A note on fundamental dimensions of Whitney continua of graphs

By Hisao KATO

(Received Sept. 28, 1987)

1. Introduction.

By a *continuum*, we mean a compact connected metric space. Let X be a continuum with metric d. By the *hyperspace* of X, we mean

$$C(X) = \{A \mid A \text{ is a nonempty subcontinuum of } X\}$$

with the Hausdorff metric d_H , i.e., $d_H(A, B) = \inf\{\varepsilon > 0 \mid U(A, \varepsilon) \supset B \text{ and } U(B, \varepsilon) \}$ where $U(A, \varepsilon) = \{x \in X \mid d(x, A) < \varepsilon\}$. In [22], Whitney showed that for any continuum X there exists a map $\omega : C(X) \rightarrow [0, \omega(X)]$ satisfying

- (1) $\omega(\{x\})=0$ for every $x \in X$, and
- (2) if A, $B \in C(X)$, $A \subset B$ and $A \neq B$, then $\omega(A) < \omega(B)$.

Any such map ω is called a *Whitney map*. We may think of the map ω as measuring the size of a continuum. It is well-known that every Whitney map ω is monotone, i.e., $\omega^{-1}(t)$ is a continuum for each $0 < t < \omega(X)$. The continuum $\omega^{-1}(t)$ $(0 \le t < \omega(X))$ is called a *Whitney continuum*. Note that $\omega^{-1}(0)$ is homeomorphic to X and $\omega^{-1}(\omega(X)) = \{X\}$. Naturally, we are interested in the structure of $\omega^{-1}(t)$ $(0 < t < \omega(X))$. Let X be a continuum. Then the fundamental dimension $\mathrm{Fd}(X)$ of X is defined as follows (see [1] or [16]): $\mathrm{Fd}(X) = \min\{\dim Z \mid Z \text{ is a compact connected polyhedron, then } \mathrm{Fd}(X) = \min\{\dim Z \mid Z \text{ is a compact connected polyhedron such that } Z \text{ has the same homotopy type as } P\}$.

In [11] and [2], Kelley and Duda investigated the dimension of C(G) for a graph G. In particular, Duda described and analyzed polyhedral models for hyperspaces of graphs (see [2] and [3]). In [5, (2.4)], we showed that $\omega^{-1}(t)$ is a polyhedron for any graph G, any Whitney map ω for C(G) and $t \in [0, \omega(G)]$ (cf. [15]).

In [5, (2.9)], we defined an index n(G) for a graph G and showed that if ω is any Whitney map for C(G), then $\operatorname{Fd} \omega^{-1}(t) \leq n(G) - 1$ for each t. Also, we showed that Whitney continua of graphs admit all homotopy types of compact connected ANR's ([7]).

244 Н. Като

In this paper, we give a sharper result than [5, (2.9)]. We define a more precise index I(G) ($\leq n(G)$) for a graph G and show that $\operatorname{Fd} \omega^{-1}(t) \leq I(G) - 1$ for any Whitney map ω for C(G) and $0 \leq t \leq \omega(G)$. In general, I(G) is not equal to n(G).

We refer readers to [11] and [17] for hyperspace theory, and to [1] and [16] for shape theory.

The author wishes to thank the referee for his helpful comments, in particular, the proof of (3.4).

2. The index I(G).

Let G be a graph (=1-dimensional connected finite polyhedron with a triangulation T). For each edge $e = \langle V, W \rangle$ of G, let

$$\mathcal{A}(e) = \{A \mid A \text{ is an arc in } G \text{ joining } V \text{ and } W\}.$$

For each $A_0 \in \mathcal{A}(e)$, let

 $\Phi(A_0) = \{ \mathcal{A} \mid \mathcal{A} \subset \mathcal{A}(e) \text{ such that } \bigcup \{ A \mid A \in \mathcal{A}, A \neq A_0 \} \text{ does not contain } A_0 \}$ and let

$$\alpha(A_0) = \max\{|\mathcal{A}| \mid \mathcal{A} \in \Phi(A_0)\},\,$$

where $|\mathcal{A}|$ denotes the cardinal number of \mathcal{A} . Then define

$$I(e) = \min\{\alpha(A_0) | A_0 \in \mathcal{A}(e)\}.$$

The index I(G) is finally defined as

$$I(G) = \max\{I(e) | e \text{ is an edge of } G\}.$$

Clearly, the index I(G) is topological invariant. Now, recall the index n(G) (see [5]): $n(G)=\max\{|\mathcal{A}(e)| \mid e \text{ is an edge of } G\}$. Clearly, $I(G)\leq n(G)$. We shall give examples to show that in general I(G) is not equal to n(G).

