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1. Introduction.

By a continuum, we mean a compact connected metric space. Let X be a
continuum with metric d. By the hyperspace of X, we mean

C(X)={A| A is a nonempty subcontinuum of X}

with the Hausdorff metric dy, i.e., dy(A, B)=inf{e>0| U(A, ¢)DB and U(B, ¢)
» DA}, where U(4, e)={x=X | d(x, A)<e}. In [22], Whitney showed that for
any continuum X there exists a map o: C(X)—[0, o(X)] satisfying

(1) w({x})=0 for every x=X, and
(2) if A, BeC(X), ACB and A+ B, then w(A)<w(B).

Any such map w is called a Whitney map. We may think of the map w as
measuring the size of a continuum. It is well-known that every Whitney map
 is monotone, i.e., ™ '(¢) is a continuum for each 0<i{<w(X). The continuum
o () 0=Zt<w(X)) is called a Whitney continuum. Note that = !(0) is homeo-
morphic to X and o Y{w(X))={X}. Naturally, we are interested in the struc-
ture of w™'(t) 0<i<w(X)). Let X be a continuum. Then the fundamental
dimension FA(X) of X is defined as follows (see [1] or [16]) : Fd(X)=min{dim Z|Z
is a continuum such that Z has the same shape as X}. In particular, if Pisa
compact connected polyhedron, then Fd P=min{dim Z|Z is a compact connected
polyhedron such that Z has the same homotopy type as P}.

In and [2], Kelley and Duda investigated the dimension of C(G) for a
graph G. In particular, Duda described and analyzed polyhedral models for
hyperspaces of graphs (see and [3]). In [5, (2.4)], we showed that 0~'(?) is
a polyhedron for any graph G, any Whitney map o for C(G) and t=[0, o(G)]
(cf. [15]).

In [5, (2.9)], we defined an index n(G) for a graph G and showed that if
w is any Whitney map for C(G), then Fd o '(t)<n(G)—1 for each t. Also, we
showed that Whitney continua of graphs admit all homotopy types of compact
connected ANR’s ([7]).
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In this paper, we give a sharper result than [5, (2.9)]. We define a more
precise index I(G) (£n(G)) for a graph G and show that Fd o '(t)<I(G)—1 for
any Whitney map w for C(G) and 0=Zt=w(G). In general, I(G) is not equal to
n(G). : T
We refer readers to and for hyperspace theory, and to and

for shape theory.
The author wishes to thank the referee for his helpful comments, in parti-

cular, the proof of (3.4).

2. The index I(G).
Let G be a graph (=1-dimensional connected finite polyhedron with a tri-
angulation T). For each edge e=<V, W) of G, let
A(e)={A} A is an arc in G joining V and W}.
For each A,=J(e), let
D(Ay) = {A]| ACA(e) such that \ J{A| A= A, A+ A,} does not contain A,}
and let
a(Ay) = max{| A| | A=D(A)},
where | A| denotes the cardinal number of 4. Then define
I(e) = min{a(Ay)| A.= A(e)}.
The index I(G) is finally defined as
I(G) = max{I(e)| e is an edge of G}.
Clearly, the index I(G) is topological invariant. Now, recall the index n(G)
(see [5)): n(G)=max{|A(e)] | ¢ is an edge of G}. Clearly, [(G)<n(G). We
shall give examples to show that in general I(G) is not equal to n(G).
Let G be a graph and ¢=<V, W) be an edge of G. For each edge ¢’ con-

tained in \J{A| A= (e)}, set B () =|{A=A(e)] ACCHG—e')}|+1.
The next proposition is convenient for calculating the index I(G).

(2.1) PROPOSITION. If A,=(e), then a(A,)=max{Be')| e’ is an edge con-
tained in Ao}.

Next, we give some examples in order to clarify the difference between
I(G) and n(G).

