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1. Introduction.

Let $M$ be a compact Riemann surface of genus $g\geqq 2$ . The universal cover-
ing surface of $M$ is conformally equivalent to the upper half plane $H$. There-
fore $M$ is the quotient of $H$ by the discontinuous group $\Gamma$, consisting of, apart
from the identity, hyperbolic transformations. We assume that the Gaussian
curvature of $M$ is normalized to be $-1$ . It is known that the area $\mathcal{A}(M)$ of
$M$ is equal to $4\pi(g-1)$ via the Gauss-Bonnet theorem. Let $T$ be a finite-
dimensional unitary representation of $\Gamma$, and let $\chi$ be its character. Let $\Delta$

denote the Laplacian for $H$. Let $\{\lambda_{n}(\chi)\}_{n=0,1.8}\ldots$ . be the sequence of distinct
eigenvalues corresponding to the problem $\Delta F+\lambda F=0$ on $M$ , where the eigen-
function $F(x)$ is required to transform under $\Gamma$ by $F(\gamma x)=T(\gamma)F(x)$ . We denote
by $m_{n}(\chi)$ the multiplicity of $\lambda_{n}(\chi)$ . It is well known that the eigenvalues are
all real and non-negative, and that the set of such eigenfunctions is complete
in the space consisting of those measurable functions on $H$ which transform in
this manner, and square integrable over a fundamental domain of $\Gamma$. Associate
with the sequence $0\leqq\lambda_{0}(\chi)<\lambda_{1}(\chi)<\cdots$ of eigenvalues, a sequence, consisting of
those numbers $r_{n}(\chi)$ that satisfy the equation $\lambda_{n}(\chi)=1/4+r_{n}(\chi)^{2}(n=0,1,2, -)$ .
From this it follows that $r_{n}(\chi)$ is either real or pure imaginary. We choose
and fix $r_{n}(\chi)$ so that when it is real, we have $r_{n}(\chi)\geqq 0$ , and when it is pure
imaginary, we have $\sqrt{-1}r_{n}(\chi)<0$ . In the convention of notation, we put $\lambda_{0}(\chi)=0$

and $r_{0}(\chi)=\sqrt{-1}/2$ , and we denote by $m_{0}(\chi)\geqq 0$ the multiPlicity of the possible
eigenvalue $\lambda_{0}(\chi)=0$ throughout this paper.

By assumption on $\Gamma$, each $\gamma\in\Gamma(\gamma\neq e)$ is conjugate in $PSL(2, R)$ to a unique
transformation of the form $z-\succ e^{u_{\gamma}}z$ , where $u_{\gamma}$ is a positive real number. Clearly
$u_{\gamma}$ depends only on the conjugacy class. We will denote by $\{\gamma\}$ the conjugacy
class corresponding to $\gamma$ within $\Gamma$ itself and by $\{\Gamma\}$ the set of all $\Gamma$-conjugacy
classes in $\Gamma$. It is known that the numbers $\{u_{\gamma} ; \{\gamma\}\in\{\Gamma\}\backslash \{e\}\}$ are bounded
away from zero. We choose and fix $\epsilon_{0}$ so small that it is smaller than these
numbers throughout the paper. An element $\gamma\in\Gamma(\gamma\neq e)$ is called primitive if
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it can not be expressed as $\delta^{j}$ for some $j>1$ and $\delta\in\Gamma$. Also, we will denote
by $\{\delta\}_{p}$ the primitive conjugacy class corresponding to primitive $\delta$ . It is well
known that every 7 $(\neq e)$ is equal to a positive power of a unique primitive
element $\delta$ . We define a positive integer $j(\gamma)$ by $\gamma=\delta^{J(\gamma)}$ . Then we have $u_{\gamma}=$

$j(\gamma)u_{\delta}$ .
The Selberg zeta function is given by

$Z_{\Gamma}(s, \chi)=\prod_{t\delta lp}\prod_{n=0}^{\infty}$ det ( $I-T(\delta)$ exp $\{-(s+n)u_{\delta}\}$ ),

where the outer product is taken over all primitive conjugacy classes in $\Gamma$.
Moreover the product converges absolutely, if ${\rm Re} s>1$ . This zeta function has
the following properties:

