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1. Introduction.

The main purpose of this paper is to give an elementary proof of Yoshida’s
inequality [5]. An incidence structure is a triple $D=(X, B, \mathcal{I})$ , where $X$ is a
set of points, $B$ is a set of blocks and $\mathcal{I}$ is a relation of incidence between
points and blocks. A $2-(v, k, \lambda)$ design is an incidence structure (X, $B,$ $\mathcal{I}$)

satisfying the following requirements:

(1) $|X|=v$ .
(2) Each block is incident with $k$ points.
(3) Any 2 points are incident with $\lambda$ blocks.

A $2-(v, k, \lambda)$ design is often called a block design. Let $b$ be the total number
of blocks. Note that each point of $X$ is contained in exactly $r$ blocks. We set
$n=r-\lambda$ , and we call $n$ the order of the 2-design (X, $B,$ $\mathcal{I}$). These parameters
satisfy the following relations:

$vr=bk$ , $(v-1)\lambda=r(k-1)$ . (1)

The incidence matrix $A$ of a block design (X, $B,$ $\mathcal{I}$) is the $v\cross b$ matrix
whose rows are indexed by points and whose columns are indexed by blocks,
with the entry in row $x$ and column $\beta$ being 1 if $x\mathcal{I}\beta$ and $0$ otherwise. (The

notation “
$x\mathcal{I}\beta$

’ means that $x$ is incident with $\beta.$ ) The conditions that (X, $B,$ $\mathcal{I}$)

is a block design can be expressed in terms of $A$ :

$AJ=rJ$ , $JA=kJ$ , (2)

$AA^{t}=nI+\lambda J$ . (3)

(Here, throughout this paper, $I$ is the identity matrix and $J$ the matrix with
every entry 1 of appropriate size.) From (3) it follows that if $\lambda<r$ , then

det $(AA^{t})=rkn^{v- 1}\neq 0$ ,
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which gives Fisher’s inequality:
$v\leqq b$ .

A block design satisfying $v=b$ is called symmetric. Suppose $D=(X, B, \mathcal{I})$

is a symmetric $2-(v, k, \lambda)$ design. Then the dual structure $\overline{D}=(B, X,\overline{\mathcal{I}})$ is a
symmetric $2-(v, k, \lambda)$ design, where the incidence relation $\overline{\mathcal{I}}$ is defined by

$\beta Jx$ if and only if $x\mathcal{I}\beta$ .

An automorphism group $G$ of (X, $B,$ $\mathcal{I}$) is a group satisfying the following:
(i) $G$ acts on $X$ , (ii) $\beta g\in B$ for all $g\in G,$ $\beta\in B$ , (iii) if $x\mathcal{I}\beta$ , then $xg\mathcal{I}\beta g$ .

Suppose that a finite group $G$ acts on $\Omega$ and that $P$ is a normal subgroup
of $G$ . Let $\Omega^{P}$ denote the set of points in $\Omega$ flxed by $P$. Then $\Omega^{P}$ is G-
invariant. $\Omega/G$ denotes the set of orbits of $G$ on $\Omega$ .

Yoshida [5] proved the following:

THEOREM. SuppOse that (X, $B,$ $\mathcal{I}$) is a block design which admits an auto-
morphjsm group G. Let $p$ be a prime which does not divide $n$ , the order of the
design, and let $P$ be a normal $P$-subgroup of G. Then the following hold:

(1) (a) If $p\nmid r$ , then $|X^{P}/G|\leqq|B^{P}/G|$ .
(b) If $P|r$ , then $|X^{P}/G|-1\leqq|B^{P}/G|$ .
(c) If $p\nmid b$ , then $|X^{P}/G|\leqq|B^{P}/G|$ .
(d) If the destgn (X, $B,$ $\mathcal{I}$ ) is symmetric, then $|X^{P}/G|=|B^{P}/G|$ .

