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On the geometry of projective immersions
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In two preceeding papers [5] and [6] we have given a new general approach
to classical affine differential geometry and established the basic results concern-
ing the geometry of affine immersions. The purpose of the present paper is to
begin the study of projective immersions. We shall concentrate our attention
to the case of codimension one.

In Section 1 we recall the notion of projective structure on a manifold and
state relevant facts. In Section 2 we define the notion of projective and equi-
projective immersions and related concepts such as totally geodesic and umbilical
immersions. In Section 3 we study equiprojective immersions of a flat projec-
tive structure $(M, P)$ into a flat projective structure $(\tilde{M},\tilde{P})$ of one higher dimen-
sion and show that they are umbilical, provided dim $M\geqq 3$ and the rank of $h\geqq 2$ .
We derive certain corollaries and determine all connected, compact, umbilical
hypersurfaces in $RP^{n+1}$ . In Section 4 we prove the projective version of the
theorem of Berwald which characterizes quadrics in affine differential geometry.
In Section 5 we study the effect of a projective change of the ambiant connec-
tion on a nondegenerate hypersurface $M$, namely, how the affine normal, the
Blaschke induced connection, the affine metric, and the cubic form change. We
find that the difference tensor between the Blaschke connection and the Levi-
Civita connection is a projective invariant. We hope to find some more appli-
cations of these formulas in the study of nondegenerate hypersurfaces in $RP^{n+1}$ .

1. Projective structure.

We recall from [4] the notion of projective structure $P$ on a differentiable
manifold $M$. It is defined by an atlas of local affine connections $(U_{a}, \nabla_{\alpha})$ ,
where $\{U_{a}\}$ is an open covering of $M$ and $V_{a}$ is a torsion-free affine connec-
tion on $U_{\alpha}$ such that in any nonempty intersection $U_{\alpha}\cap U_{\beta}$ the connections $\nabla_{\alpha}$

and $\nabla_{\beta}$ are projectively equivalent. Here, in general, two affine connections $\nabla$

and V are said to be projectively equivalent if there is a l-form $\mu$ such that
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(1) $V_{X}Y=\nabla_{X}Y+\mu(X)Y+\mu(Y)X$ for any vector fields $X$ and $Y$ .

As usual, when $(M, P)$ is a projective structure, we consider a maximal
atlas of local affine connections and write $(U, \nabla)\in(M, P)$ to mean that an affine
connection $\nabla$ on an open subset $U$ of $M$ belongs to the maximal atlas for the
projective structure $(M, P)$ .

In dealing with projective equivalence and projective structures we normally
assume that each affine connection involved is locally equiaffine relative to a
certain volume element; this condition is equivalent to the property that the
Ricci tensor is symmetric. When two such equiaffine connections are projec-
tively equivalent, it follows that $d\mu=0$ in (1) and that they have the same pro-
jective curvature tensor:

(2) $W(X, Y)Z=R(X, Y)Z-[\gamma(Y, Z)X-\gamma(X, Z)Y]$ ,

where 7 denotes the normalized Ricci tensor $Ric/(n-1)$ , where $n$ is the dimen-
sion of the manifold. We also remark that if $\nabla$ is an equiaffine connection and
$\mu$ is a closed l-form and thus exact on a neighborhood $U$ , then the projective
change of $\nabla$ by $\mu$ gives rise to an equiaffine connection on $U$ . It is known
(cf. Proposition 4 in [4]) that for a projective structure $(M, P)$ and for any
volume element $\omega$ on $M$ there is a unique globally defined $\nabla$ compatible with $P$

such that $\nabla\omega=0$ .
Let us also recall that if dim $M\geqq 3$ , vanishing of the projective curvature

tensor $W$ is a necessary and sufficient condition for $\nabla$ to be projectively flat
( $i.e$ . projectively equivalent to a flat affine connection). If dim $M=2$ , then

(3) $(\nabla_{X}\gamma)(Y, Z)=(\nabla_{Y}\gamma)(X, Z)$

is a necessary and sufficient condition for projective flatness.
We may define the notion of path for a projective structure $(M, P)$ . By a

path we mean a curve $x_{t}$ in $M$ which, around each of its points, is a pregeo-
desic relative to some $\nabla\in(M, P)$ , that is, $\nabla_{t}x_{t}=\rho(t)x_{t}$ for some function $\rho(t)$ ;
in this case, $x_{t}$ is a pregeodesic relative to every $\nabla\in(M, P)$ .

2. Projective immersion.

Let $(M, P)$ and $(\tilde{M},\tilde{P})$ be differentiable manifolds each with a projective
structure defined by means of an atlas of local affine connections $(U_{\alpha}, \nabla_{\alpha})$ and
$(\hat{U}_{\beta},\tilde{\nabla}_{\beta})$ , respectively. We set $n=\dim M$ and $n+P=\dim\tilde{M}$.

An immersion $f:Marrow\tilde{M}$ is called a projective immersion if the following
condition is satisfied:

(A) For each point $x_{0}$ of $M$, there exist local affine connections $(U, \nabla)\in$
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$(M, P)$ and $(\tilde{U},\tilde{\nabla})\in(\tilde{M},\tilde{P})$ , where $U$ and $\hat{U}$ are neighborhoods of $x_{0}$ and $f(x_{0})$ ,
respectively, such that $f:(U, \nabla)arrow(C,\tilde{\nabla})$ is an affine immersion.

This means that there is a field of transversal subspaces $xarrow N_{x}$ on $U$ such
that for any vector fields $X$ and $Y$ on $U$ we have

(4) $\tilde{\nabla}_{X}(f_{*}(Y))=f_{*}(\nabla_{X}Y)+\alpha(X, Y)$ , where $\alpha(X, Y)\in N$ .

See [6]. In the case where codimension $p=1$ , there is a transversal vector
field $\xi$ on $U$ such that

(5) $\tilde{\nabla}_{X}(f_{*}(Y))=f_{*}(\nabla_{X}Y)+h(X, Y)\xi$ .

Let $(M, \nabla)$ and $(\tilde{M},\tilde{\nabla})$ be manifolds with affine connections. An affine im-
mersion $f:(M, \nabla)arrow(\tilde{M},\tilde{\nabla})$ is a projective immersion $(M, P)arrow(\tilde{M},\tilde{P})$ , where $P$

and $\tilde{P}$ are the projective structures determined by $\nabla$ and $\tilde{\nabla}$ , respectively.
When condition (A) is satisfied, we can, in fact, pick $(U, \nabla)$ or $(\tilde{U},\tilde{\nabla})$ and

find $(0,\tilde{\nabla})$ or $(U, \nabla)$ which satisfies the condition. More precisely, we have

PROPOSITION 1. If $f:(M, P)arrow(\tilde{M},\tilde{P})$ is a projective immersion, then
(B) for any Point $x_{0}\in M$ and for any local affine connection $(\hat{U}, \tilde{\nabla})\in(\tilde{M},\hat{P})$ ,

where $\hat{U}$ is a neighborhood of $f(x_{0})$ , there exists a local affine connection $(U, \nabla)$ ,

where $U$ is a neighborhood of $x_{0}$ , such that $f;(U, \nabla)arrow(\hat{U},\tilde{\nabla})$ is an affine immer-
sion;
(C) for any point $x_{0}\in M$ and for any local affine connection $(U, \nabla)$ , where $U$

is a sufficiently small neighborhood of $x_{0}$ , there exzsts a local affine connection
$(0,\tilde{\nabla})$ , where $\tilde{U}$ is a neighborhood of $f(x_{0})$ , such that $f:(U_{1}, \nabla)arrow(\hat{U}, \tilde{\nabla})$ is an
affine immersion, where $U_{1}$ is a neighborhood of $U$ such that $U_{1}\subset U$ and $f(U_{1})\subset O$ .