Let G be a graph and $e = \langle V, W \rangle$ be an edge of G. For each edge e' contained in $\bigcup \{A \mid A \in \mathcal{A}(e)\}$, set $\mathcal{B}_e(e') = |\{A \in \mathcal{A}(e) \mid A \subset Cl(G - e')\}\}| + 1$.

The next proposition is convenient for calculating the index I(G).

(2.1) PROPOSITION. If $A_0 \in \mathcal{A}(e)$, then $\alpha(A_0) = \max\{\mathcal{B}_e(e') | e' \text{ is an edge contained in } A_0\}$.

Next, we give some examples in order to clarify the difference between I(G) and n(G).

(2.2) EXAMPLE. Let Δ be a 3-simplex with vertices a_i (i=0, 1, 2, 3) and let G be the 1-skeleton of Δ , i. e., $G = \Delta^1$. Consider the following arcs: $A_1 = \langle a_0, a_1 \rangle$, $A_2 = \langle a_0, a_2 \rangle \cup \langle a_2, a_1 \rangle$, $A_3 = \langle a_0, a_3 \rangle \cup \langle a_3, a_1 \rangle$, $A_4 = \langle a_0, a_2 \rangle \cup \langle a_2, a_3 \rangle \cup \langle a_3, a_1 \rangle$ and $A_5 = \langle a_0, a_3 \rangle \cup \langle a_3, a_2 \rangle \cup \langle a_2, a_1 \rangle$ (see Figure 1).

Figure 1.

Then $\alpha(A_1)=5$, $\alpha(A_j)=4$ (j=2,3,4,5). Thus $I(\langle a_0,a_1\rangle)=4$, hence I(G)=4. Clearly, n(G)=5. By the main result (3.1) of this paper, we see that $\mathrm{Fd}\,\omega^{-1}(t) \leq 4-1=3$ for any Whitney map ω for C(G) and $0\leq t\leq \omega(G)$. In fact, for any Whitney map ω for C(G), $\mathrm{Fd}\,\omega^{-1}(t)=3$ for some t (see (3.8) Example).

(2.3) Example. Let G be a graph as below (Figure 2).

Figure 2.

By using (2.1), we can calculate I(G) as follows:

Figure 3.

Then I(G)=6 and n(G)=9. Hence $\operatorname{Fd} \omega^{-1}(t) \leq 6-1=5$ for any Whitney map ω for C(G) and $0 \leq t \leq \omega(G)$.

(2.4) REMARK. Note that for any graph G, n(G)=k if and only if I(G)=k, for k=1, 2, 3.

246 H. Kato

3. The main theorem.

In this section, we prove the following main theorem (3.1). The proof is similar to one of $\lceil 5, (2.9) \rceil$, but we use more precise information.

(3.1) THEOREM. Let G be a graph and let ω be any Whitney map for C(G). Then $\operatorname{Fd} \omega^{-1}(t) \leq I(G) - 1$ for each $0 \leq t \leq \omega(X)$.

To prove (3.1), we shall need the following:

(3.2) (M. Lynch [14]). Let X be a continuum and let ω be any Whitney map for C(X). If $A \in C(X)$ and $\omega(A) \leq t \leq \omega(X)$, then the set

$$C_A(X, \boldsymbol{\omega}, t) = \{B \in \boldsymbol{\omega}^{-1}(t) | A \subset B\}$$

is a nonempty AR.