(2) (a) $|(X\cross B)^{P}/G|\leqq|(B\cross B)^{P}/G|$ .
(b) $|(X\cross X)^{P}/G|-1\leqq|(X\cross B)^{P}/G|$ .
(c) If $p\nmid r$ or $p\nmid b$ , then

$|(X\cross X)^{P}/G|\leqq|(X\cross B)^{P}/G|$ .
(d) If the destgn is symmetric, then

$|(X\cross X)^{P}/G|=|(X\cross B)^{P}/G|=|(B\cross B)^{P}/G|$ .
Unfortunately, Yoshida’s proof of the theorem need a lot of knowledge of

category theory and Burnside rings. In this paper we will prove the above
theorem by using a proposition of D. G. Higman [2] and analyzing the matrix
$AA^{t}$ . In the course of proof of the theorem we will establish the following
proposition which is a slight extension of (1.c) of Theorem.

PROPOSITION 1. Under the $sa\gamma\gamma e$ notation as in Treorem, we have the fol-
lowing:

If there exists a G-orbit on $B$ whose length is relatively prime to $p$ , then $|X^{P}/G|$

$\leqq|B^{P}/G|$ .

It is immediate that (1.c) of Theorem follows from this proposition.
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2. Contractions of matrices.

We will follow the first section of Higman [2]. Let $R$ be a commutative
ring with identity, and $X,$ $Y,$ $Z$ be finite non-empty sets. We dePne $M_{R}(X, Y)$

to be the set of maps $A:X\cross Yarrow R$ and we call $A$ an $X$ by $Y$ matrix over $R$ .
If $A\in M_{R}(X, Y)$ and $B\in M_{R}(Y, Z)$ , then $AB\in M_{R}(X, Z)$ is defined by

AB$(x, z)= \sum_{y\in Y}A(x, y)B(y, z)$ $(x\in X, z\in Z)$ .

If $\mathcal{P},$ $Q$ are partitions of $X,$ $Y$, respectively, then we say that $A\in M_{R}(X, Y)$ has
property $(\mathcal{P}, Q)$ if for all $S\in \mathcal{P}$ and $T\in Q$ ,

$\sum_{t\in T}A(s, t)$ is independent of $s\in S$ .

If $A\in M_{R}(X, Y)$ has property $(\mathcal{P}, Q)$ , and if $S\in \mathcal{P},$ $T\in Q$ , we set $\delta(A)(S, T)$

$=\Sigma_{t\in T}A(s, t)$ for some $s\in S$ . Higman [2] proved the following:

PROPOSITION 2. If $A\in M_{R}(X, Y)$ has prOperty $(\mathcal{P}, Q)$ and $B\in M_{R}(Y, Z)$ has
Property $(Q, \mathcal{U})$ , then $AB\in M_{R}(X, Z)$ has Property $(\mathcal{P}, \mathcal{U})$ and $\delta(AB)=\delta(A)\delta(B)$ .

We note that Theorem 5 of [3] is the special case of Proposition 2.
If $\mathcal{P}=\{S_{1}, \cdots , S_{l}\}$ is a partition of $X$ or $Y$, define an $l\cross l$ matrix $D(\mathcal{P})$ as

follows: Let $S_{i},$ $S_{j}\in \mathcal{P}$ ,

$D(\mathcal{P})(S_{i}, S_{j})=\{|S_{i}|0$
if $S_{i}=S_{j}$ ,

otherwise.
Both Proposition 4 of [3] and a result in [4, pp. 96-98] are the special cases
of the following proposition.

PROPOSITION 3. SuPpose that $\mathcal{P}=\{S_{1}, \cdots , S_{l}\}$ and $Q=\{T_{1}, \cdots , T_{m}\}$ are parti-
tions of $X$ and $Y$, respectjvely. If $A$ and $A^{t}$ (the transpose of $A$ ) have $(\mathcal{P}, Q)$

Property and $(Q, \mathcal{P})$ prOperty, respectively, then $D(Q)\delta(A^{t})=\delta(A)^{t}D(\mathcal{P})$ .

PROOF. Essentially our proof is similar to that of Proposition 4 of [3].