PROOF. Let $(U, \nabla)$ and $(C,\tilde{\nabla})$ be as in (A). Let $(O_{1},\tilde{\nabla}_{1})$ be any affine
connection belonging to $(\tilde{M},\tilde{P})$ , where $\hat{U}_{1}$ is a neighborhood of $f(x_{0})$ , where we
may assume $\hat{U}_{1}\subset O$ . Choose a neighborhood $U_{1}\subset U$ of $x_{0}$ such that $f(U_{1})\subset 0_{1}$ .
Then there exists a l-form $\tilde{\mu}$ on $C_{1}$ which gives projective equivalence of $\tilde{\nabla}$

and $\tilde{\nabla}_{1}$ . Then

$\tilde{\nabla}_{1_{X}}(f_{*}Y)=\tilde{\nabla}_{X}(f_{*}Y)+p(f_{*}X)f_{*}Y+p(f_{*}Y)f_{*}X$

$=f_{*}(\nabla_{X}Y+\mu(X)Y+\mu(Y)X)+\alpha(X, Y)$ ,

where $\mu=f^{*}\tilde{\mu}$ is a l-form on $M$ and $\alpha(X, Y)$ belongs to the transversal sub-
space $N$ for $f:(U, \nabla)arrow(O_{1},\tilde{\nabla}_{1})$ . Now we may pick the connection $(U_{1}, \nabla_{1})\in$

$(M, P)$ , where $\nabla_{1_{X}}Y=\nabla_{X}Y+\mu(X)Y+\mu(Y)X$. Then the equation above shows
that $f:(U_{1}, \nabla_{1})arrow(\tilde{U}_{1},\tilde{\nabla}_{1})$ is an affine immersion.

The proof for (C) is similar. Let $(U, \nabla)$ and $(\tilde{U},\tilde{\nabla})$ be as in (A). For any
$(U_{1}, \nabla_{1})\in(M, P)$ , where $U_{1}\subset U$ , there is a closed l-form $\mu$ on $U_{1}$ such that
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$\nabla_{1_{X}}Y=\nabla_{X}Y+\mu(X)Y+\mu(Y)X$ for all vector fields $X$ and $Y$ . Now it is easy to
find a closed l-form $\overline{\mu}$ on $U$ such that $f^{*}\tilde{\mu}=\mu$ . If we projectively change $\tilde{\nabla}$

to $\tilde{\nabla}_{1}$ by using the form $\tilde{\mu}$ , then $f:(U_{1}, \nabla_{1})arrow(\tilde{U},\tilde{\nabla}_{1})$ is an affine immersion. $\square$

REMARK. In stating conditions such as (A), (B) or (C), we shall from now
on omit explicit mention of the domains of local affine connections. In many
cases, it suffices to say that around a given point there is a local affine con-
nection $\nabla\in(M, P)$ with such and such properties.

A projective immersion $f:(M, P)arrow(\tilde{M},\tilde{P})$ is said to be totally geodesic at
$x_{0}\in M$ if for any $\tilde{\nabla}\in(\tilde{M},\tilde{P})$ around $f(x_{0}),$ $f$ is totally geodesic relative to V at
$x_{0}$ , that is, for any vector fields $X$ and $Y$ around $x_{0},$

$[\tilde{\nabla}_{X}(f_{*}(Y))]_{x_{0}}$ is tangent
to $f(M)$ , that is, there is a vector $Z$ at $x_{0}$ such $thatf_{*}(Z)=[\tilde{\nabla}_{X}(f_{*}(Y))]_{x_{0}}$ . Now
this condition is independent of the choice of $\tilde{\nabla}\in(\tilde{M},\tilde{P})$ , as is easily verified.
It is equivalent to the condition that $h=0$ at $x_{0}$ in (5). We say that $f$ is totally
geodesic if it is so at every point of $M$.

It is not difficult to see that $f$ is totally geodesic if and only if the image
of a path $x_{t}$ in $M$ is a path for $\tilde{M}$.

From this point on, we shall deal with the case of codimension $p=1$ .
Let $f:(M, P)arrow(\tilde{M},\tilde{P})$ be a projective immersion of codimension 1. For any

point $x_{0}$ , there exist $\nabla\in(M, P)$ around $x_{0}$ and $\tilde{\nabla}\in(\tilde{M},\tilde{P})$ around $f(x_{0})$ such that
$f$ is an affine immersion relative to $\nabla$ and fi around $x_{0}$ . This means that there
is a transversal vector field $\xi$ as in the equation (5). We show that the trans-
versal direction $[\xi]$ at $x_{0}$ is independent of the pair (V, $\tilde{\nabla}$) if $f$ is not totally
geodesic at $x_{0}$ .

For this purpose, let $(\nabla_{1},\tilde{\nabla}_{1})$ be another pair we may choose. We can
assume that $\nabla_{1}$ and $\nabla$ are defined in the same domain and projectively related:
$\nabla_{1_{X}}Y=\nabla_{X}Y+\mu(X)Y+\mu(Y)X$, where $\mu$ is a certain l-form, and, similarly for $\tilde{\nabla}_{1}$

and $\tilde{\nabla}$ : $\tilde{\nabla}_{1_{X}}Y=\tilde{\nabla}_{X}Y+\tilde{\mu}(X)Y+\tilde{\mu}(Y)X$, where $\tilde{\mu}$ is a certain l-form. Suppose $\xi_{1}$

is a transversal vector field for the affine immersion $f$ relative to $(\nabla_{1},\tilde{\nabla}_{1})$ and
write $\xi_{1}=f_{*}(Z)+\varphi\xi$ , where $Z$ is a vector field tangent to $M$ and $\varphi$ is a non-
vanishing function. From

$\tilde{\nabla}_{X}(f_{*}(Y))=f_{*}(\nabla_{X}Y)+h(X, Y)\xi$

and
$\tilde{\nabla}_{1}x(f_{*}(Y))=f_{*}(\nabla_{1_{X}}Y)+h_{1}(X, Y)\xi_{1}$

we obtain

(6) $\nabla_{1}XY+h_{1}(X, Y)Z=\nabla_{X}Y+(f_{lJ}^{*\sim})(Y)X+(f_{\tilde{\mu}}^{*})(X)Y$

and

(7) $h(X, Y)=\varphi h_{1}(X, Y)$ .
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Now we want to prove that $Z=0$ at $x_{0}$ . Assume that $Z\neq 0$ at $x_{0}$ and take a
tangent vector $X$ at $x_{0}$ linearly independent from $Z$. We may take a geodesic
$x_{t}$ for $\nabla$ with initial condition $(x_{0}, X)$ . This curve is a pregeodesic for $\nabla_{1}$ and
so $\nabla_{1_{X}}X$ is a multiple of $X$ by a certain function of $t$ , where $X$ is considered
as the tangent vector field of the curve $x_{t}$ . From (6) we obtain $h_{1}(X, X)Z=$

