On Q_{ab} -rationality of Eisenstein series of weight 3/2

By Toshitsune MIYAKE

(Received April 27, 1988)

§ 0. Introduction.

Let F be a totally real algebraic number field and K a subfield of C. A holomorphic Hilbert modular form f of integral weight or half integral weight over F is called K-rational if all Fourier coefficients of f at ∞ belong to K. In [7], Shimura proved in a general frame work that the orthogonal complements of the spaces of cusp forms (the spaces of Eisenstein series) are generated by Q_{ab} -rational ones except the following two cases: (1) F = Q and the weight is 2; (2) F=Q and the weight is 3/2. Here Q_{ab} is the maximal abelian extention of Q. In the first exceptional case, the Fourier coefficients of Eisenstein series are classically well known and the assertion is true (Hecke [1]). As for the second exceptional case, Pei [3] has given generators of the orthogonal complements of cusp forms in the space of holomorphic modular forms of weight 3/2. Therefore we can verify that the assertion is also correct in this case by his results and [6] Proposition 1.5. Nevertheless his construction is quite complicate and rather technical. The purpose of this paper is to give a more conceptual and shorter proof to the above fact for the weight 3/2 using the recent results of Shimura [9]. To be more precise, let N be a positive integer divisible by 4, and $\Gamma(N)$ the principal congruence elliptic modular group of level N. Let $\mathfrak{IH}(3/2, \Gamma(N))$ be the orthogonal complement of the cusp forms in the space of holomorphic modular forms of weight 3/2. Then

THEOREM. The space $\mathcal{IH}(3/2, \Gamma(N))$ is generated by \mathbf{Q}_{ab} -rational modular forms.

NOTATION AND PRELIMINARY REMARKS.

- (1) As usual, we denote by R, C, Q and Z, the real number field, the complex number field, the rational number field and the ring of rational integers. We also denote by R_+ the set of positive real numbers and by Q_{ab} the maximal abelian extension of Q in C.
 - (2) We put $i=\sqrt{-1}$. For two complex numbers $z(\neq 0)$ and α , we put $z^{\alpha}=\exp\left(\alpha(\log|z|+i\arg(z))\right)$,

by taking $\arg(z)$ so that $-\pi < \arg(z) \le \pi$. We also write

$$e(z) = \exp(2\pi i z), \quad z \in C.$$

For a complex number z, we sometimes use the expression

$$z = x + iy$$
, $x, y \in \mathbb{R}$,

without mentioning it.

(3) We denote by H the upper half complex plane:

$$H = \{z \in C \mid \text{Im}(z) > 0\}.$$

We put

$$GL_2^+(\mathbf{R}) = \{\alpha \in GL_2(\mathbf{R}) \mid \det(\alpha) > 0\}.$$

Then $GL_2^+(\mathbf{R})$ acts on \mathbf{H} by

$$\alpha z = \frac{az+b}{cz+d}$$
, $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2^+(R)$, $z \in H$.

We also put

$$P = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2^+(\mathbf{R}) \mid c = 0 \right\}.$$

- (4) For an integer a and an odd integer b, we denote by $\left(\frac{a}{b}\right)$ the quadratic residue symbol, which coincides with the ordinary one if b is an odd prime. For a non-zero integer a, the map " $b\mapsto \left(\frac{a}{b}\right)$ " is a Dirichlet character defined modulo |a| or modulo 4|a|. We denote this Dirichlet character by $\left(\frac{a}{*}\right)$. For a positive integer b, the map " $a\mapsto \left(\frac{a}{b}\right)$ " is also a Dirichlet character defined modulo b. We denote it by $\left(\frac{*}{b}\right)$. For further properties of the quadratic residue symbol, see [4]. We also denote by φ the Euler function.
- (5) The proofs of statements of §1 can be found in [7], unless other references are given.

§ 1. Automorphic eigenforms of half-integral weight.

Let N be a positive integer. We define congruence subgroups $\Gamma_0(N)$, $\Gamma^0(N)$ and $\Gamma(N)$ of $SL_2(\mathbf{Z})$ by

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) \mid c \equiv 0 \pmod{N} \right\},$$

$$\Gamma^0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) \mid b \equiv 0 \pmod{N} \right\},$$

$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) \mid a \equiv d \equiv 1 \pmod{N}, b \equiv c \equiv 0 \pmod{N} \right\}.$$

We call a subgroup Γ of $SL_2(\mathbf{Z})$ a congruence modular group if $\Gamma \supset \Gamma(N)$ for some N. Then we see easily that

$$\binom{N}{0} \quad \binom{0}{1} \Gamma_0(N) \binom{N}{0} \quad \binom{0}{1}^{-1} = \Gamma^0(N).$$

The theta function is defined by

$$heta(z) = \sum_{n=-\infty}^{\infty} \mathrm{e}(n^2 z)$$
, $z \in H$.

For $\gamma \in \Gamma_0(4)$, we put

$$j(\gamma, z) = \frac{\theta(\gamma z)}{\theta(z)}, \quad z \in H.$$

Then by definition, it holds that

$$j(\gamma\gamma',z)=j(\gamma,\gamma'z)\cdot j(\gamma',z)$$
, $\gamma,\gamma'\in\Gamma_0(4)$.

The following lemma is well known ([4]).

LEMMA 1.1. For $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4)$, we have

$$j(\gamma, z) = \varepsilon_d^{-1} \left(\frac{c}{d}\right) (cz+d)^{1/2}$$
,

where ε_d is given by

$$\varepsilon_d = \begin{cases} 1 & (d \equiv 1 \pmod{4}), \\ i & (d \equiv 3 \pmod{4}). \end{cases}$$

For $\gamma \in \Gamma^0(4)$, we put

$$j'(\gamma, z) = \frac{\theta(\delta \gamma z)}{\theta(\delta z)}, \quad z \in H,$$

where $\delta = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}^{-1}$. Then we see easily that

$$j'(\gamma\gamma',z) = j'(\gamma,\gamma'z) \cdot j'(\gamma',z), \quad \gamma,\gamma' \in \Gamma^{0}(4),$$

and

$$j'(\gamma, z) = \varepsilon_d^{-1} \left(\frac{c}{d}\right) (cz+d)^{1/2}, \quad \text{if } \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma^0(4).$$

This implies

$$i'(\gamma, z) = i(\gamma, z)$$
, for $\gamma \in \Gamma_0(4) \cap \Gamma^0(4)$.

Therefore we may write $j(\gamma, z)$ instead of $j'(\gamma, z)$ for $\gamma \in \Gamma^0(4)$.

Now let k be an odd integer and put $\sigma = k/2$. Put $T = \{t \in C \mid |t| = 1\}$. We denote by $\mathcal{G} = \mathcal{G}_{\sigma}$ the set of pairs $(\alpha, l(z))$ of $\alpha \in SL_2(\mathbf{Q})$ and a holomorphic function l(z) on H satisfying

$$l(z)^2 = t \cdot (cz+d)^k$$
, $t \in T$, $\alpha = \begin{pmatrix} * & * \\ c & d \end{pmatrix}$.

Then \mathcal{G} is a group by the following group law:

476 T. MIYAKE

$$(\alpha, l(z)) \cdot (\alpha', l'(z)) = (\alpha \alpha', l(\alpha'z)l'(z))$$

For $\xi = (\alpha, l(z))$, we write $\alpha = \operatorname{pr}(\xi)$ and $l(z) = l_{\xi}(z)$. Then pr is the projection from \mathcal{G} to $SL_2(Q)$. We define a subgroup \mathcal{D} of \mathcal{G} by

$$\mathcal{Q} = \{ \boldsymbol{\xi} \in \mathcal{G} \mid \operatorname{pr}(\boldsymbol{\xi}) \in P \}.$$

For a function f(z) on H, we let $\xi = (\alpha, l(z)) \in \mathcal{G}$ act on f by

$$(f \| \xi)(z) = f(\alpha z) l(z)^{-1}$$
.

We define an injection $arLambda_{\sigma}$ of $arGamma_0(4) \cup arGamma^0(4)$ to $arGamma_{\sigma}$ by

$$\Lambda_{\sigma}(\gamma) = (\gamma, j(\gamma, z)^k), \qquad \gamma \in \Gamma_0(4) \cup \Gamma^0(4).$$

We note that the restrictions of Λ_{σ} to $\Gamma_0(4)$ and to $\Gamma^0(4)$ are group homomorphisms. For $\gamma \in \Gamma_0(4) \cup \Gamma^0(4)$ and a function f on H, we put

$$(f \|_{\sigma} \gamma)(z) = (f \| \Lambda_{\sigma}(\gamma))(z) = f(\gamma z) j(\gamma, z)^{-k}$$
.

By a congruence subgroup of \mathcal{G}_{σ} , we understand a subgroup Δ of \mathcal{G}_{σ} satisfying

- (1.1a) Δ contains $\Lambda_{\sigma}(\Gamma(N))$ with an integer N divisible by 4;
- (1.1b) pr induces an isomorphism of Δ onto a congruence modular group.