- (3.3) (S. Nowak [18]). Let X, Y be compacta. Then $\operatorname{Fd}(X \cup Y) \leq \max \left\{ \operatorname{Fd}(X), \operatorname{Fd}(Y), \operatorname{Fd}(X \cap Y) + 1 \right\}.$
- (3.4) LEMMA. Let G be a graph and let V and W be two vertices of G. Let $\mathcal{A}(V,W)=\{A\mid A \text{ is an arc in } G \text{ with end points } V \text{ and } W\}$. Suppose that $A_0\in\mathcal{A}(V,W)$. If $A_1,A_2,\cdots,A_m\in\mathcal{A}(V,W),\ \bigcup_{i=1}^m A_i \text{ does not contain } A_0 \text{ and } \bigcup_{i=0}^m A_i\neq\bigcup\{A\mid A\in\mathcal{A}(V,W)\}, \text{ then there is some } A_{m+1}\in\mathcal{A}(V,W) \text{ such that } A_{m+1}\neq A_i \text{ } (i=1,2,\cdots,m) \text{ and } \bigcup_{i=1}^{m+1} A_i \text{ does not contain } A_0.$

PROOF. There is some $A \in \mathcal{A}(V,W)$ such that $\bigcup_{i=0}^m A_i$ does not contain A. Choose two points S and T of $A \cap (\bigcup_{i=0}^m A_i)$ such that $A(S,T) \cap (\bigcup_{i=0}^m A_i) = \{S,T\}$, where A(S,T) denotes the arc from S to T in A. The set $\mathcal{K}(S) = \{k \mid S \in A_k\}$ and $\mathcal{K}(T) = \{k \mid T \in A_k\}$ are not empty. Suppose $k \in \mathcal{K}(S) \cap \mathcal{K}(T)$. Then let A_{m+1} be formed from A_k by replacing the arc $A_k(S,T)$ in A_k from S to T with the arc A(S,T). Obviously, $\bigcup_{i=0}^{m+1} A_i \supset A(S,T)$ and $A_0 - (\bigcup_{i=1}^{m+1} A_i) \neq \emptyset$. Hence A_{m+1} satisfies the desired conditions. Suppose next that $\mathcal{K}(S) \cap \mathcal{K}(T) = \emptyset$ and let k(S) and k(T) be in $\mathcal{K}(S)$ and $\mathcal{K}(T)$ respectively. Let $A_{k(S)}(S_1,S_2)$ be the closure of the component of $A_{k(S)} - A_{k(T)}$ which contains S; and let $A_{k(T)}(T_1,T_2)$ be the closure of the component of $A_{k(S)}$, we have the set $\{V,S_1,S,S_2,T_1,T_2,W\}$ which has the possible orderings:

- (i) $V \le T_1 < T_2 \le S_1 < S < S_2 \le W$,
- (ii) $V \leq T_1 \leq S_1 < S < S_2 \leq T_2 \leq W$,
- (iii) $V \le S_1 < S < S_2 \le T_1 < T_2 \le W$,

and three others with T_1 and T_2 interchanged. For the cases (i) and (ii), let $A_{m+1}=A_{k(S)}(V,T_1)\cup A_{k(T)}(T_1,T)\cup A(T,S)\cup A_{k(S)}(S,W)$; and for the case (iii), let $A_{m+1}=A_{k(S)}(V,S)\cup A(S,T)\cup A_{k(T)}(T,T_1)\cup A_{k(S)}(T_1,W)$. In all three cases,

one can easily verify that $A(S, T) \subset \bigcup_{i=0}^{m+1} A_i$ and $A_0 - \bigcup_{i=1}^{m+1} A_i \neq \emptyset$. Hence A_{m+1} satisfies the desired conditions. The remaining three cases are completed by interchanging T_1 and T_2 .

The next lemma is easily proved. We omit the proof.

- (3.5) LEMMA. If L and G are graphs and $L \subset G$, then $I(L) \leq I(G)$.
- (3.6) Lemma. Suppose that V and W are two vertices of a graph G and $|\mathcal{A}(V,W)| \geq 2$. For $A_0 \in \mathcal{A}(V,W)$, let

$$\alpha(A_0) = \max\{|\mathcal{A}| | \mathcal{A} \subset \mathcal{A}(V, W) \text{ such that } \bigcup \{A | A \in \mathcal{A}, A \neq A_0\} \text{ does not contain } A_0\}.$$

If ω is a Whitney map for C(G) and $C_v(G, \omega, t) \cap C_w(G, \omega, t) \neq \emptyset$ for some $t \in (0, \omega(X)]$, then

$$\operatorname{Fd}(C_V(G, \omega, t) \cap C_W(G, \omega, t)) \leq \alpha(A_0) - 2$$
, for each $A_0 \in \mathcal{A}(V, W)$.