(A) $Z_{\Gamma}(s, \chi)$ is actually an entire function of order 2.
(B) $z_{r}(s, \chi)$ satisfies the functional equation

$Z_{\Gamma}(1-s, \chi)=\{\exp(-\chi(e)\mathcal{A}(M)\int_{0}^{S-1/2}z\tan(\pi z)dz)\}Z_{\Gamma}(s, \chi)$ .
(C) $Z_{\Gamma}(s, \chi)$ has “trivial” zeros at $s=-k(k=0,1,2, \cdots)$ , with multiplicity

$2(g-1)(2k+1)\chi(e)$ .
(D) The “nontrivial” zeros of $Z_{\Gamma}(s, \chi)$ are located at $s=1/2\pm\sqrt{-1}r_{n}(\chi)$ ,

with multiplicity $m_{n}(\chi)$ .
Let $\psi_{\Gamma}(s, \chi)$ be the logarithmic derivative of $Z_{\Gamma}(s, \chi)$ . Namely, it is given

by the absolutely and uniformly convergent series in any half plane ${\rm Re} s>$

$1+\epsilon(\epsilon>0)$ :

$\psi_{\Gamma}(s, \chi)=\frac{1}{2}\sum_{\iota\gamma\}\in\{\Gamma\}\backslash \{e\}}\chi(\gamma)j(\gamma)^{-1}u_{\gamma}cosech(\frac{u_{\gamma}}{2})\exp\{(\frac{1}{2}-s)u_{\gamma}\}$ .
Of course, above properties of the zeta function correspond to those of the
logarithmic derivative of it. These properties are always derived from the
Selberg trace formula. That is to say, the choice of the test function which
we put into the trace formula is important. Suppose $F(r)$ is an even function,
holomorphic in a strip of the form $\{r\in C;|{\rm Im} r|<1/2+\epsilon\}$ for some positive $\epsilon$ ,
and satisfying a growth condition of the form $|F(r)|=O((1+|r|^{2})^{-1-\epsilon})$ uniformly
in the strip. The trace formula then reads

$\sum_{j=0}^{\infty}m_{j}(\chi)F(r_{j}(\chi))$

$= \frac{\chi(e)\mathcal{A}(M)}{4\pi}\int_{-\infty}^{\infty}F(r)r\tanh(\pi r)dr+\frac{1}{2}\sum_{t\gamma\}\in\{\Gamma_{1\backslash \{}e\}}\chi(\gamma)](\gamma)^{-1}u_{\gamma}cosech(\frac{u_{\gamma}}{2})F^{*}(u_{\gamma})$

where $F^{*}(u)=(1/2 \pi)\int_{-\infty}^{\infty}F(r)\exp(\sqrt{-1}ru)dr$ . It should be noted that both the

series in the trace formula converge absolutely, uniformly with respect to $\chi$ .
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The original choice of the test function which is taken by Selberg is as
follows (cf. [2], [6], [8]):

$F_{s}(r)= \frac{H(\sqrt{-1}s-\sqrt{-1}/2+r)}{s-1/2-\sqrt{-}1r}+\frac{H(\sqrt{-1}s-\sqrt{-1}/2-r)}{s-1/2+\sqrt{-1}r}$

where $H(r)= \int_{0}^{\infty}g’(u)\exp(\sqrt{-1}ru)du$ . Here the function $g$ is an even, real-valued
$C^{\infty}$ function on $R$ such that: (i) $g$ vanishes in some neighborhood of zero, (ii)
$g\equiv 1$ on $\{u\in R;|u|\geqq\epsilon_{0}\}$ and (iii) $0\leqq g\leqq 1$ .

