On Jacobian fibrations on the Kummer surfaces of the product of non-isogenous elliptic curves

By Keiji Oguiso

(Received Aug. 17, 1988)

Introduction.

Let X be a Kummer surface obtained by the minimal resolution of the quotient surface of the product abelian surface $E \times F$ by the inversion automorphism, where E and F are arbitrarily fixed complex elliptic curves which are not mutually isogenous. As is well-known, X is an algebraic $K 3$ surface.

This paper is concerned with Jacobian fiber space structures on X, i.e., elliptic fiber space structures with a section on X, or in other words, structures as an elliptic curve over $\boldsymbol{C}\left(\boldsymbol{P}^{1}\right)$. By \mathscr{f}_{x} we denote the set of all Jacobian fibrations of X.

Let us recall that any elliptic fibration of X is given by the morphism $\Phi_{|\theta|}: X \rightarrow \boldsymbol{P}^{1}$ defined by the complete linear system $|\Theta|$ which contains a divisor having the same type as a non-multiple singular fiber of an elliptic surface. By definition, an irreducible curve C is a section of $\Phi_{|\theta|}$ if and only if C satisfies $C \cdot \Theta=1$. We note that every section of $\Phi_{|\theta|}$ is a nodal curve, i. e., a non-singular rational curve whose self-intersection number is -2 . The group $\operatorname{Aut}(X)$ acts on g_{X} in an obvious manner ; $f: \Phi_{|\theta|} \rightarrow \Phi_{|f(\theta)|}$ for $f \in \operatorname{Aut}(X)$.

By Sterk [12], the orbit space $g_{X} / \operatorname{Aut}(X)$ is finite, i.e., the number of non-isomorphic Jacobian fibrations of X is finite.

The purpose of this paper is to describe all Jacobian fibrations of X modulo isomorphism, or saying more clearly, to find a minimal complete set of representatives of the orbit space $g_{x} / \operatorname{Aut}(X)$.

As a first consequence of this paper, we see that g_{X} is divided into eleven $\operatorname{Aut}(X)$-stable subsets g_{1}, \cdots, g_{11} by types of the singular fibers, and the Mordell-Weil group of its member is calculated for each $g_{m}(m=1, \cdots, 11)$ as follows (Table A, Theorem (2.1) in §2). Here, for example, by $2 \mathrm{I}_{8}+8 \mathrm{I}_{1}$ we mean two singular fibers of type I_{8} (Kodaira's notation) and eight singular fibers of type I_{1}.

We note that there exist infinitely many nodal curves on X since X has a Jacobian fibration whose Mordell-Weil group is an infinite group by Table A. From this fact we can construct infinitely many Jacobian fibrations of X.

Table A.

	g_{1}	g_{2}	g_{3}	\boldsymbol{g}_{4}	\boldsymbol{g}_{5}
Type of the singular fibers	$2 \mathrm{I}_{8}+8 \mathrm{I}_{1}$	$\mathrm{I}_{4}+\mathrm{I}_{12}+8 \mathrm{I}_{1}$	$2 \mathrm{IV}^{*}+a \mathrm{I}_{1}+b \mathrm{II}$ $a+2 b=8$	$4 \mathrm{I}_{0}^{*}$	$\mathrm{I}_{6}^{*}+6 \mathrm{I}_{2}$
Mrdell-Weil group	$\boldsymbol{Z}^{2} \oplus \boldsymbol{Z} / 2 \boldsymbol{Z}$	$\boldsymbol{Z}^{2} \oplus \boldsymbol{Z} / 2 \boldsymbol{Z}$	\boldsymbol{Z}^{4}	$(\boldsymbol{Z} / 2 \boldsymbol{Z})^{2}$	$(\boldsymbol{Z} / 2 \boldsymbol{Z})^{2}$

\boldsymbol{g}_{6}	\mathcal{g}_{7}	\mathcal{g}_{8}	\mathcal{g}_{9}	\mathscr{g}_{10}
$2 \mathrm{I}_{2}^{*}+4 \mathrm{I}_{2}$	$\mathrm{I}_{4}^{*}+2 \mathrm{I}_{0}^{*}+2 \mathrm{I}_{1}$	$\mathrm{III}^{*}+\mathrm{I}_{2}^{*}+3 \mathrm{I}_{2}+\mathrm{I}_{1}$ or $\mathrm{III}{ }^{*}+\mathrm{I}_{2}^{*}+2 \mathrm{I}_{2}+\mathrm{III}$	$\mathrm{II}^{*}+2 \mathrm{I}_{0}^{*}+a \mathrm{I}_{1}+b \mathrm{II}$ $a+2 b=2$	$\mathrm{I}_{8}^{*}+\mathrm{I}_{0}^{*}+a \mathrm{I}_{1}+b \mathrm{II}$ $a+2 b=4$
$(\boldsymbol{Z} / 2 \boldsymbol{Z})^{2}$	$\boldsymbol{Z} / 2 \boldsymbol{Z}$	$\boldsymbol{Z} / 2 \boldsymbol{Z}$	$\{\mathrm{id}\}$	$\{\mathrm{id}\}$

g_{11}
$2 \mathrm{I}_{4}^{*}+a \mathrm{I}_{1}+b \mathrm{II}$ $a+2 b=4$
$\{\mathrm{id}\}$

Let us note that X is isomorphic to one of the following:
(i) $\operatorname{Km}\left(E_{\sqrt{-1}} \times E_{(-1+\sqrt{-3}) / 2}\right)$,
(ii) $\operatorname{Km}\left(E_{\rho} \times E_{(-1+\sqrt{-3}) / 2}\right)$,
(iii) $\operatorname{Km}\left(E_{\sqrt{-1}} \times E_{\rho^{\prime}}\right)$,
(iv) $\operatorname{Km}\left(E_{\rho} \times E_{\rho^{\prime}}\right)$,
where E_{ξ} is the elliptic curve whose period is ξ in the period domain $H / S L_{2}(\boldsymbol{Z})$ and ρ and ρ^{\prime} are elements of $H / S L_{2}(\boldsymbol{Z})$ which are neither $\sqrt{-1}$ nor $(-1+\sqrt{-3}) / 2$.

As a second consequence of this paper, we calculate the number of nonisomorphic Jacobian fibrations of X as follows.

Table B.

Type	g_{1}	f_{2}	f_{3}	f_{4}	g_{5}	f_{6}	g_{7}	g_{8}	g_{9}	g_{10}	g_{11}	Total
(i)	2	1	1	2	1	2	2	1	1	1	2	16
(ii)	3	2	1	2	1	3	3	2	1	2	3	23
(iii)	6	3	1	2	1	6	6	3	1	3	6	38
(iv)	9	6	1	2	1	9	9	6	1	6	9	59

Outline of proof is as follows.
Via the natural rational map $\pi: E \times F \rightarrow X$, we have 24 nodal curves on X, i. e., four branched nodal curves $E_{j}(j=1, \cdots, 4)$ which come from E, four
branched nodal curves $F_{i}(i=1, \cdots, 4)$ which come from F, and 16 exceptional nodal curves $C_{i j}$.

First we prove the following Table C concerning the intersection numbers of nodal curves on X Lemma (1.6) and (1.7) in §1) by studying a certain involution on X which was first introduced by Nikulin [4].

Table C.

	$E_{j}(j=1, \cdots, 4)$	$F_{i}(i=1, \cdots, 4)$	other nodal curves
E_{j}	$E_{j} \cdot E_{l}=-2 \delta_{j l}$	$E_{j} \cdot F_{i}=0$	there is unique j such that $D \cdot E_{j}=1$ and $D \cdot E_{l}=0(l \neq j)$
F_{i}		$F_{i} \cdot F_{k}=-2 \delta_{i k}$	there is unique i such that $D \cdot F_{i}=1$ and $D \cdot F_{k}=0(k \neq i)$
other nodal curves			$D \cdot D^{\prime} \equiv 0(\bmod 2)$

By using Table C, we examine singular fibers and sections of Jacobian fibrations of X and we get Table A.

A divisor $\cup_{i}\left(E_{i} \cup F_{i}\right) \cup \cup_{i, j} C_{i j}$ on X is called the natural double Kummer pencil divisor, and a divisor on X which has the same configuration as the natural double Kummer pencil divisor is called a double Kummer pencil divisor. Let us put $\operatorname{Aut}_{N}(X):=\left\{f \in \operatorname{Aut}(X) ;\left.f^{*}\right|_{H^{2,0}(X)}=\mathrm{id}\right\}$.

Next we prove the following Lemma 1 Lemma (1.8) and Corollary (1.13) in §1) by using Torelli Theorem for complex tori of dimension 2.

Lemma 1. The group $\operatorname{Aut}_{N}(X)$ acts transitively on the set of all double Kummer pencil divisors on X.

Using Table A and Lemma 1, we prove the following
Lemma 2. Let φ be a Jacobian fibration of X. Then there exist a singular fiber Θ of φ and $g \in \operatorname{Aut}_{N}(X)$ such that $\operatorname{Supp} g(\Theta)$ is contained in the natural double Kummer pencil divisor except for at most one component of $g(\Theta)$.

By using Lemma 2 and by constructing certain automorphisms of X, we determine a minimal complete set of representatives of the orbit space $g_{m} / \operatorname{Aut}_{N}(X)(m=1, \cdots, 11)$. Finally by studying the quotient $\operatorname{group} \operatorname{Aut}(X) /$ $\operatorname{Aut}_{N}(X)$ and the action of $\operatorname{Aut}(X) / \operatorname{Aut}_{N}(X)$ on $g_{m} / \operatorname{Aut}_{N}(X)$, we determine a minimal complete set of representatives of the orbit space $g_{m} / \operatorname{Aut}(X)(m=1, \cdots$, 11). As a corollary, we get Table B.

The contents of this paper are as follows.
In §0, we fix some notation and recall some basic facts about Kummer surfaces and elliptic $K 3$ surfaces. Main references of this section are Morrison
[11] and Shioda and Inose [8].
In §1, we prove Table C and Lemma 1. We also study the quotient group $\operatorname{Aut}(X) / \operatorname{Aut}_{N}(X)$. In the course of proof, the condition that E and F are not mutually isogenous is essential. As for $\S 1$, the author was very much inspired by works of Nikulin [4] and Shioda and Mitani [7].

In $\S 2$, we classify all Jacobian fibrations of X according to the types of the singular fibers.

In $\S 3$ and 4 , we determine a minimal complete set of representatives of the orbit space $\mathcal{g}_{m} / \operatorname{Aut}(X)(m=1, \cdots, 11)$.

I would like to thank Prof. T. Terasoma for many valuable conversation and suggestion and also thank Prof. T. Shioda and Prof. Y. Kawamata for their advice and encouragement.

§ 0. Preliminaries.

Throughout this paper, we assume that the ground field is the complex number field \boldsymbol{C}. For a divisor we use a capital letter, and for its cohomology class the corresponding small letter, e.g., $d=c_{1}(\mathcal{O}(D))$. When a group G acts on a set S, by a minimal complete set (resp. a non-minimal complete set) of representatives of the orbit space S / G, we mean a subset of S which meets each orbit of S by G at exactly one (resp. at least one) point.

1. Kummer surfaces. Let A be an abelian surface. The Kummer surface $\mathrm{Km}(A)$ is the algebraic $K 3$ surface obtained by the minimal resolution of the quotient surface $A /\left\langle-\mathrm{id}_{A}\right\rangle$. Then we have the natural rational map $\pi_{A}: A \rightarrow$ $\mathrm{Km} A$ whose fundamental points are the 2 -torsion points of A, say r_{k} ($k=1, \cdots$, 16), and we let C_{k} denote the 16 nodal curves (i.e., nonsingular rational curves with self intersection number -2) on $\operatorname{Km}(A)$ corresponding to r_{k}. Via the morphism $\pi_{A} \mid A-\bigcup_{k}\left\{r_{k}\right\}$, we get a natural homomorphism $\pi_{A^{*}}: H^{2}(A, \boldsymbol{Z}) \rightarrow$ $\left(\oplus_{k} \boldsymbol{Z} c_{k}\right)^{\perp} \subset H^{2}(\operatorname{Km}(A), \boldsymbol{Z})$. The map $\pi_{A^{*}}$ satisfies the following properties:
$\pi_{A *} x \cdot \pi_{A *} y=2 x \cdot y$,
$\pi_{A^{*}}$ preserves the Hodge decompositions, and
$\pi_{A^{*}}$ is an isomorphism onto $\left(\oplus_{k} \boldsymbol{Z} c_{k}\right)^{\perp}$.
Especially, the induced map $\pi_{A *}: T_{A} \rightarrow T_{\mathrm{Km}(A)}$ is an isomorphism which preserves Hodge decomposition. Here, for an algebraic surface Y such that $H^{2}(Y, \boldsymbol{Z})$ is torsion free, we put:
$S_{Y}:=$ the Neron Severi group of Y (the algebraic lattice),
$T_{Y}:=S_{Y}^{\frac{1}{Y}}$ in $H^{2}(Y, \boldsymbol{Z})$ (the transcendental lattice).
For more detail, we refer the reader to Morrison [11], Shioda and Inose [8], and Pjateckiî-Šapiro and Šafarevič [13].