(2.2) ExaAMPLE. Let 4 be a 3-simplex with vertices a; (=0, 1, 2, 3) and let
G be the l-skeleton of 4, i.e., G=4'. Consider the following arcs: A,=<a,, a.>,
A,=<a,, a)\UKa,, a, As=<a,, a;)\J<as, a, Ay=<a,, a»\JLa,, a»\JLas, a
and A;=<a,, a;>\U<a,, a,y\J<a,, a,y (see Figure 1).
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a;

as

ap a;

Figure 1.

Then a(A,)=5, a(A;)=4 (j=2,3,4,5). Thus Ia, a,>)=4, hence I(G)=4.
Clearly, n(G)=5. By the main result (3.1) of this paper, we see that Fd o (%)
<4—1=3 for any Whitney map o for C(G) and 0<t<w(G). In fact, for any
Whitney map w for C(G), Fd w~'(#)=3 for some ¢t (see (3.8) Example).

(2.3) ExaMPLE. Let G be a graph as below (Figure 2).

Figure 2.

By using (2.1), we can calculate I{G) as follows:

Be(e’): 6 Beie’): 5
I(e,)=6 6 6 I(e;)=6 ey 6 6
6 6 8 6
6 5
6 9 6 6 6
'e, 5
Bes(e’): 5 Beu(e’): 6
I(e;)=6 S8 AN I(e,)=6 6/ 6 e 6|\
5 9
6 6 6 6
5 6
Figure 3.

Then I(G)=6 and n(G)=9. Hence Fdw !(t)<6—1=5 for any Whitney map o
for C(G) and 0<t=w(G).

(2.4) REMARK. Note that for any graph G, n(G)==F~ if and only if I(G)=*¢,
for k=1, 2, 3.
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3. The main theorem.

In this section, we prove the following main theorem (3.1). The proof is
similar to one of [5, (2.9)], but we use more precise information.

(3.1) THEOREM. Let G be a graph and let w be any Whitney map for C(G).
Then Fdo'()ZI(G)—1 for each 0<t=Zw(X).

To prove (3.1), we shall need the following :

(3.2) (M. Lynch [14]). Let X be a continuum and let w be any Whitney map
for C(X). If AcC(X) and w(A)Zt<w(X), then the set

C.X, o,t)={Bew'(t)] ACB}
is a nonempty AR.

(3.3) (S. Nowak [18]). Let X, Y be compacta. Then
Fd(XUY) < max{Fd(X), FA(Y), FdA(XNY)+1}.

(3.4) LEMMA. Let G be a graph and let V and W be two vertices of G.
Let AV, W)={A| A is an arc in G with end points V and W}. Suppose that
A c AV, W). If Ay, Ay, -, A AV, W), \Ur,A; does not contain A, and
U A =\U{A| A= AV, W)}, then there is some Anpins AV, W) such that A,
+A; =1, 2, -, m) and \J'A; does not contain A,.

Proor. There is some A€ A(V, W) such that \ J*,A; does not contain A.
Choose two points S and T of AN(UM™,A4;) such that A(S, T)N(JA)={S, T},
where A(S, T) denotes the arc from S to T in A. The set X(S)={k| S=A,;}
and X(T)={k| T A,} are not empty. Suppose € KX(S)NK(T). Then let
A+, be formed from A, by replacing the arc A,(S,T) in A, from S to T
with the arc A(S, T). Obviously, \U'A,DA(S, T) and A,—(JrVA)+D.
Hence A.,.., satisfies the desired conditions. Suppose next that X(S)NK(T)=@
and let k(S) and k(T) be in KX(S) and KX (T) respectively. Let Ays(S;:, Sa) be
the closure of the component of Aysy—Awry which contains S; and let
Ayery(Ty, Ty) be the closure of the component of Aycry— Aiwsy which contains
T. We may assume that &(T)#0. In Ais,, we have the set {V, S,, S, S,, T4,
T,, W} which has the possible orderings : ‘

(1) VET, <T, =5, <S58 =W,

(ii) VET,. =S5 <S<S=T, =W,

i) VS5, <S<S,<T,.<T, =W,
and three others with T, and 7T, interchanged. For the cases (i) and (ii), let
An+1=Asy(V, TOJArr(Ty, TIJA(T, S)\JAwesy(S, W); and for the case (iii),
let Aps1=Ares(V, SYUA(S, T)JAvr(T, T)\JAwesy(Ty, W). In all three cases,
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one can easily verify that A(S, T)C\Ur'A; and A,—\Ur'A;+@. Hence Anis
satisfies the desired conditions. The remaining three cases are completed by
interchanging T, and T,.