PROOF. Note that $C_V(G, \boldsymbol{\omega}, t) \cap C_W(G, \boldsymbol{\omega}, t) = \bigcup \{C_A(G, \boldsymbol{\omega}, t) | A \in A(V, W)\}$. Consider the following polyhedron P with a triangulation K, i.e., |K| = P: The vertices of K are elements of $\mathcal{A}(V, W)$, and $\langle A_1, A_2, \cdots, A_m \rangle \in K$ if and only if $\boldsymbol{\omega}(\bigcup_{i=1}^m A_i) \leq t$. By (3.2), we can see that there is a map $f: P \to C_V(G, \boldsymbol{\omega}, t) \cap C_W(G, \boldsymbol{\omega}, t)$ such that $f(st(A; \operatorname{Sd} K)) \subset C_A(G, \boldsymbol{\omega}, t)$ for each vertex A of K, where $\operatorname{Sd} K$ is the barycentric subdivision of K and $st(A; \operatorname{Sd} K)$ denotes the closed star of the vertex $A \in K$. Then f is a homotopy equivalence (cf. $[\mathbf{5}, \mathbf{7}]$). Now, we shall show that $\operatorname{Fd} P \leq \alpha(A_0) - 2$ for each $A_0 \in \mathcal{A}(V, W)$. Let $A_0 \in \mathcal{A}(V, W)$. Suppose that A_0 is not a vertex of K (i.e., $\boldsymbol{\omega}(A_0) > t$). For each simplex $\langle A_1, A_2, \cdots, A_m \rangle$ of K, $\boldsymbol{\omega}(\bigcup_{i=1}^m A_i) \leq t$, hence $\bigcup_{i=1}^m A_i$ does not contain A_0 . Then $m \leq \alpha(A_0) - 1$, hence $\operatorname{Fd} P \leq \operatorname{dim} P \leq \alpha(A_0) - 2$. Now, we assume that A_0 is a vertex of K. Consider the following set.

$$abla(A_0) = \{\mathcal{A} \mid \mathcal{A} \text{ is a family of vertices of } K \text{ such that } \bigcup_{i=1}^m A_i \supset A_0, A_0 \text{ is not an element of } \mathcal{A} \text{ and } \langle A_1, A_2, \cdots, A_m \rangle \in K, \text{ where } \mathcal{A} = \{A_1, A_2, \cdots, A_m\} \}.$$

First, we assume that $\nabla(A_0) = \emptyset$. If $\langle A_1, A_2, \cdots, A_m \rangle$ is a simplex of K and $A_i \neq A_0$ $(i=1, 2, \cdots, m)$, then $\bigcup_{i=1}^m A_i$ does not contain A_0 , hence $\dim \langle A_1, A_2, \cdots, A_m \rangle \leq \alpha(A_0) - 2$. If there is an $(\alpha(A_0) - 1)$ -simplex $\langle A_0, A_1, \cdots, A_{\alpha(A_0)-1} \rangle$ in K, by (3.4) we have $\bigcup_{i=0}^{\alpha(A_0)-1} A_i = \bigcup \{A \mid A \in \mathcal{A}(V, W)\}$. Hence $\omega(\bigcup \{A \mid A \in \mathcal{A}(V, W)\}) \leq t$, which implies that $\mathrm{Fd}\, P = 0$. Thus we can conclude that $\mathrm{Fd}\, P \leq \alpha(A_0) - 2$.

Next, we assume that $\nabla(A_0) \neq \emptyset$. Let $s=\max\{|\mathcal{A}| | \mathcal{A} \in \nabla(A_0)\}$ and $s'=\min\{|\mathcal{A}| | \mathcal{A} \in \nabla(A_0)\} \geq 2$. If $\mathcal{A} \in \nabla(A_0)$ and $|\mathcal{A}| = s$, then $\langle \mathcal{A} \rangle = \langle A_1, A_2, \dots, A_s \rangle$ is a free face of $\langle A_0, \mathcal{A} \rangle = \langle A_0, A_1, A_2, \dots, A_s \rangle$ in P, i.e., $\langle A_0, \mathcal{A} \rangle$ is the unique