Let X be the Kummer surface $\operatorname{Km}(E \times F)$ where E and F are elliptic curves
which are not mutually isogenous. The last condition on E and F is equivalent to the condition that the Picard number of $\operatorname{Km}(E \times F)$ is 18 . Throughout this paper we fix E, F and X arbitrarily.

We use the following notation.
$\pi:=\pi_{E \times F}: E \times F \rightarrow X$ (the natural rational map)
ω_{X} (resp. $\left.\omega_{E \times F}\right):=$ a nowhere vanishing holomorphic 2 -form on X (resp. $E \times F$). (These are determined up to non-zero scalar multiples, and satisfy $\pi_{*} C \omega_{E \times F}=$ $\boldsymbol{C} \omega_{X}$.)
$\left\{P_{i}\right\}_{i=1, \ldots, 4}\left(\right.$ resp. $\left.\left\{Q_{i}\right\}\right):=$ the set of the 2-torsion points on E (resp. F).
$R_{i j}:=\left(P_{i}, Q_{j}\right), \quad i, j=1, \cdots, 4$. (These are the 2-torsion points on $E \times F$.)
$C_{i j}:=$ the nodal curve on X corresponding to $R_{i j}$.
$E_{j}:=\pi\left(E \times Q_{j}\right), \quad F_{i}:=\pi\left(P_{i} \times F\right)$. (These are nodal curves on X.)
$B:=\bigcup_{i=1}^{4}\left(E_{i} \cup F_{i}\right)$.
We call a nodal curve which is in B a special nodal curve, and a nodal curve which is not in B an ordinary nodal curve.
$K_{\text {nat }}:=B \cup\left(\cup_{i, j} C_{i j}\right)$ (the natural double Kummer pencil divisor).
$E:=\pi(E \times P), F:=\pi(Q \times F), \quad$ for fixed $P \neq P_{i}, Q \neq Q_{i}$.
By definition, $E_{i}, F_{j}, C_{i j}, E, F$ intersect as follows.

i.e.,

$$
\begin{array}{lrl}
C_{i j} \cdot C_{k l}=-2 \delta_{i k} \delta_{j l}, \quad E^{2}=F^{2}=0, & E_{j} \cdot E_{l}=-2 \delta_{j l}, & E \cdot F=2, \\
F_{i} \cdot F_{k}=-2 \delta_{i k}, \quad E \cdot E_{l}=F \cdot F_{k}=0, & C_{i j} \cdot E_{l}=\delta_{j l}, & \tag{0.1}\\
E \cdot F_{k}=F \cdot E_{l}=1, \quad C_{i j} \cdot F_{k}=\delta_{i k}, & E \cdot C_{i j}=F \cdot C_{i j}=0 &
\end{array}
$$

$$
\left(\delta_{i j}=\right.\text { Kronecker's symbol). }
$$

We call a divisor consisting of 24 nodal curves which has the same type as $K_{\text {nat }}$ a double Kummer pencil divisor.

As for $H^{2}(X, \boldsymbol{Z}), H^{2}(E \times F, \boldsymbol{Z})$, we get the following:
(1) $H^{2}(E \times F, \boldsymbol{Z})=S_{E \times F} \oplus T_{E \times F}, \quad S_{E \times F}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$,

$$
T_{E \times F}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \tag{0.2}\\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right),
$$

(2) $\left\{e, f, c_{i j}\right\}$ is a basis of $S_{X} \otimes \boldsymbol{Q}$,
(3) $e_{j}=\frac{1}{2}\left(e-\sum_{i=1}^{4} c_{i j}\right), \quad f_{i}=\frac{1}{2}\left(f-\sum_{j=1}^{4} c_{i j}\right)$ in S_{X}.
2. Elliptic $K 3$ surfaces. Let Y be a $K 3$ surface. We denote by g_{Y} the set of all Jacobian fibrations of Y, i. e., elliptic fibrations of Y with a global section. As is well-known, any elliptic fibration of Y is given by the morphism $\Phi_{|\theta|}: Y \rightarrow \boldsymbol{P}^{1}$ defined by the complete linear system $|\Theta|$ which contains a divisor of the same type as a non-multiple singular fiber of an elliptic surface. (See Table 1.) By definition, an irreducible curve C is a section of $\Phi_{|\theta|}$ if and only if C satisfies $C \cdot \Theta=1$. We note that every section of $\Phi_{|\theta|}$ is a nodal curve. The biholomorphic automorphism group of $Y, \operatorname{Aut}(Y)$, acts on g_{Y} in an obvious manner ; $f: \Phi_{|\theta| \mapsto} \rightarrow \Phi_{|f(\theta)|}$ for $f \in \operatorname{Aut}(X)$.

Let $C_{i}(i=1,2)$ be (not necessarily distinct) sections of $\varphi \in \mathscr{g}_{Y}$. Then there exists a unique symplectic automorphism f of Y (i.e., an automorphism whose action on $H^{2,0}(Y)=\boldsymbol{C} \omega_{Y}$ is trivial) such that $f\left(C_{1}\right)=C_{2}$ and $\varphi \circ f=\varphi$. On each non-singular fiber of φ, f acts as a translation. On a singular fiber, f acts by the rule in Table 1 (cf. Kodaira [10], p. 604). We call such f a translation automorphism of φ. We denote by $M_{\varphi}(Y)$ a subgroup of $\operatorname{Aut}(Y)$ consisting of all translation automorphisms of $\varphi . M_{\varphi}(Y)$ is naturally identified with the Mordell-Weil group of Y considered as an elliptic curve over $\boldsymbol{C}\left(\boldsymbol{P}^{1}\right)$ via φ.

Lemma (0.3) (Shioda [6], p. 23 or Shioda and Inose [8], p. 120). Let φ be a Jacobian fibration of a K3 surface Y. Let $\Theta_{i}(i=1, \cdots, k)$ be all the singular fibers of φ. Then,
(1) $24=\chi_{\text {top }}(Y)=\sum_{i} \chi_{\text {top }}\left(\Theta_{i}\right)$,
(2) S_{Y} is generated by the classes of all irreducible components of $\Theta_{i}(i=1, \cdots$, k) and all sections of φ. Hence, if one of Θ_{i} is neither of type I_{1} nor of type II, then S_{Y} is generated by some classes of nodal curves.
(3) The Mordell-Weil group $M_{\varphi}(Y)$ is a finitely generated abelian group, which satisfies the equality,

$$
\operatorname{rank} M_{\varphi}(Y)=\operatorname{rank} S_{Y}-2-\sum_{i}\left(m\left(\Theta_{i}\right)-1\right),
$$

where $m\left(\Theta_{i}\right)$ denotes the number of irreducible components of Θ_{i}.

Table 1. Non-multiple singular fibers of an elliptic surface.

Symbol	Structure (dual graph)	the number of components	the number of simple components	Euler number	Group structure
I_{0}	a non-singular elliptic curve	1	1	0	elliptic curve
I_{1}	a rational curve with one ordinary double point	1	1	1	C^{\times}
I_{2}	$\underset{0}{1} 1$	2	2	2	$\boldsymbol{C} \times \times \boldsymbol{Z} / 2 \boldsymbol{Z}$
II	a rational curve with one ordinary cusp	1	1	2	C
III	$\underset{\sim}{1} 10 \quad(Y)$	2	2	3	$\boldsymbol{C} \times \boldsymbol{Z} / 2 \boldsymbol{Z}$
IV	()	3	3	4	$\boldsymbol{C} \times \boldsymbol{Z} / 3 \boldsymbol{Z}$
$\begin{gathered} \mathrm{I}_{b} \\ b \geqq 3 \end{gathered}$		b	b	b	$\boldsymbol{C}^{\times} \times \boldsymbol{Z} / b \boldsymbol{Z}$
$\begin{gathered} \mathrm{I}_{b}{ }^{*} \\ b \geqq 0 \end{gathered}$		$b+5$	4	$b+6$	$\begin{array}{ll} \boldsymbol{C} \times(\boldsymbol{Z} / 2 \boldsymbol{Z})^{2} & b \equiv 0(2) \\ \boldsymbol{C} \times \boldsymbol{Z} / 4 \boldsymbol{Z} & b \equiv 1(2) \end{array}$
II*		9	1	10	C
III*		8	2	9	$\boldsymbol{C} \times \boldsymbol{Z} / 2 \boldsymbol{Z}$
IV*		7	3	8	$\boldsymbol{C} \times \boldsymbol{Z} / 3 \boldsymbol{Z}$

By a simple component, we mean a non-multiple irreducible component.

§ 1. Some properties on X.

First, we remark that the following natural exact sequence holds. Here for a subset $Z \subset Y$, we put $\operatorname{Aut}(Y ; Z):=\{f \in \operatorname{Aut}(Y) ; f(Z)=Z\}$.

(1.1) $1 \longrightarrow\left\langle-\mathrm{id}_{E \times F}\right\rangle \longrightarrow \operatorname{Aut}\left(E \times F ; \bigcup\left\{R_{i j}\right\}\right) \longrightarrow \operatorname{Aut}\left(X ; \cup C_{i j}\right) \longrightarrow 1$.

For $f \in \operatorname{Aut}\left(E \times F ; \bigcup\left\{R_{i j}\right\}\right)$, by \bar{f}, we denote a corresponding element of $\operatorname{Aut}\left(X ; \cup C_{i j}\right)$. If $f_{*} \omega_{E \times F}=\alpha \omega_{E \times F}$, we have $\bar{f}_{*} \omega_{X}=\alpha \omega_{X}$.
(1.2) For $\Theta=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right) \in \operatorname{Aut}\left(E \times F ; \cup\left\{R_{i j}\right\}\right)$, we put $\theta=\bar{\Theta}$.

We note that θ is an involution on X.
Lemma (1.3). (1) $\left.\theta_{*}\right|_{s_{X}}=\mathrm{id},\left.\quad \theta_{*}\right|_{T_{X}}=-\mathrm{id}$.
(2) $X^{\theta}(:=t h e$ set of fixed points of $\theta)=B$.

Proof. (1) is obvious by (0.2), By definition, we have,

$$
\left(X-\bigcup C_{i j}\right)^{\theta}=\pi\left(\left\{x \in E \times F-\bigcup C_{i j} ; \quad \Theta x=x, \text { or }-x\right\}\right)=B-\bigcup C_{i j}
$$

On the other hand, since $\theta_{*} \omega_{X}=-\omega_{X}, X^{\theta}$ is a smooth closed submanifold of X. Then we have $X^{\theta}=B$.

Lemma (1.4). $\operatorname{Aut}(X)=\operatorname{Aut}(X ; B), \quad$ i.e., $f(B)=B$ for any $f \in \operatorname{Aut}(X)$.
Proof. (Following Nikulin [4], p. 1424.) By (1.3) and by the fact that $S_{X} \bigoplus T_{X}$ is of finite index in $H^{2}(X, \boldsymbol{Z})$, we have $(f \theta)_{*}=(\theta f)_{*}$ on $H^{2}(X, \boldsymbol{Z})$. Then by Torelli Theorem for $K 3$ surfaces, we have $f \theta=\theta f$. Combining this with $(1.3)(2)$, we get $f(B)=B$.

Before proceeding, we remark the following.
(1.5) For nodal curves $D_{i}(i=1,2)$ on X and for $f \in \operatorname{Aut}(X)$, we have $f\left(D_{1}\right)=D_{2}$ if and only if $f_{*}\left(d_{1}\right)=d_{2}$ where $d_{i}=c_{1}\left(\Theta_{X}\left(D_{i}\right)\right)$. (Note that $h^{0}\left(\Theta_{X}\left(D_{2}\right)\right)=1$.)

Lemma (1.6). Let $D_{i}(i=1,2)$ be ordinary nodal curves on X. Then $D_{1} \cdot D_{2} \equiv 0(\bmod 2)$.