Then the meromorphic continuation of $\psi_{\Gamma(S},$ $x$ ) is given by

$\psi_{\Gamma}(s, \chi)=\sum_{n=0}^{\infty}m_{n}(\chi)F_{s}(r_{n}(\chi))+\frac{1}{\pi}\chi(e)\mathcal{A}(M)\sum_{k=0}\frac{H(\sqrt{-1}(s+k))}{s+k}(k+\frac{1}{2})$ .
This formula is, of course, important, but in view of the proof of the functional
equation it is somewhat troublesome.

More direct method is discovered by Hejhal ([4], [5]). His choice of the
test function is defined by

$F_{s}(r)= \frac{11}{r^{2}+(s-1/2)^{2}r^{2}+(a-1/2)^{2}}$ $({\rm Re} s>1, {\rm Re} a>1)$ .

Using this function he proved the following formula:

$\frac{1}{2s-1}\psi_{\Gamma}(s, \chi)$

$= \frac{1}{2a-1}\psi_{\Gamma}(a, \chi)+\sum_{n=0}^{\infty}m_{n}(\chi)\{\frac{11}{r_{n}(\chi)^{2}+(s-1/2)^{2}r_{n}(\chi)^{2}+(a-1/2)^{2}}\}$

$+ \frac{\chi(e)\mathcal{A}(M)}{2\pi}\sum_{k=0}^{\infty}(\frac{11}{a+ks+k})$ .
All of the properties possessed by the zeta function are derived immediately
from this formula.

The main purpose of this paper is to prove a new interesting formula for
$\psi_{\Gamma(S},$ $x$). The properties of the zeta function can be also derived from our
formula immediately. Our choice of the test function is somewhat special one.
We use two test functions which are essentially related to the inverse of the
Plancherel measure of the upper half plane $H$. In this sense, I think one can
extend this formula to the cases of symmetric spaces of rank one, but unfor-
tunately, we must do them case by case. So we omit the description of their
details. More generally, I think also that it is possible to extend our argument
to the vector bundle cases (cf. [1], [9], [10]).
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2. Main result.

The following formula holds:

$(F_{\chi})$ $\cot(\pi s)\psi_{\Gamma}(s+\frac{1}{2}\chi)=-\pi m_{0}(\chi)+\pi(g-1)\chi(e)(2s-1)$

$-2(s^{2}- \frac{1}{4})\sum_{n=1}^{\infty}\{\frac{n\psi_{\Gamma}(n+1/2,\chi)}{\pi(s^{2}-n^{2})(1/4-n^{2})}$

$+ \frac{m_{n}(\chi)r_{n}(\chi)\coth(\pi r_{n}(\chi))}{(s^{2}+r_{n}(\chi)^{2})(1/4+r_{n}(\chi)^{2})}\}$ .

By this formula, we get the following theorem immediately.

THEOREM. The series in the formula $(F_{\chi})$ converges absolutely, uniformly

for $s$ in any compact set disjoint from the numbers $\{\pm\sqrt{-1}r_{n}(\chi)\}\cup\{Z\backslash \{0\}\}$ , and
defines a meromorphuc function of $s$ in the whole complex plane, thus gives us a
meromorphic continuation of $\psi_{\Gamma}(s+1/2, \chi)$ . Moreover the following functional
equation holds:

$\psi_{\Gamma}(s+\frac{1}{2}\chi)+\psi_{\Gamma}(-s+\frac{1}{2}\chi)=4\pi\chi(e)(g-1)s\tan(\pi s)$ , $s\in C$ .

Also, the poles of $\psi_{\Gamma}(s+1/2, \chi)$ are all $\alpha mple$ , and are as follows:
Pole Residue

$s=\pm\sqrt{-1}r_{n}(\chi)$ $m_{n}(\chi)$ $n\geqq 1$

$s=- \frac{1}{2}-n$ $2(g-1)(2n+1)\chi(e)$ $n\geqq 1$

$s= \frac{1}{2}$ $m_{0}(\chi)$

$s=- \frac{1}{2}$ $m_{0}(\chi)+2(g-1)\chi(e)$ .