248 H. Kato

s-simplex containing $\langle \mathcal{A} \rangle$, where $\mathcal{A} = \{A_1, A_2, \cdots, A_s\}$. Let $P_s = |K - \bigcup \{\langle A_0, \mathcal{A} \rangle, \langle \mathcal{A} \rangle | \mathcal{A} \in \nabla(A_0) \text{ and } |\mathcal{A}| = s\}|$. Then P_s is a strong deformation retract of P_s , hence $P_s \cong P$. If $\mathcal{A} \in \nabla(A_0)$ and $|\mathcal{A}| = s - 1$, $\langle \mathcal{A} \rangle$ is a free face of $\langle A_0, \mathcal{A} \rangle$ in P_s . Let $P_{s-1} = |K - \bigcup \{\langle A_0, \mathcal{A} \rangle, \langle \mathcal{A} \rangle | \mathcal{A} \in \nabla(A_0) \text{ and } |\mathcal{A}| = s \text{ or } s - 1\}|$. Then $P_{s-1} \cong P_s$. If we continue this process, we have a polyhedron $P_{s'} = |K - \bigcup \{\langle A_0, \mathcal{A} \rangle, \langle \mathcal{A} \rangle | \mathcal{A} \in \nabla(A_0) \text{ and } s' \leq |\mathcal{A}| \leq s\}|$. Then we see that $P_{s'} \cong P$. As in the case $\nabla(A_0) = \emptyset$, we see that $P_s = P_s = P_s$

PROOF OF (3.1). By induction on the number i of edges of G, we shall prove this theorem. The statement is easily seen to be true for the case i=1. Assume that it is true for the case $i \leq k$. Let G be a graph which has (k+1) edges. Choose an edge $e=\langle V,W\rangle$ of G such that $\operatorname{Cl}(G-e)$ is connected. Set $L=\operatorname{Cl}(G-e)$. By (3.5), $I(L) \leq I(G)$. If $e \cap L=\{V\}$, then $\omega^{-1}(t)=\omega_L^{-1}(t)\cup\omega_e^{-1}(t)\cup C_V(G,\omega,t)$, where $\omega_L=\omega|C(L)$, $\omega_e=\omega|C(e)$. Then we can easily see that if $\omega(L)>t$, then $\omega^{-1}(t)\cong\omega_L^{-1}(t)$. Hence $\operatorname{Fd}\omega^{-1}(t)=\operatorname{Fd}\omega_L^{-1}(t)\leq I(L)-1\leq I(G)-1$. If $\omega(L)< t$, then $\omega^{-1}(t)=\omega_e^{-1}(t)\cup C_V(C,\omega,t)\cong C_V(G,\omega,t)$. Hence $\operatorname{Fd}\omega^{-1}(t)=0\leq I(G)-1$ (see (3.2)). Now, we may assume that $e\cap L=\{V,W\}$. Note that $I(G)\geq 2$. Then we have

$$\boldsymbol{\omega}^{-1}(t) = \boldsymbol{\omega}_L^{-1}(t) \cup C_V(G, \boldsymbol{\omega}, t) \cup C_W(G, \boldsymbol{\omega}, t) \cup \boldsymbol{\omega}_e^{-1}(t)$$
.

Consider the following two cases (i) $\omega(e) > t$ and (ii) $\omega(e) \leq t$.

Case (i): $\omega(e) > t$. If $\omega(L) \leq t$, then $\omega^{-1}(t) = C_V(G, \omega, t) \cup C_W(G, \omega, t) \cup \omega_e^{-1}(t)$. Note that $C_V(G, \omega, t) \cap C_W(G, \omega, t) = \bigcup \{C_A(G, \omega, t) \mid A \text{ is an arc from } V \text{ to } W \text{ in } L\}$. Then for any subfamily \mathcal{B} of arcs from V to W in L, $\bigcap \{C_A(G, \omega, t) \mid A \in \mathcal{B}\}$ $= C_{\bigcup (A \mid A \in \mathcal{B})}(G, \omega, t)$ is an AR (see (3.2)). Hence we can conclude that $C_V(G, \omega, t) \cup C_W(G, \omega, t)$ is an AR, which implies that $\omega^{-1}(t) \cong S^1$ (=the 1-sphere). Then $\mathrm{Fd}\,\omega^{-1}(t) = 1 \leq I(G) - 1$. If $\omega(L) > t$, then $\omega_L^{-1}(t)$ is a strong deformation retract of $\omega_L^{-1}(t) \cup C_V(G, \omega, t) \cup C_W(G, \omega, t)$. Hence