Now we define a differential operator L^{σ} on H by

$$L^{\sigma} = -4y^2 \frac{\partial^2}{\partial z \partial \bar{z}} + 2i\sigma y \frac{\partial}{\partial \bar{z}}.$$

Let Δ be a congruence subgroup of \mathcal{G}_{σ} . For a complex number λ , we denote by $\mathcal{A}(\sigma, \lambda, \Delta)$ the set of all the real analytic functions f on H satisfying the following three conditions:

- (1.2a) $f \parallel \boldsymbol{\xi} = f$, $\boldsymbol{\xi} \in \boldsymbol{\Delta}$;
- (1.2b) $L^{\sigma}f = \lambda f$;
- (1.2c) for every $\eta \in \mathcal{G}_{\sigma}$, there exist positive constants A, B and c such that

$$y^{\sigma/2}|(f||\eta)(x+iy)| \le Ay^c$$
, if $y > B$.

We call elements of $\mathcal{A}(\sigma, \lambda, \Delta)$ automorphic eigenforms of weight σ with respect to Δ . To present the Fourier expansions of automorphic eigenforms, we should introduce Whittaker functions. We denote by $\omega(t; \alpha, \beta)$ the function defined on $R_+ \times C \times C$, which is holomorphic in (α, β) , real analytic in (t, α, β) and has an expression

$$\boldsymbol{\omega}(t;\alpha,\beta) = t^{\beta} \Gamma(\beta)^{-1} \int_{0}^{\infty} e^{-ut} (1+u)^{\alpha-1} u^{\beta-1} du, \quad \text{for } \operatorname{Re}(\beta) > 0.$$

It satisfies

(1.3a)
$$\omega(t; 1-\beta, 1-\alpha) = \omega(t; \alpha, \beta),$$

(1.3b)
$$\omega(t; 1-\alpha, 0) = 1$$
,

(1.3c)
$$\lim \omega(t; \alpha, \beta) = 1.$$

For a complex number λ , we denote by α and β the roots of the quadratic equation

$$X^2 - (1-\sigma)X + \lambda = 0.$$

For $t \in \mathbf{R}$ $(t \neq 0)$, we put

$$W(t; \sigma, \lambda) = \begin{cases} \omega(4\pi t; 1-\alpha, \beta) & (t>0), \\ \omega(4\pi |t|; \beta, 1-\alpha) & (t<0). \end{cases}$$

By (1.3a), $W(t; \alpha, \beta)$ is independent of the choice of α and β . For any element $\xi \in \mathcal{G}$, there exists a positive number A such that

$$\{\pm 1\} \cdot \operatorname{pr} \left(\mathcal{Q} \cap (\xi^{-1} \Delta \xi) \right) = \left\{ \pm \begin{pmatrix} 1 & n/A \\ 0 & 0 \end{pmatrix} \middle| n \in \mathbf{Z} \right\}.$$

Then for $f \in \mathcal{A}(\sigma, \lambda, \Delta)$ and $\xi \in \mathcal{G}$, we have a Fourier expansion

$$(f\|\xi)(z) = a_0(y) + \sum_{n=1}^{\infty} a_n W\left(\frac{ny}{2A}; \sigma, \lambda\right) e\left(\frac{nz}{2A}\right) + y^{-\sigma} \cdot \sum_{n=1}^{\infty} a_{-n} W\left(\frac{-ny}{2A}; \sigma, \lambda\right) e\left(\frac{-n\bar{z}}{2A}\right),$$

with a function $a_0(y)$ on R_+ and $a_n \in C$ $(n \neq 0)$ ([9]). We call $f \in \mathcal{A}(\sigma, \lambda, \Delta)$ a cusp form if the constant term $a_0(y) = 0$ for any $\xi \in \mathcal{G}$. We denote by $\mathcal{S}(\sigma, \lambda, \Delta)$ the space of cusp forms in $\mathcal{A}(\sigma, \lambda, \Delta)$.

For two elements f and g of $\mathcal{A}(\sigma, \lambda, \Delta)$, we put

$$\langle f, g \rangle = \mu (\Gamma \backslash \mathbf{H})^{-1} \int_{\Gamma \backslash \mathbf{H}} \bar{f} g y^{\sigma - 1} dx dy$$
,

where $\Gamma = pr(\Delta)$ and

$$\mu(\Gamma \setminus \boldsymbol{H}) = \int_{\Gamma \setminus H} y^{-2} dx dy.$$

Put

$$\mathcal{I}(\sigma, \lambda, \Delta) = \{ g \in \mathcal{A}(\sigma, \lambda, \Delta) \mid \langle f, g \rangle = 0 \text{ for any } f \in \mathcal{S}(\sigma, \lambda, \Delta) \}.$$

Then $\mathcal{A}(\sigma, \lambda, \Delta) = \mathcal{S}(\sigma, \lambda, \Delta) \oplus \mathcal{N}(\sigma, \lambda, \Delta)$. Further we put

$$\mathcal{A}(\sigma, \lambda) = \bigcup_{\Delta} \mathcal{A}(\sigma, \lambda, \Delta), \quad \mathcal{S}(\sigma, \lambda) = \bigcup_{\Delta} \mathcal{S}(\sigma, \lambda, \Delta),$$

where the unions are taken over all congruence subgroups of \mathcal{G} . We also put

$$\mathfrak{I}(\sigma, \lambda) = \{ g \in \mathcal{A}(\sigma, \lambda) \mid \langle f, g \rangle = 0 \text{ for any } f \in \mathcal{S}(\sigma, \lambda) \}.$$

Then we observe

$$\mathfrak{N}(\sigma, \lambda, \Delta) = \{ f \in \mathfrak{N}(\sigma, \lambda) \mid f | \xi = f \text{ for any } \xi \in \Delta \},$$

for any congruence subgroup Δ of \mathcal{G} .

478 T. MIYAKE

For a congruence subgroup Δ of \mathcal{G} , we call $\mathcal{L} \cap \Delta$ is regular if $l_{\xi}(z)=1$ for any $\xi \in \mathcal{L} \cap \Delta$. We define the Eisenstein series $E(z, s; \Delta)$ ($z \in \mathcal{H}$, $s \in C$) by

$$E(z, s; \Delta) = \begin{cases} \sum_{\alpha \in \mathcal{P} \cap \Delta \setminus \Delta} y^{s} \| \alpha & \text{if } \mathcal{P} \cap \Delta \text{ is regular,} \\ 0 & \text{otherwise.} \end{cases}$$

The series is convergent for $\text{Re}(s) > 1 - \sigma/2$ and can be continued as a meromorphic function in s to the whole s-plane. If $E(z, s; \Delta)$ is holomorphic at $s_0 \in \mathbb{C}$, then

$$E(z, s_0; \Delta) \in \mathcal{R}(\sigma, \lambda, \Delta), \quad \lambda = s_0(1 - \sigma - s_0).$$

Further for $\xi \in \mathcal{G}$, we put

$$E(z, s; \Delta, \xi) = E(z, s; \xi \Delta \xi^{-1}) \| \xi.$$

Let ξ and ξ' be two elements of \mathcal{G} such that $\operatorname{pr}(\xi) = \operatorname{pr}(\xi')$. Then we see easily that $\xi \mathcal{L} \xi^{-1} = \xi' \mathcal{L} \xi'^{-1}$. Therefore

$$E(z, s; \Delta, \xi') = cE(z, s; \Delta, \xi)$$

with a constant c. Let α be an element of $SL_2(Q)$, and $\xi = (\alpha, l(z)) \in \mathcal{G}$. Put $\Gamma = \text{pr}(\Delta)$. If $\alpha \Gamma \alpha^{-1} = \Gamma$, then $\xi \Delta \xi^{-1} = \Delta$ and therefore

$$E(z, s; \Delta, \xi) = E(z, s; \Delta) \| \xi.$$

THEOREM 1.2. (1) If $\text{Re}(s_0) \ge (1-\sigma)/2$, then $E(z, s; \Delta)$ is holomorphic at $s=s_0$ except the case when $s_0=3/4-\sigma/2$ and $\sigma-1/2$ is either an even nonnegative integer or an odd negative integer.

(2) For $\lambda \in \mathbb{C}$, take $s_0 \in \mathbb{C}$ so that

$$s_0(1-\sigma-s_0)=\lambda$$
 and $\operatorname{Re}(s_0)\geq \frac{1}{2}(1-\sigma)$.

If (s_0, σ) is not in the exceptional case of (1), then $\mathfrak{N}(\sigma, \lambda, \Delta)$ is generated by $E(z, s; \Delta, \xi)$ $(\xi \in \mathcal{G}, \operatorname{pr}(\xi) \in SL_2(\mathbf{Z}))$.

COROLLARY 1.3. If $\sigma \geq 3/2$, then $\mathfrak{N}(\sigma, 0, \Delta)$ is generated by Eisenstein series $E(z, 0; \Delta, \xi)$ ($\xi \in \mathcal{G}$, $\operatorname{pr}(\xi) \in SL_2(\mathbf{Z})$).

We denote by $\mathcal{H}(\sigma, \Delta)$ the set of all holomorphic functions on H satisfying (1.2a) and (1.2c). Then

$$\mathcal{A}(\sigma, \Delta) \subset \mathcal{A}(\sigma, 0, \Delta)$$
.