Proof. If $D_{1}=D_{2}$, then we have $D_{1} \cdot D_{2}=-2$. Assume that $D_{1} \neq D_{2}$. By definition, we have

$$
D_{1} \cdot D_{2}=\sum_{P \in D_{1} \cap D_{2}-B} \text { mult }_{P}\left(D_{1}, D_{2}\right)+\sum_{P_{0} \in D_{1} \cap D_{2} \cap B} \text { mult }_{P_{0}}\left(D_{1}, D_{2}\right)
$$

By (1.3), (1.5), we have $\theta\left(D_{i}\right)=D_{i}(i=1,2)$ and θ acts on each D_{i} as an involution. Then the first sum above is even since mult ${ }_{P}\left(D_{1}, D_{2}\right)=\operatorname{mult}_{\theta(P)}\left(D_{1}, D_{2}\right)$ and $\theta(P) \neq P$ if $P \in D_{1} \cap D_{2}-B$. So, to prove (1.7) it is sufficient to show that
mult ${ }_{P_{0}}\left(D_{1}, D_{2}\right)$ is even for each $P_{0} \in D_{1} \cap D_{2} \cap B$. Assume that mult $_{P_{0}}\left(D_{1}, D_{2}\right)=$ $2 k+1(k=0,1,2, \cdots)$ for some $P_{0} \in D_{1} \cap D_{2} \cap B$. By repeating blowing up, we get,

(Here $\varepsilon_{i}:=\boldsymbol{P}\left(T_{P_{i-1}}(X)\right)$ is the exceptional curve. For proper transforms of D_{1} and D_{2}, we use the same letters on each X_{i}.) On $X_{2 k}$ we have mult $P_{2 k}\left(D_{1}, D_{2}\right)$ $=1$ by construction. On the other hand, by the property of blowing up, θ also acts on each X_{i} and preserves $\varepsilon_{i}, D_{1}, D_{2}$, and P_{i}. By construction, we see easily that on $X_{2 i}, \theta \mid D_{1}$ and $\theta \mid D_{2}$ are involutions and $\left.\theta\right|_{s_{2 i}}$ is an identity. Then on $X_{2 k}$, we get $T_{P_{2 k}}\left(D_{1}\right)=T_{P_{2 k}}\left(D_{2}\right)$ and $\operatorname{mult}_{P_{2 k}}\left(D_{1}, D_{2}\right) \geqq 2$. This is contradiction.

Lemma (1.7). Let D be an ordinary nodal curve on X. Then, there exist two special nodal curves E_{j} and F_{i} such that $D \cdot E_{j}=D \cdot F_{i}=1$. Moreover D does not meet the other six special nodal curves.

Proof. Since θ acts on $D=\boldsymbol{P}^{1}$ as an involution, D and B meet at exactly two points transversely. (cf. Nikulin [4], p. 1434). So to prove (1.7), it is sufficient to show that the following 4 cases do not occur: (1) $D \cdot E_{i}=2$ (for some i), (2) $D \cdot E_{i}=D \cdot E_{j}=1$ (for some $i \neq j$), (3) $D \cdot F_{i}=2$ (for some i), (4) $D \cdot F_{i}$ $=D \cdot F_{j}=1$ (for some $i \neq j$). For example, assume that (2) does occur. For simplicity of notation, we also assume $i=1, j=2$. In S_{X} we put,

$$
\left.d=a e+b f+\sum_{i, j} x_{i j} c_{i j}, \quad\left(a, b, x_{i j} \in \boldsymbol{Q}\right) . \quad(\text { See } 0.2),\right)
$$

Since we have $-2 x_{i j}=D \cdot C_{i j} \equiv 0(\bmod 2)$ by (1.6), we get $x_{i j} \in \boldsymbol{Z}$. By (0.1) and (0.2), we get

$$
b+\sum_{i} x_{i j}=\left\{\begin{array}{ll}
1 & (\text { if } j=1,2) \\
0 & \text { (if } j=3,4)
\end{array}, \quad a+\sum_{j} x_{i j}=0 \quad(i=1, \cdots, 4) .\right.
$$

Then, we get $b-a=1 / 2$. On the other hand, since we have $x_{i j} \in \boldsymbol{Z}$, we get $b-a \in \boldsymbol{Z}$. Therefore (2) does not occur. Other cases also do not occur by a similar reason.

LEMMA (1.8). Let $D_{k}(k=1, \cdots, 16)$ be disjoint nodal curves on X. Then there exists $f \in \operatorname{Aut}(X)$ such that $f\left(\cup_{k} D_{k}\right)=\cup_{i, j} C_{i j}$. Hence, combining this with (1.4), we get $f\left(\bigcup_{k} D_{k} \cup B\right)=K_{\text {nat }}$. Especially, $K_{D}=\cup_{k} D_{k} \cup B$ is a double Kummer pencil divisor.

Proof. By Nikulin [1], p. 262, we have $\sum_{k=1}^{16} d_{k} \in 2 \cdot S_{X}$ and hence there exist an abelian surface A and a rational map $\pi_{A}: A \rightarrow X$ whose exceptional curves are $D_{k}(k=1, \cdots, 16)$. Hence via $\pi_{A^{*}}$ and π_{*}, we have a Hodge isometry $\phi_{T}: T_{A} \xrightarrow{\sim} T_{E \times F}$. Then, by applying the theorem by Nikulin [3], p. 126, (or Morrison [11], p. 112), ψ_{T} is extended to a Hodge isometry $\psi: H^{2}(A, \boldsymbol{Z})$ $\underset{\rightarrow}{\sim} H^{2}(E \times F, \boldsymbol{Z})$. So we can apply the theorem of Shioda [6], p. 48 and we get $A \cong E \times F$. (Remark that $\operatorname{Pic}^{0}(E \times F) \cong E \times F$.) Therefore $f \in \operatorname{Aut}(X)$ induced from $F: A \cong E \times F$ which preserves the origins satisfies (1.8).

Let M be either an abelian surface or a $K 3$ surface. Since $H^{2,0}(M)=\boldsymbol{C} \boldsymbol{\omega}_{M}$, we get the homomorphism $\alpha_{M}: \operatorname{Aut}(M) \rightarrow C^{\times}$characterized by $f_{*} \omega_{M}=\alpha_{M}(f) \omega_{M}$. Putting $\Gamma_{M}:=\operatorname{Im}\left(\alpha_{M}\right)$ and $\operatorname{Aut}_{N}(M):=\operatorname{Ker}\left(\alpha_{M}\right)$ (the symplectic automorphism group of M), we have the following exact sequence.

$$
\begin{equation*}
1 \longrightarrow \operatorname{Aut}_{N}(M) \longrightarrow \operatorname{Aut}(M) \xrightarrow{\alpha_{M}} \Gamma_{M} \longrightarrow 1 \tag{1.9}
\end{equation*}
$$

Lemma (1.10). Let $D_{k}(k=1, \cdots, l)$ be ordinary nodal curves on X. Let us put $D:=D_{1}+\cdots+D_{l}$. If $D \cdot E_{j} \equiv D \cdot F_{i} \equiv 0(\bmod 2)(i, j=1, \cdots, 4)$ then $f_{*}(d)+d$ $\in 2 \cdot S_{X}$ for any $f \in \operatorname{Aut}_{N}(X)$.

Proof. For $f \in \operatorname{Aut}_{N}(X)$, we have $f_{*} \mid T_{X}=$ id. (Because we have $f_{*}(x) \cdot \omega_{X}$ $=f_{*}(x) \cdot f_{*}\left(\omega_{X}\right)=x \cdot \omega_{X}$ for $x \in T_{X}$ and then we get $f_{*}(x)-x \in S_{X} \cap T_{X}=\{0\}$.) Especially the induced map of f_{*} on T_{X}^{*} / T_{X} is identity. Here, for a nondegenerate lattice L, we set $L^{*}:=\{x \in L \otimes \boldsymbol{Q} ; x \cdot L \in \boldsymbol{Z}\}=\operatorname{Hom}_{\boldsymbol{z}}(L, \boldsymbol{Z})$. Then we see that the induced map of f_{*} on S_{X}^{*} / S_{X} is also identity by an easy lattice theoretic consideration. Hence we have $f_{*}(x)-x \in S_{X}$ for all $x \in S_{X}^{*}$. Let us consider $d / 2$. Then $(d / 2) \cdot C$ is an integer for every nodal curves on X by the assumption on D and (1.6). On the other hand, by considering a Jacobian fibration $\Phi_{|E|}$, we see that S_{X} is generated by some classes of nodal curves on X. (See (0.3) (2).) Hence we have $d / 2 \in S_{X}^{*}$. Therefore we have $f_{*}(d / 2)-d / 2$ $\in S_{X}$ and $f_{*}(d)+d \in 2 \cdot S_{X}$.

Lemma (1.11). $\operatorname{Aut}(X)=\operatorname{Aut}_{N}(X)\langle\bar{\xi}\rangle$ (semi-direct product), where $\bar{\xi}$ is the element of $\operatorname{Aut}\left(X ; \cup_{i, j} C_{i j}\right)$ induced from the following $\xi \in \operatorname{Aut}\left(E \times F ; \cup_{i, j}\left\{R_{i j}\right\}\right)$ by (1.1).

$E \times F$	$E_{\sqrt{ }-1} \times E_{\omega}$	$E_{\rho} \times E_{\omega}$	$E_{\sqrt{-1} \times E_{\rho}}$	$E_{\rho} \times E_{\rho^{\prime}}$
ξ	$\left(\begin{array}{cc}\sqrt{-1} & 0 \\ 0 & \omega\end{array}\right)$	$\left(\begin{array}{cc}1 & 0 \\ 0 & \omega\end{array}\right)$	$\left(\begin{array}{cc}\sqrt{-1} & 1 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$

(By E_{ξ} we denote the elliptic curve whose period is ξ in $H / S L_{2}(\boldsymbol{Z})$ where H is the upper half plane. And $\omega=(-1+\sqrt{-3}) / 2, \rho, \rho^{\prime} \neq \sqrt{-1}, \omega$ in $H / S L_{2}(\boldsymbol{Z})$. Since E and F are not mutually isogenous, these cover all the cases.)

Proof. By (1.9) it is sufficient to show that

$$
\left.\alpha_{X}\right|_{\langle\bar{\xi}\rangle}:\langle\bar{\xi}\rangle \xrightarrow{\sim} \Gamma_{X} .
$$

Since E and F are not isogenous, we easily show that

$$
\left.\alpha_{E \times F}\right|_{\langle\xi\rangle}:\langle\xi\rangle \xrightarrow{\sim} \Gamma_{E \times F} .
$$

So it is sufficient to show that if $\alpha \in \Gamma_{X}$, then $\alpha \in \Gamma_{E \times F}$. Let f be an automorphism of X such that $f_{*} \omega_{X}=\alpha \omega_{X}$. Put $\varphi=f_{*} \mid T_{X}$. Then $\tilde{\varphi}:=\pi_{*}^{-1} \circ \varphi^{\circ} \pi_{*}$ is a Hodge isometry on $T_{E \times F}$, and satisfies $\tilde{\varphi} \omega_{E \times F}=\alpha \omega_{E \times F}$. So it is sufficient to show that there exists $g \in \operatorname{Aut}(E \times F)$ such that $g_{*} \mid T_{x}=\tilde{\varphi}$. To show this we use the following theorem by Shioda [6], p. 53.

Theorem (1.12). Let A be a two dimensional complex torus. Let ψ be a Hodge isometry on $H^{2}(A, \boldsymbol{Z})$ such that $\operatorname{det} \psi=1$. Then there exists $g \in \operatorname{Aut}(A)$ satisfying either $g_{*}=\psi$ or $g_{*}=-\phi$.

We put $\psi=\operatorname{id}_{S_{E \times F}} \oplus \tilde{\varphi}$. Then ϕ is a Hodge isometry on $H^{2}(E \times F, \boldsymbol{Z})$ and preserves effective classes on it. So if we can prove that $\operatorname{det} \psi=1$, i.e., $\operatorname{det} \tilde{\varphi}=1$, we get $g \in \operatorname{Aut}(E \times F)$ such that $g_{*} \mid T_{x}=\tilde{\varphi}$. Assume that $\operatorname{det} \tilde{\varphi} \neq 1$. Then we have $\operatorname{det} \tilde{\varphi}=-1$ since $\tilde{\varphi}$ is an isometry on $T_{E \times F}$. Thus, putting $\psi^{\prime}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \oplus \tilde{\varphi}$, we see that ψ^{\prime} satisfies the condition of the above theorem. Hence there exists $g^{\prime} \in \operatorname{Aut}(E \times F)$ such that $g_{*}^{\prime}=\psi^{\prime}$ or $-\psi^{\prime}$. But this does not happen since E and F are not isogenous. Therefore we have $\operatorname{det} \tilde{\varphi}=1$.

Combining (1.8) and (1.11), we get the following.
Corollary (1.13). There exists $f \in \operatorname{Aut}_{N}(X)$ such that $f\left(K_{D}\right)=K_{\text {nat }}$ (Here K_{D} is same as in (1.8).)

Finally, we quote two theorems by Nikulin [1], [2] as lemmas.
Lemma (1.14). Let Y be a $K 3$ surface. Let $D_{k}(k=1, \cdots, l)$ be disjoint nodal curves on Y. If $D:=\sum_{k=1}^{l} D_{k} \in 2 \cdot S_{Y}$, then $l=0,8$ or 16 .