$$\operatorname{Fd}(\boldsymbol{\omega}_L^{-1}(t) \cup C_V(G, \boldsymbol{\omega}, t) \cup C_W(G, \boldsymbol{\omega}, t)) = \operatorname{Fd}\boldsymbol{\omega}_L^{-1}(t) \leqq I(L) - 1 \leqq I(G) - 1.$$

Since $(\omega_L^{-1}(t) \cup C_V(G, \omega, t) \cup C_W(G, \omega, t)) \cap \omega_e^{-1}(t)$ consists of two points, by (3.3) we can see that $\operatorname{Fd}\omega^{-1}(t) \leq I(G) - 1$.

Case (ii): $\omega(e) \leq t$. Then $\omega^{-1}(t) = \omega_L^{-1}(t) \cup C_V(G, \omega, t) \cup C_W(G, \omega, t)$. By (3.6), Fd($C_V(G, \omega, t) \cap C_W(G, \omega, t)$) $\leq I(e) - 2 \leq I(G) - 2$. Since $C_V(G, \omega, t)$ and $C_W(G, \omega, t)$ are ARs (see (3.2)), by (3.3) we see that Fd($C_V(G, \omega, t) \cup C_W(G, \omega, t)$) $\leq I(G) - 1$. If $\omega_L^{-1}(t) \cap (C_V(G, \omega, t) \cap C_W(G, \omega, t)) \neq \emptyset$, by (3.6)

$$\operatorname{Fd}(\boldsymbol{\omega}_{L}^{-1}(t) \cap (C_{V}(G, \boldsymbol{\omega}, t) \cap C_{W}(G, \boldsymbol{\omega}, t))) \leq \max\{0, I(G) - 3\}.$$

Hence we can see that $\operatorname{Fd}(\boldsymbol{\omega}_L^{-1}(t) \cap (C_V(G, \boldsymbol{\omega}, t) \cup C_W(G, \boldsymbol{\omega}, t))) \leq I(G) - 2$ (see (3.3)). By (3.3), we can conclude that

$$\operatorname{Fd} \boldsymbol{\omega}^{-1}(t) = \operatorname{Fd} \left(\boldsymbol{\omega}_L^{-1}(t) \cup (C_V(G, \boldsymbol{\omega}, t) \cup C_W(G, \boldsymbol{\omega}, t)) \right) \leqq I(G) - 1.$$

This completes the proof.

- (3.7) REMARK. In [19, Proposition 12], Petrus proved that if X is a dendrite, then $\omega^{-1}(t)$ is contractible for any Whitney map ω for C(X) and $t \in [0, \omega(X)]$. Hence, (3.1) for the case I(G)=1 follows from the result of Petrus.
- (3.8) Example. Let G be the graph as in (2.2). Let ω be any Whitney map for C(G). Set $t_0=\max\{\omega(\operatorname{Cl}(G-\langle a_i,\,a_j\rangle))|\ i\neq j\ (i,\,j=0,\,1,\,2,\,3)\}$. Let $t_0\leq t<\omega(G)$. Then we shall show that $\operatorname{Fd}\omega^{-1}(t)=I(G)-1=3$. Note that $\omega^{-1}(t)=C_{a_0}(G,\,\omega,\,t)\cup C_{a_1}(G,\,\omega,\,t)$. Then $C_{a_0}(G,\,\omega,\,t)\cap C_{a_1}(G,\,\omega,\,t)=\bigcup\{C_{A_i}(G,\,\omega,\,t)|\ i=1,\,2,\,3,\,4,\,5\}$. Consider the following polyhedron P as in the proof of (3.6): The vertices of P are A_i ($i=1,\,2,\,3,\,4,\,5$) and the simplexes are $\langle A_2,\,A_3,\,A_4,\,A_5\rangle$, $\langle A_1,\,A_2,\,A_3\rangle$, $\langle A_1,\,A_2,\,A_4\rangle$, $\langle A_1,\,A_2,\,A_5\rangle$, $\langle A_1,\,A_3,\,A_4\rangle$, $\langle A_1,\,A_3,\,A_5\rangle$ and their faces. Then $C_{a_0}(G,\,\omega,\,t)\cap C_{a_1}(G,\,\omega,\,t)\cong P\cong S^2\vee S^2$, where $S^2\vee S^2$ denotes the one point union of 2-spheres. Hence $\omega^{-1}(t)\cong \sum P\cong S^3\vee S^3$. Hence $\operatorname{Fd}\omega^{-1}(t)=3$.
 - By (3.1) and [5, (3.2)], we have
- (3.9) COROLLARY. Let $\underline{X} = \{G_n, p_{n+1}\}\$ be an inverse sequence of graphs. Suppose that $X = \text{inv} \lim \underline{X}$ and ω is any Whitney map for C(X). If $I(G_n) \leq m$ for each n, then $\operatorname{Fd} \omega^{-1}(t) \leq m-1$ for each $t \in [0, \omega(X)]$.