Let $T_{i}\in Q$ and $S_{j}\in \mathcal{P}$ . Then

$D(Q) \delta(A^{t})(T_{i}, S_{j})=\sum_{\underline{=}S_{j}}|T_{t}|A^{t}(i, s)$
, where $t\in T_{t}$

$= \sum_{\equiv S_{j}}|T_{i}|A(s, t)=\sum_{t\in T_{i}S^{\wedge}}\sum_{\subset S_{j}}A(s, t)$

$= \sum_{t\in T_{i}}A(s, t)|S_{j}|=\delta(A)^{t}D(\mathcal{P})(T_{\mathfrak{j}}, S_{j})$ .

This completes the proof of Proposition 3.
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3. Proof of Theorem.

To prove Theorem we need the following lemmas.

LEMMA 1 ([5]). Let (X, $B,$ $\mathcal{I}$ ) be a block destgn with Parameters( $v,$ $b,\hat{J}’,$ $k$ , \lambda m‘
and let $p$ be a Prime such that $p\nmid n$ . Then $p|r$ imPlies $p\nmid\nu$ . Furthermore,

$p\nmid r$ implies $p\nmid k$ .

LEMMA 2. Assume that a finite group $G$ acts on sets $X,$ $Y$ and let $x\in X$ ,
$y\in Y$. Then the following hold:

$|X/G_{y}|=|(X\cross yG)/G|$ , $|Y/G_{x}|=|(xG\cross Y)/G|$ .

PROOF. We will establish a 1-1 correspondence between $X/G_{y}$ and
$(X\cross yG)/G$ . If $\Delta$ is a G-orbit on $X\cross yG$ . Put $\Delta(y)=\{x|(x, y)\in\Delta\}$ . Then
$\Delta(y)$ is an element of $X/G_{y}$ , and this establishes the correspondence. Indeed
if $\Gamma’(=xG_{y})$ is an element of $X/G_{y}$ , then $\Gamma=(x, y)G$ is the unique element of
$(X\cross yG)/G$ such that $\Gamma(y)=\Gamma’$ . Similarly we can prove that $|Y/G_{x}|=$

$|(xG\cross Y)/G|$ . The proof of this lemma is completed.

We will prove Theorem. Since $P$ is a normal subgroup of $G,$ $X^{P}$ and $B^{P}$

are G-invariant. Hence we see that

$X^{P}=x_{1}G\cup x_{2}G\cup\cdots\cup x_{m}G$ , $B^{P}=\beta_{1}Go\beta_{2}G\cup\cdots\cup\beta_{l}G$ ,

where $x_{i}G$ and $\beta_{j}G$ are the G-orbits of $x_{i}$ and $\beta_{j}$ , respectively. Since $X-X^{P}$

and $B-B^{P}$ are G-invariant, we have the following:

$X-X^{P}=x_{m+1}G\cup x_{m+2}G\cup\cdots\cup x_{m+m’}G$ $(x_{m+i}\not\in X^{P})$ ,
$B-B^{P}=\beta_{l+1}G\cup\beta_{l+2}G\cup\cdots\cup\beta_{l+l’}G$ $(\beta_{l+j}\not\in B^{P})$ .

Clearly $x_{i}G(m+1\leqq i\leqq m+m’)$ is a union of P-orbits and so is $\beta_{j}G(l+1\leqq j\leqq l+i’)$ .
Now we note the following fundamental lemma.

LEMMA 3. $p||xP|$ for all $x\in X-X^{P}$ and $P||\beta P|$ for all $\beta\in B-B^{P}$ .

Hence we see that
$p||x_{i}G|$ $(m+1\leqq i\leqq n\iota+m’)$ . (4)

Also, we get
$p||\beta_{j}G|$ $(l+1\leqq j\leqq l+l’)$ . (5)

Let $A$ be the incidence matrix of the block design (X, $B,$ $\mathcal{I}$). The follow-
ing lemma plays an important part in the proof of the theorem.

LEMMA 4. The number of l’s in every row of the submatrix $A_{|x_{i}G\cross\hat{P}j^{G}}^{1}$

$(1\leqq i\leqq m, f+1\leqq j\leqq l+l’)$ is a multiple of $p$ .
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PROOF. The number of l’s in a row $x$ of the submatrix $A|_{x_{i}G\cross\beta_{j}G}$ is equal
to the number of elements of $\{\beta’|x\mathcal{I}\beta’, \beta’\in\beta_{j}G\}$ . Since $x\in X^{P}$ , the set
$\{\beta’|x\mathcal{I}\beta’, \beta’\in\beta_{j}G\}$ is a union of nontrivial P-orbits. Thus this lemma follows
immediately from Lemma 3.