The next lemma is easily proved. We omit the proof.
(3.5) LEMMA. If L and G are graphs and LCG, then I(L)XI(G).

(3.6) LEMMA. Suppose that V and W are two wvertices of a graph G and
| AV, W)|22. For A e A(V, W), let

a(Ay) = max{| A|| AC AV, W) such that
\U{A| A= A, A+ Ay} does not contain A,}.

If wis a Whitney map for C(G) and Cy(G, w, )NCw(G, w, )@ for some t<
0, w(X)], then

Fd(Cy(G, o, )NCw(G, w, 1)) = a(Ay)—2, for each A, AV, W).

PrOOF. Note that Cy(G, o, ONCw(G, w, H)=\J{C 4G, w, )| A= A(V, W)}.
Consider the following polyhedron P with a triangulation K, i.e., |K|=P: The
vertices of K are elements of JA(V, W), and <{A,, A,, -, Ay>=K if and only if
o\, A)<t. By (3.2), we can see that there is a map f: P-Cy(G, @, HiN
Cw(G, w, t) such that f(st(A; SAK)CC G, w, t) for each vertex A of K, where
Sd K is the barycentric subdivision of K and st(A; Sd K) denotes the closed star
of the vertex A=K. Then f is a homotopy equivalence (cf. [5, 7]). Now, we
shall show that Fd P<a(A,)—2 for each A, A(V, W). Let A, A(V, W). Suppose
that A, is not a vertex of K (i.e., w(Ao)>t). For each simplex {A,, A,, -+, An>
of K, o(\J™,A;)<t, hence \J,A; does not contain A,, Then m=Za(A4,—1,
hence Fd P<dim P<a(A,)—2. Now, we assume that A, is a vertex of K.
Consider the following set.

V(A = {A]| A is a family of vertices of K such that \ 7, A;DA,,
A, is not an element of A and {(A,, 4,, -+, A >EK,
where A={A,, A,, -+, An}}.

First, we assume that V(A)=@. If (A, 4,, -, A,> is a simplex of K
and A;# A4, (¢=1,2,-,m), then \J™;A; does mnot contain A, hence
dim <A, As, -+, And < alA,) —2. If there is an (a(A,) — 1)-simplex
(Ao, Ay, -+, Aacuap-v in K, by (3.4) we have \JggotA;=\U{A| A= A(V, W)}.
Hence w(\J{A| A= A(V, W)})<t, which implies that Fd P=0. Thus we can
conclude that Fd P<a(A,)—2.

Next, we assume that V(Ay)#@. Let s=max{|A|] A=V(A,)} and s'=
min{|A|| ASV(A)}=2. If A=T(A,) and | A|=s, then (A>=C(A;, A5, -, Asd
is a free face of (A, A>=<A,, A, As, -, Ao in P, i.e., (A,, A is the unique
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s-simplex containing {A), where A={A,, A,, ---, As}. Let P.=|K—\J{{4,, A,
{AY] A=V(A,) and | A|=s}|. Then P, is a strong deformation retract of P,
hence P,=P. If A=V(A4,) and | A]=s—1, {A) is a free face of {(A4,, A) in P..
Let Pi,=|K—\J{{A,, A, {A)| A=V(A,) and |A|=s or s—1}|. Then P,
=~ P,. If we continue this process, we have a polyhedron Py = | K—\_J{{A,, A, {A)|
AeV(A,) and s'< | A]<s}|. Then we see that Py =P. As in the case V(A,)
=g, we see that Fd P=Fd P, <a(A,)—2. This completes the proof.