If for some $n$ , we have $r_{n}(\chi)=0$ , then for that $n$ , the residue at thus pole $\iota s$

$2m_{n}(\chi)$ .

I do not know essential applications of the formula $(F_{\chi})$ except the above
theorem. But, for example, letting $s$ to $m+1/2(m\in N)$ , we have the following
interesting identity:

$\sum_{n=1}^{\infty}[\frac{n\psi_{\Gamma}(n+1/2,\chi)}{\pi\{(m+1/2)^{2}-n^{2}\}(1/4-n^{2})}+\frac{m_{n}(\chi)r_{n}(\chi)\coth(\pi r_{n}\alpha))}{\{(m+1/2)^{2}+r_{n}(\chi)^{2}\}(1/4+r_{n}(\chi)^{2})}]$

$= \frac{\pi}{m+1}\{(g-1)^{\chi}(e)-\frac{m_{0}(\chi)}{2m}\}$ .
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3. Proof of the formula $(F_{\chi})$ .
Our main tool is the Selberg trace formula. In what follows, we will be

dealing with two test functions

$jF_{t}(r)= \pi r(r^{2}+\frac{1}{4})^{-j}\coth(\pi r)\exp(-r^{2}t)$ , $f>0$ $(j=0,1)$

in the trace formula. Since $0F_{t}(\sqrt{-1}/2)=0$ and $1F_{t}(\sqrt{-1}/2)=(\pi^{2}/2)\exp(t/4)$ , we
have

$\pi\sum_{n=1}^{\infty}m_{n}(\chi)r_{n}(\chi)(r_{n}(\chi)^{2}+\frac{1}{4})^{-j}\coth(\pi r_{n}(\chi))\exp(-r_{n}(\chi)^{2}t)$

(1) $+j( \pi^{2}/2)m_{0}(\chi)\exp(t/4)-\frac{\chi(e)\mathcal{A}(M)}{4}\int_{-\infty}^{\infty}r^{2}(r^{2}+\frac{1}{4})^{-j}\exp(-r^{2}t)dr$

$=$
$\sum_{\{\gamma\}\in\{\Gamma\}\backslash \{e\}}$

$\epsilon_{\gamma.\chi^{j}}F_{t}^{*}(u_{\gamma})$ $(j=0,1)$

where we put

$\epsilon_{\gamma,x}=\frac{1}{2}\chi(\gamma)](\gamma)^{-1}u_{\gamma}cosech(\frac{u_{\gamma}}{2})$ .

Now we need the following well known result.

LEMMA 1 (cf. [3]). The series

$\sum_{r_{n}(\chi)\neq 0}\frac{m_{n}(\chi)}{|r_{n}(\chi)|^{k}}$

converges if $k>2=\dim H$, and diverges if $k\leqq 2$ .
We define $!\theta_{\chi}(t)(j=0,1)$ by the left side of (1). For $p>1/2$ , multiply

$j\theta_{\chi}(t)$ by $t\exp(-P^{2}t)$ and integrate term by term with respect to $t$ between
$[0, \infty)$ . The procedure can be justified by Lemma 1, and we obtain

(2) $\int_{0}^{\infty}t^{0}\theta_{\chi}(t)\exp(-p^{2}t)dr=\pi\sum_{n=1}^{\infty}\frac{m_{n}(\chi)r_{n}(\chi)\coth(\pi r_{n}(\chi))\pi\chi(e)\mathcal{A}(M)}{(r_{n}(\chi)^{2}+p^{2})^{2}8p}$ ,

(2) $\int_{0}^{\infty}t^{1}\theta_{\chi}(t)\exp(-p^{2}t)dt=\pi\sum_{n=1}^{\infty}\frac{m_{n}(\chi)r_{n}(\chi)\coth(\pi r_{n}(\chi))}{(r_{n}\alpha)^{2}+p^{2})^{2}(r_{n}(\chi)^{2}+1/4)}$

$+ \frac{\pi^{2}m_{0}(\chi)\pi\chi(e)\mathcal{A}(M)(p-1/2)^{2}}{2(1/4-p^{2})^{2}8p(p^{2}-1/4)^{2}}$ .