$\lambda X$ at $x_{0}$ , where $\lambda$ is a scalar. Thus $h_{1}(X, X)=0$ .
We have shown that for any $X\in T_{x_{0}}(M)$ linearly independent from $Z\neq 0$ ,

we have $h_{1}(X, X)=0$ . Let $Z=X_{1},$ $X_{2},$ $\cdots$ , $X_{n}$ be a basis of $T_{x_{0}}(M)$ . From
what we proved, we have for each $k,$ $2\leqq k\leqq n,$ $h_{1}(X_{k}, X_{k})=0$ and $h_{1}(X_{j}, X_{k})=0$

for all $j,$ $k\geqq 2$ . We have also

$h_{1}(X_{1}+X_{k}, X_{1}+X_{k})=h_{1}(X_{1}, X_{1})+2h_{1}(X_{1}, X_{k})=0$

as well as
$h_{1}(X_{1}+2X_{k}, X_{1}+2X_{k})=h_{1}(X_{1}, X_{1})+4h_{1}(X_{1}, X_{k})=0$ ,

which together imply that $h_{1}(X_{1}, X_{1})=h_{1}(X_{1}, X_{k})=0$ , where $k\geqq 2$ . We have
shown that $h_{1}=0$ at $x_{0}$ . This contradicts the assumption that $f$ is not totally
geodesic at $x_{0}$ .

We may state this result as follows.

PROPOSITION 2. Let $f:(M, P)arrow(\tilde{M},\tilde{P})$ be a pr0jective immerszon for codi-
menston 1. There is a uniquely determined transversal direction field $[\xi]$ except
in the interior $V$ of the set of pmnts where $f$ is totally geodestc.

We shall call $[\xi]$ on $M-V$ the transversal direction field for the projective
immersion $f$. The symmetric bilinear form $h$ is determined up to a scalar
factor on $M$ and is $0$ at the points where $f$ is totally geodesic. We call the
conformal class $[h]$ the fundamental form for the projective immersion $f$. The
rank, uniquely determined at each point, is the rank of $f$ at the point. In
particular, if the rank is $n,$ $f$ is said to be nondegenerate at the point. We say
that $f$ is nondegenerate if it is so at every point of $M$.

Suppose that $f$ is not totally geodesic at $x_{0}$ and thus not in a neighborhood
of $x_{0}$ . For any choice of $\nabla\in(M, P),\tilde{\nabla}\in(\tilde{M},\tilde{P})$ and a transversal field $\xi$ rela-
tive to which $f$ is an affine immersion, we write

(8) $I$ $x\xi=-f_{*}(SX)+\tau(X)\xi$ ,

where $S$ is the shape operator for $\xi$ on $M$ and $\tau$ is the transversal connection
form for $\xi$ . If we change $\xi$ to $\varphi\xi$ , where $\varphi$ is a function, then $S$ changes to
$\varphi S$ and $\tau$ into $\tau+d\varphi$ . Thus the condition that $S$ is a scalar multiple of the
identity: $S=\lambda I$ does not change. Nor does the 2-form $d\tau$ .

We may also change $\tilde{\nabla}$ to a projectively equivalent $\tilde{\nabla}_{1}\in(\tilde{M},\tilde{P}):\tilde{\nabla}_{1}Y=X$

$\tilde{\nabla}_{X}Y+\tilde{\mu}(X)Y+\tilde{\mu}(Y)X$, where $\tilde{\mu}$ is a certain exact l-form. Then $S$ changes into
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$S_{1}=S-\mu(\xi)I$ and $\tau$ into $\tau_{1}=\tau+f^{*}\tilde{\mu}$ . Thus the condition $S=\lambda I$ does not change.
Nor does the form $d\tau$ .

In view of this observation, we can make the following definition. A pro-
jective immersion $f$, which is not totally geodesic at a point $x_{0}$ , is said to be
umbilical at $x_{0}$ if, for some choice of $\nabla,\tilde{\nabla}$ and $\xi$ relative to which $f$ is an affine
immersion, $S$ is a scalar multiple of the identity at $x_{0}$ . If $f$ is umbilical at
every point, we say that $f$ is umbilical.

We now introduce the notion of equiprojective immersion. Let $(M, P)$ and
$(\tilde{M},\tilde{P})$ be two manifolds with projective structures and dim $\tilde{M}=\dim M+1$ . An
immersion $f:Marrow\tilde{M}$ is said to be equiprojective if

(A) for each point $x_{0}$ of $M$, there exist local equiaffine connections $\nabla\in(M, P)$

and $\tilde{\nabla}\in(\tilde{M},\tilde{P})$ such that $f$ is an affine immersion.

Note that one of $\nabla$ and $\tilde{\nabla}$ can be always chosen to be equiaffine. Just like
the case of mutually equivalent conditions (A), (B), (C) for projective immer-
sions, we may state the following.

PROPOSITION 3. If $f:(M, P)arrow(\tilde{M},\tilde{P})$ is an $equipro_{J}$ ective immersion, then
(B) for any point $x_{0}\in M$ and for any local equiaffine connection $\tilde{\nabla}\in(\tilde{M},\tilde{P})$ around
$f(x_{0})$ there exists a local equiaffine connection $\nabla\in(M, P)$ around $x_{0}$ such that $f$ is
an affine immersion;
(C) for any Point $x_{0}\in M$ and for any local equiaffine connection $\nabla\in(M, P)$ around
$x_{0}$ , there exists a local equiaffine connection $\tilde{\nabla}\in(\tilde{M},\hat{P})$ around $f(x_{0})$ such that $f$ is
an affine immersion.

When $f$ is an equiprojective immersion, then locally we may choose a
transversal vector field $\xi$ to be equiaffine relative to $\nabla$ and $\tilde{\nabla}$ (cf. Proposition 3
in [5]). For such a choice of $\xi$ , we have $\tau=0$ . Thus for an equiprojective
immersion, we have $d\tau=0$ . We now state

PROPOSITION 4. A pojective immerston $f:(M, P)arrow(\tilde{M},\tilde{P})$ is equiprojective
if and only if $d\tau=0$ .