PRrOOF OF (3.1). By induction on the number ; of edges of G, we shall
prove this theorem. The statement is easily seen to be true for the case ;=1.
Assume that it is true for the case :<k. Let G be a graph which has (k+1)
edges. Choose an edge e=<V, W) of G such that Cl(G—e) is connected. Set
L=Cl(G—e). By (3.5), (L)YSI(G). If enNL={V}, then o '(t)=wi'®)Jw; ()
Cy(G, w, t), where w;=w|C(L), w;=w|C(e). Then we can easily see that if
o/ L)>t, then o '()=wz'(t). Hence Fdo'()=Fdw'O)SI(L)-1ZI(G)—-1. If
w(L)<t, then 0 ') =07* )\ UC(C, 0, )=Cy(G, w, t). Hence Fdw~(#)=0<1(G)—1
(see (3.2)). Now, we may assume that eNL={V,W}. Note that I(G)=2.
Then we have

o () = w' ) VCHG, o, NJCw(G, w, Ve \(t).

Consider the following two cases (i) w(e)>t and (ii) w{e)<t.

-1/

Case (i): w(e)>t. If w(L)<t, then 0 '()=C(G, w, HHUCw(G, o, t)Jw,'(t).
Note that C,(G, w, ONCw(G, w, t)=\U{C .G, w, t)] A is an arc from V to W in
L}. Then for any subfamily @ of arcs from VtoW in L, N\{C .G, w, t)| A= B}
=CuUs14e0)(G,w, t) is an AR (see (3.2)). Hence we can conclude that
Cv(G,w, )\ UCw(G, w, t) is an AR, which implies that w~'(t)=S* (=the 1-sphere).
Then Fde '()=1=I(G)—1. If w(L)>t, then wz'(t) is a strong deformation
retract of w'(t)JC(G, w, )\ JCy(G, w, t). Hence

Fdw} @)U CuW(G, o, )\ JCw(G, w, 1) = Fdwr!(t) < I(L)—1 < I(G)—1.
Since (W' JCHG, o, HDUCw(G, o, )Nw;'(t) consists of two points, by (3.3)
we can see that Fde*()<I(G)—1.

Case (ii): w(e)<t. Then w ')=wi'(t)JC(G, o, )UCw(G, w,t). By (3.6),
Fd(Cy (G, w, ONCw(G, o, )ZI(e)—2Z21(G)—2. Since Cp(G,w,t) and Cy (G, w,t)
are ARs (see (3.2)), by (3.3) we see that Fd(C(G, 0, )\ JCw(G, o, )<I(G)—1.
If wz'ONCHG, o, HNCw(G, v, 1)# @, by (3.6)

Fd(oz'ON(Cw(G, o, HNCw(G, v, 1)) £ max{0, I(G)—3}.
Hence we can see that Fd (w;'()N(C (G, o, D UCw(G, w, ))ZI(G)—2 (see (3.3)).
By (3.3), we can conclude that

Fdo '(t) = Fd (0;' () U(Cy(G, 0, ) UCw(G, w, 1) < I(G)—1.
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This completes the proof.

(3.7) REMARK. In [19, Proposition 12], Petrus proved that if X is a dendrite,
then w~(¢) is contractible for any Whitney map w for C(X) and t=[0, w(X)].
Hence, (3.1) for the case I(G)=1 follows from the result of Petrus.

(3.8) ExAMPLE. Let G be the graph as in (2.2). Let w be any Whitney
map for C(G). Set t,=max{w(CUG—<as, a;d)| i#J (¢, j=0,1, 2, 3)}. Let {,=<
t<w(G). Then we shall show that Fde '(t)=I(G)—1=3. Note that o '(t)=
Coo(G, 0, ) UCo,(G, w, 1). Then Co.(G, w, )NC, (G, o, )=\U{C4,(G, o, )|i=
1, 2, 3, 4, 5}. Consider the following polyhedron Pas in the proof of (3.6): The
vertices of P are A; (=1, 2, 3,4,5) and the simplexes are {A,, As;, A, As),
Ay, As, Asy, (A, Asy A, (A, As, As), {4y, As, A, (A, A, As) and their
faces. Then C,,(G, w, )NC4 (G, w, t)=P=5*VS?, where S?\vS® denotes the one
point union of 2-spheres. Hence w™'()=>} P=S*VvS® Hence Fdw'({)=3.

