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§0. Introduction.

Let F be a totally real algebraic number field and K a subfield of C. A
holomorphic Hilbert modular form f of integral weight or half integral weight
over F is called K-rational if all Fourier coefficients of f at < belong to K,
In [7], Shimura proved in a general frame work that the orthogonal comple-
ments of the spaces of cusp forms (the spaces of Eisenstein series) are generated
by Q.p-rational ones except the following two cases: (1) F=@Q and the weight
is 2; (2) F=Q and the weight is 3/2. Here Q.p is the maximal abelian exten-
tion of Q. In the first exceptional case, the Fourier coefficients of Eisenstein
series are classically well known and the assertion is true (Hecke [1]). As for
the second exceptional case, Pei has given generators of the orthogonal
complements of cusp forms in the space of holomorphic modular forms of weight
3/2. Therefore we can verify that the assertion is also correct in this case by
his results and [6] Proposition 1.5. Nevertheless his construction is quite com-
plicate and rather technical. The purpose of this paper is to give a more con-
ceptual and shorter proof to the above fact for the weight 3/2 using the recent
results of Shimura [9]. To be more precise, let N be a positive integer divisi-
ble by 4, and I'(N) the principal congruence elliptic modular group of level N.
Let :14(3/2, I'(N)) be the orthogonal complement of the cusp forms in the
space of holomorphic modular forms of weight 3/2. Then

THEOREM. The space N4 (3/2, I'(N)) is generated by Q.n-rational modular
forms.

NOTATION AND PRELIMINARY REMARKS.

(1) As usual, we denote by R, C, Q and Z, the real number field, the
complex number field, the rational number field and the ring of rational integers.
We also denote by R, the set of positive real numbers and by Q., the maximal
abelian extension of @ in C.

(2) We put i=+/—1. For two complex numbers z(+0) and a, we put

z* = exp(a(log|z| +i arg (),
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by taking arg(z) so that —r<arg(z)<rm. We also write
e(z) = exp (2riz), zel'.
For a complex number z, we sometimes use the expression

z=x+1y, x, yeR,
without mentioning it.
(3) We denote by H the upper half complex plane:

H= {zeC | Im(2)>0}.
We put
GL{(R) = {a=GLy(R) | det(a)>0}.

Then GL¥(R) acts on H by

_ az+b _q/a b +
== a=( d)eGLz(R), 2eH.

We also put

p={( Z>GGL;'(R) | =0} .

(4) For an integer a and an odd integer b, we denote by (%) the quadratic

residue symbol, which coincides with the ordinary one if b is an odd prime.

For a non-zero integer a, the map “bH(—g—)” is a Dirichlet character defined
modulo |a| or modulo 4|a]. We denote this Dirichlet character by (a). For
a positive integer b, the map “a»—»(—g—)” is also a Dirichlet character defined

modulo b. We denote it by (%) For further properties of the quadratic residue

symbol, see [4]. We also denote by ¢ the Euler function.

(5) The proofs of statements of §1 can be found in [7], unless other re-

ferences are given.

§1. Automorphic eigenforms of half-integral weight.

Let N be a positive integer. We define congruence subgroups I'y(N), I"%(N)

and I'(N) of SLy(Z) by

FO(N)z{(Z 2)eSL2<Z>| c=0 (modN)},

o ={(¢ 3)eSL2(Z)| b=0 (mod M)},

a

I'(N) = {(c d

b)eSLZ(Z) | a=d=1(modN), b=c=0 (mod N)}.
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We call a subgroup I" of SL,(Z) a congruence modular group if I'DI(N) for
some N. Then we see easily that

N 0 N O\ o,

(0 Dl 1) =1w.
The theta function is defined by

0(z) = i e(n®z), zeH.

For rel'\(4), we put

o =202
J(T’ Z) - 0(2) ’

Then by definition, it holds that
ar, =0, 172050,2, 1rel.
The following lemma is well known ([4]).

b

d)EFO(A), we have

LEmMMA 1.1, For r:(g
i, 2= ea‘(%)(cz-k ay,
where €4 1s given by
1 (d=1 (mod4)),
¢ — { . _
7 (d=3 (mod 4)).

For yel'°(4), we put

" __0@0r=)
J (T} Z) - 0(52) »

z€H,

4 0

where d= (O 1

-1
) . Then we see easily that

7’ar, =70 17070, 2, r.rel’d),
and

7@, 9=t (Searare, it r=(? Nervw.

This implies
7@, 2)=4F, 2, for rel(ONIT4).

Therefore we may write j(7, z) instead of j'(7, z) for yI°4).