PROOF. We prove that $d\tau=0$ implies that $f$ is equiprojective. Let $x_{0}\in M$

and choose an equiaffine $\tilde{\nabla}\in(\tilde{M},\tilde{P})$ with a local parallel volume element $\tilde{\omega}$

around $f(x_{0})$ and an arbitrary $\nabla\in(M, P)$ around $x_{0}$ so that $f$ is an affine immer-
sion (with a transversal vector field $\xi$). Since $d\tau=0$ , there exists a function $\varphi$

around $x_{0}$ such that $\tau=-d\varphi$ . Then for $\overline{\xi}=\varphi\xi$ we get the same connection $\nabla$

induced, namely,
$\tilde{\nabla}_{X}(f_{*}Y)=f_{*}(\nabla_{X}Y)+h(X, Y)\overline{\xi}$ ,

and, on the other hand, $\overline{\tau}=0$ . This means that the local volume element $\omega$

defined by
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$\omega(X_{1}, \cdots , X_{n})=\tilde{\omega}(X_{1}, \cdots , X_{n},\overline{\xi})$ , where $X_{1},$ $\cdots$ , $X_{n}\in T_{x}(M)$

is parallel relative to $\nabla$ (cf. [3]). Thus $\nabla$ is equiaffine, and $f$ has been shown
to be equiprojective. $\square$

REMARK. If $d\tau=0$ , then there is a choice of $\xi$ for the affine immersion $f$

so that the equation $h(SX, Y)=h(X, SY)$ holds (see [5]). In the terminology
of projective differential geometry, this property is expressed by saying that
the normal congruence $\xi$ is conjugate (for instance, see [1], p. 31).

3. Equiprojective immersions between flat projective structures.

Now we recall (see [4]) that a projective structure $(M, P)$ is said to be flat
if each local affine connection $\nabla\in(M, P)$ is projectively flat; in other words, if
the atlas $(M, P)$ contains a flat affine connection around each point. We now
prove

THEOREM 5. Let $f:(M, P)arrow(\tilde{M},\tilde{P})$ be an equiprOjectjve immersion, where
dim $M=n\geqq 3$ , dim $\tilde{M}=n+1$ . Assume that $(\tilde{M},\hat{P})$ is flat. Then $(M, P)$ is flat if
and only if at each $p\alpha ntx_{0}\in M$ we have urther

1) $S=\rho I$, or
2) rank $h=1$ and $S=\rho I$ on Ker $h$ ,
3) $h=0$ .

PROOF. Assume that $(M, P)$ is flat. For $x_{0}\in M$, choose equiaffine connec-
tions $\nabla\in(M, P)$ and $\tilde{\nabla}\in(\tilde{M},\tilde{P})$ such that $f$ is an affine immersion with an equi-
affine transversal vector field $\xi$ .

Since $\tilde{\nabla}$ is projectively flat, we have

(9) $\tilde{R}(X, Y)Z=\tilde{\gamma}(Y, Z)X-\tilde{\gamma}(X, Z)Y$ ,

where $\tilde{\gamma}$ is the normalized Ricci tensor. Thus the Gauss equation (see [5]) says

(10) $R(X, Y)Z=\tilde{\gamma}(Y, Z)X-\tilde{\gamma}(X, Z)Y+h(Y, Z)SX-h(X, Z)SY$ .
From this we find that the normalized Ricci tensor $\gamma$ of $\nabla$ is given by

(11) $\gamma(Y, Z)=\tilde{\gamma}(Y, Z)+$ [ $h(Y,$ $Z)$ tr $S-h(SY,$ $Z)$]$/(n-1)$ .
Since we assume that $\nabla$ is also projectively flat, we have an equation similar
to (9):

(12) $R(X, Y)Z=\gamma(Y, Z)X-\gamma(X, Z)Y$ .
Using (11) in (12) and comparing it with (10) we find
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(13) $(n-1)[h(Y, Z)SX-h(X, Z)SY]$

$=[(trS)h(Y, Z)-h(SY, Z)]X-[(trS)h(X, Z)-h(SX, Z)]Y$ .
It is easy to see that, conversely, this equation implies that $\nabla$ is projectively
flat.

Now assume that rank $h_{x}\geqq 2$ , and $we’ 11$ show that $S=\rho I$. Let { $X_{1},$ $\cdots$ , $X_{r}$ ,
$X_{r+1},$ $\cdots$ , $X_{n}$ } be a basis such that the last $n-r$ vectors form a basis of Ker $h_{x}$

and the first $r$ vectors are orthonormal: $h(X_{i}, X_{j})=\pm\delta_{ij}$ , for $1\leqq i,$ $j\leqq r$ .
Let $Y\neq Z$ be from $\{X_{1}, \cdots , X_{r}\}$ . If $r=n(\geqq 3)$ , choose $X\neq Y,$ $Z$ from

$\{X_{1}, \cdots , X_{r}\}$ . If $r<n$ , choose $X$ from $\{X_{r+1}, \cdots , X_{n}\}$ . From (13) we get
$h(SY, Z)X=h(SX, Z)Y$ . Since $X$ and $Y$ are linearly independent, we get
$h(SY, Z)=h(SX, Z)=0$ . This means that there exist constants $\rho_{1},$

$\cdots$ , $\rho_{r}$ , such
that $SX_{j}=\rho_{j}X_{j}$ mod Ker $h_{x}$ for $1\leqq j\leqq r$ . By a similar argument to [6, Lemma
2] we see that all $\rho_{j}’ s$ are equal, say, to $\rho$ .

Now take $X\neq Y$ from $\{X_{1}, \cdots , X_{r}\}$ , and set $Z=X$. (13) implies

(14) $-(n-1)h(X, X)SY=-h(SY, X)X-(trS)h(X, X)Y+h(SX, X)Y$ .
Write

(15) $SY=\rho Y+W$ , $SX=\rho X+V$, where $W,$ $V\in Kerh_{x}$ .

Since $h(SY, X)=0,$ $h(SX, X)=\rho h(X, X)$ , we get

(16) $(n-1)(\rho Y+W)=(trS)Y-\rho Y$ .
This implies that $W=0$ , as well as, tr $S=n\rho$ , and $SY=\rho Y$ . Since $Y$ is arbi-
trary from $\{X_{1}, \cdots , X_{r}\}$ , we have $SX_{j}=\rho X_{j},$ $1\leqq j\leqq r$ .

Now take $X$ from $\{X_{r+1}, \cdots , X_{n}\}$ and $y\neq Z$ from $\{X_{1}, \cdots , X_{r}\}$ . (13) implies
$h(SY, Z)X=h(SX, Z)Y$ . But $h(SY, Z)=\rho h(Y, Z)=0$ and thus $h(SX, Z)=0$ .
Since $Z$ is arbitrary in $\{X_{1}, \cdots , X_{r}\}$ , we see that $SX\in Kerh_{x}$ . Since $X$ is
arbitrary in Ker $h_{x}$ , we have $S(Kerh_{x})\subset Kerh_{x}$ .

Finally, take $X$ from $\{X_{r+1}, \cdots , X_{n}\}$ and $Y=Z$ from $\{X_{1}, \cdots , X_{\tau}\}$ . (13)

implies
$(n-1)h(Y, Y)SX=(trS)h(Y, Y)X-h(SY, Y)X$ .

From $h(SY, Y)=\rho h(Y, Y),$ $h(Y, Y)\neq 0$ , we see $SX=\rho X$ for $X\in\{X_{r+1}, \cdots , X_{n}\}$ .
We have thus proved that $S=\rho I$, under the assumption that rank $h_{x}\geqq 2$ .