We put

$$\mathfrak{IH}(\sigma, \Delta) = \mathfrak{I}(\sigma, 0, \Delta) \cap \mathfrak{H}(\sigma, \Delta)$$
.

Then we have

Theorem 1.4. If $\sigma > 3/2$, then

$$\mathfrak{NH}(\sigma, \Delta) = \mathfrak{N}(\sigma, 0, \Delta)$$
.

§ 2. Eisenstein series.

For a congruence moduar group Γ contained in $\Gamma_0(4) \cup \Gamma^0(4)$, we put

$$\mathfrak{N}(\sigma, \lambda, \Gamma) = \mathfrak{N}(\sigma, \lambda; \Lambda_{\sigma}(\Gamma))$$

and

$$E_{\sigma}(z, s; \Gamma) = E(z, s; \Lambda_{\sigma}(\Gamma))$$
.

Let M be a positive integer and N a positive integer divisible by 4. For integers μ , ν $(0 \le \mu < M, 1 \le \nu < N, (\nu, 2) = 1)$, we put

$$E_{\sigma}\left(z, s; \frac{\mu}{M}, \frac{\nu}{N}\right) = y^{s} \varepsilon_{\nu}^{k} \sum_{\substack{m = \mu(M) \\ n \equiv \nu(N)}} \left(\frac{m}{n}\right) (mz+n)^{-\sigma} |mz+n|^{-2s}, \quad z \in \mathbf{H}, s \in \mathbf{C}.$$

Then $E_{\sigma}(z, s; \mu/M, \nu/N)$ is convergent for $\text{Re}(s) > 1 - \sigma/2$ and continued meromorphically in s to the whole s-plane by Propositions 2.2 and 2.3 below. The following lemma is easily proved ([2], Lemma 7.1.6).

LEMMA 2.1. Let M be a positive integer (≥ 3).

(1) The map $\Gamma(M) \ni \gamma \mapsto (c_{\gamma}, d_{\gamma}) \in \mathbb{Z}^2$ induces a bijection

$$(P \cap \Gamma(M)) \setminus \Gamma(M) \longrightarrow \{(m, n) \in \mathbb{Z}^2 \mid \substack{m \equiv 0 \pmod M, \\ n \equiv 1 \pmod M,} (m, n) = 1\}.$$

(2) For $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z})$, the correspondence $\Gamma(M)\alpha \ni \gamma \mapsto (c_{\gamma}, d_{\gamma}) \in \mathbf{Z}^2$ induces a bijection

$$(P \cap \Gamma(M)) \setminus \Gamma(M) \alpha \longrightarrow \{(m, n) \in \mathbb{Z}^2 \mid \substack{m \equiv c \pmod M, \\ n \equiv d \pmod M}, (m, n) = 1\}.$$

PROPOSITION 2.2. Let N be a positive integer divisible by 4, and let μ and ν be integers such that $0 \le \mu$, $\nu < N$ and $(\nu, 2) = 1$. Then

(1)
$$E_{\sigma}(z, s; \frac{0}{N}, \frac{1}{N}) = E_{\sigma}(z, s; \Gamma(N)).$$

(2)
$$E_{\sigma}\left(z, s; \frac{\mu}{N}, \frac{\nu}{N}\right) = 0$$
 if $(\mu, \nu, N) \neq 1$.

(3) If
$$\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma^0(4)$$
, then

$$E_{\sigma}(z, s; \Gamma(N), \alpha) = E_{\sigma}(z, s; \frac{c'}{N}, \frac{d'}{N})$$

with $0 \le c'$, d' < N such that $(c', d') \equiv (c, d) \pmod{N}$.

(4) If $\alpha \in \Gamma^0(4)$, then

$$E_{\sigma}(z, s; \frac{\mu}{N}, \frac{\nu}{N}) \Big\|_{\sigma} \alpha = E_{\sigma}(z, s; \frac{\mu'}{N}, \frac{\nu'}{N}).$$

Here μ' , ν' are integers such that $0 \le \mu'$, $\nu' < N$ and

$$(\mu', \nu') \equiv (\mu, \nu) \alpha \pmod{N}$$
.

PROOF. (1): Put $\Gamma = \Gamma(N)$. Then by Lemma 2.1 (1), we see that

$$E_{\sigma}\left(z, s; \frac{0}{N}, \frac{1}{N}\right) = y^{s} \sum_{\boldsymbol{\gamma} \in \Gamma_{\infty} \backslash \boldsymbol{\Gamma}} j(\boldsymbol{\gamma}, z)^{-k} |j(\boldsymbol{\gamma}, z)|^{-4s} = \sum_{\boldsymbol{\gamma} \in \Gamma_{\infty} \backslash \boldsymbol{\Gamma}} y^{s} ||_{\sigma} \boldsymbol{\gamma}$$
$$= E(z, s; \Lambda_{\sigma}(\boldsymbol{\Gamma}(N)).$$

- (2): Assume $(\mu, \nu, N) \neq 1$. Then all pairs of integers (m, n) such that $m \equiv \mu \pmod{N}$, $n \equiv \nu \pmod{N}$ are not coprime. Therefore $\left(\frac{m}{n}\right) = 0$.
- (3), (4): Since Λ_{σ} is a group homomorphism on $\Gamma^{0}(4)$, the third assertion is a direct consequence of Lemma 2.1 (2), and the fourth assertion is an easy consequence of (3). \square

PROPOSITION 2.3. Let N, μ and ν be the same as in Proposition 2.2. Assume $(\mu, \nu, N)=1$ and put $(\mu, N)=u$ and $(\nu, N)=v$. We also put

$$\mu' = \frac{\mu}{u}$$
, $\nu' = \frac{\nu}{v}$, $M' = \frac{N}{u}$, $N' = \frac{N}{v}$.

Then

$$E_{\sigma}(z, s; \frac{\mu}{N}, \frac{\nu}{N}) = \left(\frac{\varepsilon_{\nu}}{\varepsilon_{\nu'}}\right)^{k} \left(\frac{u}{v}\right) \left(\frac{\mu'}{v}\right) \left(\frac{u}{\nu'}\right) v^{-\sigma-s} u^{-s} E_{\sigma}\left(\frac{u}{v}z, s; \frac{\mu'}{M'}, \frac{\nu'}{N'}\right).$$

PROOF.

$$E_{\sigma}\left(z, s; \frac{\mu}{N}, \frac{\nu}{N}\right) = y^{s} \varepsilon_{\nu}^{k} \sum_{\substack{m \equiv \mu(N) \\ m \equiv \nu(N)}} \left(\frac{m}{n}\right) (mz+n)^{-\sigma} |mz+n|^{-2s}$$

$$= \left(\frac{u}{v}y\right)^{s} \left(\frac{\varepsilon_{\nu}}{\varepsilon_{\nu'}}\right)^{k} \varepsilon_{\nu'}^{k} \sum_{\substack{m \equiv \mu'(M') \\ n \equiv \nu' (N')}} \left(\frac{u}{v}\right) \left(\frac{m}{v}\right) \left(\frac{u}{n}\right) \left(\frac{m}{n}\right) v^{-\sigma-s} u^{-s} \left(m\frac{u}{v}z+n\right)^{-\sigma} |m\frac{u}{v}z+n|^{-2s}.$$

Since u and v are coprime, we see that N' is divisible by u and M' is divisible by v. This implies $\left(\frac{m}{v}\right) = \left(\frac{\mu'}{v}\right)$ and $\left(\frac{u}{n}\right) = \left(\frac{u}{\nu'}\right)$ in the last summation. \square

Let χ and ψ be Dirichlet characters defined modulo M and modulo N, respectively. Assume that N is divisible by 4. We put

$$E_{\sigma}(z, s; \chi, \phi) = y^{s} \sum_{\substack{m, n = -\infty \\ 0 \le \nu \le N}}^{\infty} \chi(m) \phi(n) \varepsilon_{n}^{k} \left(\frac{m}{n}\right) (mz+n)^{-\sigma} |mz+n|^{-2s}$$

$$= \sum_{\substack{0 \le \nu \le N \\ 0 \le \nu \le N}} \chi(\mu) \phi(\nu) E_{\sigma}(z, s; \frac{\mu}{M}, \frac{\nu}{N}).$$

Here we understand that

$$\chi(0) = 1$$
 if $M=1$, and $\chi(0) = 0$ otherwise.

Since N is divisible by 4, $\psi(n)=0$ for even integers n. Then the summation on n is extended only over odd integers.

PROPOSITION 2.4. Assume $\sigma \ge 3/2$. Let N be a positive integer divisible by 4.

- (1) For any integers μ , ν ($0 \le \mu$, $\nu < N$, (ν , 2)=1), $E_{\sigma}(z, s; \mu/N, \nu/N)$ is holomorphic at s=0 and $E_{\sigma}(z, 0; \mu/N, \nu/N)$ belongs to $\Re(\sigma, 0, \Gamma(N))$.
- (2) Let M_1 be a divisor of N, and N_1 a divisor of N divisible by 4. Let χ and ψ be Dirichlet characters defined modulo M_1 and modulo N_1 , respectively. Then $E_{\sigma}(z, s; \chi, \psi)$ is holomorphic at s=0 and $E_{\sigma}(z, 0; \chi, \psi)$ belongs to $\mathfrak{N}(\sigma, 0, \Gamma(N))$.