Now let 2 be an odd integer and put 6=*k/2. Put T={teC | |t|=1}. We
denote by ¢=2, the set of pairs (a, {(z)) of a=SL,(@) and a holomorphic func-
tion /(z) on H satisfying

2 4. » _(x *®
(2 =t-(cz+d)*, teT, a—-(c d>'

Then ¢ is a group by the following group law:
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(a, l(z))-(a’, I'(z)) = (aa’, ((a’2)l'(2))

For &=(a, l(z)), we write a=pr(§) and l(z)=[l(z). Then pr is the projection
from ¢ to SL,(Q). We define a subgroup ¢ of ¢ by

¢ ={f=g |pr(§=P}.
For a function f(z) on H, we let §=(a, [(z))=G act on f by
(f18)=z) = flaz)i(z)".
We define an injection A, of I',(4)\UI°4) to &, by
A=, 1@, 25, rel@UI@).

We note that the restrictions of A, to I,(4) and to I'°(4) are group homo-
morphisms. For rel,(4)\UI'°(4) and a function f on H, we put

Flen)@) = (fI A2 = fGr2)i (7, 2)7F .
By a congruence subgroup of &,, we understand a subgroup 4 of ¢, satisfying

(1.1a) 4 contains A,(I'(N)) with an integer N divisible by 4;
(1.1b) pr induces an isomorphism of 4 onto a congruence modular group.

Now we define a differential operator L’ on H by
0? 0
G A2 . v
L= —4y 8—2624—2103182.
Let 4 be a congruence subgroup of ¢,. For a complex number 4, we denote
by JA(e, 2, 4) the set of all the real analytic functions f on H satisfying the
following three conditions:

(1.2a) [flé=f, &4

(1.2b) Lof=if;
(1.2¢) for every ne4g,, there exist positive constants A, B and ¢ such that

YR fIpx+iv) | <Ay, if y>B.

We call elements of (g, 4, 4) automorphic eigenforms of weight ¢ with re-
spect to 4. To present the Fourier expansions of automorphic eigenforms, we
should introduce Whittaker functions. We denote by w(t; @, 8) the function
defined on R, XCXC, which is holomorphic in (a, 8), real analytic in (¢, a, B8)
and has an expression

olt; a, B) = zﬁnﬁ)-lS:e—m+u>a-luﬂ-1du, for Re(8)>0.

It satisfies
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(l.3a) ow(;1—B,1—a)=0(;a, B),
(1.3b) w(it;l—a, 0) =1,
(1.3¢) }im olt;a, B)=1.

For a complex number A, we denote by « and 8 the roots of the quadratic
equation
, X?—(1—a)X+2=0.
For te R (t+0), we put
w{rt;l—a, B) @>0),

W0 D= i f1ow)  (1<0),

By (1.3a), W(t; a, B) is independent of the choice of « and 8. For any element
&= g, there exists a positive number A such that

{il}-pr(.@(\(é"d&)):{i(é n/64>,nEZ}».

Then for fe (o, 4, 4) and £€=¢, we have a Fourier expansion
nz

(fl&)z) = a(y)+ glanW<% ; o, 2)e<2A>+y“’- gla-nW<%Z—1X; g, 2>e< ;ZE),

with a function a.(y) on R, and a,=C (n+0) [9]). We call fed(o, 2, 4) a
cusp form if the constant term a,(y)=0 for any £=¢6. We denote by S(a, 4, 4)
the space of cusp forms in (e, A, 4).

For two elements f and g of A(g, 4, 4), we put

o) =uINH | Fay=dsdy,
where I'=pr(4) and
u(I'\H) = SF\Hy‘zdxdy .

Put
e, A, ) = {ge Ala, 2, 4) | {f, g>=0 for any f&S(o, 2, 4)}.

Then A(o, 2, H)=S8(a, A, )H9(e, 2, 4). Further we put
Ala, ) = LA} Alg, 2, 4),  S(o, d) = E'} S(a, 2, 4y,

where the unions are taken over all congruence subgroups of ¢. We also put
e, H) = {ge Ao, ) | {f, g>=0 for any fES(a, D}.

Then we observe

(1.9) o, 2, H={f€a, ) | fl§=S for any §€4},

for any congruence subgroup 4 of 4.
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For a congruence subgroup 4 of &, we call #N\4 is regular if [:(z)=1 for

any £e@N4d. We define the Eisenstein series E(z, s; 4) (zeH, s=C) by
B 55 d) :{ ae%d\dy lla if N4 is regular,
0 otherwise.
The series is convergent for Re(s)>1-—0¢/2 and can be continued as a mero-
morphic function in s to the whole s-plane. If E(z, s; 4) is holomorphic at
s,eC, then
E(z, s0; 4) € (o, A, 4), A=s(l—0—s).
Further for £=¢, we put
E(z, ;4,8 = E(z, s; E4671)|.