Similarly the following holds:

LEMMA 5. The number of l’s in every row of the submatrix $A^{t}|_{\beta_{f^{G\cross x}i^{G}}}$

$(1\leqq j\leqq l, m+1\leqq i\leqq m+m’)$ is a multiple of $p$ .
Let $\mathcal{P}=\{x_{1}G, x_{2}G, \cdots , x_{m+m’}G\}$ and $Q=\{\beta_{1}G, \beta_{2}G, \cdots , \beta_{l+l’}G\}$ . Then $\mathcal{P}$

and $Q$ are partitions of $X$ and $B$ , respectively. It is easy to prove the following:

LEMMA 6. The incidence matrix $A$ of the block design (X, $B,$ $\mathcal{I}$ ) has prop-
erty $(\mathcal{P}, Q)$ . Also $A^{t}$ has ProPerty $(Q, \mathcal{P})$ .

By the above lemma we may apply $\delta$ in Proposition 2 to $A$ and $A^{t}$ . To
emphasize the dependence of this $\delta$ on the automorphism group $G$ , we write $\delta_{l}$

for $\delta$ .
From now on we consider integral matrices as ones with entries in the p-

element field $F_{p}$ . Let $\mathcal{P}_{1}=\{x_{1}G, \cdots , x_{m}G\},$ $\mathcal{P}_{2}=\{x_{m+1}G, \cdots , x_{m+m’}G\},$ $Q_{1}=$

$\{\beta_{1}G, \cdots , \beta_{l}G\}$ and $Q_{2}=t\beta_{l+1}G,$ $\cdots$ , $\beta_{l+l’}G$ }. From Lemma 4, $\delta_{G}(A)$ has the
form

$\delta_{G}(A)=(\begin{array}{ll}A_{11} 0A_{21} A_{22}\end{array})$ , (6)

where $A_{11}$ is a $\mathcal{P}_{1}$ by $Q_{1}$ matrix, and $A_{22}$ is a $\mathcal{P}_{2}$ by $Q_{2}$ matrix. From Lemma
5, $\delta_{G}(A^{t})$ has the form

$\delta_{G}(A^{l})=(\begin{array}{ll}B_{11} 0B_{21} B_{22}\end{array})$ , (7)

where $B_{11}$ is a $Q_{1}$ by $\mathcal{P}_{1}$ matrix, and $B_{22}$ is a $Q_{2}$ by $\mathcal{P}_{2}$ matrix. Put $f_{i}=|x_{i}G|$ ,
$g_{j}=|\beta_{j}G|(1\leqq i\leqq m+m’, 1\leqq j\leqq l+l’)$ . By applying Proposition 2 to (3), we ob-
tain that $AA^{t}$ has property $(\mathcal{P}, \mathcal{P})$ , and

$\delta_{G}(A)\delta_{G}(A^{t})=\delta_{G}(AA^{t})$ . (8)

Since $f_{i}=0$ in $F_{p}(i>m)$ , we have that $\delta_{G}((r-\lambda)I+\lambda J)$ has the form

$\delta_{G}((r-\lambda)I+\lambda J)=(\begin{array}{ll}C_{11} 0C_{21} C_{22}\end{array})$ , (9)

where

$C_{11}=(\begin{array}{lllll} r-\lambda+\lambda f_{1}, \lambda f_{2}, \cdots \lambda f_{m}\lambda f_{1}, r-\lambda+\lambda f_{2}, \cdots \cdots \lambda f_{m}\lambda f_{1}, \cdots \cdots \cdots r- \cdots \lambda+\lambda f_{m}\end{array})$ , $C_{22}=(\begin{array}{lll}r-\lambda, r-\lambda, 00 r-\lambda\end{array})$ .
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From (6), (7), (8) and (9) we have

$A_{11}B_{11}=C_{11}$ , (10)

$A_{22}B_{22}=C_{22}$ . (11)