Lemma (1.15). Let Y be a $K 3$ surface. If $f \in \operatorname{Aut}_{N}(Y)$ is of finite order and
not identity. Then the order of f and the number of the fixed points of f are as follows.

order of f	2	3	4	5	6	7	8
number of fixed points of f	8	6	4	4	2	3	2

\S 2. Classification of g_{x} via types of the singular fibers.

We use the following notation in $\S 2,3$, and 4 . By $G_{i}, H_{i}(i=1, \cdots, 4)$ we denote the 8 special nodal curves such that either $\left\{G_{i}\right\}=\left\{E_{i}\right\}$ and $\left\{H_{i}\right\}=\left\{F_{i}\right\}$ or $\left\{G_{i}\right\}=\left\{F_{i}\right\}$ and $\left\{H_{i}\right\}=\left\{E_{i}\right\}$ as a set. For fixed $G_{i}, H_{i}(i=1, \cdots, 4)$, we denote by $C^{i j}$ the nodal curve in $\left\{C_{i j}\right\}$ meeting both G_{j} and H_{i}. By $\left\{D^{i j}\right\}$, where (i, j) moves some subsets of $\{1, \cdots, 4\} \times\{1, \cdots, 4\}$, we denote a collection of nodal curves such that $D^{i j}$ meets G_{j} and H_{i} and $D^{i j}$ do not meet one another. By $R^{i j}, Q^{i j}$ etc., we denote a nodal curve which meets G_{j} and H_{i}.

In this section we prove the following theorem.
Theorem (2.1). (1) The set g_{x} is divided into eleven $\operatorname{Aut}(X)$-stable subsets, g_{1}, \cdots, g_{11} by the types of the singular fibers.
(2) For each g_{m} sections, Mordell-Weil groups, and configurations of sections and singular fibers of its members are described as in the following Table 2.

Table 2.

type	all the singular fibers $\binom{$ Figures of type I_{1} and $\left.I I\right)}{$ are omitted. }	all the sections	MordellWeil group	configuration of singular fibers and sections
g_{1}			$Z^{2} \oplus \boldsymbol{Z} / 2 \boldsymbol{Z}$	See figure in the remark (2.13)
g_{2}	$\mathrm{I}_{4}+\mathrm{I}_{12}+a \mathrm{I}_{1}+b \mathrm{II}, a+2 b=8$		$Z^{2} \oplus \boldsymbol{Z} / 2 \boldsymbol{Z}$	"

g_{3}			Z^{4}	"
g_{4}		H_{1}, H_{2}	$(\boldsymbol{Z} / 2 \boldsymbol{Z})^{2}$	
g_{5}		$\begin{aligned} & G_{3}, G_{4} \\ & H_{3}, H_{4} \end{aligned}$	$(\boldsymbol{Z} / 2 \boldsymbol{Z})^{2}$	
g_{6}		$\begin{aligned} & G_{3}, G_{4} \\ & H_{3}, H_{4} \end{aligned}$	$(\boldsymbol{Z} / 2 \boldsymbol{Z})^{2}$	
g_{7}		H_{2}, H_{3} $H_{4} \text { is a }$ 2-section	$\boldsymbol{Z} / 2 \boldsymbol{Z}$	
g_{8}		H_{3}, H_{4} G_{4} is a 2-section.	$\boldsymbol{Z} / 2 \boldsymbol{Z}$	
g_{9}		H_{3} H_{4} is a 3-section.	(id)	

g_{10}	$\mathrm{I}_{8}^{*}+\mathrm{I}_{6}^{*}+a \mathrm{I}_{1}+b \mathrm{II}, a+2 b=4$ $\stackrel{G}{a}$	H_{3} H_{4} is a 3 -section.	\{id\}	
g_{11}		H_{3} H_{4} is a 3-section.	\{id\}	

By $G_{i}^{G_{i}}$ (resp. $\stackrel{H_{i}}{\circ}$, resp. o), we mean a nodal curve G_{i} (resp. H_{i}, resp. an ordinary nodal curve).

For example, by fiber of type $I_{2}{ }^{*}$ in D_{1} and 2-section G_{4} meets this singular fiber in D_{2} and D_{3}.

Let φ be a Jacobian fibration of X.
Lemma (2.2). Let Θ be a singular fiber of φ. Then Θ is one of the following form:

I o $b=4,8,12$

Proof. For example, we show that Θ is neither of type I_{10}^{*} nor of type I_{16}. If Θ is of type I_{10}^{*}, then by (1.6) and (1.7), Θ is as follows:

Then, by (1.6), a section of φ must be either H_{4} or G_{4}. But this is impossible because, by (1.7), we have $D_{i} \cdot H_{4}=1$ for $i=1,2$, and $D_{j} \cdot G_{4}=1$ for $j=3$, 4. If Θ is of type I_{16}, then Θ contains B. So for any ordinary nodal curve $C, C \cdot \Theta$ $\geqq 2$ holds. Hence φ has no sections.

Lemma (2.3). If all special curves are contained in some singular fibers of φ, then $\varphi \in \mathcal{g}_{1}$ or \mathcal{g}_{2} or \mathcal{g}_{3}. Moreover $\operatorname{rank} M_{\varphi}(X)=2,2,4$ respectively.

Proof. Let C be a section of φ. Let $\Theta_{1}, \cdots, \Theta_{k}$ be the singular fibers of φ which are neither of type I_{1} nor of type II. We note that C meets each Θ_{i} in a simple component. Since C is an ordinary nodal curve by the assumption, C meets each Θ_{i} in a special nodal curve. So we get $k=2$ because we have $C \cdot B=2$. Then types of Θ_{1} and Θ_{2} are either of (1) $\mathrm{I}_{8}, \mathrm{I}_{8}(2) \mathrm{I}_{4}, \mathrm{I}_{12}$ (3) IV*, IV* by (2.2). For each of three cases (1), (2), (3), by counting Euler number and rank $M_{\varphi}(X)$ by (0.3) (1) and (3), we get the desired results.

Until (2.12) we assume that at least one of special nodal curves is not in any singular fibers of φ.

Lemma (2.4). (1) $\operatorname{rank} M_{\varphi}(X)=0$.
Let $\Theta_{1}, \cdots, \Theta_{k}$ be the singular fibers of φ. Then,
(2) $24=\sum_{i} \chi_{\text {top }}\left(\Theta_{i}\right), \quad 16=\sum_{i}(m(\Theta)-1)$,
(3) φ has at least one singular fiber which is neither of type I_{1} nor of type II.

Proof. If (1) holds, then (2) holds by (0.3) (1), (3). Then (3) holds since $m\left(\mathrm{I}_{1}\right)=m(\mathrm{II})=1$. Let us prove (1). Let S_{1}, \cdots, S_{l} be all the special nodal curves not contained in any singular fibers of φ. Let C be an arbitrary smooth fiber of φ. We have $1 \leqq \#\left(C \cap\left(S_{1} \cup \cdots \cup S_{l}\right)\right) \leqq C \cdot\left(S_{1}+\cdots+S_{l}\right)=m$. Of course, m is independent of the choice of C. By (1.3), any $f \in M_{\varphi}(X)$ acts on the finite set $\mathrm{I}_{C}=C \cap\left(S_{1} \cup \cdots \cup S_{l}\right)$ as a permutation. So $f^{m!}$ fixes all the points of I_{C} for any C. Therefore, by definition of $M_{\varphi}(X)$, we get $f^{m!}=\mathrm{id}$ on X. Hence we have $\operatorname{rank} M_{\varphi}(X)=0$.

Let Θ be a singular fiber of φ which is neither of type I_{1} nor of type II.
Lemma (2.5). (1) Θ is one of the following form in (2.2):

$$
\mathrm{I}_{2}, \mathrm{III}, \mathrm{II} *, \mathrm{II} *, \mathrm{I}_{2 b}^{*} .
$$

(2) All sections of φ are special nodal curves.

Proof. If Θ is either $\mathrm{I}_{b}(3 \leqq b)$ or IV* in (2.2), then Θ cannot meet any special nodal curves. Then (1) holds. Hence all the simple components of Θ are ordinary nodal curves. Then (2) holds by (1.7).

We continue the proof of (2.1), and consider the following two cases separately :

Case (1). At least one of singular fibers of φ is either of type I_{2} or of type III.

Case (2). Otherwise.
Case (1). We can see at once that either (\#) or (\#\#) holds:
(\#) All the sections of φ are $G_{3}, G_{4}, H_{3}, H_{4}$ and the remaining $G_{1}, G_{2}, H_{1}, H_{2}$ are in some fibers of φ.
(\#\#) All the sections of φ are H_{3} and H_{4}. The curve G_{4} is a 2-section of φ. The remaining $G_{1}, G_{2}, G_{3}, H_{1}, H_{2}$ are in some fibers of φ.

Lemma (2.6). Let φ be a Jacobian fibration satisfying (\#). (We do not assume that one of the singular fibers of φ is of type I_{2} or of type III.) Then $\varphi \in \mathcal{I}_{5}$ or $\varphi \in \mathcal{g}_{6}$ holds, and (2.1) (2) holds for this φ.

Proof. By the condition (\#), any singular fiber of φ is one of the following types in (2.5); $\mathrm{I}_{2}, \mathrm{III}, \mathrm{I}_{1}, \mathrm{I}_{2}^{*}, \mathrm{I}_{6}^{*}$. (Remark that φ has no singular fibers of type II because $M_{\varphi}(X)$ has a torsion element.) Then φ has either two singular fibers of type I_{2}^{*} or one singular fiber of type I_{6}^{*}. As for the latter case, putting $\alpha=\# \mathrm{I}_{2}, \beta=\# \mathrm{III}, \gamma=\# \mathrm{I}_{1}$, we get by (2.4):

$$
16=10+\alpha+\beta, 24=12+2 \alpha+3 \beta+\gamma, \text { and then, } \beta=\gamma=0, \alpha=6
$$

Hence we have $\varphi \in \mathcal{g}_{5}$. We show that (2.1) (2) holds for this φ. Since $\# M_{\varphi}(X)=4$, and the group structure of I_{6}^{*} is $\boldsymbol{C} \times(\boldsymbol{Z} / 2 \boldsymbol{Z})^{2}$, we have $M_{\varphi}(X)=$ $(\boldsymbol{Z} / 2 \boldsymbol{Z})^{2}$. Each of six singular fibers of type I_{2} meets four sections like either

or (2)

and a singular fiber of type I_{6}^{*} meets four sections like

Put the number of singular fibers of type I_{2} like (1) (resp. like (2)) m (resp. n). Let us take $f \in M_{\varphi}(X)$ such that $f\left(H_{4}\right)=G_{4}$. Then we have $f\left(H_{3}\right)=G_{3}$, and f has at least 2 fixed points on each of $m \mathrm{I}_{2}$, and on I_{6}^{*}. Then we get $2 m+2 \leqq 8$ by (1.15). Similarly, by taking $g \in M_{\varphi}(X)$ such that $g\left(H_{3}\right)=G_{4}$, we get $2 n+2 \leqq 8$. Hence we have $n=m=3$. (Remark that $m+n=6$.) For the former case, the proof is similar.

By a similar argument to (2.6), we get the following.
Lemma (2.7). Let φ be a Jacobian fibration satisfying (\#\#). Then $\varphi \in \mathcal{g}_{8}$ holds and (2.1) (2) holds for this φ.

Case (2). Without loss of generality, we may assume that H_{3} is a section of φ.

Lemma (2.8). Θ is one of the following form in (2.2).
(1)

(2)

(3)

(4)

Proof. If Θ is neither of (1), (2), (3), (4), Θ is either (5) or (6).
(5)

(6)

If Θ is either (5) or (6), we easily show that φ satisfies either (\#) or (\#\#), and then φ has a singular fiber whose type is either I_{2} or III. Hence (2.8) holds.

Lemma (2.9). If φ has a singular fiber of type (4) in (2.8), then $\varphi \in \mathcal{g}_{9}$ holds and (2.1) (2) holds for this φ.

Proof. Immediate.
Lemma (2.10). If φ has a singular fiber of type (3) but not of type (4) in (2.8), then $\varphi \in \mathcal{g}_{10}$ holds and (2.1) (2) holds for this φ.

Proof. Immediate.
Lemma (2.11). If φ has a singular fiber of type (2) but neither of type (3) nor of type (4) in (2.8), then either $\varphi \in \mathcal{g}_{7}$ or $\varphi \in \mathcal{g}_{11}$ holds and (2.1) (2) also holds for this φ.