PROOF. By Corollary 1.3 and Proposition 2.2, we see that $E_{\sigma}(z, s; \mu/N, \nu/N)$ is holomorphic at s=0 and $E_{\sigma}(z, 0; \mu/N, \nu/N) \in \mathcal{D}(\sigma, 0, \Gamma(N))$. Then

$$E_{\sigma}(z, s; \chi, \phi) = \sum_{\substack{0 \leq \mu \leq M_1 \\ 0 \leq \nu \leq N_1}} \chi(\mu) \phi(\nu) E_{\sigma}(z, s; \frac{\mu}{M_1}, \frac{\nu}{N_1}).$$

Further put $N'=L.C.M.(M_1, N_1)$. Then

$$E_{\sigma}(z, s; \frac{\mu}{M_1}, \frac{\nu}{N_1}) = \sum E_{\sigma}(z, s; \frac{\mu'}{N'}, \frac{\nu'}{N'})$$

where the summation extends over integers μ and ν satisfying

$$0 \leq \mu, \ \nu < N', \quad \mu' \equiv \mu \pmod{M_1}, \quad \nu' \equiv \nu \pmod{N_1}$$
.

Therefore $E_{\sigma}(z, s; \chi, \phi)$ is holomorphic at s=0. Since $E_{\sigma}(z, 0; \mu'/N', \nu'/N')$ belongs to $\mathcal{N}(\sigma, 0, \Gamma(N'))$ and $\mathcal{N}(\sigma, 0, \Gamma(N')) \subset \mathcal{N}(\sigma, 0, \Gamma(N))$, $E_{\sigma}(z, s; \chi, \phi)$ also belongs to $\mathcal{N}(\sigma, 0, \Gamma(N))$. \square

The next proposition can be easily proved by using the orthogonal relation of characters.

PROPOSITION 2.5. Let M be a positive integer, and N a positive integer divisible by 4. If $(\mu, M)=1$ and $(\nu, N)=1$, then

$$E_{\sigma}\left(z, s; \frac{\mu}{M}, \frac{\nu}{N}\right) = \frac{1}{\varphi(M)\varphi(N)} \sum_{\chi} \sum_{\phi} \bar{\chi}(\mu)\bar{\psi}(\nu) E_{\sigma}(z, s; \chi, \phi).$$

Here χ (resp. ϕ) is taken over all Dirichlet characters defined modulo M (resp. modulo N) and φ is the Euler function.

For the Fourier coefficients of Eisenstein series, we obtain

THEOREM 2.6. Assume $\sigma \ge 3/2$. For any $\alpha \in SL_2(\mathbf{Z})$, there exists an element $\boldsymbol{\xi} \in \mathcal{G}_{\sigma}$ such that $\operatorname{pr}(\boldsymbol{\xi}) = \alpha$ and

$$E_{\sigma}(z, 0; \Gamma(N)) \| \xi = c + a_0 \pi^{2-2\sigma} y^{1-\sigma} + \sum_{n=1}^{\infty} a_n e(nz/N)$$

$$+\pi^{1-2\sigma}y^{-\sigma}\sum_{n=1}^{\infty}a_{-n}\omega(-4\pi ny/N;0,\sigma)e(-n\bar{z}/N)$$
,

with a_n $(n \in \mathbb{Z})$, $c \in \mathbb{Q}_{ab}$. Furthermore if $\sigma > 3/2$, then $a_{-n} = 0$ for all $n \ge 0$.

The proof of Theorem 2.6 will be given in § 3.

For a modular group Γ contained in $\Gamma_0(4) \cup \Gamma^0(4)$, we put

$$\mathcal{H}(\sigma, \Gamma) = \mathcal{H}(\sigma, \Lambda_{\sigma}(\Gamma)), \qquad \mathcal{H}(\sigma, \Gamma) = \mathcal{H}(\sigma, \Lambda_{\sigma}(\Gamma)).$$

Let f(z) be an element of $\mathcal{H}(\sigma, \Gamma)$, and let the Fourier expansion of f be

$$f(z) = \sum_{n=0}^{\infty} a_n e(nz/A)$$
, $a_n \in C$,

with some positive integer A. For a subfield K of C, we call f(z) K-rational if $a_n \in K$ for all $n \ge 0$. We denote by $\mathcal{H}(\sigma, \Gamma, K)$ (resp. $\mathcal{H}(\sigma, \Gamma, K)$) the set of all K-rational elements in $\mathcal{H}(\sigma, \Gamma)$ (resp. $\mathcal{H}(\sigma, \Gamma)$). We also denote by $\mathcal{H}(\sigma, 0, \Gamma, K)$ the set of all functions f(z) in $\mathcal{H}(\sigma, 0, \Gamma, K)$ which has the Fourier expansion

$$f(z) = c + a_0 \pi^{2-2\sigma} y^{1-\sigma} + \sum_{n=1}^{\infty} a_n e(\frac{nz}{A}) + \pi^{1-2\sigma} y^{-\sigma} \sum_{n=1}^{\infty} a_{-n} \omega(\frac{4\pi n y}{A}; 0, \sigma) e(\frac{-n\bar{z}}{A}),$$

with a_n $(n \in \mathbb{Z})$, $c \in K$ and a positive integer A. Then

$$\mathfrak{NH}(\sigma, \Gamma, K) = \mathfrak{N}(\sigma, 0, \Gamma, K) \cap \mathfrak{H}(\sigma, \Gamma)$$
.

If $\sigma > 3/2$, Theorem 2.6 together with Theorem 1.4 implies that

$$\mathfrak{I}(\sigma, 0, \Gamma(N), \mathbf{Q}_{ab}) = \mathfrak{I} \mathfrak{I}(\sigma, \Gamma(N), \mathbf{Q}_{ab}).$$

Now we obtain

Theorem 2.7. Assume $\sigma \ge 3/2$. Let N be a positive integer divisible by 4. Then the space $\mathfrak{NH}(\sigma, \Gamma(N))$ is generated by Q_{ab} -rational elements.

PROOF. By Corollary 1.3, $\mathcal{R}(\sigma, 0, \Gamma(N))$ is generated by $E_{\sigma}(z, 0; \Gamma(N)) \| \xi(\xi \in \mathcal{G})$, $\operatorname{pr}(\xi) \in SL_2(\mathbf{Z})$. Then by Theorem 2.6, we can take a basis of $\mathcal{R}(\sigma, 0, \Gamma(N))$ among the elements in $\mathcal{R}(\sigma, 0, \Gamma(N), \mathbf{Q}_{ab})$, which we denote by $f_1(z), \dots, f_m(z)$. Write

$$f_{j}(z) = c^{(j)} + a_{0}^{(j)} \pi^{2-\sigma} y^{1-\sigma} + \sum_{n=1}^{\infty} a_{n}^{(j)} e\left(\frac{nz}{N}\right) + \pi^{1-2\sigma} y^{-\sigma} \sum_{n=1}^{\infty} a_{-n}^{(j)} \omega\left(\frac{4\pi ny}{N}; 0, \sigma\right) e\left(\frac{-n\overline{z}}{N}\right)$$

with $a_n^{(j)}$, $c^{(j)} \in \mathbf{Q}_{ab}$. Let $f(z) \in \mathcal{MH}(\sigma, \Gamma(N))$. Then

$$f(z) = p_1 f_1(z) + \cdots + p_m f_m(z), \quad p_l \in C.$$

By the uniqueness of the Fourier coefficients, we have infinitely many linear equations

(2.1)
$$p_1 a_{-n}^{(1)} + \dots + p_m a_{-n}^{(m)} = 0 \qquad (n=0, 1, 2, \dots), \\ p_1 c^{(1)} + \dots + p_m c^{(m)} = 0.$$

Since the coefficients of the equations belong to Q_{ab} , we can find fundamental solutions in Q_{ab}^m , say $(p_1^{(1)}, \dots, p_m^{(1)}), \dots, (p_1^{(r)}, \dots, p_m^{(r)})$. Put

$$g_t = p_1^{(t)} f_1 + \dots + p_m^{(t)} f_m \qquad (1 \le t \le r).$$

Then g_t is Q_{ab} -rational and f(z) is a linear combination of g_t $(1 \le t \le r)$. \square

COROLLARY 2.8. Assume $\sigma \geq 3/2$. Let Δ be a congruence subgroup of \mathcal{G}_{σ} such that $\operatorname{pr}(\Delta) \subset SL_2(\mathbf{Z})$. Then $\mathfrak{NH}(\sigma, \Delta)$ is generated by \mathbf{Q}_{ab} -rational elements.