Let & and & be two elements of ¢ such that pr(§)=pr(&’). Then we see easily
that £4&-1=¢£'4¢'-'. Therefore

E(z,s;4,8)=cE(z, s;4,8)

with a constant ¢. Let @ be an element of SL,(@), and £=(a, {(z))=4. Put
I'=pr(d). If al'a™'=TI", then £4¢'=4 and therefore

E(z,s;4,8) = E(z, s; )¢

THEOREM 1.2. (1) If Re(so)=(1—a)/2, then E(z, s; d) is holomorphic at
s=5, except the case when s,=3/4—0a/2 and c—1/2 is either an even nonnegative

integer or an odd negative integer.
(2) For 2=C, take s,=C so that

sfll—o—sy) =4 and Re(sy)= }—(1—0).

If (so, 0) is not in the exceptional case of (1), then (o, A, 4) is generated by
E(z,s;4,8) g, pr(§)eSLy(Z)).

COROLLARY 1.3. If ¢=3/2, then J(a, 0, 4) is generated by Eisenstein series
E(z,0;4,8) =g, pr(6)eSLAZ)).

We denote by H(e, 4) the set of all holomorphic functions on H satisfying
(1.2a) and (1.2¢). Then
Y(o, 4)C Ao, 0, 4).
We put
NI (e, 4) = (g, 0, HNJ (s, 4).
Then we have

THEOREM 1.4. If 0>3/2, then
NI (o, 4) = (e, 0, 4).
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§ 2. Eisenstein series.
For a congruence moduar group I” contained in [,(4)\UI°4), we put

J(a, A, Iy = (g, 2; A1)
and
E.(z,s; )= Elz, s; A,I")).

Let M be a positive integer and N a positive integer divisible by 4. For integers
o,y OZp<M, 1<u<N, (v, 2)=1), we put
. ﬁ _)i_ — 4SSk ﬂ -~ -28
E,,(z, S5 AP N) ¥ sy%:%(]%(n)(mz—kn) |mz+n|~%, zeH, sC.
Then E,(z, s; u/M, v/N) is convergent for Re(s)>1—¢/2 and coatinued mero-

morphically in s to the whole s-plane by Propositions 2.2 and below. The
following lemma is easily proved ([2], Lemma 7.1.6).

LEMMA 2.1. Let M be a positive integer (=3).
(1) The map I'M)>7—(c,, d,)=Z* induces a bijection
m=0 (mod M),

(PATMONTOD) —> {om, me 2| — 0"

(m, n):l}.

(2) For a”—‘(g S)ESLz(Z), the correspondence I'(M)asy1—(c,, d)=Z* in-
duces a bijection

(PATMONT M —> fom, myz 77| "=C (044D,

n=d (mod M),

(m, n)ZI}.

PROPOSITION 2.2. Let N be a positive integer divisible by 4, and let p and
v be integers such that 0<p, v<N and (v, 2)=1. Then

0 1

© Edoz 555 57) = Eoley 53 TV,

LA '
@) Ea(z,s,N, N) 0 if (u,v, N)#1.

& I a=(* 3)51’0(4), then

C/ d/
'N’ 7\7)
with 0<¢’, d’<N such that (¢’, d")=(c, d) (mod N).

@) If asI°4), then

E.,(z, s; %, 1%) = E,,(z, s;%,, %)

Here p', v’ are integers such that 0<p', v'<N and

Eofz, 5; TIN), @)= Eo(z, s
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(¢, v') = (g, v)a (mod N) .
ProoF. (1): Put I'=I(N). Then by Lemma 2.1 (1), we see that

0 1 . .
Eoz i3 3) =2 i@ 2l = 3 Ly

relo\l’ relo\ I’
= E(z, s; A;(I'(N)).
(2): Assume (g, v, N)#1. Then all pairs of integers (m, n) such that
m=p (modN), n=y (mod N) are not coprime. Therefore (Znn—>:0.

3), 4): Since A, is a group homomorphism on /7°(4), the third assertion
is a direct consequence of Lemma 2.1 (2), and the fourth assertion is an easy
consequence of (3). [

PROPOSITION 2.3. Let N, pr and v be the same as in Proposition 2.2. Assume
(¢, v, N)=1 and put (u, N)=u and (v, N)=v. We also put

y’:ﬁ, v’:i, 1W’=E, N’ZE.

u v u v

Then

e 1) = (VNN oo o )
PROOF.
5 ( ! [‘{;/lv’ ]l\)[> B ysaf (N)
6

=G, ﬂm(”>("—5>(%)(%)v"”u”(m%+">"'

Since u and v are coprime, we see that N’ is divisible by u and M’ is divisible

by v. This implies <%>:(%’> and (%):(-ii,) in the last summation. [J

N)( )(mz—l—n)“’}mz—{—n |28

ll! ll|

-28

u
m—z-+n
v

Let X and ¢ be Dirichlet characters defined modulo M and modulo N, re-
spectively. Assume that N is divisible by 4. We put

Eolz, 550, )=y 33 Momg(meh (5 )oman) -7 |mzn| -

= X(y)gbfv)E (2 53

0<p
<

M’ N)
Here we understand that

X0 =1 if M=1, and X0) =0 otherwise.
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Since N is divisible by 4, ¢(n)=0 for even integers n. Then the summation
on n is extended only over odd integers.