It is clear that (2) and (2) are valid for ${\rm Re} P>1/2$ .
Observe that, because of the identity (1) we have

$\int_{0}^{\infty}t^{j}\theta_{\chi}(t)\exp(-p^{2}t)dt=\int_{0}^{\infty}\sum_{t\gamma\}\in\{\Gamma_{1\backslash \{e\}}}\epsilon_{\gamma.x^{j}}F_{t}^{*}(u_{\gamma})t\exp(-p^{2}t)dt$ $(j=0,1)$ .
We will calculate these integrals. At the first place, we state the following
estimates.
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LEMMA 2. For any $\epsilon$ satisfying $0<|\epsilon|<1/4$ , there exists a $po\alpha tive$ constant
$C$ such that

$\sup_{u>0}|jF_{t}^{*}(u)\exp((\frac{1}{2}+\epsilon)u)|\leqq C\max(\frac{1}{t}$ , $\frac{1}{\sqrt{t}})\exp(t(\frac{1}{2}+\epsilon)^{2})$ $(j=0,1)$

for an arbitrary pOntive number $t$ .

The proof is similar to that of the Paley-Wiener theorem with respect to
the rapidly decreasing functions in the usual theory of Fourier transformation.
So we omit it.

Let $\epsilon$ be a sufficiently small positive number. Then by Lemma 2, we have

$|^{j} \theta_{\chi}(t)|\leqq C\max(\frac{1}{t},$ $\frac{1}{\sqrt{t}})\exp(t(\frac{1}{2}+\epsilon)^{2})\sum_{t\gamma I\in\{\Gamma\}\backslash te\}}|\epsilon_{\gamma.x}|\exp(-(\frac{1}{2}+\epsilon)u_{\gamma})$

(3)
$\leqq C\max(\frac{1}{t},$ $\frac{1}{\sqrt{t}})\exp(t(\frac{1}{2}+\epsilon)^{2})\chi(e)\psi_{\Gamma}(1+\epsilon\cdot X)$ $(j=0,1)$ ,

where 1 stands for the trivial character of $\Gamma$.
Suppose that $P$ satisfies the condition $1>p>1/2+2\epsilon$ for sufficiently small $\epsilon$ .

Then, thanks to the estimate (3) and Lebesgue’s dominated convergence the-
orem, we observe

$\int_{0}^{\infty}t^{f}\theta_{\chi}(t)\exp(-P^{2}t)dt$

$=$ $\Sigma$ $\epsilon_{\gamma,\chi}\frac{1}{2\pi}\int_{0}^{\infty}\{\int_{-\infty}^{\infty}\pi r(r^{2}+\frac{1}{4})^{-f}|\coth(\pi r)\exp(-r^{2}t)\exp(\sqrt{-1}ru_{\gamma})dr\}$

$t\gamma 1\in\{\Gamma\}\backslash e\}$

$\cross t\exp(-P^{2}t)dt$ $(]^{=0},1$ ).

Since the integrals

$\int_{-\infty}^{\infty}\int_{0}^{\infty}|\pi r(r^{2}+\frac{1}{4})^{-f}\coth(\pi r)\exp(\sqrt{-1}ru)t\exp(-(r^{2}+p^{2})t)|$ dtdr

$= \int_{-\infty}^{\infty}\frac{\pi r\coth(\pi r)}{(p^{2}+r^{2})^{2}(1/4+r^{2})^{j}}dr$ $(]^{=0},1$ )

converge for $u>0$ , we have

$\int_{0}^{\infty}t^{j}\theta_{\chi}(t)\exp(-p^{2}t)dt=\sum_{(\gamma 1\in(\Gamma\}\backslash te\}}\epsilon_{\gamma.\chi}\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{\pi r\coth(\pi r)}{(p^{2}+r^{2})^{2}(1/4+r^{2})^{j}}\exp(\sqrt{-1}ru_{\gamma})dr$