PROOF. Take a principal congruence modular group $\Gamma(N)$ (4|N) so that $\Lambda_{\sigma}(\Gamma(N))\subset \Delta$. Let f_1,\dots,f_m be the same as in the proof of Theorem 2.7. Let $\xi=(\alpha,l(z))$ be an element of Δ and $\xi'=(\alpha,l'(z))$ be the element of \mathcal{G}_{σ} for α in Theorem 2.6. Since some power of ξ belongs to $\Lambda_{\sigma}(\Gamma(N))$, l(z)=cl'(z) with a root of unity c by the construction of ξ' . Therefore $f_1\|\xi,\dots,f_m\|\xi$ are linear combinations of f_1,\dots,f_m over Q_{ab} ; say

$$f_i \| \xi = c(i, 1, \xi) f_1 + \dots + c(i, m, \xi) f_m, \quad i=1, \dots, m.$$

Let f be an element of $\mathcal{MH}(\sigma, \Delta)$. Then $f = p_1 f_1 + \cdots + p_m f_m$ with $p_l \in \mathbb{C}$. Since f is holomorphic, p_1, \dots, p_m satisfy the linear equations in (2.1). The property that f belongs to $\mathcal{M}(\sigma, 0, \Delta)$ is characterized by the linear equations

$$p_1c(1, j, \xi) + \cdots + p_mc(m, j, \xi) = p_j$$

for $j=1, \dots, m$ and the representatives $\{\xi\}$ of $\Lambda_{\sigma}(\Gamma(N)) \setminus \Delta$. Since all those equations have coefficients in Q_{ab} , we have fundamental solutions in Q_{ab}^m as in Theorem 2.7 and f is a linear combination of Q_{ab} -rational elements of $\mathfrak{I} \mathcal{I} \mathcal{I} (\sigma, \Delta)$. \square

REMARK. The case $\sigma > 3/2$ in Theorem 2.7 is a direct consequence of Corollary 1.3, Theorem 1.4 and Theorem 2.6. We note that even in that case our proof is elementary and different from Shimura [9], Proposition 6.2 which uses results of canonical models.

§ 3 Fourier coefficients of Eisenstein series.

Let M be a positive integer, and N a positive integer divisible by 4. Let χ and ψ be Dirichlet characters defined modulo M and N, respectively.

PROPOSITION 3.1. (1) If $\chi(-1)\phi(-1)\neq 1$, then $E_{\sigma}(z, s; \chi, \phi)=0$.

(2) If
$$\chi(-1)\phi(-1)=1$$
 then
$$E_{\sigma}(z, s; \chi, \phi) = 2y^{s} \Big\{ \chi(0) + \sum_{m=1}^{\infty} \chi(m) \sum_{n=-\infty}^{\infty} \phi(n) \varepsilon_{n}^{k} \Big(\frac{m}{n} \Big) (mz+n)^{-\sigma} |mz+n|^{-2s} \Big\}.$$

PROOF. Assume that the term for a pair of integers (m, n) does not vanish. Then (m, n)=1, and n is an odd integer. Hence there exists an element $\gamma \in \Gamma^0(4)$ such that $\gamma = \binom{*}{m} \binom{*}{n}$. Then

$$\varepsilon_n^k \left(\frac{m}{n}\right) (mz+n)^{-\sigma} = j(\gamma, z)^{-k} = \left(\frac{\theta(\delta \gamma z)}{\theta(\delta z)}\right)^{-k}.$$

Therefore we obtain that

$$\begin{split} \varepsilon_{-n}^k \Big(\frac{-m}{-n} \Big) (-mz - n)^{-\sigma} &= j (-\gamma, z)^{-k} = \Big(\frac{\theta(\delta(-\gamma)z)}{\theta(\delta z)} \Big)^{-k} \\ &= \Big(\frac{\theta(\delta \gamma z)}{\theta(\delta z)} \Big)^{-k} = \varepsilon_n^k \Big(\frac{m}{n} \Big) (mz + n)^{-\sigma} \,. \end{split}$$

Since

$$\begin{split} E_{\sigma}(z, s; \mathbf{X}, \boldsymbol{\psi}) &= y^{s} \Big\{ \mathbf{X}(0) \boldsymbol{\psi}(1) + \mathbf{X}(0) \boldsymbol{\psi}(-1) \\ &+ \sum_{m=1}^{\infty} \sum_{n=-\infty}^{\infty} (\mathbf{X}(m) \boldsymbol{\psi}(n) + \mathbf{X}(-m) \boldsymbol{\psi}(-n)) \varepsilon_{n}^{k} \Big(\frac{m}{n} \Big) (mz+n)^{-\sigma} |mz+n|^{-2s} \Big\} \,, \end{split}$$

we obtain the assertion.

Now we will calculate the Fourier coefficients of Eisenstein series by generalizing the arguments of Shimura [5], Sturm [10], and Pei [3]. Assume $\chi(-1)\phi(-1)=1$. Then

$$(3.1) \quad E_{\sigma}(z, s; \chi, \phi) = 2y^{s} \Big\{ \chi(0) + \sum_{m=1}^{\infty} \chi(m) \sum_{n=-\infty}^{\infty} \phi(n) \varepsilon_{n}^{k} \Big(\frac{m}{n} \Big) (mz+n)^{-\sigma} | mz+n |^{-2s} \Big\}$$

$$= 2y^{s} \Big\{ \chi(0) + \sum_{m=1}^{\infty} \chi(m) \sum_{n=-\infty}^{\infty} \phi(n) \varepsilon_{n}^{k} \Big(\frac{m}{n} \Big) (mz+n)^{-\sigma-s} (m\bar{z}+n)^{-s} \Big\}$$

$$= 2y^{s} \Big\{ \chi(0) + \sum_{m=1}^{\infty} \chi(m) (mN)^{-\sigma-2s} \sum_{a=1}^{m-N-1} \phi(a) \varepsilon_{a}^{k} \Big(\frac{m}{a} \Big)$$

$$\times \sum_{n=-\infty}^{\infty} \Big(\frac{z}{N} + \frac{a}{mN} + n \Big)^{-\sigma-s} \Big(\frac{\bar{z}}{N} + \frac{a}{mN} + n \Big)^{-s} \Big\}.$$

We put

$$S(z, \alpha, \beta) = \sum_{n=-\infty}^{\infty} (z+n)^{-\alpha} (\overline{z}+n)^{-\beta} \qquad (z \in \mathbf{H}, \alpha, \beta \in \mathbf{C}).$$

Then $S(z, \alpha, \beta)$ is absolutely convergent at least when $z \in H$ and $\text{Re}(\alpha + \beta) > 1$. It is continued in (α, β) to a meromorphic function on $C \times C$ which is real analytic in z. Using this function, we can write

(3.1)
$$E_{\sigma}(z, s; \chi, \phi)$$

$$=2y^{s}\left\{\chi(0)+\sum_{m=1}^{\infty}\chi(m)(mN)^{-\sigma-2s}\sum_{a=1}^{mN-1}\psi(a)\varepsilon_{a}^{k}\left(\frac{m}{a}\right)S\left(\frac{z}{N}+\frac{a}{mN},\ \sigma+s,\ s\right)\right\}.$$

The following Fourier expansion of $S(z, \alpha, \beta)$ is well known ([7], Theorem 6.1, see also [2] Theorem 7.2.8).

LEMMA 3.2.

$$\begin{split} S(z,\,\alpha,\,\beta) &= i^{\beta-\alpha} (2\pi)^{\alpha+\beta} \varGamma(\alpha)^{-1} \varGamma(\beta)^{-1} \varGamma(\alpha+\beta-1) (4\pi y)^{1-\alpha-\beta} \\ &+ i^{\beta-\alpha} (2\pi)^{\alpha} \varGamma(\alpha)^{-1} (2y)^{-\beta} \sum_{n=1}^{\infty} n^{\alpha-1} \pmb{\omega} (4\pi ny\,;\,\alpha,\,\beta) \mathbf{e}(nz) \\ &+ i^{\beta-\alpha} (2\pi)^{\beta} \varGamma(\beta)^{-1} (2y)^{-\alpha} \sum_{n=1}^{\infty} n^{\beta-1} \pmb{\omega} (4\pi ny\,;\,\beta,\,\alpha) \mathbf{e}(-n\bar{z}) \,. \end{split}$$

Now substituting Lemma 3.2 into (3.1), we obtain

THEOREM 3.3. Assume $\chi(-1)\phi(-1)=1$. Then

$$\begin{split} \frac{1}{2}E_{\sigma}(z,\,s\,;\boldsymbol{\chi},\,\boldsymbol{\psi}) &= \boldsymbol{\chi}(0)y^{s} + C(s)y^{1-\sigma-s}a(0,\,s) \\ &\quad + A(s)\sum_{n=1}^{\infty}n^{\sigma-s-1}a(n,\,s)\boldsymbol{\omega}\Big(\frac{4\pi\,n\,y}{N}\,;\,\sigma+s,\,s\Big)\mathrm{e}\Big(\frac{n\,z}{N}\Big) \\ &\quad + B(s)y^{-\sigma}\sum_{n=1}^{\infty}n^{s-1}a(-n,\,s)\boldsymbol{\omega}\Big(\frac{4\pi\,n\,y}{N}\,;\,s,\,\sigma+s\Big)\mathrm{e}\Big(-\frac{n\,\bar{z}}{N}\Big), \end{split}$$

where

$$\begin{split} A(s) &= i^{-\sigma} (2\pi)^{\sigma+s} \varGamma(\sigma+s)^{-1} (N/2)^s \;, \\ B(s) &= i^{-\sigma} (2\pi)^s \varGamma(s)^{-1} (N/2)^{\sigma+s} \;, \\ C(s) &= i^{-\sigma} (2\pi) \varGamma(\sigma+s)^{-1} \varGamma(s)^{-1} \varGamma(\sigma+2s-1) (N/2)^{\sigma+2s-1} \;, \end{split}$$

and

$$a(n, s) = \sum_{m=1}^{\infty} \chi(m)(mN)^{-\sigma-2s} \sum_{a=1}^{mN-1} \psi(a) \varepsilon_a^k \left(\frac{m}{a}\right) e\left(\frac{an}{mN}\right) \qquad (n \in \mathbb{Z})$$

