R. of $\mathcal{J}_{7}/Aut_{N}(X)$ .
(2) The set $\{\varphi 1_{jp}^{7)}\}_{2\leqq i<j\leqq 4.2\leqq \mathcal{D}\leqq 4}$ is an M. S. R. of $\mathcal{J}_{7}/Aut_{N}(X)$ .
(3) An M. S. R. of $\mathcal{J}_{7}/Aut(X)$ is given as follows where $\varphi_{ijp}$

$:=\varphi l_{jp}^{7)}$ .

(VIII) Put $\varphi_{ijpq}^{(8)}=\Phi_{1\Theta_{ljpq^{1}}^{(8)}}$ where

$\Theta_{ijpq}^{(8)}=C_{jp}+2E_{p}+3C_{1p}+4F_{1}+3C_{11}+2E_{1}+C_{i1}+2C_{1q}$ and
$2\leqq i\neq j\leqq 4,2\leqq p\neq q\leqq 4$ .

(1) The set $\{\varphi 1_{jpq}^{8)}\}_{2\leqq i\neq j\leqq 4.2\leqq p\neq q\leqq 4}$ is an S. $R$ of $\mathcal{J}_{8}/Aut_{N}(X)$ .
(2) The set $\{\varphi 1_{j23}^{8)}\}_{2\leqq i\neq j\leqq 4}$ is an M. S. R. of $\mathcal{J}_{8}/Aut_{N}(X)$ .
(3) An M. S. R. of $\mathcal{J}_{8}/Aut(X)$ is given as follows where $\varphi_{ij23}:=\varphi\}_{j23}^{8)}$ .
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(IX) Put $\varphi_{ijp}^{(9)}=\Phi_{1\Theta_{ijp^{\rceil}}^{(9)}}$ where

$\Theta_{ijp}^{(9)}=C_{jp}+2E_{p}+3C_{1p}+4F_{1}+5C_{11}+6F_{1}+3C_{k1}+4C_{i1}+2F_{i}$ and
$2\leqq i\neq j\leqq 4,2\leqq p\leqq 4$ .

(1) The set $\{\varphi_{ijp}^{(9)}\}_{2\leqq i\neq j\leqq 4.2\leqq p\leqq 4}$ is an S. R. of $\mathcal{J}_{9}/Aut_{N}(X)$ .
(2) The set $\{\varphi_{223}^{(9)}\}$ is an M. S. R. of both $\mathcal{J}_{9}/Aut_{N}(X)$ and $\mathcal{J}_{9}/Aut(X)$ .
(X) Put $\varphi_{ijkpqr}^{(10)}=\Phi_{1\Theta_{ijkpqr^{1}}^{(10)}}$ where

$\Theta_{tjkpqr}^{(10)}=C_{iq}+C_{1q}+C_{11}+R_{ijkpqr}+2(E_{q}+C_{kq}+F_{k}+C_{kp}+E_{p}+C_{jp}+F_{j}+C_{j1}+E_{1})$

and $\{i, j, k\}=\{p, q, r\}=\{2,3,4\}$ .
(1) The set { $\varphi_{ijkpqr}^{(10)}I_{li.j,k1=tp.q.r\}}$ is an S. R. of $\mathcal{J}_{1^{|}J}/Aut_{N}(X)$ .
(2) The set $\{\varphi_{ijk234}^{(10)}\}_{ti.j.k\}=\{2.’.4\}}$ is an M. S. R. of $\mathcal{J}_{10}/Aut_{N}(X)$ .
(3) An M. S. R. of $\mathcal{J}_{10}/Aut(X)$ is given as follows where $\varphi_{ijk234}:=\varphi_{ijk234}^{(10)}$ .