Proof. We easily show that all the singular fibers of φ which are neither of type I_{1} nor of type II are either (a) I_{4}^{*}, I_{4}^{*} or (b) $I_{4}^{*}, I_{0}^{*}, I_{0}^{*}$. When (a) holds, obviously we have $\varphi \in \mathcal{g}_{11}$ and (2.1) (2) holds. When (b) holds, we easily see that H_{2}, H_{3} are sections of φ and H_{4} is a 2 -section of φ (by a suitable naming) and a configuration of a singular fiber of type I_{4}^{*} and H_{2}, H_{3}, and H_{4} is either (c) or (d):
(c)

(d)

Assume that (c) holds. Take $f \in M_{\varphi}(X)$ such that $f\left(H_{2}\right)=H_{3}$. Then f has at least 10 fixed points on X. But this is impossible by (1.15). Hence (d) holds. Since $M_{\varphi}(X)=\boldsymbol{Z} / 2 \boldsymbol{Z}, \varphi$ has no singular fibers of type II. Therefore the remaining singular fibers of φ are two singular fibers of type I_{1}.

Lemma (2.12). If φ has a singular fiber of type (1) but neither of types (2), (3), (4) in (2.8), then $\varphi \in \mathcal{g}_{4}$ holds and (2.1) (2) holds for this φ.

Proof. Immediate.
Hence (2.1) (1) is proved. And except for g_{1}, g_{2} and g_{3}, (2.1) (2) is also proved. We prove the rest in §3.
Q.E.D.

REMARK (2.13). Any $\mathcal{g}_{m}(m=1, \cdots, 11)$ is non-empty. In fact we can construct elements $\Phi=\Phi_{|\theta|}$ belonging to each g_{m} as follows. Here Θ is represented by bold-faced lines. Dotted lines (resp. dotted lines with index m) stand for sections (resp. m-sections).

$H_{3}+C^{33}+G_{3}+C^{34}+G_{4}+C^{44}+H_{4}+C^{43}$ is another singular fiber of type I_{8} of $\Phi . \quad C^{13}$, $C^{14}, C^{23}, C^{24}, C^{31}, C^{32}, C^{41}$, and C^{42} are sections of Φ which do not meet one another.

By (2.1) (1), there exists a nodal curve A^{44} such that $G_{4}+C^{44}+A^{44}+H_{4}$ is another singular fiber of type I_{4} of $\Phi . \quad C^{14}, C^{24}$, $C^{34}, C^{41}, C^{42}, C^{43}$ are sections of Φ which do not meet one another.

$G_{1}+G_{2}+G_{3}+2\left(C^{41}+C^{42}+C^{43}\right)+3 H_{4}$ is another singular fiber of type IV* of Φ. $C^{i j}$ $(1 \leqq i, j \leqq 3)$ are sections of Φ which do not meet one another.

By (2.1), there exist four nodal curves $M^{i j}(3 \leqq i, j \leqq 4)$ such that $C^{34}+M^{43}, C^{43}+$ $M^{34}, C^{33}+M^{44}, C^{44}+M^{33}$ are other singular fibers of type I_{2} of $\Phi . \quad C^{24}+C^{23}+C^{32}+C^{42}+$ $2\left(H_{2}+C^{22}+G_{2}\right)$ is another singular fiber of type $\mathrm{I}_{2}{ }^{*}$. We note that M^{44} does not meet $C^{m s}(1 \leqq m, s \leqq 4)$ except for C^{33}, C^{21} and C^{12}.

By (2.1), there exist nodal curves N^{44} and P^{44} such that $2 G_{4}+C^{34}+C^{44}+N^{44}+P^{44}$ is another singular fiber of type I_{0} * of Φ. We note that C^{24} is 2 -section of Φ, and C^{24} does not meet N^{44}.

M^{44} is a nodal curve in the figure of g_{6} above.

N^{44} is a nodal curve in the figure of g_{9} above.

REMARK (2.14). We could not determine the value of a and b except for g_{1} and g_{2}. As for \mathscr{g}_{8}, we could not determine which of III* $+\mathrm{I}_{2} *+3 \mathrm{I}_{2}+\mathrm{I}_{1}$ and III* $+\mathrm{I}_{2} *+2 \mathrm{I}_{2}+$ III actually occurs.
\S 3. A minimal complete set of representatives of $g_{m} / \operatorname{Aut}(X)(m=1,2,3)$.
In this section we find a minimal complete set of representatives (M.S.R.) of the orbit space $g_{m} / \operatorname{Aut}(X)$ and prove (2.1) (2) for $m=1,2,3$. The cases for $m=4, \cdots, 11$ will be treated in the next section.

We use the following notation in $\S 3,4$.

$$
\{i, j, k\}=\{p, q, r\}=\{2,3,4\}
$$

For E_{ξ} (see (1.11)), P_{1}, \cdots, P_{4} stand for the following 2-torsion points of E_{ξ}.

We say X is of type (i), (ii), (iii) or (iv) if $E \times F$ is isomorphic to $E_{\sqrt{ }=1} \times E_{\omega}$, $E_{\rho} \times E_{\omega}, E_{\sqrt{-1}} \times E_{\rho}$, or $E_{\rho} \times E_{\rho^{\prime}}$. (See (1.11).)

We say an effective divisor D on X is extendable if there exists a double Kummer pencil divisor K_{D} such that Supp $D \subset K_{D}$.

Theorem (3.1). (I) Put $\varphi_{i p}^{(1)}=\Phi_{\mid \theta_{i p}^{(1)},}$ where

$$
\Theta_{i p}^{(1)}=F_{1}+C_{11}+E_{1}+C_{i 1}+F_{i}+C_{i p}+E_{p}+C_{1 p} \quad \text { and } \quad 2 \leqq i, p \leqq 4 .
$$

(1) The set $\left\{\varphi_{i p}^{(1)}\right\}_{1 \leq i, p \leqq 4}$ is an M.S.R. of $g_{1} / \operatorname{Aut}_{N}(X)$.
(2) An M.S.R. of $g_{1} / \operatorname{Aut}(X)$ is given as follows where $\varphi_{i p}:=\varphi_{i p}^{(1)}$.

Type of X	(i)	(ii)	(iii)	(iv)
M. S. R. of $\mathcal{I}_{1} / \operatorname{Aut}(X)$	φ_{22}	φ_{32}	$\varphi_{i 2}$	$\varphi_{i p}$
$\varphi_{3}=2,3,4$	$i=2,3$ $p=2,3,4$	$i=2,3,4$ $p=2,3,4$		

(II) Put $\varphi_{i j k}^{(2)}=\Phi_{\left|\theta_{i j k}\right|}$ where

$$
\begin{array}{r}
\Theta_{i j k}^{(2)}=E_{2}+C_{i 2}+F_{i}+C_{i 3}+E_{3}+C_{j 3}+F_{j}+C_{j 4}+E_{4}+C_{k 4}+F_{k}+C_{k 2} \quad \text { and } \\
\{i, j, k\}=\{2,3,4\} .
\end{array}
$$

(1) The set $\left\{\varphi_{i j k}^{(2)}\right\}_{(i, j, k)=(2,3,4)}$ is an M.S.R. of $g_{2} / \operatorname{Aut}_{N}(X)$.
(2) An M.S.R. of $g_{2} / \operatorname{Aut}(X)$ is given as follows where $\varphi_{i j k}:=\varphi_{i j k}^{(2)}$.

Type of X	(i)	(ii)	(iii)	(iv)
$\begin{aligned} & \text { M. S. R. of } \\ & \mathcal{g}_{2} / \operatorname{Aut}(X) \end{aligned}$	φ_{234}	$\varphi_{234}, \varphi_{324}$	$\varphi_{234}, \varphi_{324}, \varphi_{342}$	$\{i, j, k\} \stackrel{\varphi_{i j k}}{=}\{2,3,4\}$

 $\left\{\varphi^{(3)}\right\}$ is an M.S.R. of both $\mathcal{g}_{3} / \operatorname{Aut}_{N}(X)$ and $\mathcal{g}_{3} / \operatorname{Aut}(X)$.

Proof. We give the proof only for (II), since the other cases are similar and easier. Assume $\varphi \in \mathscr{g}_{2}$. Then by a suitable G_{i}, H_{i} and $D^{m s}$, we have $\varphi=\Phi_{|\theta|}$, where

$$
\Theta=G_{1}+D^{21}+H_{2}+D^{23}+G_{3}+D^{13}+H_{1}+D^{12}+G_{2}+D^{32}+H_{3}+D^{31} .
$$

The other singular fiber of type I_{4} of φ can be written as follows: $\Theta^{\prime}=$ $G_{4}+D^{44}+H_{4}+R^{44}$. Since φ has at least one section, we put this section D^{14} without loss of generality. (As for $D^{* *}$ and $R^{* *}$, see $\S 2$.)

Claim (3.2). $\quad \Theta$ is extendable.
Proof of (3.2). We consider the elliptic fibration $\Phi_{|L|}$, where $L=$ $D^{12}+D^{13}+2\left(H_{1}+D^{14}+G_{4}\right)+D^{44}+R^{44}$. Then, G_{2} and G_{3} become sections of $\Phi_{|L|}$, and H_{4} becomes a 2 -section. Hence we have $\Phi_{|L|} \in \mathcal{g}_{8}$. By the way, any component of a connected divisor $D=D^{23}+H_{2}+D^{21}+G_{1}+D^{31}+H_{3}+D^{32}$ does not meet L, and hence D is contained in one singular fiber L^{\prime} of $\Phi_{|L|}$. By Theorem (2.1) L^{\prime} must be of type III*, and then there exists a nodal curve D^{41}. Moreover, there exist at least two singular fibers of type I_{2}, say, $Q^{43}+D^{42}$, and $Q^{42}+D^{43}$. Then we have $\Phi_{12 H_{4}+D^{41}+D^{42}+D^{43}+D^{44} \mid} \in \mathcal{g}_{4}$. Hence, there exist nodal curves $D^{11}, D^{22}, D^{33}, D^{34}$, and $K_{\theta}=\bigcup_{n, s=1}^{4} D^{n s} \cup B$ becomes a double Kummer pencil containing $\operatorname{Supp} \Theta$. Therefore the claim is proved.

Hence, by (1.13), there exists $h \in \operatorname{Aut}_{N}(X)$ such that $h\left(K_{\theta}\right)=K_{\text {nat }}$. Then, putting $\Theta^{\prime}=h(\Theta)$ (as a divisor), we have $\operatorname{Supp} \Theta^{\prime} \subset K_{\text {nat }}$. So, if necessary, composing a suitable $g \in \operatorname{Aut}_{N}(X)$ induced by a translation on $E \times F$, we get $g\left(\Theta^{\prime}\right)=\Theta_{i j k}$ for some i, j, k. Therefore, to prove (1), it is sufficient to show that if $\varphi_{i j k}$ and $\varphi_{i^{\prime} j^{\prime} k^{\prime}}$ are in the same orbit, then $i=i^{\prime}, j=j^{\prime}$, and $k=k^{\prime}$ hold. Under the above assumption, we have $f\left(\Theta_{i^{\prime} j^{\prime} k^{\prime}}\right)=\Theta_{i j k}$ by some $f \in \operatorname{Aut}_{N}(X)$. Since we have $f(B)=B$, we get the following:

$$
f\left(C_{i^{\prime} 3}+C_{j^{\prime} 3}+C_{j^{\prime} 4}+C_{k^{\prime} 4}+C_{k^{\prime} 2}+C_{i^{\prime} 2}\right)=C_{i 3}+C_{j_{3}}+C_{j 4}+C_{k 4}+C_{k 2}+C_{i 2} .
$$

By the way, since $C_{i^{\prime} 3}+C_{j^{\prime} 3}+C_{j^{\prime} 4}+C_{k^{\prime} 4}+C_{k^{\prime} 2}+C_{i^{\prime} 2}$ satisfies the condition on (1.10), we have the following:

$$
c_{i^{\prime} 3}+c_{j^{\prime} 3}+c_{j^{\prime} 4}+c_{k^{\prime} 4}+c_{k^{\prime} 2}+c_{i^{\prime} 2}+c_{i 3}+c_{j 3}+c_{j 4}+c_{k 4}+c_{k 2}+c_{i 2} \equiv 0 \quad\left(\bmod 2 \cdot S_{X}\right) .
$$

Since $\left\{i^{\prime}, j^{\prime}\right\} \cap\{i, j\} \neq \varnothing,\left\{j^{\prime}, k^{\prime}\right\} \cap\{j, k\} \neq \varnothing,\left\{k^{\prime}, i^{\prime}\right\} \cap\{k, i\} \neq \varnothing$, we can put,

$$
\begin{array}{lll}
\left\{i^{\prime}, j^{\prime}\right\}=\{x, y\}, & \left\{j^{\prime}, k^{\prime}\right\}=\{u, v\}, & \left\{k^{\prime}, i^{\prime}\right\}=\{\alpha, \beta\}, \\
\{i, j\}=\{x, z\}, & \{j, k\}=\{u, w\}, & \{k, i\}=\{\alpha, \gamma\} .
\end{array}
$$

Then we get, $c_{z 3}+c_{y 3}+c_{w 4}+c_{v 4}+c_{\gamma 2}+c_{\beta 2} \equiv 0\left(\bmod 2 \cdot S_{X}\right)$. Therefore by (1.14), we get $C_{z 3}=C_{y 3}, C_{w 4}=C_{x 4}, C_{\gamma 2}=C_{\beta 2}$, i. e., $z=y, w=v, \gamma=\beta$. Hence $k=k^{\prime}$, $i=i^{\prime}$ and $j=j^{\prime}$ hold. Next we prove (2). Since we have $\operatorname{Aut}(X)=\operatorname{Aut}_{N}(X) \cdot\langle\bar{\xi}\rangle$
(cf. (1.11)), once an M.S.R. of $g_{i} / \operatorname{Aut}_{N}(X)$ is found, we can find an M.S.R. of $g_{i} / \operatorname{Aut}(X)$ by only examing how $\bar{\xi}$ acts on $g_{i} / \operatorname{Aut}_{N}(X)$. The automorphism $\bar{\xi}$ acts on $\mathscr{g}_{2} / \operatorname{Aut}_{N}(X)$ as follows.