To calculate the Dirichlet series a(n, s), we generalize the Gauss sum. Let L be a positive integer, and ω a Dirichlet character defined modulo L. For an integer b, we put

$$G_b(\boldsymbol{\omega}) = \sum_{a=1}^{L-1} \boldsymbol{\omega}(a) e\left(\frac{ab}{L}\right)$$
,

which is the usual Gauss sum. When L is divisible by 4, we also put for an integer b and an odd integer k,

$$G_b^{(k)}(\boldsymbol{\omega}) = \sum_{a=1}^{L-1} \varepsilon_a^k \boldsymbol{\omega}(a) e\left(\frac{ab}{L}\right),$$

which we call the twisted Gauss sum. They are related by the following lemma, which can be easily proved.

LEMMA 3.4.

$$(1) G_b^{(k)}(\omega) = \frac{1}{2} \Big\{ G_b(\omega) + G_b \Big(\omega \Big(\frac{-1}{*} \Big) \Big) \Big\} + \frac{i^k}{2} \Big\{ G_b(\omega) - G_b \Big(\omega \Big(\frac{-1}{*} \Big) \Big) \Big\} .$$

(2)
$$G_{\delta}^{(-k)}(\boldsymbol{\omega}) = G_{\delta}^{(k)}(\boldsymbol{\omega}(\frac{-1}{*})).$$

To calculate the twisted Gauss sum for the product of two Dirichlet characters, we need the well known properties of the Gauss sum for the product of two Dirichlet characters. Let χ and ϕ be Dirichlet characters defined modulo M and N, respectively. If M and N are coprime, then

(3.2a)
$$G_b(\chi \phi) = \chi(N) \phi(M) G_b(\chi) G_b(\phi).$$

Further let ω be a Dirichlet character defined modulo L. For integers b and l, we have

(3.2b)
$$\sum_{a=1}^{lL-1} \omega(a) e\left(\frac{ab}{lL}\right) = 0, \quad \text{if } b \text{ is not divisible by } l.$$

Now we obtain

PROPOSITION 3.5. Let χ and ψ be Dirichlet characters defined modulo M and N respectively. Assume M and N are coprime and N is divisible by 4. Then

$$G_b^{(k)}(\mathbf{X}\phi) = \begin{cases} \mathbf{X}(N)\phi(M)G_b(\mathbf{X})G_b^{(k)}(\phi) & \text{if } \left(\frac{-1}{M}\right) = 1, \\ i^k\mathbf{X}(N)\phi(M)G_b(\mathbf{X})G_b^{(k)}\left(\phi\left(\frac{-1}{*}\right)\right) & \text{if } \left(\frac{-1}{M}\right) = -1. \end{cases}$$

PROOF. By Lemma 3.4(1), we have

$$\begin{split} G_b^{(k)}(\mathbf{X}\boldsymbol{\psi}) &= \frac{1}{2} \Big\{ G_b(\mathbf{X}\boldsymbol{\psi}) + G_b\Big(\mathbf{X}\boldsymbol{\psi}\Big(\frac{-1}{*}\Big)\Big) \Big\} + \frac{i^k}{2} \Big\{ G_b(\mathbf{X}\boldsymbol{\psi}) - G_b\Big(\mathbf{X}\boldsymbol{\psi}\Big(\frac{-1}{*}\Big)\Big) \Big\} \\ &= \mathbf{X}(N)\boldsymbol{\psi}(M)G_b(\mathbf{X})T \; . \end{split}$$

where

$$T = \frac{1}{2} \Big(G_b(\phi) + \Big(\frac{-1}{M}\Big) G_b\Big(\phi\Big(\frac{-1}{*}\Big)\Big) \Big) + \frac{i^k}{2} \Big(G_b(\phi) - \Big(\frac{-1}{M}\Big) G_b\Big(\phi\Big(\frac{-1}{*}\Big)\Big) \Big).$$

If
$$\left(\frac{-1}{M}\right)=1$$
, then

$$T = G_h^{(k)}(\phi)$$
.

If
$$\left(\frac{-1}{M}\right) = -1$$
, then by Lemma 3.4(1)

$$T = \frac{1}{2} \Big(G_b(\phi) - G_b\Big(\phi\Big(\frac{-1}{*}\Big)\Big) + \frac{i^k}{2} \Big(G_b(\phi) + G_b\Big(\phi\Big(\frac{-1}{*}\Big)\Big) \Big)$$
$$= i^k G_b^{(-k)}(\phi) = i^k G_b^{(k)}\Big(\phi\Big(\frac{-1}{*}\Big)\Big). \quad \Box$$

For a Dirichlet character ω , we denote by $L(s, \omega)$ the Dirichlet L-function. For a positive integer N, $L_N(s, \omega)$ denotes the function obtained from $L(s, \omega)$ by omitting p-Euler factors for all prime components p of N. Now we obtain

Proposition 3.6.

$$a(0, s) = \frac{L_N(4s+2\sigma-2, \chi^2\phi^2)}{L_N(4s+2\sigma-1, \chi^2\phi^2)} \alpha(0, s),$$

$$\alpha(0, s) = \begin{cases} \frac{1\pm i^k}{2} \chi(l) \varphi(N) l^{-\sigma-2s+1} N^{-\sigma-2s} \prod_{p \in N} (1-\chi(p^2) p^{-2\sigma-4s+2})^{-1} \\ \text{if } \psi \text{ is a character derived from a quadratic} \\ \text{character } \left(\frac{\pm l}{*}\right) \text{ with a positive square free } l, \\ 0 \text{ if } \psi \text{ is not derived from a quadratic character.} \end{cases}$$

PROOF. By definition, we see that

$$a(0, s) = \sum_{m=1}^{\infty} \chi(m)(mN)^{-\sigma-2s} \sum_{a=1}^{m-N-1} \psi(a) \varepsilon_a^k \left(\frac{m}{a}\right) = \sum_{m=1}^{\infty} \chi(m)(mN)^{-\sigma-2s} G_0^{(k)} \left(\psi\left(\frac{m}{*}\right)\right).$$

Here we consider $\psi\left(\frac{m}{*}\right)$ as a Dirichlet character defined modulo Nm. Decompose m as m=m'd, a product of an integer m' dividing some power of N (which we express as $m'|N^{\infty}$) and a positive integer d relatively prime to N. Put $m^*=\left(\frac{-1}{d}\right)m'$. Then by the reciprocity law,

$$\left(\frac{m}{a}\right) = \left(\frac{a}{d}\right)\left(\frac{m^*}{a}\right), \quad \text{for } a \in \mathbf{Z}.$$

Therefore by Proposition 3.5, we obtain

$$G_0^{(k)}\left(\phi\left(\frac{m}{*}\right)\right) = G_0^{(k)}\left(\phi\left(\frac{*}{d}\right)\left(\frac{m^*}{*}\right)\right)$$

$$= \begin{cases} \left(\frac{Nm'}{d}\right)\phi(d)\left(\frac{m^*}{d}\right) \cdot G_0\left(\left(\frac{*}{d}\right)\right) \cdot G_0^{(k)}\left(\phi\left(\frac{m^*}{*}\right)\right) & \text{if } \left(\frac{-1}{d}\right) = 1\\ i^k\left(\frac{Nm'}{d}\right)\phi(d)\left(\frac{m^*}{d}\right) \cdot G_0\left(\left(\frac{*}{d}\right)\right) \cdot G_0^{(k)}\left(\phi\left(\frac{m^*}{*}\right)\left(\frac{-1}{*}\right)\right) & \text{if } \left(\frac{-1}{d}\right) = -1\\ = \begin{cases} \phi(d)\phi(d)G_0^{(k)}\left(\phi\left(\frac{m'}{*}\right)\right) & \text{if } d \text{ is a square}\\ 0 & \text{otherwise.} \end{cases}$$

Here φ is the Euler function. Therefore we can write

$$a(0, s) = \sum_{\substack{(d, N) = 1}} \chi(d^2) \psi(d^2) d^{-2(\sigma+2s)} \varphi(d^2) \sum_{\substack{m \in N \\ m \neq 0}} \chi(m) (mN)^{-(\sigma+2s)} G_0^{(k)} \left(\psi\left(\frac{m}{*}\right)\right).$$

Now we see that

$$\begin{split} &\sum_{(d,N)=1} \chi(d^2) \psi(d^2) d^{-2(\sigma+2s)} \varphi(d^2) \\ &= \prod_{p \nmid N} \Big\{ \sum_{n=0}^{\infty} \chi(p^{2n}) \psi(p^{2n}) p^{-2n(\sigma+2s)} p^{2n} - \sum_{n=1}^{\infty} \chi(p^{2n}) \psi(p^{2n}) p^{-2n(\sigma+2s)} p^{2n-1} \Big\} \\ &= \frac{L_N(4s - 2\sigma - 2, \chi^2 \psi^2)}{L_N(4s - 2\sigma - 1, \chi^2 \psi^2)} \,. \end{split}$$

By Lemma 3.4, if neither $\psi(\frac{m}{*})$ nor $\psi(\frac{m}{*})(\frac{-1}{*})$ is trivial, then

$$G_0^{(k)}\left(\phi\left(\frac{m}{*}\right)\right)=0$$
.