(XI) Put $\varphi_{ijkpqr}^{(11)}=\Phi_{1\Theta_{ijkpq\tau^{1}}^{(11)}}$ where

$\Theta_{ijkpqr}^{(11)}=C_{i1}+C_{iq}+C_{11}+R_{ijkpqr}+2(F_{i}+C_{ir}+E_{r}+C_{1r}+F_{1})$ and

$\{i, j, k\}=\{p, q, r\}=\{2,3,4\}$ .
(1) The set $\{\varphi_{ijkpqr}^{(11)}\}$ is an S. R. of $\mathcal{J}_{11}/Aut_{N}(X)$ .
(2) The set $\{\varphi_{ijkpqr}^{(11)}\}_{2\leqq i<k\leq 4.2\leq p<r\leq 4}$ is an M. S. R. of $\mathcal{J}_{11}/Aut_{N}(X)$ .
(3) An M. S. R. of $\mathcal{J}_{11}/Aut(X)$ is given as follows where $\varphi_{ijkpqr}$ $:=\varphi_{ijkpqr}^{(11)}$ .

COROLLARY (4.3). For each $\mathcal{J}_{m},$ $\#(\mathcal{J}_{m}/Aut(X))$ (the number of non-isomorphjc
elements) is as follows.
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PROOF. We give a proof for (VII) and (X). For other cases, we only
mention key claims because the verification of them is similar.

PROOF OF (VII). Obviously, we have $\varphi_{ijp}^{(7)}\in \mathcal{J}_{7}$ . First we prove (1). Let
$\varphi=\Phi_{|\Theta|}$ be an element of $\mathcal{J}_{7}$ . We may assume that $\Theta$ is of type $I_{4}^{*}$ and that
$\Theta$ can be represented as follows:

$\Theta=D^{13}+D^{43}+2(G_{3}+D^{23}+H_{2}+D^{21}+G_{1})+D^{31}+D^{41}$ .

Then $H_{1},$ $H_{3}$ are sections and $H_{4}$ is a 2-section of $\varphi$ . By a similar method in
the proof of Theorem (3.1), we see easily that $\Theta$ is extendable (to a double
Kummer pencil divisor). Hence there exists $f\in Aut_{N}(X)$ such that Supp $f(\Theta)$

$\subset K_{nat}$ . By the way, by (1.7), for any $h\in Aut(X)$ , either $h(UH_{n})=UE_{n}$ and
$h(\cup G_{n})=UF_{n}$ or $h(\cup G_{n})=UE_{n}$ and $h(UH_{n})=UF_{n}$ hold. Then (if necessary,
composing a suitable element of $Aut_{N}(X;U_{n},{}_{s}C_{ns}))$ we see that $f(\Theta)$ becomes
either (a) or (b) for some $f\in Aut_{N}(X)$ :

(a)

Assume that $f(\Theta)$ is of type (b). Then, by composing a suitable automorphism
$g$ of $X$, constructed in the corollary (3.3), we see that $g\circ f(\Theta)Iis$ of type (a).
Therefore (1) is proved.

Next we prove (2). It is sufficient to show the following.

CLAIM (4.4). The fibrations $\varphi_{ijp}^{(7)}$ and $\varphi_{i’j’p^{r}}^{(7)}$ are in the same orbit of $\mathcal{J}_{7}/$

$Aut_{N}(X)$ if and only if $p=p’,$ $\{i, j\}=\{i’, j’\}$ hold,

PROOF OF (4.4). If part: Choose $g\in Aut_{N}(X;U_{n},{}_{s}C_{ns})$ such that

$E_{p}arrow\geq E_{1}$ , $E_{q}arrow E_{r}$ , and $F_{1}-F_{l}$ $(l=1, \cdots , 4, \{p, q, r\}=\{2,3,4\})$ .
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Then we have $g(\Theta_{ijp}^{(7)})=\Theta_{jip}^{(7)}$ .
Only if part: Since $\Theta_{ljp}^{(7)}$ is a unique singular fiber of $\varphi_{ijp}^{(7)}$ of type $I_{4}^{*}$ ,

$f(\Theta_{ijp}^{(7)})=\Theta_{ij’p’}^{(7)}$ holds for some $f\in Aut_{N}(X)$ . Then we easily see that
$f(C_{11}\cup C_{1p}\cup C_{k1}\cup C_{kp})=C_{11}\cup C_{1p’}\cup C_{k’1}\cup C_{k’p’}$ . Hence, by (1.10), we have
$C_{11}+C_{1p}+C_{k1}+C_{kp}+C_{11}+C_{1p^{r}}+C_{k’1}+C_{k’p’}\equiv 0(mod 2\cdot S_{X})$ . Therefore, by (1. 14),

the claim holds. $\square$

By the same method as in (3.1), we immediately see that (3) also holds.