Finally we prove the rest of (2.1) (2) for \mathscr{g}_{2} and \mathscr{g}_{3}. As for \mathscr{g}_{1}, the proof is similar for g_{2} and then omitted.

As for \mathscr{g}_{2}, by (3.1) and (2.3) it is enough to show that $\operatorname{Tor} M_{\varphi}(X)=\boldsymbol{Z} / 2 \boldsymbol{Z}$ for

$$
\varphi=\Phi_{\left|H_{1}+C 12+G_{2}+C 32+H_{3}+C 31+G_{1}+C 21+H_{2}+C 23+G_{3}+C 13\right|} .
$$

Note that φ has six sections $C^{14}, C^{24}, C^{34}, C^{41}, C^{42}, C^{43}$. By Lemma (1.15) in Cox and Zucker [9], p. 8, $f \in M_{\varphi}(X)$ defined by $f\left(C^{14}\right)=C^{41}$ is a torsion element. Hence φ has no singular fibers of type II and then, by (2.3), φ has eight singular fibers of type I_{1}. Therefore any element of $M_{\varphi}(X)$ has at least 8 fixed points on X and then Tor $M_{\varphi}(X)$ is 2-elementary. If f and g are 2-torsion elements in $M_{\varphi}(X), f \circ g$ acts on singular fibers of type I_{1} as an identity. Hence by (1.15), $f \circ g$ is an identity on X. Then we have $f=g$. Therefore Tor $M_{\varphi}(X)$ $=\boldsymbol{Z} / 2 \boldsymbol{Z}$ holds.

As for \mathscr{g}_{3}, if $M_{\varphi^{(3)}(X)}$ has a torsion, we get $\operatorname{Tor} M_{\varphi}(3)(X)=\boldsymbol{Z} / 2 \boldsymbol{Z}$ like as above. But this does not happen since the group structure of $\Theta^{(3)}$ is $\boldsymbol{C} \times \boldsymbol{Z} / 3 \boldsymbol{Z}$.

Corollary (3.3). Let $D^{n s}(1 \leqq n \neq s \leqq 4)$ be 12 disjoint nodal curves for arbitrarily fixed $H_{n}, G_{n}(n=1,2,3,4)$. (As for $D^{* *}$, see § 2.) Then there exists $\sigma \in \operatorname{Aut}_{N}(X)$ such that $\sigma\left(H_{n}\right)=G_{n}, \sigma\left(G_{n}\right)=H_{n}$ and $\sigma\left(D^{n s}\right)=D^{s n}$ for all n, s with $1 \leqq n \neq s \leqq 4$. Especially, there exists $\sigma^{\prime} \in \operatorname{Aut}_{N}(X)$ such that $\sigma^{\prime}\left(H_{n}\right)=G_{n}, \sigma^{\prime}\left(G_{n}\right)$ $=H_{n}$ and $\sigma^{\prime}\left(C^{n s}\right)=C^{s n}$ for all n, s with $1 \leqq n \neq s \leqq 4$.

Proof. We consider the Jacobian fibration $\varphi=\Phi_{A}$, where

$$
\Lambda:=\left|D^{23}+H_{2}+D^{24}+G_{4}+D^{34}+H_{3}+D^{32}+G_{2}+D^{42}+H_{4}+D^{43}+G_{3}\right| .
$$

Then $D^{12}, D^{13}, D^{14}, D^{21}, D^{31}$ and D^{41} are sections of φ and we have $\varphi \in \mathcal{g}_{2}$. Let us take three elements $f_{n}(n=2,3,4) \in M_{\varphi}(X)$ such that $f_{n}\left(D^{1 n}\right)=D^{n 1}$. By Cox and Zucker (loc. cit.), f_{2}, f_{3} and f_{4} are torsion elements of $M_{\varphi}(X)$. Therefore we have $f_{2}=f_{3}=f_{4}$. Putting $\sigma=f_{2}=f_{3}=f_{4}$, we have $\sigma\left(H_{n}\right)=G_{n}, \sigma\left(G_{n}\right)=H_{n}$ and $\sigma\left(D^{n s}\right)=D^{s n}$ for all n, s with $1 \leqq n \neq s \leqq 4$.

Corollary (3.4). Let $A^{11}, B^{11}, D^{1 s}, D^{s 1}(2 \leqq s \leqq 4)$ be 8 disjoint nodal curves on X for arbitrarily fixed $H_{n}, G_{n}(n=1,2,3,4)$. Then,
(1) $\Phi_{1}:=\Phi_{\mid A 11+\Sigma_{s=2^{4}}^{4}{ }^{s+2 H_{1} \mid}}$ and $\Phi_{2}:=\Phi_{\mid B^{11+\Sigma_{s=2}^{4} D^{1 s+2 H_{1}} \mid}}$ are elements of \mathscr{g}_{4}.
(2) If any non-singular fiber of Φ_{1} is isomorphic to E, then any non-singular fiber of Φ_{2} is isomorphic to F.

Proof. (1) is obvious. Let us consider the Jacobian fibration $\Phi_{3}:=$ $\Phi_{\left|A 11+B^{11+}+H_{1}+G_{1}\right|} \in \mathcal{g}_{2}$, and the involution $\sigma \in M_{\Phi_{3}}(X)$. Without loss of generality, we may assume that there exist 6 nodal curves $D^{n s}(2 \leqq n \neq s \leqq 4)$ and $\sum_{n=2}^{4}\left(H_{n}+G_{n}\right)+\sum_{2 \leq n \neq s \leq 4} D^{n s}$ is another singular fiber of type I_{12} of Φ_{3}. By Cox and Zucker (loc. cit.), 6 sections $D^{1 s}, D^{s 1}(s=2,3,4)$ satisfy $\sigma\left(D^{1 s}\right)=D^{s 1}$. Moreover we have $\sigma\left(B^{11}\right)=A^{11}$ and $\sigma\left(H_{1}\right)=G_{1}$. Therefore σ translates a Jacobian fibration Φ_{2} to a Jacobian fibration $\Phi_{4}:=\Phi_{\left|A^{11+}+\Sigma_{s} D s 1+2 G_{1}\right|}$. On the other hand, it is clear that if any non-singular fiber of Φ_{1} is isomorphic to E, then any non-singular fiber of Φ_{4} is isomorphic to F by (1.13) since $A^{11} \cup \cup_{s=2}^{4}\left(D^{1 s} \cup D^{s 1}\right)$ is extendable to a double Kummer pencil divisor.
§ 4. A minimal complete set of representatives of $g_{m} / \operatorname{Aut}(X)(m=4, \cdots, 11)$.
Lemma (4.1). For a fixed ordered pair (i,j,k,p,q,r) where $\{i, j, k\}=$ $\{p, q, r\}=\{2,3,4\}$, there exists a unique nodal curve $R_{i j k p q r}$ such that $R_{i j k p q r}$ meets both E_{1} and F_{1} and does not meet any $C_{n s}(1 \leqq n, s \leqq 4)$ except for $C_{i p}$, $C_{j q}$ and $C_{k r}$. Moreover $R_{i j k p q r}$ is characterized in S_{X} by the following equality.

$$
r_{i j k p q r}=e+f-c_{i p}-c_{j q}-c_{k r} .
$$

Proof. The curve M^{44} in (2.13) satisfies the condition on $R_{i j k p q r}$ if we put $H_{4}=F_{1}, G_{4}=E_{1}, H_{1}=F_{i}, G_{2}=E_{p}, H_{2}=F_{j}, G_{1}=E_{q}, H_{3}=F_{k}$ and $G_{3}=E_{r}$. Let us show the uniqueness of $R_{i j k p q r}$. Put $r_{i j k p q r}=a e+b f+\sum_{n, s} x_{n s} c_{n s}$ where $a, b, x_{n s} \in \boldsymbol{Q}$. By the condition on $R_{i j k p q r}$ and $R_{i j k p q r}^{2}=-2$, and (0.2) (3), we get $r_{i j k p q r}= \pm\left(e+f-c_{i p}-c_{j q}-c_{k r}\right)$. Since $R_{i j k p q r} \cdot E \geqq 0$, we have $r_{i j k p q r}=$ $e+f-c_{i p}-c_{j q}-c_{k r}$. Hence by (1.5), $R_{i j k p q r}$ is unique.

Theorem (4.2). (IV) Put $\varphi_{i}^{(4)}=\Phi_{\left|\theta_{i}^{(4)}\right|}(i=1,2)$ where $\Theta_{1}^{(4)}=2 F_{1}+C_{11}+C_{12}$ $+C_{13}+C_{14}, \Phi_{2}^{(4)}=2 E_{1}+C_{11}+C_{21}+C_{31}+C_{41}$. Then $\left\{\varphi_{1}^{(4)}, \varphi_{2}^{(4)}\right\}$ is an M.S.R. of both $g_{4} / \operatorname{Aut}_{N}(X)$ and $g_{4} / \operatorname{Aut}(X)$.
(V) Put $\varphi_{i p}^{(5)}=\Phi_{\mid \theta_{i p}^{(5)}}$ where

$$
\begin{array}{r}
\Theta_{i p}^{(5)}=C_{k 1}+C_{j 1}+C_{1 q}+C_{1 r}+2\left(E_{1}+C_{i 1}+F_{i}+C_{i p}+E_{p}+C_{1 p}+F_{1}\right) \quad \text { and } \\
2 \leqq i, p \leqq 4 .
\end{array}
$$

(1) The set $\left\{\varphi_{i p}^{(5)}\right\}_{2 \leq i, p \leq 4}$ is an S.R. (a non-minimal set of representatives) of $g_{5} / \operatorname{Aut}_{N}(X)$.
(2) The set $\left\{\varphi_{22}^{(5)}\right\}$ is an M.S.R. of both $g_{5} / \operatorname{Aut}_{N}(X)$ and $\mathscr{g}_{5} / \operatorname{Aut}(X)$.
(VI) Put $\varphi_{i p}^{(\mathrm{6})}=\Phi_{\left|\theta_{i p}^{(6)}\right|}$ where
$\Theta_{i p}^{(6)}=C_{k 1}+C_{j 1}+C_{1 q}+C_{1 r}+2\left(E_{1}+C_{11}+F_{1}\right)$ and $2 \leqq i, p \leqq 4$.
(1) The set $\left\{\varphi_{i p}^{(6)}\right\}_{2 \leq i, p \leq 4}$ is an M.S.R. of $\mathscr{g}_{6} / \operatorname{Aut}_{N}(X)$.
(2) An M.S.R. of $g_{6} / \operatorname{Aut}(X)$ is given as follows where $\varphi_{i p}:=\varphi_{i p}^{(6)}$.

Type of X	(i)	(ii)	(iii)	(iv)
M.S. R. of $\mathcal{g}_{6} / \operatorname{Aut}(X)$	φ_{22} φ_{32}	$\varphi_{i 2}$ $i=2,3,4$	$i=2, \varphi_{i} p$ $p=2,3,4$	$i=2,3,4$ $p=2,3,4$

(VII) Put $\varphi_{i j p}^{(7)}=\Phi_{\left|\theta_{i j p}^{(7)}\right|}$ where

$$
\begin{aligned}
\Theta_{i j p}^{(7)}=C_{i p}+C_{k p}+C_{j 1}+C_{k 1}+2\left(E_{p}+C_{1 p}+F_{1}+\right. & \left.C_{11}+E_{1}\right) \quad \text { and } \\
& 2 \leqq i \neq j \leqq 4,2 \leqq p \leqq 4 .
\end{aligned}
$$

(1) The set $\left\{\varphi_{i j p}^{(7)}\right\}_{2 \leq i \neq j \leq 4,2 \leq p \leq 4}$ is an S. R. of $g_{7} / \operatorname{Aut}_{N}(X)$.
(2) The set $\left\{\varphi_{i j p}^{(7)}\right\}_{2 \leq i<j \leq 4,2 \leq p \leq 4}$ is an M.S.R. of $g_{7} / \operatorname{Aut}_{N}(X)$.
(3) An M.S.R. of $\mathscr{g}_{7} / \operatorname{Aut}(X)$ is given as follows where $\varphi_{i j p}:=\varphi_{i j p}^{(7)}$.