To compute the rank of $A_{11}B_{11}(=C_{11})$ , we first subtract the first row of
$C_{11}$ from every other row and then we add every other column to the first
column. This procedure gives

$(\begin{array}{llll}a, \lambda f_{2}r-\lambda \cdots \lambda f_{m}0 0 r-\lambda\end{array})$ ,

where $a=r-\lambda+\lambda(f_{1}+f_{2}+\cdots+f_{m})$ .
Note that in $F_{p},$ $a=a+\Sigma_{m}^{m}\ddagger_{1}^{m’}\lambda f_{i}=r-\lambda+\lambda v=kr$ by (4) and (1).

We will prove (1. a). Since $p\nmid n$ , we have that if $p\nmid r$ , then $rankA_{11}B_{11}$

is equal to $m$ by Lemma 1. $A_{11}$ must have rank at least $m$ . Since $A_{11}$ has
size $m\cross l$ , we have

$m\leqq l$ , that is $|X^{P}/G|\leqq|B^{P}/G|$ .
We complete a proof of (1. a).

Here we note that

rank $A_{11}B_{11}=\{m-1m$
if $p|r$ . (12)
if $p\nmid r$ ,

We will prove (1. b). If $P|r$ , then the rank of $A_{11}B_{11}$ is $m-1$ by (12).

Similarly we obtain that $|X^{P}/G|-1\leqq|B^{P}/G|$ , as claimed in (1. b).

We will prove Proposition 1. If $p\nmid r$ , then Proposition 1 follows from (1. a).

Thus we may assume that $P|r$ . In this case we already proved that

rank $A_{11}B_{11}=m-1$ , and $m-1\leqq l$ . (13)

If $l\geqq m$ , then our proof is done. By (13) we may assume that

$l=m-1$ . (14)
Recall that

rank $A_{11}B_{11}\leqq rankB_{11}$ . (15)

Since $B_{11}$ has size $l\cross m$ ,

rank $B_{11}\leqq 1$ . (16)

By (13), (14), (15) and (16) we see that

$B_{11}$ has rank $l$ . (17)

From (2) and $P|r$ it follows that

$JA^{t}=rJ=0$ , (18)
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where $0$ is a zero matrix. By aPplying Proposition2 to (18) we obtain

$\delta_{G}(J)\delta_{G}(A^{t})=0$ (19)

From Lemma 5, $\delta_{G}(J)$ has the form

$\delta(J)=(\begin{array}{ll}E_{11} 0E_{21} 0\end{array})$ ,

where $E_{11}=(\begin{array}{llll}g_{1}, g_{2}, \cdots g_{l}g_{1}, \ldots\cdots g_{l}g_{1}, g_{2}, \cdots \cdots g_{l}\end{array})$ , and has size $m\cross l$ . By (7) and (19) we have

$E_{11}B_{11}=0$ , (20)

where $0$ is a zero matrix. If $b_{1},$ $b_{2},$ $\cdots$ , $b_{l}$ are the row vectors of $B_{11}$ , then (20)

gives the following:

$g_{1}b_{1}+g_{2}b_{2}+\cdots+g_{l}b_{l}=0$ (zero vector).

Since $B_{11}$ has rank 1, $b_{1},$ $b_{2},$ $\cdots$ , $b_{l}$ are linearly independent, and so

$g_{1}=g_{2}=\ldots=g_{l}=0$ in $F_{p}$ . (21)

(21) and Lemma 3 contradict the assumption of Proposition 1. Hence $l\neq m-1$ .
This completes the proof of Proposition 1.

We will prove(1. d). Let (X, $B,$ $\mathcal{I}$) be symmetric. Since $p\nmid n$ , it follows
from (1) that

$p\nmid r$ or $p\nmid v$ . (22)

Since the order of dual design $(B, X, J)$ is equal to the one of block design
(X, $B,$ $\mathcal{I}$), so

$p\nmid the$ order of $(B, X, J)$ . (23)

(22) and (23) show that both the design (X, $B,$ $\mathcal{I}$) and its dual design $(B, X, 5)$

satisfy the assumption of (1. a) or the one of (1. c). This implies that

$|X^{P}/G|=|B^{P}/G|$ .
The proof of (1. d) is completed.