Moreover, if $\psi(\frac{m}{*})$ (resp. $\psi(\frac{-m}{*})$) is trivial, then

$$G_0^{(k)}\!\!\left(\phi\!\!\left(\frac{m}{*}\right)\right) = \frac{1+i^k}{2} \varphi(mN) \text{ (resp. } \frac{1-i^k}{2} \varphi(mN)) \text{ and } \varphi(mN) = m\varphi(N).$$

Using this we easily obtain our expression.

PROPOSITION 3.7. For $n(\neq 0) \in \mathbb{Z}$, we put $n=tr^2$ (t: square free). Then we have

$$a(n, s) = \frac{L_N(2s + \sigma - \frac{1}{2}, \chi \phi(\frac{-1}{*})^{\sigma - 1/2}(\frac{t}{*}))}{L_N(4s + 2\sigma - 1, \chi^2 \phi^2)} \alpha(n, s).$$

Here $\alpha(n, s)$ is a finite Dirichet series with coefficients in Q_{ab} .

PROOF. We can write

$$a(n, s) = \sum_{m=1}^{\infty} \chi(m)(mN)^{-\sigma-2s} G_n^{(k)} \left(\psi\left(\frac{m}{*}\right) \right).$$

Here we consider the character $\psi\left(\frac{m}{*}\right)$ is defined modulo mN. We decompose m as a product m=m'd $(m'|N^{\infty}, (d,N)=1)$ and put $m^*=\left(\frac{-1}{d}\right)m'$ as in the proof of Proposition 3.6. Then

$$G_{n}^{(k)}\left(\phi\left(\frac{m}{*}\right)\right) = G_{n}^{(k)}\left(\phi\left(\frac{m^{*}}{*}\right)\left(\frac{*}{d}\right)\right)$$

$$= \begin{cases} \left(\frac{Nm'}{d}\right)\phi(d)\left(\frac{m^{*}}{d}\right)\cdot G_{n}\left(\left(\frac{*}{d}\right)\right)\cdot G_{n}^{(k)}\left(\phi\left(\frac{m^{*}}{*}\right)\right) & \text{if } \left(\frac{-1}{d}\right) = 1\\ i^{k}\left(\frac{Nm'}{d}\right)\phi(d)\left(\frac{m^{*}}{d}\right)\cdot G_{n}\left(\left(\frac{*}{d}\right)\right)\cdot G_{n}^{(k)}\left(\phi\left(\frac{m^{*}}{*}\right)\left(\frac{-1}{*}\right)\right) & \text{if } \left(\frac{-1}{d}\right) = -1\\ = \varepsilon_{d}^{k}\phi(d)\left(\frac{-N}{d}\right)G_{n}\left(\left(\frac{*}{d}\right)\right)G_{n}^{(k)}\left(\phi\left(\frac{m'}{*}\right)\right). \end{cases}$$

Therefore we obtain

$$a(n, s) = \sum_{(d, N)=1}^{\infty} \chi(d) \psi(d) \left(\frac{-N}{d}\right) \varepsilon_d^k G_n \left(\left(\frac{*}{d}\right)\right) d^{-\sigma - 2s} \times N^{-\sigma - 2s} \sum_{m \mid N}^{\infty} \chi(m) m^{-\sigma - 2s} G_n^{(k)} \left(\psi\left(\frac{m}{*}\right)\right).$$

Now the Dirichlet series obtained as a summation on d is the one in Shimura [5], (3.4) and we have

$$\sum_{(d,N)=1} = \frac{L_N(2s+\sigma-1/2,\chi\psi(\frac{-1}{*})^{\sigma-1/2}(\frac{t}{*}))}{L_N(4s+2\sigma-1,\chi^2\psi^2)}b(n,s),$$

and

$$b(n, s) = \sum \mu(a) \chi(a) \psi(a) \left(\frac{-1}{a}\right)^{\sigma - 1/2} \left(\frac{n}{a}\right) \chi(b)^2 \psi(b)^2 a^{1/2 - \sigma - 2s} b^{2 - \sigma - s},$$

where the summation extends over all positive integers a, b which are prime to N and satisfy $(ab)^2 \mid n$, and μ is the Möbius function. Further we put

$$c(n, s) = N^{-\sigma-2s} \sum_{m \mid N^{\infty}} \chi(m) m^{-\sigma-2s} G_n^{(k)} \left(\phi\left(\frac{m}{*}\right) \right).$$

Here we consider $\psi(\frac{m}{*})$ as a character defined modulo mN. Note that $\psi(\frac{m}{*})$ and $\psi(\frac{m}{*})(\frac{-1}{*})$ are Dirichlet characters defined modulo N. Therefore if n is not divisible by m, then $G_n^{(k)}(\psi(\frac{m}{*}))=0$ by (3.2b). Hence c(n,s) is a finite sum. By putting

$$\alpha(n, s) = b(n, s)c(n, s),$$

we obtain the assertion. \square

Theorem 3.8. Let χ and ϕ be Dirichlet characters defined modulo divisors of N. If $\sigma \geq 3/2$, then

$$E_{\sigma}(z, 0; \chi, \phi) \in \mathcal{R}(\sigma, 0, \Gamma(N), Q_{ab}).$$

PROOF. We let s=0 in Theorem 3.3. First assume $\sigma>3/2$. Then a(n, s) is finite at s=0. Since B(0)=C(0)=0, the terms for -n $(n\geq 0)$ vanishes. In general, for non-zero complex numbers a and b, we write $a\sim b$ if a/b belongs to Q_{ab} . Then

$$A(0) \sim \pi^{\sigma-1/2}$$

and for n > 0,

$$a(n, 0) \sim \frac{L\left(\sigma - 1/2, \chi \phi\left(\frac{-1}{*}\right)^{\sigma - 1/2}\left(\frac{t}{*}\right)\right)}{L(2\sigma - 1, \chi^2 \phi^2)} \sim \pi^{1/2 - \sigma},$$

unless a(n,0)=0. Hence $A(0)a(n,0)n^{\sigma-1} \in Q_{ab}$. Assume $\sigma=3/2$. First we see easily

490 T. MIYAKE

that $A(0) \sim \pi$. If n is positive, then $\left(\frac{-1}{*}\right) \left(\frac{t}{*}\right) \chi \psi$ is not trivial, since t is positive. Therefore if $a(n,0) \neq 0$ (n>0), then $a(n,0) \sim \pi^{-1}$. This implies $A(0)a(n,0)n^{1/2} \in Q_{ab}$. We also see that

$$B(s)a(-n, s)|_{s=0} \sim \frac{\zeta(s)}{\Gamma(s)}|_{s=0} \cdot \frac{1}{L(2\sigma-1, \chi^2\psi^2)} \sim \pi^{-2} \qquad (n>0),$$
 $C(s)a(0, s)|_{s=0} \sim \pi \frac{\zeta(s)}{\Gamma(s)}|_{s=0} \cdot \frac{1}{\Gamma(2)} \sim \pi^{-1},$

unless they are 0. This implies the theorem. \Box

Now we are going to prove Theorem 2.6. Put

$$E(z) = E_{\sigma}(z, 0; \Gamma(N))$$
.

Then by Propositions 2.2, 2.3, 2.5 and Theorem 3.8, we have

(3.3)
$$E(z)\|_{\sigma}\gamma \in \mathcal{N}(\sigma, 0, \Gamma(N), Q_{ab}), \quad \text{for any } \gamma \in \Gamma^{0}(4).$$

Now as a complete set of representatives for $\Gamma^0(4) \setminus SL_2(\mathbf{Z})$, we have the following six elements:

$$(3.4) \qquad {1 \choose 0}, {1 \choose 0}, {1 \choose 1}, {1 \choose 0}, {1 \choose 1}, {1 \choose 0}, {1 \choose 1}, {0 \choose 1}, {0 \choose 1}, {0 \choose 1}, {0 \choose 1}.$$

Put $\Lambda = \Lambda_{\sigma}$. Let α be one of the first four elements, and put

$$\xi(\alpha) = (\alpha, 1)$$
.