PROPOSITION 2.4. Assume 6=3/2. Let N be a positive integer divisible by 4.

(1) For any integers p, v (0=, v<N, (v, 2)=1), E,(z, s; /N, v/N) is holo-
morphic at s=0 and E,(z, 0; p/N, v/N) belongs to 71(a, 0, ['(N)).

(2) Let M, be a divisor of N, and N, a divisor of N divisible by 4. Let X
and ¢ be Dirichlet characters defined modulo M, and modulo N,, respectively.
Then E(z, s;X,¢) is holomorphic at s=0 and E,(z,0;X, ¢) belongs to
9(a, 0, I'(N)).

PrOOF. By [Corollary 1.3 and Proposition 2.2, we see that E,(z,s; ¢/N,v/N)
is holomorphic at s=0 and E,(z, 0; ¢/N, v/N)=9(a, 0, I'(N)). Then

oz, s3% )= = Umd») Bz 5540 57).

$h2
2Nt

0
0
Further put N'=L.C.M.(M;, N;). Then

S ARELYCHE S

where the summation extends over integers p and v satisfying

E,

0 p, v< N, p'=p (modM,), v =v (modN,).

Therefore E.(z, s; X, ¢) is holomorphic at s=0. Since E.(z, 0; #'/N’, v'/N")
belongs to Ji(a, 0, I'(N")) and Ji(a, 0, I'(N')CJ(a, 0, ['(N)), E,(z, s; X, ¢) also
belongs to (e, 0, I'(N)). O

The next proposition can be easily proved by using the orthogonal relation
of characters.

PROPOSITION 2.5. Let M be a positive integer, and N a positive integer
divisible by 4. If (;,z, M)=1 and (u N)=1, then

Eofz s; S RUDIWE, 537, ).

"M’ N) go(’VI)go(N)
Here X (resp. ¢) is taken over all Dirichlet characters defined modulo M (resp.
modulo N) and ¢ is the Euler function.

For the Fourier coefficients of Eisenstein series, we obtain

THEOREM 2.6. Assume 0=3/2. For any a=SL,(Z), there exists an element
&=G, such that pr(&)=a and

Eofz, 0; T(NDIE = c4a,m 7y ~"+ 3 ane(nz/N)
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+ﬂ1—20y—-0 ila_nQ)(—éljrny/N; 0, o)e(—nz/N) ’

with a, (n€Z), cEQ.b. Furthermore if ¢>3/2, then a-,=0 for all n=0,
The proof of will be given in §3.
For a modular group /I contained in I';(4)\UI"°(4), we put
Yo, I') = (g, A1), NI, I') = N9 (a, A,)).

Let f(z) be an element of (o, I'), and let the Fourier expansion of f be
f@= Sawenz/d), a.eC,

with some positive integer A. For a subfield K of C, we call f(z) K-rational
if a,€K for all n=0. We denote by 319 (g, I, K) (resp. H (o, [, K)) the set
of all K-rational elements in 9% (o, I') (resp. (g, I')). We also denote by
(e, 0, I', K) the set of all functions f(z) in J«e, 0, I") which has the Fourier
expansion
_ —2=20 4 1-0 < J’I_{ 1-2¢ -0 o 34_7{111 _—n%
f(z) =c+aox y +n§ ane( yi >+rc y ngl a_nw( 1 0, a)e(—-A ),

with a, (neZ), ceK and a positive integer A. Then

NI (o, I'y K) = 31(e, 0, I', K)N\IH(a, I').
If 6>3/2, together with [Theorem 1.4 implies that
32<0-y Or F(N>; Qab) = 37ﬂ<01 F(.ZV), Qab) .

Now we obtain

THEOREM 2.7. Assume ¢=3/2. Let N be a positive integer divisible by 4.
Then the space 319((a, I'(N)) is generated by Q.n-rational elements.