Now we will prove (2). Since $X^{P}=x_{1}G\cup\cdots\cup x_{m}G$ , it is easy to show that

$(X \cross X)^{P}/G=\bigcup_{i=1}^{m}(x_{i}G\cross X^{P})/G$ , (24)

$(X \cross B)^{P}/G=\bigcup_{i=1}^{m}(x_{i}G\cross B^{P})/G$ . (25)

From Lemma 2 we obtain for all $i\in\{1,2, \cdots , m\}$
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$|(x_{i}G\cross X^{P})/G|=|X^{P}/G_{x_{i}}|$ , (26)

$|(x_{i}G\cross B^{P})/G|=|B^{P}/G_{x_{i}}|$ . (27)

Since $B^{P}=\beta_{1}G\cup\cdots\cup\beta_{l}G$ , we have

$(X \cross B)^{P}/G=\bigcup_{j=1}^{l}(X^{P}\cross\beta_{j}G)/G$ , (28)

$(B \cross B)^{P}/G=\bigcup_{j\Leftarrow 1}^{l}(B^{P}\cross\beta_{j}G)/G$ . (29)

From Lemma 2, it follows that for all $j\in\{1,2, \cdots , l\}$

$|(X^{P}\cross\beta_{j}G)/G|=|X^{P}/G_{\beta_{j}}|$ , (30)

$|(B^{P}\cross\beta_{j}G)/G|=|B^{P}/G_{\beta_{j}}|$ . (31)

Now we will prove (2. c). So we assume that $p\nmid r$ or $p\nmid b$ , by using (1. a)

or (1. c) we see that
$|X^{P}/G_{x_{i}}|\leqq|B^{P}/G_{x_{i}}|$ $(1\leqq i\leqq m)$ . (32)

From (24), (25), (26), (27) and (32) it follows that

$|(X\cross X)^{P}/G|\leqq|(X\cross B)^{P}/G|$ .
We have proved (2. c).

Next we will prove (2. a). Since $\{\beta_{j}\}$ is a $G_{\beta_{j}}$-orbit on $B$ of length 1, it
follows from Proposition 1 that

$|X^{P}/G_{\beta_{j}}|\leqq|B^{P}/G_{\beta_{j}}|$ for $1\leqq j\leqq l$ . (33)

(2. a) follows from (28), (29), (30), (31) and (33). Thus our proof of (2. a) is
done.

We will prove (2. d). Let (X, $B,$ $\mathcal{I}$) be symmetric. As in the proof of (1. d),

we see that both the design (X, $B,$ $J$) and its dual design $(B, X,\overline{\mathcal{I}})$ satisfy the
assumption of (2. c) and that of (2. a). Thus (2. d) follows from (2. a) and (2. c).

This completes the proof of (2. d).

We will prove (2. b). If $p\nmid r$ or $p\nmid b$ , then by (1. a) or (1. c) we have

$|X^{P}/G_{x_{j}}|\leqq|B^{P}/G_{x_{j}}|$ for $1\leqq j\leqq m$ . (34)

From (24), (25), (26), (27) and (34) it follows that

$|(X\cross X)^{P}/G|\leqq|(X\cross B)^{P}/G|$ .
Thus in this case (2. b) is proved. Assume that $P|r$ and $P|b$ . Let us recall
that $X^{P}=x_{1}G\cup\cdots\cup x_{m}G$ and

rank $A_{11}B_{11}=m-1\leqq rankA_{11}$ . (35)

We have the following lemma.
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LEMMA 7. Let $M=\{G_{x_{1}}, G_{x_{2}}, \cdots , G_{x_{m}}\}$ . Then all groups in $M$ excePt one
have an orbit on $B$ whose length is relatively prjme to $p$ .