$(]^{=0},1)$

by means of Fubini’s theorem.
Using the well known representation of $\pi r\coth(\pi r)$ by partial fractions, we

obtain

$\frac{\pi r\coth(\pi r)}{(p^{2}+r^{2})^{2}}=\frac{1}{(p^{2}+r^{2})^{2}}+2\sum_{n=1}\{\frac{n^{2}}{(n^{2}-p^{2})^{2}(r^{2}+p^{2})}$
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$- \frac{p^{2}n^{2}}{(n^{2}-p^{2})(r^{2}+p^{2})^{2}(n^{2}-p^{2})^{2}(r^{2}+n^{2})}\}$ .

Using Lebesgue’s theorem again, we see that

$\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{\pi r\coth(\pi r)}{(p^{2}+r^{2})^{2}}\exp(\sqrt{-1}\gamma u)dr=\frac{1}{4p^{3}}(pu+1)\exp(-pu)$

+2 $\sum_{n\Leftarrow 1}^{\infty}\frac{n^{2}}{(n^{2}-p^{2})^{2}\cdot 2p}\exp(-pu)-2\sum_{n=1}\frac{p^{2}}{(n^{2}-p^{2})\cdot 4p^{3}}(pu+1)\exp(-pu)$

$-2 \sum_{n=1}^{\infty}\frac{n^{2}}{(n^{2}-p^{2})^{2}\cdot 2n}\exp(-nu)=\frac{1}{4p}\{\frac{1}{p}+\sum_{n=1}\frac{2p}{p^{2}-n^{2}}\}u\exp(-Pu)$

$- \frac{1}{4p}\frac{d}{dp}\{\frac{1}{p}+\sum_{n=1}^{\infty}\frac{2p}{p^{2}-n^{2}}\}\exp(-pu)-\sum_{n=1}\frac{n}{(n^{2}-p^{2})^{2}}\exp(-nu)$

$=- \frac{\pi}{4p}\frac{d}{dp}\{\cot(\pi p)\exp(-pu)\}$ – $\sum_{n=}\frac{n}{(n^{2}-p^{2})^{2}}\exp(-nu)$

for $u>0$ . Obviously, these manipulations are valid for $P$ satisfying $1>{\rm Re} p>$

$1/2+2\text{\’{e}}$ . Also, we can get the following identity in the same way as above.

$\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{\pi r\coth(\pi r)}{(p^{2}+r^{2})^{2}(1/4+r^{2})}\exp(\sqrt{-1}ru)dr=\frac{\pi}{4p(p^{2}-1/4)}\frac{d}{dp}\{\cot(\pi p)\exp(-pu)\}$

$- \frac{\pi\cot(\pi p)}{2(p^{2}-1/4)^{2}}\exp(-pu)+\sum_{n=1}^{\infty}\frac{n}{(n^{2}-p^{2})^{2}(n^{2}-1/4)}\exp(-nu)$ .
Note the fact that $\psi_{\Gamma}(P+1/2, \chi)$ is given by the absolutely and uniformly

convergent series in any half plane ${\rm Re} P>1/2+2\epsilon$ ;

$\psi_{\Gamma}(p+\frac{1}{2},$ $x)=$
$\sum_{t\gamma 1\in t\Gamma\}\backslash te\}}$

$\epsilon_{\gamma,x}\exp(-pu_{\gamma})$ .

Hence we can differentiate $\psi_{\Gamma}(p+1/2, \chi)$ term by term with respect to $P$ in
that half plane. Recall that the constant $\epsilon_{0}$ satisfies $0<\epsilon_{0}\leqq u_{\gamma}$ for all $\{\gamma\}\in$

$\{\Gamma\}\backslash \{e\}$ . Therefore we have the following estimate:

(4) $| \psi_{\Gamma}(n+\frac{1}{2}\chi)|\leqq\chi(e)|\psi_{\Gamma}(n+\frac{1}{2},$ $X)| \leqq\chi(e)\psi_{\Gamma}(\frac{3}{2},$ $X)$ exp $\{-\epsilon_{0}(n-1)\}$