We now consider the case where rank $h_{x}=1$ . Let $\{X_{1}, X_{2}, \cdots , X_{n}\}$ be a
basis of $T_{x}(M)$ such that $h(X_{1}, X_{1})=\pm 1$ and $\{X_{2}, \cdots , X_{n}\}$ is a basis for Ker $h_{x}$ .
Taking $X\neq Y$ from $\{X_{2}, \cdots , X_{n}\}$ and $Z=X_{1}$ , we get from (13) $h(SY, X_{1})X=$

$h(SX, X_{1})Y$ . Since $X$ and $Y$ are linearly independent, we have $h(SX, X_{1})=0$ ,

which implies that $SX\in Kerh_{x}$ . Thus $S(Kerh_{x})\subset Kerh_{x}$ .
Now take $X=Z=X_{1}$ and $Y\in Kerh_{x}$ (so that $SY\in Kerh_{x}$ ). (13) implies
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$SY=\rho Y$ , where $\rho=[1/(n-1)][(trS)-h(SX_{1}, X_{1})/h(X_{1}, X_{1})]$ . Hence we have
seen that $S=\rho I$ on Ker $h_{x}$ .

The converse part of Theorem 5 is easy, because either $S=\rho I$, or $S=\rho I$

on Ker $h_{x}$ , or $h=0$ implies (13). $\square$

In order to take care of the case where the rank of $h$ is $\leqq 1$ , we make use
of a result by Ferus [2, Theorem 1]. Let $f:M^{n}arrow S^{n+1}$ be an isometric immer-
sion of a complete Riemannian manifold $M^{n},$ $n\geqq 2$ , into the unit sphere $S^{n+1}$ .
Let $t_{0}$ be the maximum type number and assume $t_{0}\leqq n-1$ . Then $t_{0}$ is an even
number and $t_{0}>0$ implies that $t_{0}\geqq n/2$ .

Rephrasing this result, we get the following. Denote by $r(n)$ the smallest
even integer $\geqq n/2$ . Then if the rank of the second fundamental form $h$ $is<r(n)$ ,

then $f$ is totally geodesic.
We now observe that we have the projective version of this result. To

state it, let $M^{n}$ be a connected compact differentiable manifold, $n\geqq 2$ , and let
$f:M^{n}arrow RP^{n+1}$ be an immersion. The notion of the rank of $f$ at each point is
well defined as follows. For $x_{0}\in M$, let $\nabla$ be any local affine connection belong-
ing to the canonical projective structure of $RP^{n+1}$ around $f(x_{0})$ , and let $\xi$ be a
transversal vector field around $x_{0}$ . Write the transversal component of $\tilde{\nabla}_{X}Y$ as
$h(X, Y)\xi$ . The form $h$ is defined up to a scalar multiple and its rank is inde-
pendent of the choice of $\xi$ . We call it the rank of the immersion $f$. When
the rank is $0,$ $f$ is totally geodesic.

REMARK. The definitions of the rank of $h$ and the rank of the immersion
$f$ at each point are valid when $RP^{n+1}$ is replaced by any manifold with a pro-
jective structure $(\tilde{M},\tilde{P})$ .

We have now

PROPOSITION 6. Let $f:M^{n}arrow RP^{n+1}$ be an immersion of a connected, com-
pact differentiable manifold, where $n\geqq 2$ . If the rank of $f$ is $<r(n)$ at every
$p\alpha nt$ , then $f$ is totally geodeszc.

PROOF. Let $g_{0}$ be the Riemannian metric of $RP^{n+1}$ as well as that of the
unit sphere $S^{n+1}$ . Denote by $g=f^{*}g_{0}$ the Riemannian metric induced on $M^{n}$ ,
and let $\tilde{M}^{n}$ be the universal covering manifold of $M^{n}$ with the natural com-
plete metric $\tilde{g}$ . We can then find an isometric immersion $f;\tilde{M}^{n}arrow S^{n+1}$ such
that $\pi\circ f=f\circ\pi_{1}$ , where $\pi:S^{n+1}arrow RP^{n+1}$ and $\pi_{1}$ ; $\tilde{M}arrow M$ are the natural projec-
tions. Since the rank of $f$ at $\tilde{x}\in\tilde{M}^{n+1}$ coincides with the rank of $f$ at $\pi(\tilde{x})$

$\in M$, we may now apply the result of Ferus to conclude that $f$ is totally geo..
desic. It follows that $f$ is totally geodesic. $\square$

Combining Theorem 5 and Proposition 6 we obtain
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THEOREM 7. Let $f:(M, P)arrow RP^{n+1}$ be a real analytic and equiprojective
immerston with codimenston 1 of a flat projective structure $(M, P)$ , where dim $M$

$\geqq 3$ . If $M$ is connected and compact, then $f$ is totally geodestc or umbilical.

PROOF. If the rank of $h$ is $\leqq 1$ everywhere, then Proposition 6 applies. If
the rank of $h$ is $\geqq 2$ somewhere (and so on some open subset $W$), then $S=\rho I$

on $W$ by Theorem 5. By analyticity this holds on the whole M. $\square$

PROPOSITION 8. Let $f$ : $(M, P)arrow RP^{n+1}$ be an $equip_{0}J^{ectjve}$ immerszon. $f$ is
umbilical if and only if the prOjectjve lines in the transversal directions $[\xi]$ go
through a pojnt in $RP^{n+1}$ .

PROOF. Assume $S=\lambda I$, where $\lambda$ is a function. For each point $x$ of $M$,
there is an open neighborhood $U$ of $x$ such that $f(U)$ lies in $A^{n+1}=RP^{n+1}-H$,
where $H$ is a certain projective hyperplane. The flat affine connection $\tilde{\nabla}_{0}$ in
the affine space $A^{n+1}$ belongs to the atlas of local affine connections for $RP^{n+1}$ .
Relative to $\tilde{\nabla}_{0}$ and $\nabla\in(M, P)$ and for a choice of an equiaffine transversal vector
field $\xi,$ $f$ is an affine immersion which is umbilical $S=\lambda I$, with constant $\lambda$ . If
$\lambda\neq 0$ , then for the mapping $x\in Marrow y=x+\xi/\lambda$ , we have $D_{X}y=0$ , showing that
the lines in the direction of $\xi$ meet at one single point. If $\lambda=0$ , then the lines
in the direction of $\xi$ are parallel. In either case, these lines, when considered
in $RP^{n+1}$ , meet at a single point. We have shown that all lines in the trans-
versal direction through the points of $U$ (neighborhood of x) meet at a single
point.

We now show that all projective lines $[\xi]$ in the transversal direction
through the points of $M$ meet at a single point. For each point $P$ in $RP^{n+1}$ ,
let $W_{p}$ be the set of points $x\in M|$ such that in a neighborhood of $x$ , all $[\xi]$ go
through $p$ . Each $W_{p}$ is an open subset (possibly empty). If $p\neq q$ , then $W_{p}$

and $W_{q}$ are disjoint. Suppose $x\in W_{p}\cap W_{q}$ . If they are on one line, then we
can take a point $y\in M$ near $x$ such that the lines $y\cup p$ and $y\cup q$ are distinct,
and this contradicts the fact that $[\xi]_{y}$ must coincide with the line $y\cup P$ as well
as with the line $y\cup q$ , since $y\in W_{p}\cap W_{q}$ . Since $M$ is the union of all $W_{p}$ , it
follows that $M=W_{p}$ for one point $p$ . Thus all $[\xi]$ go through $p$ . $\square$

We now give an analytic description of a connected, compact hypersurface
in $RP^{n+1}$ with transversal directions $[\xi]$ that go through a single point.