PROOF. Suppose false. Then without loss of generality we may assume
that there exist $G_{x_{1}}$ and $G_{x_{2}}$ such that $P||\beta G_{x_{1}}|$ and $P||\beta G_{x_{2}}|$ for all $\beta\in B$ .
Since $P$ is a normal subgroup of $G_{x_{i}},$ $X^{P}$ and $B^{P}$ are $G_{x_{i}}$-invariant for $i=1,2$ .
Hence we see that for $i=1,2$ ,

$X^{P}=S_{1}(i)\cup S_{2}(i)\cup\cdots\cup S_{m_{i}}(i)$ , $B^{P}=T_{1}(i)\cup T_{2}(i)\cup$ $\cup T_{\iota_{i}}(i)$ ,

where $S_{j}(i)$ and $T_{h}(i)$ are the $G_{x_{i}}$-orbits on $X^{P}$ and $B^{P}$ , respectively. Here we
may assume that

$S_{1}(i)=\{x_{i}\}$ for $i=1,2$ . (36)

Since $X-X^{P}$ and $B-B^{P}$ are $G_{x_{i}}$-invariant for $i=1,2$ , we have the following:

$X-X^{P}=S_{m_{i}+1}(i)\cup\cdots\cup S_{m_{i}+m_{i’}}(i)$ ,
$B-B^{P}=T_{l_{i}+1}(i)\cup\cdots\cup T_{\iota_{i}+l_{i’}}(i)$ ,

where $S_{m_{i}+j}(i)$ and $T_{\iota_{i}+h}(i)$ are the $G_{x_{i}}$-orbits on $X-X^{P}$ and $B-B^{P}$ , respectively
for $i=1,2$ . Let $\mathcal{P}(i)=\{S_{1}(i), \cdots , S_{m_{i}+m_{i’}}(i)\}$ and $Q(i)=\{T_{1}(i), \cdots , T_{\iota_{i}+l_{i^{r}}}(i)\}(i=$

$1,2)$ . Then for $i=1,2\mathcal{P}(i)$ and $Q(i)$ are partitions of $X$ and $B$ , respectively.
As in the proof of (1. a), we have that for $i=1,2$

$\delta_{G_{x_{i}}}(A)=(\begin{array}{ll}A_{11}(i) 0A_{21}(i) A_{22}(i)\end{array})$ , (37)

where $A_{11}(i)$ has size $\tau n_{i}\cross l_{i}$ ,

$\delta_{G_{x_{i}}}(A^{t})=(\begin{array}{ll}B_{11}(i) 0B_{21}(i) B_{22}(i)\end{array})$ , (38)

where $B_{11}(i)$ has size $l_{i}\cross m_{i}$ . By (37), (38) and Proposition 3, we have for $i=1,2$

$(^{|T(i)|}0^{1}$ $\cdot|T_{\iota_{i}}(i)|0)B_{11}(i)=A_{11}{}^{t}(i)(|S_{1}(i)|0$ $|S_{m_{i}}(i)|0)$ . (39)

Since $|T_{j}(i)|=0$ in $F_{p}(i\leqq j\leqq l_{i})$ by the assumption for $i=1,2$ , it follows from
(36) and (39) that every component of row $x_{i}$ of matrix $A_{11}(i)$ is equal to $0$ for
$i=1,2$ . Since $\beta_{l}G=\Sigma_{j}\beta_{j}’G_{x_{i}}$ for all $\beta_{l}\in B^{P}$ ,

$A_{11}(x_{i}G, \beta_{l}G)=\sum A(x_{i}, \beta)=\sum_{j}A_{11}(i)(x_{i}, \beta_{j}’G_{x_{i}})=0$ ,
$8\in\beta_{l}G$

for $i=1,2$ .
These facts show that the matrix $A_{11}$ has two row vectors which have all

their components equal to $0$ . Hence rank $A_{11}\leqq m-2$ , which contradicts (35).

This completes the proof of Lemma 7.
By using (1. b) and Proposition 1 it follows from Lemma 7 that
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$|X^{P}/G_{x_{1}}|+\cdots+|X^{P}/G_{x_{m}}|-1\leqq|B^{P}/G_{x_{1}}|+\cdots+|B^{P}/G_{x_{m}}|$ .
From (24), (25), (26), (27) and the above inequality it follows that

$|(X\cross X)^{P}/G|-1\leqq|(X\cross B)^{P}/G|$ .
In this case we have proved (2. b).

We have completed the proof of Theorem.
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