Proor. By [Corollary 1.3, 91(¢, 0, I'(N)) is generated by E,(z, 0; I'(N))||&
(=g, pr(§)=SL,(Z)). Then by [Theorem 2.6, we can take a basis of Ji(a, 0, I'(N))
among the elements in Ji(g, 0, I'(N), Q.p), which we denote by f(2), -, fu(2).
Write

() = DL g D20 lma | S o (Paf R 1m20 -0 Sy (ATRY —nz
f{z2)=cP+ai’n* %y +n221an e(N)Jrrr y ngla_nw( N ;0,0 e( N)

with a¥?, ¢°=Q,,. Let f(z)e14% (g, I'(N)). Then
f<2>:,b1f1<2)+ +,bmfm(2>, plEC-

By the uniqueness of the Fourier coefficients, we have infinitely many linear
equations
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praB4 -+ ppal™ =0 (n=0, 1, 2, --),
pcP4 o Fpact™ =0,

2.1)

Since the coefficients of the equations belong to Q.», we can find fundamental
solutions in @, say (p{, -=-, pa>), =, (p{7, ==+, p’). Put

g =P f1t+ P fm A£tsn).
Then g, is Q.p-rational and f(z) is a linear combination of g, 1=¢t<r). O

COROLLARY 2.8. Assume ¢=3/2. Let 4 be a congruence subgroup of &,
such that pr()CSLyZ). Then NI (e, 4) is generated by Q.n-rational elements.

PrOOF. Take a principal congruence modular group I'(N) (4| N) so that
AJ(N)YCd. Let fi, -+, fn be the same as in the proof of Let
&é=(a, I(z)) be an element of 4 and &' =(a, I'(z)) be the element of &, for @ in
[Theorem 2.6. Since some power of & belongs to A (I'(N)), I(z)=cl’(z) with a
root of unity ¢ by the construction of &. Therefore f,|&, -+, fnlé are linear
combinations of f,, «-, fm OvVer Q.p; say

fillé=clG, 1, &)f 1+ - +cl, m, Efm, i=1, -, m.

Let f be an element of N (e, d4). Then f=p,fi+ - +pnfn With p,eC.
Since f is holomorphic, p,, -+, pn satisfy the linear equations in (2.1). The
property that f belongs to J1(a, 0, 4) is characterized by the linear equations

plc(ly j; S)"i" +pmc(m’ ].: 5) = p]'

for j=1, ---, m and the representatives {&§} of A (I'(N))\NA. Since all those
equations have coefficients in Q,,, we have fundamental solutions in Q% as in
and f is a linear combination of @,n-rational elements of
NI (e, d). O

REMARK. The case ¢>3/2 in [Theorem 2.7 is a direct consequence of
Corollary 1.3, [I'heorem 1.4 and [Theorem 2.6l We note that even in that case
our proof is elementary and different from Shimura [9], Proposition 6.2 which
uses results of canonical models.

§3 Fourier coefficients of Eisenstein series.

Let M be a positive integer, and N a positive integer divisible by 4. Let
X and ¢ be Dirichlet characters defined modulo M and N, respectively.

ProposITION 3.1. (1) If X(—=1)(—=1)*1, then E,(z, s; X, ¢)=0.
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2) If (—1)¢(—1)=1 then
Eolz, 557, ¢) = 25" {0+ S tom) 3 gmeh()omz+n)-* {mz-+n -2},

PROOF. Assume that the term for a pair of integers (m, n) does not vanish.
Then (m, n)=1, and n is an odd integer. Hence there exists an element y= (4’

such that rz(jn :;) Then

o (Y

eb (G Jomemye = s, 7 = (S5

Therefore we obtain that
ATV iz = (=, 2yt = (LOED2 Y
st o(Z )z = i, 27 = (LT

= (SIDY < (Yo

Since

Eoz 537, §) = 3 {LO@D+10)g(—1)

+ 3 3 @mg(m L —mg(—m)eh(5)omz )7 I matn |},
we obtain the assertion. [

Now we will calculate the Fourier coefficients of Eisenstein series by
generalizing the arguments of Shimura [5], Sturm [10], and Pei [3]. Assume
X(—1)¢(—1)=1. Then

B Euz 551 ) =29 L0+ 20m) 3 g(meh(%)omz+n) Imz+n| =}
= 2ys{x(0)+glx(m)niwsb(n)eﬁ(%)(mzﬂLn)‘”‘*<m2+n)-3}
s mN-1 m
= 2y {10+ SrommN) =" paes()

x B (2+-Stn) (G-t ) |

n=-o

We put
S a, )= 3 @+nG+m?  (eH, a, =C).
Then S(z, a, B) is absolutely convergent at least when ze H and Re(a+ B)>1.

It is continued in (a, 8) to @ meromorphic function on C X C which is real analytic
in z. Using this function, we can write
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B.1)  E.z s; % ¢)
V4

= 2y {0+ ExmmNy " pareh(Z)S( £+ ats, s))-

The following Fourier expansion of S(z, a, B8) is well known ([7], Theorem 6.1,
see also Theorem 7.2.8).