Type of X	(i)	(ii)	(iii)	(iv)
M. S. R. of $\mathcal{g}_{7} / \operatorname{Aut}(X)$	φ_{342} φ_{343}	$\varphi_{34 p}$ $p=2,3,4$	$\varphi_{i j 2}$ $\varphi_{i j 3}$ $2 \leqq i<j \leqq 4$	$\varphi_{i j} \leqq i<j \leqq 4$ $p=2,3,4$

(VIII) Put $\varphi_{i j p q}^{(8)}=\Phi_{\mid \theta_{i j p q}^{(8)}}$ where

$$
\begin{aligned}
\Theta_{i j p q}^{(8)}=C_{j p}+2 E_{p}+3 C_{1 p}+4 F_{1}+3 C_{11}+2 E_{1}+ & C_{i 1}+2 C_{1 q} \quad \text { and } \\
& 2 \leqq i \neq j \leqq 4,2 \leqq p \neq q \leqq 4 .
\end{aligned}
$$

(1) The set $\left\{\varphi_{i j p q}^{(8)}\right\}_{2 \leq i \neq j \leq 4,2 \leq p \neq q \leq 4}$ is an S.R of $\mathscr{g}_{8} / \operatorname{Aut}_{N}(X)$.
(2) The set $\left\{\varphi_{i j 23}^{(8)}\right\}_{2 \leq i \neq j \leq 4}$ is an M.S.R. of $g_{8} / \operatorname{Aut}_{N}(X)$.
(3) An M.S.R. of $g_{8} / \operatorname{Aut}(X)$ is given as follows where $\varphi_{i j 23}:=\varphi_{i j 23}^{(8)}$.

Type of X	(i)	(ii)	(iii)	(iv)
M. S. R. of $\mathcal{G}_{8} / \operatorname{Aut}(X)$	φ_{2323}	φ_{2323} φ_{2423}	$\varphi_{i}{ }^{i j 23}$ $2 \leqq i<j \leqq 4$	$\varphi_{i j 23}$ $2 \leqq i \neq j \leqq 4$

(IX) Put $\varphi_{i j p}^{(9)}=\Phi_{\mid \theta_{i j p}}{ }^{(9)}$, where

$$
\begin{aligned}
\Theta_{i j p}^{(9)}=C_{j p}+2 E_{p}+3 C_{1 p}+4 F_{1}+5 C_{11}+6 F_{1}+3 C_{k 1}+4 C_{i 1}+2 F_{i} \quad \text { and } \\
2 \leqq i \neq j \leqq 4,2 \leqq p \leqq 4 .
\end{aligned}
$$

(1) The set $\left\{\varphi_{i j p}^{(9)}\right\}_{2 \leq i \neq j \leq 4,2 \leq p \leq 4}$ is an S.R. of $\mathscr{g}_{9} / \operatorname{Aut}_{N}(X)$.
(2) The set $\left\{\varphi_{223}^{(9)}\right\}$ is an M.S.R. of both $\mathscr{g}_{9} / \operatorname{Aut}_{N}(X)$ and $\mathscr{f}_{9} / \operatorname{Aut}(X)$.
(X) Put $\varphi_{i j k p q r}^{(10)}=\Phi_{\left|\theta_{i j k p q r}^{(1)}\right|}$ where
$\Theta_{i j k p q r}^{(10)}=C_{i q}+C_{1 q}+C_{11}+R_{i j k p q r}+2\left(E_{q}+C_{k q}+F_{k}+C_{k p}+E_{p}+C_{j p}+F_{j}+C_{j 1}+E_{1}\right)$
and $\{i, j, k\}=\{p, q, r\}=\{2,3,4\}$.
(1) The set $\left\{\varphi_{i j k p q r}^{(10)}\right\}_{(i, j, k)=(p, q, r)}$ is an S.R. of $\mathscr{g}_{10} / \operatorname{Aut}_{N}(X)$.
(2) The set $\left\{\varphi_{i j k 234}^{(1)}\right\}_{(i, j, k)=(2,3,4)}$ is an M.S.R. of $\mathscr{f}_{10} / \operatorname{Aut}_{N}(X)$.
(3) $A n$ M.S.R. of $g_{10} / \operatorname{Aut}(X)$ is given as follows where $\varphi_{i j k 234}:=\varphi_{i j k 234}^{(10)}$.

Type of X	(i)	(ii)	(iii)	(iv)
$\begin{aligned} & \text { M.S. R. of } \\ & \mathcal{g}_{10} / \operatorname{Aut}(X) \end{aligned}$	φ_{234234}	$\begin{aligned} & \varphi_{234234} \\ & \varphi_{324234} \end{aligned}$	φ_{234234} φ_{324234} φ_{423234}	$\begin{gathered} \varphi_{i j}{ }_{j}, k 234 \\ \{i, j, k\} \\ =\{2,3,4\} \end{gathered}$

(XI) Put $\varphi_{i j k p q r}^{(11)}=\Phi_{\mid \theta_{i j k p q r}^{(11)}}$ where

$$
\begin{aligned}
\Theta_{i j k p q r}^{(11)}=C_{i 1}+C_{i q}+C_{11}+R_{i j k p q r}+2\left(F_{i}+\right. & \left.C_{i r}+E_{r}+C_{1 r}+F_{1}\right) \text { and } \\
& \{i, j, k\}=\{p, q, r\}=\{2,3,4\} .
\end{aligned}
$$

(1) The set $\left\{\varphi_{i j k p q r}^{(11)}\right\}$ is an S.R. of $g_{11} / \operatorname{Aut}_{N}(X)$.
(2) The set $\left\{\varphi_{i j k p g r}^{(11)}\right\}_{2 \leq i<k \leq 4,2 \leq p<r \leq 4}$ is an M.S.R. of $\mathscr{g}_{11} / \operatorname{Aut}_{N}(X)$.
(3) An M.S.R. of $\mathscr{J}_{11} / \operatorname{Aut}(X)$ is given as follows where $\varphi_{i j k p q r}:=\varphi_{i j k p q r}^{(11)}$.

Type of X	(i)	(ii)	(iii)		(iv)
M.S. R. of	φ_{234234}	φ_{234234}	φ_{234234}	φ_{32432}	$\varphi_{i j} k p q r$
$\mathcal{I}_{11} / \operatorname{Aut}(X)$	φ_{324324}	φ_{324324}	φ_{324234}	φ_{23243}	$2 \leqq i<k \leqq 4$
		φ_{243243}	φ_{234324}	φ_{324243}	$2 \leqq p<r \leqq 4$

Corollary (4.3). For each $g_{m}, \#\left(g_{m} / \operatorname{Aut}(X)\right)$ (the number of non-isomorphic elements) is as follows.

Type	g_{1}	\mathfrak{g}_{2}	\mathfrak{g}_{3}	g_{4}	\mathfrak{g}_{5}	\mathfrak{g}_{6}	\mathfrak{g}_{7}	\mathfrak{g}_{8}	\mathfrak{g}_{9}	\mathfrak{g}_{10}	\mathfrak{g}_{11}	Total
(i)	2	1	1	2	1	2	2	1	1	1	2	16
(ii)	3	2	1	2	1	3	3	2	1	2	3	23
(iii)	6	3	1	2	1	6	6	3	1	3	6	38
(iv)	9	6	1	2	1	9	9	6	1	6	9	59

Proof. We give a proof for (VII) and (X). For other cases, we only mention key claims because the verification of them is similar.

Proof of (VII). Obviously, we have $\varphi_{i j p}^{(7)} \in \mathcal{g}_{7}$. First we prove (1). Let $\varphi=\Phi_{|\theta|}$ be an element of g_{7}. We may assume that Θ is of type I_{4}^{*} and that Θ can be represented as follows:

$$
\Theta=D^{13}+D^{43}+2\left(G_{3}+D^{23}+H_{2}+D^{21}+G_{1}\right)+D^{31}+D^{41}
$$

Then H_{1}, H_{3} are sections and H_{4} is a 2-section of φ. By a similar method in the proof of Theorem (3.1), we see easily that Θ is extendable (to a double Kummer pencil divisor). Hence there exists $f \in \operatorname{Aut}_{N}(X)$ such that $\operatorname{Supp} f(\Theta)$ $\subset K_{\text {nat }}$. By the way, by (1.7), for any $h \in \operatorname{Aut}(X)$, either $h\left(\cup H_{n}\right)=\bigcup E_{n}$ and $h\left(\cup G_{n}\right)=\bigcup F_{n}$ or $h\left(\bigcup G_{n}\right)=\bigcup E_{n}$ and $h\left(\bigcup H_{n}\right)=\bigcup F_{n}$ hold. Then (if necessary, composing a suitable element of $\operatorname{Aut}_{N}\left(X ; \bigcup_{n, s} C_{n s}\right)$) we see that $f(\Theta)$ becomes either (a) or (b) for some $f \in \operatorname{Aut}_{N}(X)$:

Assume that $f(\Theta)$ is of type (b). Then, by composing a suitable automorphism g of X, constructed in the corollary (3.3), we see that $g \circ f(\Theta)$ is of type (a). Therefore (1) is proved.

Next we prove (2). It is sufficient to show the following.
Claim (4.4). The fibrations $\varphi_{i j p}^{(7)}$ and $\varphi_{i^{\prime} j^{\prime} p^{\prime}}^{(7)^{\prime}}$ are in the same orbit of $g_{7} /$ $\operatorname{Aut}_{N}(X)$ if and only if $p=p^{\prime},\{i, j\}=\left\{i^{\prime}, j^{\prime}\right\}$ hold.

Proof of (4.4). If part: Choose $g \in \operatorname{Aut}_{N}\left(X ; \bigcup_{n, s} C_{n s}\right)$ such that

$$
E_{p} \longleftrightarrow E_{1}, \quad E_{q} \longleftrightarrow E_{r}, \quad \text { and } \quad F_{1} \longleftrightarrow F_{l} \quad(l=1, \cdots, 4,\{p, q, r\}=\{2,3,4\}) .
$$

Then we have $g\left(\Theta_{i j p}^{(7)}\right)=\Theta_{j i p}^{(\eta)}$.
Only if part: Since $\Theta_{i j p}^{(7)}$ is a unique singular fiber of $\varphi_{i j p}^{(7)}$ of type I_{4}^{*}, $f\left(\Theta_{i j p}^{(7)}\right)=\Theta_{i^{\prime} j^{\prime} p^{\prime}}^{(7)}$ holds for some $f \in \operatorname{Aut}_{N}(X)$. Then we easily see that $f\left(C_{11} \cup C_{1 p} \cup C_{k 1} \cup C_{k p}\right)=C_{11} \cup C_{1 p^{\prime}} \cup C_{k^{\prime}, 1} \cup C_{k^{\prime} p^{\prime}}$. Hence, by (1.10), we have $C_{11}+C_{1 p}+C_{k 1}+C_{k p}+C_{11}+C_{1 p^{\prime}}+C_{k^{\prime} 1}+C_{k^{\prime} p^{\prime}} \equiv 0\left(\bmod 2 \cdot S_{X}\right)$. Therefore, by (1.14), the claim holds.