PROOF OF (X). Obviously we have $\varphi_{ijkpqr}^{(10)}\in \mathcal{J}_{10}$ . Let $\varphi=\Phi_{|\theta|}$ be an element
of $\mathcal{J}_{10}$ . We may assume that $\Theta$ is of type $I_{8}^{*}$ and represented as follows:

$\Theta=D^{11}+Q^{11}+D^{13}+D^{23}+2(G_{1}+D^{31}+H_{3}+D^{32}+G_{2}+D^{42}+H_{4}+D^{43}+G_{3})$ .
Let us consider the Jacobian fibration $\varphi’=\Phi$

} $D^{11}+Q^{11}+G_{1}+H_{1}|\in \mathcal{J}_{2}$ . Since $D^{13}$ and
$D^{31}$ are sections, there exist nodal curves $D^{24}$ and $D^{34}$ such that another singular
fiber of type $I_{12}$ of $\varphi’$ is $G_{2}+D^{32}+H_{3}+D^{34}+G_{4}+D^{24}+H_{2}+D^{23}+G_{3}+D^{43}+H_{4}+D^{42}$ .
By the way, since $D^{13}$ is a section of $\varphi’$ and $\varphi’\in \mathcal{J}_{2}$ , there exist 6 disjoint
sections $D^{13},$ $D^{\prime 12},$ $D^{\prime 14},$ $D^{\prime 21},$ $D^{\prime 41}$ and $D^{;31}$ as was seen in the proof (2.1) (2) for
$\mathcal{J}_{2}$ . Let us consider two elements $\sigma$ and $\sigma’$ of $M_{\varphi’}(X)$ such that $\sigma(D^{13})=D^{31}$ ,
$\sigma’(D^{13})=D^{\prime\S 1}$ . By Cox and Zucker (loc. cit.), both $\sigma$ and $\sigma’$ are torsion elements
of $M_{\varphi’}(X)$ . Therefore $\sigma=\sigma’$ and $D^{31}=D^{\prime 31}$ hold. So we can put $D^{\prime 12}=D^{12}$ ,
$D^{\prime 14}=D^{14}$ , $D^{\prime 21}=D^{21}$ , and $D^{\prime 41}=D^{41}$ . By (3.4), if any non-singular fiber of
$\Phi_{1}$ $:=\Phi_{1D^{11}+D^{12}+D^{13}+D^{14}+2H_{1}\mathfrak{l}}\in \mathcal{J}_{4}$ is isomorphlc to $E$ , any non-singular fiber of
$\Phi_{|Q^{11}+D^{12}+D^{13}+D^{14}+2H_{1}|}$ is isomorphic to $F$. Thus, if necessary, changing the names
of $D^{11}$ and $Q^{11}$ , we may assume that any non-singular fiber of $\Phi_{1}$ is isomorphic
to $F$. By $\Phi_{1},$ $\Theta-Q^{11}$ is extended to a double Kummer pencil divisor
$K_{D}= \bigcup_{1\leq n\neq s\leqq 4}D^{ns}\cup D^{11}\cup D^{22}\cup D^{33}\cup D^{44}\cup B$ . Then, by the assumption on $\Phi_{1}$ ,
there exists $f\in Aut_{N}(X)$ such that $f(K_{D})=K_{nat}$ , $f(D^{11})=C_{11}$ , $f(\Theta-Q^{11})=$

$\Theta_{ijkpqr}^{(10)}-R_{ijkpqr}$ for suitable $(i, j, k, P, q, r)$ and $f(Q^{11})$ meets both $E_{1}$ and $F_{1}$

and does not meet any $C_{n\epsilon}$ except for $C_{ip},$ $C_{jq}$ and $C_{kr}$ . Hence by (4.1), we
have $f(Q^{11})=R_{ijkpqr}$ and (1) holds.