LEMMA 3.2.
Sz, a, B) =if-2Q2r)*+P (@) ['"(B) ' [(a+ B—1)(4my)~*~*#
+z"9"’(27:)“]1(6!)“(23))"372‘41 n*'wdrny; a, Benz)

—Hﬁ'"(27r)‘91*(/3)‘1<23V)“‘122._°1 nf~lo(dnny ; B, a)e(—nz).
Now substituting Lemma 3.2 into (3.1), we obtain
THEOREM 3.3. Assume X(—1)¢(—1)=1. Then

TE 551, ) =10y +C)y=""a(0, 9

0 3 atn, 5052 s, )

+B(s)y‘”§lns“‘a(—n, s)w(M](l,y; s, 0+S>e(—%§,—),

where

A(s) = i7°@Qm)°** ['(a+s)"'(N/2),

B(s) = i7°Qr)*[(s)*(N/2)7+*,

Cs)=17@m) [ (c+3s) ' [(s)*[(g+2s—1)(N/2)7+2-1
and

aln, s) = ﬂélX(m)(mN)““’an;%;]:lgb(a)sﬁ(%)e(% (neZ).

To calculate the Dirichlet series a(n, s), we generalize the Gauss sum. Let
L be a positive integer, and w a Dirichlet character defined modulo L. For an
integer b, we put

Gyw) = gw(a)e(%) ,

which is the usual Gauss sum. When L is divisible by 4, we also put for an
integer b and an odd integer £k,

GiP@) = S ehate(D),

which we call the twisted Gauss sum. They are related by the following
lemma, which can be easily proved.



486 T. MIYAKE

LEMMA 3.4.

o= Howro (D) lew-a ()
@  GfPe) = Gék’(co(:;» .

To calculate the twisted Gauss sum for the product of two Dirichlet
characters, we need the well known properties of the Gauss sum for the pro-
duct of two Dirichlet characters. Let X and ¢ be Dirichlet characters defined
modulo M and N, respectively. If M and N are coprime, then

3.22) Gy(Xd) = XN)YPM)Go () Go(¢h) -

Further let @ be a Dirichlet character defined modulo L. For integers b and |/,
we have

iL-1 ab ] ) . ..

(3.2b) 5 w(a)e(——) —0, if b is not divisible by /.
& L

Now we obtain

PROPOSITION 3.5. Let X and ¢ be Dirichlet characters defined modulo M and
N respectively. Assume M and N are coprime and N is divisible by 4. Then

UNYYM )G N)GEF () if (:A%):
ng k)(XSb) =

z'kx<N)¢<M)Gb<x)G,;k>(¢(:*1)) if (%):—1.
Proor. By Lemma 3.4(1), we have

o9 Hoa o ()5 (00002
= LUN)PMGHOT .
r= Mo+ (o) a0 (D).

If <_Ml>=1 then

T =G§¢).

where

1t (4) _1, then by Lemma 3.4(1)
M

= 2(Gup—Gif g (~))+Z-2}i( RICEY))

e =ron(y(D). o
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For a Dirichlet character w, we denote by L(s, w) the Dirichlet L-function.
For a positive integer N, Ly(s, w) denotes the function obtained from L(s, w)
by omitting p-Euler factors for all prime components p of N. Now we obtain

PROPOSITION 3.6.

Ly(4s+20—2, X¢?)

60, )= T s t20—1, )

a(0, s),

L (N -89 =728 T (1= (%) p-2e =2+
2 ¢ PIN

a0, s) = if ¢ is a character derived from a quadratic

+1 . .-
character <~*~> with a positive square free [,

0 if ¢ is not derived from a quadratic character.

PrOOF. By definition, we see that

a0, )= S AmmNy=" 35 g@)e(2) = SumonNyo-=c#(g(2)).

Here we consider gb(%—) as a Dirichlet character defined modulo Nm. Decompose

m as m=m’d, a product of an integer m’ dividing some power of N (which we
express as m’'|N*) and a positive integer d relatively prime to N. Put m*=

(%l)m' Then by the reciprocity law,

D)), orocz,

Therefore by [Proposition 3.5, we obtain
Gi(s) = ()
() ed(@)- e () ()
(W) (@) e @) i (7)

— ¢(d)§0(d)Gé'”(¢(mT,)) if d is a square

0 otherwise.

1

I

—1

Here ¢ is the Euler function. Therefore we can write
—_ 2\ J-2(o+28 2 —(0+28 k Z’./l_
a0, )= |3 HdIdNd*706(d?) 3 UmmN) 2 G(¢(2)).