Consider $RP^{n+1}$ as the quotient of the unit sphere $S^{n+1}$ by identification of
antipodal Points. Let $e_{n+2}=(0, \cdots , 0,1)$ be the north Pole of $S^{n+1}$ . Let $S^{n}=$

$\{x=(x_{1}, \cdots , x_{n+1},0);\sum x_{i}^{2}=1\}$ be the unit sphere in the tangent space $T_{e_{n+2}}(S^{n+1})$ .
Let $r=r(x)$ be a Positive differentiable function on $S^{n}$ . Define
(17) $f(x)=(\cos r(x))e_{n+2}+(\sin r(x))x\in S^{n+1}$ , $x\in S^{n}$
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(18) $g(x)=\pi\circ f(x)\in RP^{n+1}$

Then the hypersurface $g:S^{n}arrow RP^{n+1}$ has the desired ProPerty.
To see this, let $X\in T_{x}(S^{n})$ . We have

(19) $f_{*}(X)=(-\sin r(x))(Xr)e_{n+1}+(\cos r(x))(Xr)x+(\sin(r(x))X$ .
If $f_{*}(X)=0$ , it follows that $X=0$ . Thus $f$ is an immersion, and so is $g$ . The
curve $tarrow x_{t}=(\cos t)e_{n+2}+(\sin t)x$ is a great circle and $\pi(x_{t})$ is a path in $RP^{n+1}$ .
The tangent vector $\vec{x}_{t}$ at $t=r(x)$ is

(20) $-(\sin r(x))e_{n+2}+(\cos r(x))x$ ,

which is transversal to $f_{*}(T_{x}S^{n})$ , since it is linearly dependent from (19).

Going to $RP^{n+1}$ we see that the path from $\pi(e_{n+2})$ to $g(x)$ is transversal to
$g(S^{n})$ . Relative to this choice of transversal direction field, $M$ acquires a pro-
jective structure. Namely, for any local equiaffine connection compatible with
$RP^{n+1}$ we may induce a local equiaffine connection on $M$, which is determined
up to a projective change. Clearly, $g$ is an equiprojective immersion which is
umbilical. (We might say that a hypersurface $M$ in $RP^{n+1}$ is umbilical if it is
umbilical in the manner above relative to a choice of transversal direction field.)

REMARK. In the model discussed above, suppose $r$ is an odd function on
$S^{n}$ , that is, $r(-x)=-r(x)$ . Then $f(-x)=f(x)$ . This means that $f$ induces an
umbilical hypersurface $g;RP^{n}arrow RP^{n+1}$ .

PROPOSITION 9. A connected compact umbilical hypersurface $M$ in $RP^{n+1}$

may be obtained in the form $g(S^{n})$ described above, up to a Projective transfor-
mation of $RP^{n+1}$ .

PROOF. We may assume that the paths in the transversal directions meet
at $\pi(e_{n+2})$ . By taking $x\in M$ into the unit tangent vector at $e_{n+2}$ of the geodesic
in $S^{n+1}$ projecting on the path in the transversal direction, we get a mapping
of $M$ into $S^{n}$ (the unit sphere in $T_{e_{n+2}}(S^{n+1})$), which is a Iocal diffeomorphism.
Since $M$ is connected and compact, it follows that the $M$ is of the form $g(S^{n})$

described above. $\square$

As another application of Theorem 5 we obtain a result related to the pos-
sibilities of isometric immersion between riemannian or pseudo-riemannian mani-
folds each of constant sectional curvature. For example, it is known that there
is no isometric immersion of a Euclidean space $E^{n}$ into $S^{n+1}$ of constant curva-
ture 1, while $E^{n}$ can be isometrically imbedded (as a horosphere) into the hyper-
bolic space $H^{n+1}$ of constant curvature $-1$ . We now consider a manifold $M$

with flat affine connection $\nabla$ and show that it cannot be immersed as a non-
degenerate Blaschke hypersurface (in the classical sense, see [5], Example 6) in
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$S^{n+1}$ . More precisely, we have

THEOREM 10. Let $\tilde{M}$ be an $(n+1)$-dimensional Pseudo-riemannian manifold
with metric $\tilde{g}$ of constant sectional curvature $c\neq 0$ and its Levi-Civita connection $\tilde{\nabla}$ ,
where $n\geqq 3$ . If there exists a nondegenerate hypersurface $M^{n}$ whose induced
Blaschke connection $\nabla$ is flat, then $c<0$ . In Particular, $S^{n+1},$ $n\geqq 3$ , does not admit
any nondegenerate flat affine hypersurface.

PROOF. Suppose $M^{n}$ is a nondegenerate Blaschke hypersurface with flat
induced connection. We show that its affine normal is perpendicular to $M^{n}$

relative to the metric $\tilde{g}$ and that $M^{n}$ is umbilical in the metric sense.
The Gauss equation for the affine hypersurface $M^{n}$ is

$R(X, Y)Z=\tilde{\gamma}(Y, Z)X-\tilde{\gamma}(X, Z)Y+h(Y, Z)SX-h(X, Z)SY$ ,

where $\tilde{\gamma}$ is the normalized Ricci tensor of $\tilde{M}$, which is $c\tilde{g}$ by assumption, and
$h$ and $S$ are the affine fundamental form and the affine shape operator. Now
since $R=0,$ $\nabla$ is projectively flat in particular. From Theorem 5 applied to the
affine immersion of $(M^{r\}}, \nabla)$ into $(\tilde{M},\tilde{\nabla})$ , which is also projectively flat, we know
that $S=\rho I$, where $\rho$ is a constant. The Gauss equation above now reduces to

$[c\tilde{g}(Y, Z)+\rho h(Y, Z)]X+[c\tilde{g}(X, Z)+\rho h(X, Z)]Y=0$ .
For arbitrary $X$ and $Z$ tangent to $M$, choose $Y$ to be linearly independent of
X. We get $c\tilde{g}(X, Z)=-\rho h(X, Z)$ . Thus $\rho\neq 0$ and $h=-(c/\rho)g_{0}$ , where $g_{0}$ is
the restriction of $\tilde{g}$ to $M^{n}$ . Since $h$ is nondegenerate, so is $g_{0}$ .

If we denote by $\xi_{0}$ the unit normal vector field for $M^{n}$ (relative to g) and
by $h_{0}$ the second fundamental form in the metric sense, we know that $h_{0}=\lambda h$ ,
where $\lambda$ is a certain scalar function. But then $h_{0}=-(\lambda c/\rho)g_{0}$ . As is well
known, it now follows that $k=-\lambda c/\rho$ and thus $\lambda$ are constants. Hence $M^{n}$ is
umbilical in $\tilde{M}$ in the metric sense.