References

- [1] K. Borsuk, Theory of shape, Monograf. Mat., 59, PWN, Warszawa, 1975.
- [2] R. Duda, On the hyperspace of subcontinua of a finite graph, I, II, Fund. Math., 62 (1968), 265-286; 63 (1968), 225-255.
- [3] ——, Correction to the paper "On the hyperspace of subcontinua of a finite graph, I", Fund. Math., 69 (1970), 207-211.
- [4] H. Kato, Shape properties of Whitney maps for hyperspaces, Trans. Amer. Math. Soc., 297 (1986), 529-546.
- [5] ———, Whitney continua of curves, Trans. Amer. Math. Soc., **300** (1987), 367-381.
- [6] ——, Movability and homotopy, homology pro-groups of Whitney continua, J. Math. Soc. Japan, 39 (1987), 435-446.
- [7] ——, Whitney continua of graphs admit all homotopy types of compact connected ANR's, Fund. Math., 129 (1988), 161-166.
- [8] —, Various types of Whitney maps on n-dimensional compact connected polyhedra $(n \ge 2)$, Topology Appl., 28 (1988), 17-21.
- [9] ——, Shape equivalences of Whitney continua of curves, Canad. J. Math., 40 (1988), 217-227.
- [10] ——, Limiting subcontinua and Whitney maps of tree-like continua, Compositio Math., 66 (1988), 5-14.
- [11] J.L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc., 52 (1942),
- [12] J. Krasinkiewicz, Shape properties of hyperspaces, Fund. Math., 101 (1978), 79-91.

- [13] J. Krasinkiewicz and S. B. Nadler, Jr., Whitney properties, Fund. Math., 98 (1978), 165-180.
- [14] M. Lynch, Whitney levels in $C_p(X)$ are absolute retracts, Proc. Amer. Math. Soc., 97 (1986), 748-750.
- [15] ——, Whitney properties of 1-dimensional continua, Bull. Acad. Polon. Sci., 35 (1987), 473-478.
- [16] S. Mardešić and J. Segal, Shape theory, North-Holland Mathematical Library, 1982.
- [17] S. B. Nadler, Jr., Hyperspaces of sets, Pure and Appl. Math., 49, Dekker, New York, 1978.
- [18] S. Nowak, Some properties of fundamental dimension, Fund. Math., 85 (1974), 211-227.
- [19] A. Petrus, Contractibility of Whitney continua in C(X), General Topology Appl., 9 (1978), 275-288.
- [20] J. T. Rogers, Jr., Applications of Vietoris-Begle theorem for multi-valued maps to the cohomology of hyperspaces, Michigan Math. J., 22 (1975), 315-319.
- [21] ——, Dimension and Whitney subcontinua of C(X), General Topology Appl., 6 (1976), 91-100.
- [22] H. Whitney, Regular families of curves I, Proc. Nat. Acad. Sci. U.S.A., 18 (1932), 275-278.

Hisao Kato

Faculty of Integrated Arts and Sciences Hiroshima University Higashisenda-machi, Naka-ku Hiroshima 730 Japan