Next we prove (2). It is sufficient to show the following.

CLAIM (4.5). Let $\mathfrak{S}_{3}$ be the permutation group of 3 letters 2, 3, 4. The
fibrations $\varphi_{ijkpqr}^{(10)}$ and $\varphi j_{j}^{10}\}_{k’p’q’r’}$ are in the same orbit of $\mathcal{J}_{10}/Aut_{N}(X)$ if and

only if $(\begin{array}{lll}i j ki’ j’ k’\end{array})=(\begin{array}{lll}p q rp’ q’ r’\end{array})$ holds as an element of $\mathfrak{S}_{a}$ .

PROOF. Only if part: If $\varphi_{ijkpqr}^{(10)}$ and $\varphi_{i’j’k’p’q^{r}r’}^{(10)}$ are in the same orbit of
$\mathcal{J}_{10}/Aut_{N}(X),$ $g(R_{ijkpqr}\cup C_{11})=R_{i’j’k’p’q’r’}\cup C_{11}$ holds for some $g\in Aut_{N}(X)$ .
Then, by (1.10) and (1), we get $C_{ip}+C_{jq}+C_{kr}+C_{i’p’}+C_{j’q’}+C_{k’r’}\equiv 0(mod 2\cdot S_{X})$ .
Hence only if part holds.
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If part: It is sufficient to construct the following symplectic automorphisms:
$\tau(\Theta_{ijkpqr}^{(10)})=\Theta_{jkiqrp}^{(10)},$ $\rho(\Theta_{ljkpqr}^{(10)})=\Theta_{kjirqp}^{(10)}$ .

$\tau$ : Make a Jacobian fibration $\Phi_{|\Omega|}$ where $\Omega=C_{11}+R_{ijkpqr}+E_{1}+F_{1}$ .
Then $\Phi_{1}0_{1}$ is in $\mathcal{J}_{2}$ and the other singular fiber of $\Phi_{|\Omega|}$ of type $I_{12}$ is
$\Omega’=F_{i}+C_{iq}+E_{q}+C_{kq}+F_{k}+C_{kp}+E_{p}+C_{jp}+F_{j}+C_{jr}+E_{r}+C_{ir}$ and $C_{i1},$ $C_{j1},$ $C_{k1}$ ,
$C_{1p},$ $C_{1q},$ $C_{1r}$ are sections. Take $\tau\in M_{\Phi_{1\Omega t}}$ such that $\tau(C_{j1})=C_{k1}$ . Then by the
group structures of $\Omega$ and $\Omega^{J}$ , we have

$\tau(C_{11})=C_{11}$ , $\tau(C_{jp})=C_{kq}$ , $\tau(C_{kp})=C_{jq}$ ,

$\tau(R_{ijkpqr})=R_{ijkpqr}=R_{jkiqpr}$ , $\tau(C_{kq})=C_{ir}$ , $\tau(C_{iq})=C_{jr}$ .
Since for the torsion element $\sigma\in M_{\Phi_{|\Omega|}}$ the equalities $\sigma(C_{1q})=C_{j1}$ and $\sigma(C_{1r})=$

$C_{k1}$ hold, we have $\tau(C_{1q})=C_{1r}$ . Hence $\tau(\Theta_{ijkpqr}^{(10)})=\Theta_{jkiqrp}^{(10)}$ holds for this $\tau$ .
$\rho$ : Make a Jacobian fibration $\Phi$

ILI where $L=C_{11}+R_{ijkpqr}+C_{iq}+C_{kq}+2(F_{1}$

$+C_{1q}+E_{q})$ .
So we have $\Phi_{|L|}\in \mathcal{J}_{8}$ , and $F_{i}$ and $F_{k}$ are sections of $\Phi_{|L|}$ . Take $\rho\in M_{\Phi_{|L|}}(X)$

such that $\rho(F_{i})=F_{k}$ . Then, by a similar consideration as above, we see that
$\rho(\Theta_{ijkpqr}^{(10)})=\Theta_{kjirqp}^{(10)}$ holds for this $\rho$ . $\square$

Since $\gamma_{ijkpqr}$ is explicitly represented in $S_{X}$ , by the same method as in (3.1),

we easily show (3).
Finally we mention key claims to find an M. S. R. of $\mathcal{J}_{m}/Aut_{N}(X)$ from an

S. R. of $\mathcal{J}_{m}/Aut_{N}(X)$ for the other cases.

CLAIM (4.6). All $\varphi_{ip}^{(5)}$ are in the $s$ame orbit of $\mathcal{J}_{5}/Aut_{N}(X)$ .
(Make a Jacobian fibration in $\mathcal{J}_{3}$ , and take suitable translation automorphisms
of it.)