Now we see that
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2 2 -2(0+28) 2
W3 HdIgdd g

:p];g{nax(p‘ln)¢(p2n)p-2n(a+2s)p2n_ 7§1X(p2n)¢<p2n)p—2n(a+28)p2n-1}

_ Ly(ds—20—2, X*¢?)
~ Ly(ds—20—1, X% °

By Lemma 34, if neither ¢() nor ¢(f:—)(§) is trivial, then
() =0.
Moreover, if gb(’—Z—) (resp. glz(:*ﬂ» is trivial, then

G (H(2)) = "5 ptmi) (resp. S5 gmN) and glmN)=mp(N).

Using this we easily obtain our expression. [

PROPOSITION 3.7. For n(#0)=Z, we put n=tr? (t: square free). Then we

have
-1/2
LaCasto—g (L)
Ly(4s+20—1, 12¢?) )
Here a(n, s) is a finite Dirvichet series with coefficients in Q,p.

aln, s)=

PrROOF. We can write

a(n, 5) = S Xm)mN)-"-*GP(¢()).

Here we consider the character (,b( ) is defined modulo mN. We decompose m

as a product m=m'd (m’'|N>=, (d, N)=1) and put m*= (ﬂ)m as in the proof
of Proposition 3.6, Then

(p(2) = (o2 )(3)

[ CPWa(T) e(@rewe(T) ()=
“ < "y () -G 6o (D) it ()=t
pa(=M)((5) ().

Therefore we obtain
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X(d)¢(d)<fz]\[>sgcn<(_(’;_))d~Ms

XN 3 tmm-r =GP (¢(%)).

a(n, s)= 23

oo
(d, N)=1

Now the Dirichlet series obtained as a summation on d is the one in Shimura

5], and we have

 La(zsto-1/2, (3T (L)

(d,§)=l LN(4S+2O'—"1, xz(/,z) b(n; S),

and
—1\o-1/2/p o o
b(n, s) = Zy(a)X(a)gb(a)(—a—) (-(;)X(b)?Sb(b)zal/z g-2sp2-c-s

where the summation extends over all positive integers a, b which are prime
to N and satisfy (ab)’|n, and p is the Mobius function. Further we put

e, )= N7 53 Wmm=>GP(p(%)).

Here we consider gb(n—:—) as a character defined modulo mN. Note that ¢r(%) and
¢("—1)(_Tl) are Dirichlet characters defined modulo N. Therefore if n is not

*

divisible by m, then G;f>(¢(ﬁ))=o by [3.25). Hence c(n,s) is a finite sum.
By putting
a(n, s) = b(n, s)c(n, s),

we obtain the assertion. [

THEOREM 3.8. Let X and ¢ be Dirichlet characters defined modulo divisors
of N. If ¢=3/2, then

Eqs(z, 05X, ¢) € (g, 0, I'(N), Qab) .

PrROOF. We let s=0 in [Theorem 3.3. First assume ¢>3/2. Then a(n, s)
is finite at s=0. Since B(0)=C(0)=0, the terms for —n (n=0) vanishes. In
general, for non-zero complex numbers a and b, we write a~b if a/b belongs

AQ) ~ o102

Lo-12,(3) (D)
L(20—1, X*¢?) ~

unless a(n,0)=0. Hence A(0)a(n,0)n° *=Q.p. Assume ¢=3/2. First we see easily

and for n>0,

n.l/z—a’

a(n, 0) ~
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. . —1 . . . . . .
that A(0)~=x. If n is positive, then (—;)(—i—)%cﬁ is not trivial, since ¢ is posi-

tive. Therefore if a(n, 0)+0 (n>0), then a(n, O)~x~'. This implies
A0)a(n, O)n'?=Q,p. We also see that

B(s)a(—n, 8)|s=0 ~ IC“((SS))}S:O' L(Za—ll, Yigh) ™ z*  (n>0),
CO0, Mo~ m oS iy~ 7
unless they are 0. This implies the theorem. O
Now we are going to prove [Theorem 2.6. Put
E(z) = Eq(z,0; I'(N)).
Then by Propositions 2.2, 2.3, 2.5 and Theorem 3.8, we have
3.3) E@@)|,r € 910, 0, I'(N), Qav), for any y=I°4).

Now as a complete set of representatives for I'°(4)\SL,(Z), we have the fol-
lowing six elements:

1 0 11 1 2 13 - 2 -1
3.4) (0 1>, (0 1)’ 0 1>’ 0 1)' <(1) (1)) (L 0)'

Put A=A4,. Let a be one of the first four elements, and put
§a) = (a, 1).