Recall now how the affine normal $\xi$ is determined for a nondegenerate
hypersurface (cf. [3], proof of Theorem 1). We now have $h_{0}=kg_{0}$ . Let
$\{X_{1}, \cdots , X_{n}\}$ be an orthonormal basis relative to $g_{0}$ . When we take the absolute
value of det $[h_{0}(X_{i}, X_{j})]$ , we get the constant $|k|^{n}$ . This means that the affine
normal $\xi$ is in the same direction as the unit normal vector $\xi_{0}$ and hence the
induced connection $\nabla$ on $M^{n}$ coincides with the Levi-Civita connection $\nabla_{0}$ of $g_{0}$ .
The metric shape operator $S_{0}$ is equal to $kI$, because $h_{0}=kg_{0}$ . By the Gauss
equation in the metric sense we now see that $c+k^{2}=0$ , which implies that
$c<0$ . $\square$

REMARK. For $n=2$ , there are many Blaschke immersions of a flat torus
$(T^{2}, \nabla)$ into $S^{3}$ , for example, all Clifford tori. In view of Theorem 5 for $n\geqq 3$ ,
it will be an interesting problem to study projectively flat surfaces in $RP^{3}$ .
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4. Extension of the theorem of Berwald.

Let $(\tilde{M},\tilde{P})$ be an $(n+1)$-dimensional manifold with a projective structure.
Let $f:Marrow\tilde{M}$ be an immersion of an n-dimensional manifold $M$ into $\tilde{M}$. With-
out assuming that $M$ is provided a priori with a projective structure, we shall
define a certain property extending the classical condition of vanishing cubic
form. For the case of an affine immersion this was already discussed in [6].

For each point $x\in M$, choose a local affine connection $\tilde{\nabla}\in(\tilde{M},\tilde{P})$ around
$f(x)$ . Also choose any transversal field $\xi$ around $x$ . From $\tilde{\nabla}$ and $\xi$ we may
obtain a local affine connection $\nabla$ around $x$ so that

(21) $\tilde{\nabla}_{X}(f_{*}(Y))=f_{*}(\nabla_{X}Y)+h(X, Y)\xi$

and

(22) $\tilde{\nabla}_{X}\xi=-f_{*}(SX)+\tau(X)\xi$ ,

where $h$ is the fundamental form and $\tau$ the transversal connection form for
the affine immersion $f$ of a neighborhood $U$ into $\tilde{M}$. In [6] we defined the
cubic form $C(X, Y, Z)=(\nabla_{X}h)(Y, Z)+\tau(X)h(Y, Z)$ and defined the notion that
$C$ is divisible by $h$ (denoted by $h|C$ ), meaning that there is a l-form $\rho$ such
that

(23) $C(X, Y, Z)=\rho(X)h(Y, Z)+\rho(Y)h(Z, X)+\rho(Z)h(X, Y)$

for all tangent vectors $X,$ $Y$ and $Z$ to $M$.

PROPOSITION 11. The proPerty that $h|C$ does not depend on the choice of
$\tilde{\nabla}\in(\tilde{M},\hat{P})$ nor of a transversal field $\xi$ . Thus it is a Poperty we can speak of
for any immerston $f:Marrow(\tilde{M},\tilde{P})$ of a differentiable manifold $M$ into $(\tilde{M},\tilde{P})$ .

PROOF. Suppose we have chosen $\tilde{\nabla}\in(\tilde{M},\tilde{P})$ . Then the property $h|C$ is
independent of the choice of $\xi$ , as is known in Proposition 5 of [6]. Now we
change $\tilde{\nabla}$ to $\tilde{\nabla}’\in(\tilde{M},\tilde{P})$ so that

(24) $\tilde{\nabla}_{X}’Y=\tilde{\nabla}_{X}Y+\mu(X)Y+\mu(Y)X$ , where $\mu$ is a certain l-form.

From (15) and the corresponding equation for fi‘ we obtain

(25) $\nabla_{X}’Y=\nabla_{X}Y+\mu(X)Y+\mu(Y)X$

and

(26) $h’(X, Y)=h(X, Y)$ .
From (16) and the corresponding equation for $\tilde{\nabla}$ ‘ we obtain

(27) $\tau’(X)=\tau(X)+\mu(X)$ .
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Thus the cubic form $C’$ resulting from $\tilde{\nabla}’$ is given by

$C’(X, Y, Z)=(\nabla_{X}’h’)(Y, Z)+\tau’(X)h’(Y, Z)$

$=Xh(Y, Z)-h(\nabla_{\acute{X}}Y, Z)-h(Y, \nabla_{X}’Z)+(\tau(x)+\mu(X))h(Y, Z)$

$=Xh(Y, Z)-h(\nabla_{X}Y, Z)-\mu(X)h(Y, Z)-\mu(Y)h(X, Z)-h(Y, \nabla_{X}Z)$

$-\mu(X)h(Y, Z)-\mu(Z)h(Y, X)+\tau(X)h(Y, Z)+\mu(X)h(Y, Z)$

$=(\nabla_{X}h)(Y, Z)+\tau(X)h(Y, Z)-\mu(X)h(Y, Z)$

$-\mu(Y)h(X, Z)-\mu(Z)h(Y, X)$ ,
that is,

(28) $C’(X, Y, Z)=C(X, Y, Z)-\mu(X)h(Y, Z)-\mu(Y)h(X, Z)-\mu(Z)h(Y, X)$ .

Thus if (23) holds for $C$ , then a similar equation holds for $C’$ with $\rho$ replaced
by $\rho-\mu$ . Thus the property $h|C$ implies $h’|C’$ . $\square$

Recall the notion of the rank for an immersion $Marrow(\tilde{M},\tilde{P})$ in the remark
before Proposition 6.

We shall now prove

THEOREM 12. Let $f$ be an immersion of an n-dimensional connected differ-
entiable manifold into $RP^{n+1}$ such that the rank of $h$ $is\geqq 2$ . Then $f(M)$ lies in a
quadric $Q^{n}$ in $RP^{n+1}$ if and only if $f$ has the Property that $h|C$ .

PROOF. Assume the property $h|C$ . For each point $x\in M$, there is a neigh-
borhood $U$ of $x$ such that $f(U)$ is contained in an affine space $A^{n+1}=RP^{n+1}-H$,
where $H$ is a projective hyperplane, say, $x_{0}=0$ . The flat affine connection $\tilde{\nabla}_{0}$

belongs to the atlas of local connections for $RP^{n+1}$ . Now for $f:Uarrow(A^{n+1},\tilde{\nabla}_{0})$ ,
the conditions $h|C$ and rank $h\geqq 2$ are satisfied by the assumptions of the
theorem. By Theorem 10 in [6], we see that $f(U)$ lies in a quadric in $A^{n+1}$

and hence in a quadric in $RP^{n+1}$ . Since $f$ is locally an immersion into a quadric
in $RP^{n+1}$ , it follows that it is so globally.