By the same method as in (3.1), we immediately see that (3) also holds.
Proof of (X). Obviously we have $\varphi_{i j k p q r}^{(10)} \in \mathscr{g}_{10}$. Let $\varphi=\Phi_{|\theta|}$ be an element of g_{10}. We may assume that Θ is of type I_{8}^{*} and represented as follows:

$$
\Theta=D^{11}+Q^{11}+D^{13}+D^{23}+2\left(G_{1}+D^{31}+H_{3}+D^{32}+G_{2}+D^{42}+H_{4}+D^{43}+G_{3}\right)
$$

Let us consider the Jacobian fibration $\varphi^{\prime}=\Phi_{\left|D^{11}+Q^{11}+G_{1}+H_{1}\right|} \in \mathcal{g}_{2}$. Since D^{13} and D^{31} are sections, there exist nodal curves D^{24} and D^{34} such that another singular fiber of type I_{12} of φ^{\prime} is $G_{2}+D^{32}+H_{3}+D^{34}+G_{4}+D^{24}+H_{2}+D^{23}+G_{3}+D^{43}+H_{4}+D^{42}$. By the way, since D^{13} is a section of φ^{\prime} and $\varphi^{\prime} \in \mathcal{g}_{2}$, there exist 6 disjoint sections $D^{13}, D^{\prime 2}, D^{14}, D^{21}, D^{\prime 41}$ and $D^{\prime 31}$ as was seen in the proof (2.1) (2) for \mathscr{g}_{2}. Let us consider two elements σ and σ^{\prime} of $M_{\varphi^{\prime}}(X)$ such that $\sigma\left(D^{13}\right)=D^{31}$, $\sigma^{\prime}\left(D^{13}\right)=D^{\prime 31}$. By Cox and Zucker (loc. cit.), both σ and σ^{\prime} are torsion elements of $M_{\varphi^{\prime}}(X)$. Therefore $\sigma=\sigma^{\prime}$ and $D^{31}=D^{31}$ hold. So we can put $D^{12}=D^{12}$, $D^{14}=D^{14}, D^{21}=D^{21}$, and $D^{\prime 41}=D^{41}$. By (3.4), if any non-singular fiber of $\Phi_{1}:=\Phi_{\left|D^{11+D 12+D 13+D 14+2 H_{1} \mid}\right|} \in \mathcal{g}_{4}$ is isomorphic to E, any non-singular fiber of $\Phi_{\mid Q^{11+D^{12}+D^{13+}+D^{14}+2 H_{1} \mid}}$ is isomorphic to F. Thus, if necessary, changing the names of D^{11} and Q^{11}, we may assume that any non-singular fiber of Φ_{1} is isomorphic to F. By $\Phi_{1}, \Theta-Q^{11}$ is extended to a double Kummer pencil divisor $K_{D}=\cup_{1 s n \neq s s_{4}} D^{n s} \cup D^{11} \cup D^{22} \cup D^{33} \cup D^{44} \cup B$. Then, by the assumption on Φ_{1}, there exists $f \in \operatorname{Aut}_{N}(X)$ such that $f\left(K_{D}\right)=K_{\text {nat }}, f\left(D^{11}\right)=C_{11}, f\left(\Theta-Q^{11}\right)=$ $\Theta_{i j k p q r}^{(11)}-R_{i j k p q r}$ for suitable (i, j, k, p, q, r) and $f\left(Q^{11}\right)$ meets both E_{1} and F_{1} and does not meet any $C_{n s}$ except for $C_{i p}, C_{j q}$ and $C_{k r}$. Hence by (4.1), we have $f\left(Q^{11}\right)=R_{i j k p q r}$ and (1) holds.

Next we prove (2). It is sufficient to show the following.
Claim (4.5). Let \Im_{3} be the permutation group of 3 letters 2, 3, 4. The fibrations $\varphi_{i j k p q r}^{(10)}$ and $\varphi_{i^{\prime} j^{\prime} j^{\prime} k^{\prime} p^{\prime} q^{\prime} r^{\prime}}$ are in the same orbit of $\mathcal{I}_{10} / \mathrm{Aut}_{N}(X)$ if and only if $\left(\begin{array}{ccc}i & j & k \\ i^{\prime} & j^{\prime} & k^{\prime}\end{array}\right)=\left(\begin{array}{ccc}p & q & r \\ p^{\prime} & q^{\prime} & r^{\prime}\end{array}\right)$ holds as an element of $\mathbb{\Xi}_{3}$.

Proof. Only if part: If $\varphi_{i j k p q r}^{(10)}$ and $\varphi_{i^{\prime} j^{\prime} k^{\prime} p^{\prime} p^{\prime} q^{\prime} r^{\prime}}^{(1)}$ are in the same orbit of
 Then, by (1.10) and (1), we get $C_{i p}+C_{j q}+C_{k r}+C_{i^{\prime} p^{\prime}}+C_{j^{\prime} q^{\prime}}+C_{k^{\prime} r^{\prime}} \equiv 0\left(\bmod 2 \cdot S_{X}\right)$. Hence only if part holds.

If part: It is sufficient to construct the following symplectic automorphisms: $\tau\left(\Theta_{i j k p q r}^{(10)}\right)=\Theta_{j k i q r p}^{(10)}, \rho\left(\Theta_{i j k p q r}^{(10)}\right)=\Theta_{k j i z q p}^{(10)}$.
τ : Make a Jacobian fibration $\Phi_{1 \Omega \mid}$ where $\Omega=C_{11}+R_{i j k p q r}+E_{1}+F_{1}$.
Then $\Phi_{|\Omega|}$ is in g_{2} and the other singular fiber of $\Phi_{|\Omega|}$ of type I_{12} is $\Omega^{\prime}=F_{i}+C_{i q}+E_{q}+C_{k q}+F_{k}+C_{k p}+E_{p}+C_{j p}+F_{j}+C_{j r}+E_{r}+C_{i r}$ and $C_{i 1}, C_{j 1}, C_{k 1}$, $C_{1 p}, C_{1 q}, C_{1 r}$ are sections. Take $\tau \in M_{\Phi_{\mid 21}}$ such that $\tau\left(C_{j 1}\right)=C_{k 1}$. Then by the group structures of Ω and Ω^{\prime}, we have

$$
\begin{array}{ll}
\tau\left(C_{11}\right)=C_{11}, \quad \tau\left(C_{j p}\right)=C_{k q}, & \tau\left(C_{k p}\right)=C_{j q}, \\
\tau\left(R_{i j k p q r}\right)=R_{i j k p q r}=R_{j k i q p r}, & \tau\left(C_{k q}\right)=C_{i r}, \quad \tau\left(C_{i q}\right)=C_{j r} .
\end{array}
$$

Since for the torsion element $\sigma \in M_{\Phi_{|\Omega|}}$ the equalities $\sigma\left(C_{1 q}\right)=C_{j 1}$ and $\sigma\left(C_{1 r}\right)=$ $C_{k 1}$ hold, we have $\tau\left(C_{1 q}\right)=C_{1 r}$. Hence $\tau\left(\Theta_{i j k p q r}^{(10)}\right)=\Theta_{j k i q r p}^{(10)}$ holds for this τ.
ρ : Make a Jacobian fibration $\Phi_{|L|}$ where $L=C_{11}+R_{i j k p q r}+C_{i q}+C_{k q}+2\left(F_{1}\right.$

$$
\left.+C_{1 q}+E_{q}\right) .
$$

So we have $\Phi_{|L|} \in \mathcal{g}_{8}$, and F_{i} and F_{k} are sections of $\Phi_{|L|}$. Take $\rho \in M_{\Phi_{|L|}}(X)$ such that $\rho\left(F_{i}\right)=F_{k}$. Then, by a similar consideration as above, we see that $\rho\left(\Theta_{i j k p q r}^{(10)}\right)=\Theta_{k j i r q p}^{(10)}$ holds for this ρ.

Since $r_{i j k p q r}$ is explicitly represented in S_{X}, by the same method as in (3.1), we easily show (3).

Finally we mention key claims to find an M.S.R. of $g_{m} / \operatorname{Aut}_{N}(X)$ from an S. R. of $g_{m} / \operatorname{Aut}_{N}(X)$ for the other cases.

Claim (4.6). All $\varphi_{i p}^{(5)}$ are in the same orbit of $g_{5} / \operatorname{Aut}_{N}(X)$.
(Make a Jacobian fibration in \mathcal{g}_{3}, and take suitable translation automorphisms of it.)

Claim (4.7). If $\varphi_{i p}^{(6)}$ and $\varphi_{i^{(6)} p^{(6)}}$ are in the same orbit of $\mathscr{g}_{6} / \operatorname{Aut}_{N}(X)$, then $i=i^{\prime}$ and $p=p^{\prime}$.

Claim (4.8). $\varphi_{i j p q}^{(8)}$ and $\varphi_{i^{\prime} j^{\prime} p^{\prime} q^{\prime}}^{\left(q^{\prime}\right.}$ are in the same orbit of $\mathscr{g}_{8} / \operatorname{Aut}_{N}(X)$ if and only if the ordered pair $\left(i^{\prime}, j^{\prime}, p^{\prime}, q^{\prime}\right)$ is one of the following six ordered pairs:

$$
(i, j, p, q), \quad(j, i, p, r), \quad(j, k, q, r), \quad(k, j, q, p), \quad(i, k, r, q), \quad(k, i, r, p)
$$

(For if part, make a Jacobian fibration in \mathscr{g}_{1}, and take a suitable translation automorphism f of it. Then we have $f\left(\Theta_{i j p q}^{(8)}\right)=\Theta_{i k r q}^{(8)}$. By taking a suitable $g \in \operatorname{Aut}_{N}\left(X ; \bigcup_{n, s} C_{n s}\right)$, we have $\left.g\left(\Theta_{i j p_{q}}^{(8)}\right)=\Theta_{j i p r .}^{(8)}\right)$

Claim (4.9). All $\varphi_{i j p}^{(9)}$ are in the same orbit of $g_{9} / \operatorname{Aut}_{N}(X)$.
(Make a suitable Jacobian fibration in g_{3}. Then $f\left(\Theta_{i j p}^{(9)}\right)=\Theta_{i j q}^{(9)}$ holds for a suitable translation automorphism f of it. Make a suitable Jacobian fibration
in g_{1}. Then the equalities $g\left(\Theta_{i j 2}^{(9)}\right)=\Theta_{j i 2}^{(9)}$ and $h\left(\Theta_{i j 2}^{(9)}\right)=\Theta_{i k 2}^{(9)}$ hold for suitable translation automorphisms g and h of it.)

Claim (4.10). The fibrations $\varphi_{i j k p q r}^{(11)}$ and $\varphi_{i^{\prime} j^{\prime} j^{\prime} k^{\prime} p^{\prime} q^{\prime} r^{\prime}}^{(1)}$ are in the same orbit of $g_{11} / \operatorname{Aut}_{N}(X)$ if and only if $j=j^{\prime}$ and $q=q^{\prime}$ hold. (The other singular fiber of type I_{4}^{*} of $\varphi_{i j k p q r}^{(11)}$ is

$$
\Gamma_{i j k p q r}^{(11)}=C_{j 1}+S_{i j k p q r}+C_{k 1}+C_{k q}+2\left(F_{j}+C_{j p}+E_{p}+C_{k p}+F_{k}\right) .
$$

Here $S_{i j k p q r}$ is a nodal curve characterized by $s_{i j k p q r}=e+f-c_{1 q}-c_{i p}-c_{k r}$.
If part: By taking a suitable element $\tau \in \operatorname{Aut}_{N}\left(X ; \bigcup_{n, s} C_{n s}\right)$, we have $\tau\left(\Theta_{i j k p q r}^{(11)}\right)=\Gamma_{i j k r q p}^{(11)}$. By making a suitable Jacobian fibration in g_{1} and taking a suitable translation automorphism ρ of it, we have $\rho\left(\Theta_{i j k p q r}^{(11)}\right)=\Theta_{k j i r q p .}^{(11)}$.

As for \mathscr{g}_{4}, the statement is trivial since E and F are not mutually isogenous. This completes the proof.
Q.E.D.

References

[1] V. Nikulin, On Kummer surfaces, Math. USSR-Izv., 9 (1975), 261-275.
[2] V. Nikulin, Finite groups of automorphisms of Kahlerian surfaces of type K3, Trans. Moscow Math. Soc., 38 (1980), 71-135.
[3] V. Nikulin, Integral symmetric bilinear forms and some of their applications, Math. USSR-Izv., 14 (1980), 103-167.
[4] V. Nikulin, Factor groups of groups of automorphisms of hyperbolic forms with respect to subgroups generated by 2 -reflections, algeblo-geometric applications, J. Soviet Math., 22 (1983), 1401-1475.
[5] T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan, 24 (1972), 20-59.
[6] T. Shioda, The period map of abelian surfaces, J. Fac. Sci. Univ. Tokyo, 25 (1978), 47-59.
[7] T. Shioda and N. Mitani, Singular abelian surfaces and binary quadratic forms, Lecture Notes in Math., 412, Springer, 1974, pp. 259-287.
[8] T. Shioda and H. Inose, On singular $K 3$ surfaces, Complex analysis and algebraic geometry, Iwanami Shoten, 1977, pp. 119-136.
[9] D. Cox and S. Zucker, Intersection numbers of sections of elliptic surfaces, Invent. Math., 53 (1979), 1-44.
[10] K. Kodaira, On compact analytic surfaces II, Ann. of Math., 77 (1963), 563-626.
[11] D. R. Morrison, On $K 3$ surfaces with a large Picard number, Invent. Math., 75 (1984), 105-121.
[12] H. Sterk, Finiteness results for algebraic K3 surfaces, Math. Z., 189 (1985).
[13] I. I. Pjateckiî-Šapiro and I. R. Šafarevič, A Torelli theorem for algebraic surfaces of type $K 3$, Math. USSR-Izv., 5 (1971), 547-587.

Keiji Oguiso
Department of Mathematics
Faculty of Science
University of Tokyo
Hongo, Tokyo 113
Japan