Then for any $\gamma \in \Gamma^0(4)$, we have $\operatorname{pr}(\Lambda(\gamma)\xi(\alpha)) = \gamma \alpha$ and the action of $\xi(\alpha)$ is nothing but a translation $z \mapsto z + a$ (a = 0, 1, 2, 3). Therefore by (3.3), we see that

$$E(z) \| \Lambda(\gamma) \xi(\alpha) \in \mathcal{R}(\sigma, 0, \Gamma(N), Q_{ab}).$$

Next let $\alpha = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and put $\xi = (\alpha, z^{\sigma}) \in \mathcal{G}$. Since $E \parallel_{\sigma} \gamma$ $(\gamma \in \Gamma^{0}(4))$ is a linear combination of $E_{\sigma}((u/v)z, 0; \chi, \phi)$ by Propositions 2.2, 2.3, 2.5, we have only to prove $E_{\sigma}((u/v)z, 0; \chi, \phi) \parallel \xi \in \mathcal{H}(\sigma, 0, \Gamma(N), \mathbf{Q}_{ab})$. But this can be proved in parallel with Theorem 3.3 and Theorem 3.8 (see also [5] and [10]). Finally let $\alpha = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$ and put $\xi = (\alpha, z^{\sigma}) \in \mathcal{G}$. Since $E(z) \parallel_{\sigma} \gamma$ $(\gamma \in \Gamma^{0}(4))$ is of the form $E_{\sigma}(z, 0; \mu/N, \nu/N)$, $(\mu, \nu, N) = 1$, we have only to prove

$$E_{\sigma}\!\!\left(z,\,0\,;\,rac{\mu}{N},\,rac{
u}{N}
ight)\!\!\mid\!\!\!\!|\xi\in\mathfrak{N}(\sigma,\,0,\,arGamma(N),\,oldsymbol{Q}_{\mathrm{ab}})\,.$$

Put

$$F(z, s) = E_{\sigma}(z, s; \frac{\mu}{N}, \frac{\nu}{N}) \|\xi.$$

Then

$$\begin{split} F(z,\,s) &= \operatorname{Im} \left(\frac{2z-1}{z}\right)^s \sum_{m \equiv \mu(N) \atop n \equiv \nu(N)} \varepsilon_n^k \left(\frac{m}{n}\right) \left(\frac{m(2z-1)}{z} + n\right)^{-\sigma} \left|\frac{m(2z-1)}{z} + n\right|^{-2s} z^{-\sigma} \\ &= y^s \sum_{m \equiv \mu(N) \atop n \neq 0} \varepsilon_n^k \left(\frac{m}{n}\right) \delta\left\{(2m+n)z - m\right\}^{-\sigma} \left|(2m+n)z - m\right|^{-2s}, \end{split}$$

where

(3.5)
$$\delta = \begin{cases} 1 & \text{if } 2m + n \ge 0, \text{ or } 2m + n < 0 \text{ and } m < 0, \\ -1 & \text{if } 2m + n < 0 \text{ and } m \ge 0. \end{cases}$$

Let μ' be an integer $0 \le \mu' < N$ satisfying $2\mu + \nu \equiv \mu' \pmod{N}$. Then by Lemma 3.9 below, we have

$$\begin{split} F(z,\,s) &= \, y^s \sum_{\substack{m \,\equiv \, \mu' \, (N) \\ n \,\equiv \, \nu \, (N)}} \varepsilon^k_n \Big(\frac{2m}{n}\Big) \Big(m \Big(z - \frac{1}{2}\Big) + \frac{n}{2}\Big)^{-\sigma} \, \Big| \, m \Big(z - \frac{1}{2}\Big) + \frac{n}{2}\Big|^{-2s} \\ &= 2^{\sigma + 2s} \, y^s \sum_{\substack{m \,\equiv \, \mu' \, (N) \\ n \,\equiv \, \nu \, (N)}} \varepsilon^k_n \Big(\frac{2m}{n}\Big) \Big(2m \Big(z - \frac{1}{2}\Big) + n\Big)^{-\sigma} \, \Big| \, 2m \Big(z - \frac{1}{2}\Big) + n\Big|^{-2s} \\ &= 2^{\sigma + 2s} \sum_{\substack{m \,\equiv \, 2 \, \mu' \, (2N) \\ n \,\equiv \, \nu \, (N)}} \varepsilon^k_n \Big(\frac{m}{n}\Big) \Big(m \Big(z - \frac{1}{2}\Big) + n\Big)^{-\sigma} \, \Big| \, m \Big(z - \frac{1}{2}\Big) + n\Big|^{-2s} \\ &= 2^{\sigma + 2s} \Big\{ E_{\sigma} \Big(z - \frac{1}{2}, \, s \, ; \frac{2\mu'}{2N}, \, \frac{\nu}{2N}\Big) + E_{\sigma} \Big(z - \frac{1}{2}, \, s \, ; \frac{2\mu'}{2N}, \, \frac{\nu + N}{2N}\Big) \Big\} \; . \end{split}$$

Since both $E_{\sigma}(z, 0; 2\mu'/2N, \nu/2N)$ [and $E_{\sigma}(z, 0; 2\mu'/2N, (\nu+N)/2N)$ belong to $\mathcal{R}(\sigma, 0, \Gamma(2N), Q_{ab})$, F(z, 0) has Q_{ab} -rational Fourier coefficients, and therefore it belongs to $\mathcal{R}(\sigma, 0, \Gamma(N), Q_{ab})$. \square

LEMMA 3.9. Let m and n be integers. Assume (m, n)=1 and n is odd. Let δ be ± 1 given by (3.5). Put m'=2m+n. Then $\left(\frac{m}{n}\right)\delta = \left(\frac{2m'}{n}\right)$.

PROOF. Note that m=(m'-n)/2.

(1) Assume $m' \ge 0$. Then $\delta = 1$.

(i) If
$$n > 0$$
, then $\left(\frac{m}{n}\right)\delta = \left(\frac{2}{n}\right)\left(\frac{m'-n}{n}\right) = \left(\frac{2}{n}\right)\left(\frac{m'}{n}\right) = \left(\frac{2m'}{n}\right)$.

(ii) If
$$n < 0$$
, then $m > 0$ and $\left(\frac{m}{n}\right)\delta = \left(\frac{m}{-n}\right) = \left(\frac{2}{-n}\right)\left(\frac{m'-n}{-n}\right) = \left(\frac{2m'}{-n}\right) = \left(\frac{2m'}{n}\right)$.

(2) Assume m'<0. If n>0, then m<0 and $\delta=1$. Therefore

$${m \choose n} \delta = {2 \choose n} {m' - n \choose n} = {2 \choose n} {m' \choose n} = {2m' \choose n}.$$

Assume n < 0.

(i) If m>0, then $\delta=-1$ and

$${m \choose n} \delta = -{m \choose n} = -{m \choose -n} = -{2 \choose -n} {m'-n \choose -n} = -{2m' \choose -n} = {2m' \choose n}.$$

(ii) If m < 0, then $\delta = 1$ and

$$\left(\frac{m}{n}\right)\delta = \left(\frac{m}{n}\right) = -\left(\frac{m}{-n}\right) = -\left(\frac{2}{-n}\right)\left(\frac{m'-n}{-n}\right) = -\left(\frac{2m'}{-n}\right) = \left(\frac{2m'}{n}\right).$$

(iii) If m=0, then $\delta=-1$. Now we have

$$\left(\frac{m}{n}\right)\delta = -\left(\frac{0}{n}\right) = -1 \ (n = -1), \quad \text{or } 0 \ (n < -1),$$

$$\left(\frac{2m'}{n}\right) = \left(\frac{2n}{n}\right) = -1 \ (n = -1), \quad \text{or } 0 \ (n < -1).$$

Therefore $\left(\frac{m}{n}\right)\delta = \left(\frac{2m'}{n}\right)$. \Box

References

- [1] E. Hecke, Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Sem. Univ. Hamburg, 5 (1927), 199-224 (Werke, No. 24).
- [2] T. Miyake, Modular Forms, Springer (to appear).
- [3] T.-Y. Pei, Eisenstein series of weight 3/2: I, II, Trans. Amer. Math. Soc., 274 (1982), 573-606, 283 (1984), 589-603.
- [4] G. Shimura, On modular forms of half integral weight, Ann. of Math., 97 (1973), 440-481.
- [5] G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc., 31 (1975), 79-98.
- [6] G. Shimura, Theta functions with complex multiplication, Duke Math. J., 43 (1976), 673-696.
- [7] G. Shimura, Confluent hypergeometric functions on tube domains, Math. Ann., 260 (1982), 269-302.
- [8] G. Shimura, On Eisenstein series of half-integral weight, Duke Math. J., 52 (1985), 281-314.
- [9] G. Shimura, On the Eisenstein series of Hilbert modular groups, Rev. Mat. Ibero-americana, 1 (1985), 1-42.
- [10] J. Sturm, Special values of zeta functions and Eisenstein series of half integral weight, Amer. J. Math., 102 (1980), 219-240, 781-783.

Toshitsune MIYAKE
Department of Mathematics
Hokkaido University
Sapporo 060
Japan