By (3.1) and [5, (3.2)], we have

(3.9) COROLLARY. Let X={G,, Dnna+i} be an inverse sequence of graphs. Sup-
pose that X=invlim X and w is any Whitney map for C(X). If I(G,)<m for
each n, then Fdo '(t)m—1 for each t=[0, o(X)].

References

[1] K. Borsuk, Theory of shape, Monograf. Mat., 59, PWN, Warszawa, 1975.

[27] R.Duda, On the hyperspace of subcontinua of a finite graph, I, II, Fund. Math,,
62 (1968), 265-286; 63 (1968), 225-255.

[3] , Correction to the paper “On the hyperspace of subcontinua of a finite
graph, 1”, Fund. Math., 69 (1970), 207-211.

[4] H.Kato, Shape properties of Whitney maps for hyperspaces, Trans. Amer. Math.
Soc., 297 (1986), 529-546.

[5] , Whitney continua of curves, Trans. Amer. Math. Soc., 300 (1987), 367~
381.

[6] , Movability and homotopy, homology pro-groups of Whitney continua, J.
Math. Soc. Japan, 39 (1987), 435-446.

[7] , Whitney continua of graphs admit all homotopy types of compact
connected ANR’s, Fund. Math., 129 (1988), 161-166.

[8] , Various types of Whitney maps on n-dimensional compact connected
polyhedra (n=2), Topology Appl., 28 (1988), 17-21.

[9] , Shape equivalences of Whitney continua of curves, Canad. J. Math., 40
(1988), 217-227.

[10] , Limiting subcontinua and Whitney maps of tree-like continua, Compositio

Math., 66 (1988), 5-14.

[11] J.L.Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc., 52 (1942),
22-36.

(121 J. Krasinkiewicz, Shape properties of hyperspaces, Fund. Math., 101 (1978), 79-91.



250

[13)
[14]
[15]

[16]
[17]

(18]
[19]
[20]
[21]

[22]

H. KaTo

J. Krasinkiewicz and S.B. Nadler, Jr., Whitney properties, Fund. Math., 98 (1978),
165-180.
M. Lynch, Whitney levels in C,(X) are absolute retracts, Proc. Amer. Math.
Soc., 97 (1986), 748-750.

,  Whitney properties of 1-dimensional continua, Bull. Acad. Polon. Sci.,
35 (1987), 473-478.
S. Mardesi¢ and J. Segal, Shape theory, North-Holland Mathematical Library, 1982.
S.B. Nadler, Jr., Hyperspaces of sets, Pure and Appl. Math., 49, Dekker, New
York, 1978.
S. Nowak, Some properties of fundamental dimension, Fund. Math., 85 (1974),
211-227.
A. Petrus, Contractibility of Whitney continua in C(X), General Topology Appl.,
9 (1978), 275-288. .
J. T. Rogers, Jr., Applications of Vietoris-Begle theorem for multi-valued maps to
the cohomology of hyperspaces, Michigan Math. J., 22 (1975), 315-319.
————, Dimension and Whitney subcontinua of C(X), General Topology Appl.,
6 (1976), 91-100.
H. Whitney, Regular families of curves I, Proc. Nat. Acad. Sci. U.S. A., 18 (1932),
275-278.

Hisao KATO

Faculty of Integrated Arts and Sciences
Hiroshima University
Higashisenda-machi, Naka-ku

Hiroshima 730

Japan



	1. Introduction.
	2. The index $I(G)$ .
	3. The main theorem.
	(3.1) THEOREM. ...

	References