CLAIM (4.7). If $\varphi_{ip}^{(6)}$ and $\varphi_{i’p’}^{(6)}$ are in the same orbit of $\mathcal{J}_{6}/Aut_{N}(X)$ , then
$i=i’$ and $P=P’$ .

CLAIM (4.8). $\varphi_{ifpq}^{(8)}$ and $\varphi_{ijp’q’}^{(8)}$ are in the same orbit of $\mathcal{J}_{8}/Aut_{N}(X)$ if and
only if the ordered pair $(i’, j’, p’, q’)$ is one of the following six ordered pajrs:

$(i, j, p, q)$ , $(j, i, p, r)$ , $(j, k, q, r)$ , $(k, j, q, p)$ , $(jk, r, q)$ , $(k, i, r, p)$ .
(For if part, make a Jacobian fibration in $\mathcal{J}_{1}$ , and take a suitable translation
automorPhism $f$ of it. Then we have $f(\Theta_{ijpq}^{(8)})=\Theta_{ikrq}^{(8)}$ . By taking a suitable
$g \in Aut_{N}(X;\bigcup_{n}.{}_{s}C_{ns})$ , we have $g(\Theta_{ijpq}^{(8)})=\Theta_{jipr}^{(8)}.)$

CLAIM (4.9). All $\varphi_{ijp}^{(9)}$ are in the same orbit of $\mathcal{J}_{9}/Aut_{N}(X)$ .
(Make a suitable Jacobian fibration in $\mathcal{J}_{3}$ . Then $f(\Theta_{ijp}^{(9)})=\Theta_{ijq}^{(9)}$ holds for a
suitable translation automorphism $f$ of it. Make a suitable Jacobian fibration
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in $\mathcal{J}_{1}$ . Then the equalities $g(\Theta_{ij2}^{(9)})=\Theta_{ji2}^{(9)}$ and $h(\Theta_{ij2}^{(9)})=\Theta_{ik2}^{(9)}$ hold for suitable
translation automorphisms $g$ and $h$ of it.)

CLAIM (4.10). The fibrations $\varphi l_{jkpqr}^{11)}$ and $\varphi_{i’f’k’p’q’r’}^{(11)}$ are in the same orbit of
$\mathcal{J}_{11}/Aut_{N}(X)$ if and only if $j=j’$ and $q=q’$ hold.
(The other singular fiber of type $I_{4}^{*}$ of $\varphi_{ijkpqr}^{(11)}$ is

$\Gamma_{ijkpqr}^{(11)}=C_{j1}+S_{ijkpqr}+C_{k1}+C_{kq}+2(F_{j}+C_{jp}+E_{p}+C_{kp}+F_{k})$ .
Here $S_{ijkpqr}$ is a nodal curve characterized by $s_{ijkpqr}=e+f-c_{1q}-c_{ip}-c_{kr}$ .

If part: By taking a suitable element $\tau\in Aut_{N}(X;\bigcup_{n}.{}_{s}C_{ns})$ , we have
$\tau(\Theta_{ijkpqr}^{(11)})=\Gamma_{ijkrqp}^{(11)}$ . By making a suitable Jacobian fibration in $\mathcal{J}_{1}$ and taking a
suitable translation automorphism $\rho$ of it, we have $\rho(\Theta_{ijkpqr}^{(11)})=\Theta_{kjirqp}^{(11)}.)$

As for $\mathcal{J}_{4}$ , the statement is trivial since $E$ and $F$ are not mutually isoge-
nous. This completes the proof. Q. E. D.
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