$(n\in N)$ .
These facts guarantee that the following manipulations are legitimate:

$\int_{0}^{\infty}t^{0}\theta_{\chi}(t)\exp(-p^{2}t)dt$

(5) $=$
$\sum_{\{\gamma\}\in\iota\Gamma\}\backslash \{e\}}$

$\epsilon_{\gamma.x}[-\frac{\pi}{4p}\frac{d}{dp}\{\cot(\pi p)\exp(-pu_{\gamma})\}-\sum_{n=1}^{\infty}\frac{n}{(n^{2}-p^{2})^{2}}\exp(-nu_{\gamma})]$

$=- \frac{\pi}{4p}\frac{d}{dp}\{\cot(\pi p)\psi_{\Gamma}(\frac{1}{2}+p,$ $x) \}-\sum_{n\Rightarrow 1}\frac{n}{(n^{2}-p^{2})^{2}}\psi_{\Gamma}(\frac{1}{2}+n,$ $x)$ ,
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$\int_{0}^{\infty}t^{1}\theta_{\chi}(t)\exp(-p^{2}t)dt=\frac{\pi d}{4p(p^{2}-1/4)dp}\{\cot(\pi p)\psi_{\Gamma}(\frac{1}{2}+p,$ $x)\}$

(5)
$- \frac{\pi\cot(\pi p)}{2(p^{2}-1/4)^{2}}\psi_{\Gamma}(\frac{1}{2}+p,$ $x)$

$+ \sum_{n=1}^{\infty}\frac{n}{(n^{2}-p^{2})^{2}(n^{2}-1/4)}\psi_{\Gamma}(\frac{1}{2}+n,$ $x)$ .

On account of $(2_{j})$ and $(5_{j})(j=0,1)$ respectively, we obtain

$\frac{d}{dp}\{\cot(\pi p)\psi_{\Gamma}(\frac{1}{2}+p,$ $\chi)\}$

(6)
$= \frac{1}{2}\chi(e)\mathcal{A}(M)-4P\sum_{n=1}^{\infty}\{\frac{m_{n}(\chi)r_{n}(\chi)\coth(\pi r_{n}(\chi))}{(r_{n}(\chi)^{2}+p^{2})^{2}}+\frac{n\psi_{\Gamma(1/2+n},x)}{\pi(n^{2}-p^{2})^{2}}\}$ ,

$\frac{d}{dp}\{\cot(\pi p)\psi_{\Gamma}(\frac{1}{2}+p,$ $\chi)\}-\frac{2p\cot(\pi p)\psi_{\Gamma}(1/2+p,x)}{p^{2}-1/4}$

(6) $=- \frac{\chi(e)\mathcal{A}(M)(p-1/2)^{2}}{2(p^{2}-1/4)}+\frac{2\pi m_{0}(\chi)p}{p^{2}-1/4}$

$+4p(p^{2}- \frac{1}{4})\sum_{n=1}^{\infty}\{\frac{m_{n}(\chi)r_{n}(\chi)\coth(\pi r_{n}(\chi))}{(r_{n}(\chi)^{2}+p^{2})^{2}(r_{n}(\chi)^{2}+1/4)}+\frac{n\psi_{\Gamma(1/2+n},x)}{\pi(n^{2}-p^{2})^{2}(1/4-n^{2})}\}$ .

Thanks to the estimate (4) and Lemma 1, the series in the identities $(6_{j})$

$(J^{=0},1)$ converge absolutely, uniformly for $p$ in any compact set disjoint from
the numbers $\{\pm\sqrt{-1}r_{n}(\chi)\}\cup\{Z\backslash \{0\}\}\cup\{\pm 1/2\}$ , and define meromorphic functions
of $P$ in the whole complex plane, thus give us meromorphic continuations of
the left sides of identities $(6_{j})(j=0,1)$ , respectively. Hence, subtracting (6)

from (6) we have a desired result.
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