Then for any yel°(4), we have pr(A()&(a))=ra and the action of &(a) is
nothing but a translation z—z+a (a=0, 1, 2, 3). Therefore by [3.3), we see
that

E@)) A(r)é(a) € T1(a, 0, I'(N), Qap) .
Next let a:(? _(1)) and put £é=(a, z°)€4. Since E|,r (rl'°4)) is a linear

combination of E.((u/v)z, 0; X, ¢) by Propositions 2.2, 2.3, 2.5, we have only to
prove E,((u/v)z, 0; X, Plé€Ii(a, 0, ['(N), Q.p). But this can be proved in par-
allel with [Theorem 3.3 and (see also [5] and [10]). Finally let
“:G —(1)) and put §=(a, z°)4. Since E@)|,r €l™4)) is of the form

Eq(z,0; #/N, v/N), (¢, v, N)=1, we have only to prove

Eofz, 05 &, £)IE € o, 0, TN, Quv).
Put

_ )
Fz $)=Ed(z s &, £)ie.
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Then
(22— 1y omym2a—1)  \-0im2z—1) |-z
F(z, s)—Im( p ) n iy ))sn(nX———Z +n> ——+n| 2
s m o o
-’ :F(%>8(n>6{(2m+n)z m}=?|(@m+n)z—m|"*,
where
(3.5) 5._{ 1 if 2m+n=0, or 2m+n<0 and m<0,
' “l—1  if 2m+n<0 and m=0.

Let ¢’ be an integer 0<p' <N satisfying 2p¢+v=p' (mod N). Then by
3.9 below, we have

P 9= 9, A n (= P)H5) (e

:(N

o3 A en(e Sy ) fon(e—3)

V(N

]
:2”2;”5___?%21\’)5]?(“)( ( ——;— -I—n 'm z——)—l—n
o B e B )

Since both E,(z, 0;2u'/2N, v/2N) ‘and E,(z, 0;2¢'/2N, (v+N)/2N) belong to
(e, 0, I'CN), Q.p), F(z, 0) has Q.p-rational Fourier coefficients, and therefore
it belongs to (e, 0, I'(N), Q.v). [

a3

-25

+

=90

IlI IH

LEMMA 3.9. Let m and n be integers. Assume (m, n)=1 and n is odd. Let

0 be +1 given by (3.5). Put m’=2m+n. Then (—)5 2m’ >

PrROOF. Note that m=(m’'—n)/2.
(1) Assume m’=0. Then d=1.

b 1050, sen (=B D))=,

(i) 1 n<0, then m>0 and (Z)o=( "2 )=(Z ) (" M)=(22)=(21).

—n —n —n n

(2) Assume m'<0. If n>0, then m<0 and 6=1. Therefore
(e =5 = E) = (5.
Assume n<0.

(i) If m>0, then d=—1 and
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(=G =~(Z) =~ =-(Z0) =)

(ii) If m<0, then 0=1 and

(o= () =-(Z)= -5 =~ = ().

(iii) If m=0, then d=—1. Now we have

(ﬂ)a___ __(_2_) =—1 (n=—1), or 0 (n<—1),

n

)

( )—.: ~1 (n==1), or 0(n<—1).

I

Therefore (-’7—;—)5 ( " ) O

(1]
(2]
[3]
[4]
[5]
[6]
[71]
[81]
(91
[10]

References

E. Hecke, Theorie der Eisensteinschen Reihen héherer Stufe und ihre Anwendung
auf Funktionentheorie und Arithmetik, Abh. Math. Sem. Univ. Hamburg, 5 (1927),
199-224 (Werke, No. 24).

T. Miyake, Modular Forms, Springer (to appear).

T.-Y. Pei, Eisenstein series of weight 3/2: I, II, Trans. Amer. Math. Soc., 274
(1982), 573-606, 283 (1984), 589-603.

G. Shimura, On modular forms of half integral weight, Ann. of Math., 97 (1973),
440-481.

G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math.
Soc., 31 (1975), 79-98.

G. Shimura, Theta functions with complex multiplication, Duke Math. J., 43 (1976),
673-696.

G. Shimura, Confluent hypergeometric functions on tube domains, Math. Ann., 260
(1982), 269-302.

G. Shimura, On Eisenstein series of half-integral weight, Duke Math. J., 52 (1985),
281-314.

G. Shimura, On the Eisenstein series of Hilbert modular groups, Rev. Mat. Ibero-
americana, 1 (1985), 1-42.

J. Sturm, Special values of zeta functions and Eisenstein series of half integral
weight, Amer. J. Math., 102 (1980), 219-240, 781-783.

Toshitsune MIYAKE

Department of Mathematics
Hokkaido University
Sapporo 060

Japan



	\S 0. Introduction.
	THEOREM. The ...

	\S 1. Automorphic eigenforms ...
	THEOREM 1.2. ...
	THEOREM 1.4. ...

	\S 2. Eisenstein series.
	THEOREM 2.6. ...
	THEOREM 2.7. ...

	\S 3 Fourier coefficients ...
	THEOREM 3.3. ...
	THEOREM 3.8. ...

	References