The converse part of the theorem also follows from Theorem 10 of [6] and
the proof is omitted. $\square$

5. Effect of a projective change on a nondegenerate hypersurface.

Let $(\tilde{M},\tilde{P})$ be a manifold of dimension $n+1$ with a projective structure and
let $f:Marrow\tilde{M}$ be an immersion of a manifold of dimension $n$ . We assume that
the rank of $f$ is $n$ at every point, that is, $f$ is nondegenerate. Unlike the case
of a nondegenerate immersion into a manifold with an equiaffine structure which
determines a unique equiaffine structure on the hypersurface, we cannot deter-
mine a projective structure on the hypersurface. We have already shown that
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a certain property such as $h|C$ is an invariant notion for $f$ .
Let $x_{0}\in M$. As soon as we pick a local equiaffine connection $\tilde{\nabla}\in(\tilde{M},\tilde{P})$

with a parallel volume element $\tilde{\omega}$ in a neighborhood $\tilde{U}$ of $f(x_{0})$ , we can consider
a neighborhood $U$ of $x_{0}$ as a nondegenerate hypersurface in $(\tilde{U},\tilde{\nabla})$ . By the
classical procedure due to Blaschke, we can get an equiaffine structure $(\nabla, \omega)$

in $U$ . Together with this structure we get the fundamental form $h$ , the cubic
form $C=\nabla h$ , the Levi-Civita connection $\hat{h}$ , the difference tensor $K$ between $\nabla$

and $\hat{\nabla}$, and so on. The question is how these quantities change as we pick
another $\tilde{\nabla}’\in(\tilde{M},\tilde{P})$ with a parallel volume element $\tilde{\omega}’$ .

In this case, we have

(29) $\tilde{\omega}’=\varphi\tilde{\omega}$ , where $\varphi>0$

(30) $\tilde{\nabla}_{X}’Y=\tilde{\nabla}_{X}Y+\mu(X)Y+\mu(Y)$ , where $\mu=d(\ln\varphi)/(n+2)$ .
Relative to the affine connection $\tilde{\nabla}$, let $\xi,$ $h,$ $\nabla$ and $\omega$ be the affine normal,

the affine metric the induced connection, and the induced volume element (equal

to the volume element for h) for $M$. In order to obtain the corresponding ob-
jects for $M$ relative to the affine connection $\tilde{\nabla}’$ , let us take $\xi$ as a tentative
choice as transversal vector field and follow the standard procedure described
in [3]. We write

(31) $\tilde{\nabla}_{X}’Y=\nabla_{X}^{*}Y+h^{*}(X, Y)\xi$ .
Because of (30) we see that

(32) $\nabla_{X}^{\#}Y=\nabla_{X}Y+\mu(X)Y+\mu(Y)X$

(33) $h^{\#}(X, Y)=h(X, Y)$ .

Also from

$\tilde{\nabla}_{X}’\xi=\tilde{\nabla}_{X}\xi+\mu(X)\xi+\mu(\xi)X=-SX+\mu(X)\xi+\mu(\xi)X$

$=-S^{\#}X+\tau^{\#}(X)$

we obtain

(34) $\tau^{*}(X)=\mu(X)$

(35) $S^{*}=S-\mu(\xi)I$ (I: identity).

The volume element $\theta^{*}$ given by

(36) $\theta^{\#}(X_{1}, -- , X_{n})=\tilde{\omega}’(X_{1}, \cdots , X_{n}, \xi)$

is equal to $\varphi\omega$ . Let $\{X_{1}, \cdots , X_{n}\}$ be a basis in $T_{x}(M)$ with $\theta^{\#}(X_{1}, \cdots X_{n})=1$ .
Then

$\omega(\varphi^{1/n}X_{1}, \cdots \varphi^{1/n}X_{n})=1$ , $h_{ij}=h(\varphi^{1/n}X_{i}, \varphi^{1/n}X_{j})=\varphi^{2/n}h(X_{i}, X_{j})$
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so that
$h_{ij}^{\#}=h^{*}(X_{i}, X_{j})=h(X_{i}, X_{f})=\varphi^{-n/2}h_{ij}$ .

Setting $H^{\#}=\det[h_{ij}^{\#}]$ we get

$H^{*}=(\varphi^{-2/n})^{n}$ det $[h_{ij}]=\varphi^{-2}$ ,

since det $[h_{ij}]=1$ . It follows that the affine metric $h’$ of $M$ relative to V‘ is
given by

(37) $h’=\varphi^{2/(n+2)}h$ .
In order to find the affine normal vector $\xi’$ of $M$ relative to V‘ we set

(38) $\xi’=Z+\varphi^{-2/(n+2)}\xi$

and choose the tangent vector $Z$ in such a way that 1 $X’\xi’$ is tangent to $M$.
Such $Z$ is determined by the following equation to be satisfied for all $X$ :

(39) $X(\varphi^{-2/(n+2)})+h(X, Z)+\varphi^{-2\prime(n+2)}\tau’(X)=0$ .
The first term equals $-2X\varphi/(n+2)\varphi$ . Also using $\mu=d(\ln\varphi)/(n+2)$ and (34),

our equation becomes

(40) $h(X, Z)=\varphi^{-2/(n+2)}\mu(X)$ .
If we introduce a vector field $U$ by

(41) $h(X, U)=\mu(X)$ for all $X$ ( $i.e$ . $U$ corresponds to $\mu$ relative to $h$ ),

then we get

(42) $Z=\varphi^{-2/(n+2)}U$

and the affine normal $\xi’$ is given by

(43) $\xi’=\varphi^{-2/(n+2)}(U+\xi)$ .
Finally, the affine connection $\nabla’$ induced on $M$ by $(\tilde{\nabla}’,\tilde{\omega}’)$ is given by

(44) $\nabla_{X}’Y=\nabla_{X}Y+\mu(X)Y+\mu(Y)X-h(X, Y)U$ .
This can be easily verified by using (30) and (43).

REMARK. (44) is exactly the same as a general formula for the change of
the Levi-Civita connection when a metric $h$ is changed conformally to $\varphi^{2}h$ , the
l-form $\mu$ being $d\ln\varphi$ (see, for example, [7]).

If $h$ is changed to $h’=(\varphi^{1/(n+2)})^{2}$ as in (37), then $\mu=(d\ln\varphi)/(n+2)$ , exactly
as in (30). From this fact we get the following theorem.
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THEOREM 13. When an equiaffine structure $(\tilde{\nabla}, (i))$ in the ambiant manifold
$\tilde{M}$ is changed pr0jectively to an equiaffine structure $(\tilde{\nabla}‘, \delta j’)$ , the difference tensor
$K$ of the induced connection $\nabla$ and the Levi-Cimta connection $\hat{\nabla}$ for the affine
metnc $h$ of a nondegenerate hypersurface $M$ in $\tilde{M}$ does not change. The cufnc
form $C$ changes conformally with the same factor as the conformal change of the
affine metric.

PROOF. For the cubic form $C$ , recall that $C(X, Y, Z)=-2h(K_{X}Y, Z)$ . $\square$

REMARK. The same conformal change of the affine metric and the cubic
form for a nondegenerate hypersurface in $RP^{n+1}$ comes up in the projective
theory described by using moving frames (see [8]).
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