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Introduction.

Lagrangian submanifolds play a special role in the geometry of symplectic
manifolds. From the point of view of quantization theory, or simply a cate-
gorical approach to symplectic geometry [Gu-S2], [W3], lagrangian submanifolds
are the “elements” of symplectic manifolds. Since the canonical transformations
between symplectic manifolds $P_{1}$ and $P_{2}$ are those whose graphs are lagrangian
in $P_{2}\cross P_{1}^{-}$ (the $"-,$ , indicating that the symplectic structure on $P_{1}$ has been
multiplied by $-1$ ), one calls arbitrary lagrangian submanifolds of a product
$P_{2}\cross P_{1}^{-}$ canonical relations. It turns out that, under a transversality or clean
intersection assumption, the composition of canonical relations is again canonical.
Thus the canonical relations can be taken as morphisms in a symplectic
“category” ; the quotation marks, which are present because of the difficulties
raised by the transversality condition, can be removed if we restrict attention
to symplectic vector spaces and linear canonical relations.

The purpose of this paper is to extend the lagrangian calculus from sym-
plectic to Poisson manifolds, $i$ . $e.$ , manifolds foliated by symplectic manifolds of
varying dimensions. The notion of lagrangian submanifold becomes less useful
in this case (it is not even so clear how to define it when the dimension of the
symplectic leaves jumps), and in fact it is the coisotroPic submanifolds which
will play the essential role. A closed submanifold $C$ of a Poisson manifold $P$

is coisotropic if, for every function $f\in C^{\infty}(P)$ vanishing on $C$ , the hamiltonian
vector field $X_{f}$ is tangent to $C$ ; equivalently, the set $I_{C}=\{f\in C^{\infty}(P)|f_{1C}\equiv 0\}$ , an
ideal with respect to multiplication, is required to be a subalgebra for the Poisson
bracket. The latter definition is purely algebraic and shows that the notion of
coisotropic extends as far as Poisson algebras.

Our main results are as follows.

1) The graph of $f:P_{1}arrow P_{2}$ is coisotropic in $P_{2}\cross P_{1}^{-}$ if and only if $f$ is a
Poisson map.

2) Under suitable clean intersection assumptions, the composition of coiso-
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tropic relations is coisotropic.
3) If $\phi:Parrow Q$ is a submersion, $P$ a Poisson manifold, then $\phi^{*}(C^{\infty}(Q))$ is a

Poisson subalgebra if and only if the equivalence relation $\phi^{-I}\circ\phi$ is coisotropic.
4) If $C\subset P$ is coisotropic, the normal bundle $T_{C}P/TC$ carries a natural

Poisson structure “dual” to a Lie algebroid structure on the conormal bundle
$TC^{\perp}\subset T_{c}^{*}P$ ; the latter is inherited in a natural way from the Lie algebroid
structure on $T^{*}P$ associated to the Poisson structure.

As an application of the coisotropic calculus, we derive the basic properties
of Poisson groupoids. A Poisson groupoid is a Lie groupoid $G$ with a Poisson
structure for which the graph of multiplication is coisotropic in $G\cross G^{-}\cross G^{-}$ .
The special cases where the groupoid is a group or the Poisson manifold is
symplectic correspond precisely to the Poisson groups of Drinfel’d [D] and the
symplectic groupoids of Karasev [K] and the author [Ct-D-W], [W5].

We give a new proof and generalization of the reduction theorem of
Semenov-Tian-Shansky [S]. In addition, extending Drinfel’d’s work in the case
of Poisson groups, we begin a study of the duality of Poisson groupoids, a
concept which reveals new connections between familiar examples.
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Department of Mathematics of the University of Tokyo. I author would like
to thank the members and staff of that department and in particular Prof. T.
Ochiai for their kind hospitality. I am also grateful to Prof. K. Mikami of Akita
University for his comments on the manuscript.

1. Composition of Poisson relations.

(1.1) Poisson structures. We will be using Poisson structures on various
levels, so we recall the definitions here.

(1.1.1) DEFINITION. (a) A Poisson structure on a commutative algebra $A$ is
a Lie algebra structure $\{$ , $\}$ on $A$ such that, for each element $h\in A$ , the operator
$X_{h}$ : $f-\{f, h\}$ is a derivation of the (commutative) multiplication.

(b) A Poisson structure on a vector space $V$ is a skew-symmetric bilinear
form on $V^{*}$ .

(c) A Poisson structure on a (smooth) vector bundle $E$ is a (smooth) field of
Poisson structures on the fibres of $E$ .

(d) A Poisson structure on a manifold $P$ is a Poisson structure on the com-
mutative algebra $C^{\infty}(P)$ .

(1.1.2) DEFINITION. A commutative algebra [manifold, vector space, vector
bundle] with a Poisson structure is called a Poisson algebra [manifold, vector
space, vector bundle].
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There are various well known connections between the objects defined in
(1.1.1). A Poisson structure on the manifold $P$ defines a Poisson structure $\pi$

on the vector bundle $TP$ by

(1.1.3) $\pi(df, dg)=\{f, g\}$ .
Conversely, a Poisson structure on $TP$ defines a bracket operation on $C^{\infty}(P)$ by
(1.1.3) which is a Poisson structure on $P$ if and only if the Schouten bracket
$[\pi, \pi]$ of $\pi$ with itself vanishes. A Poisson structure on the vector space $V$

defines a (constant) Poisson structure on $V$ considered as a manifold.

(1.2) Coisotropic subobjects. The most useful subobjects of Poisson struc-
tures turn out to be those which we call coisotropic.

(1.2.1) DEFINITION. (a) A coisotrope in a Poisson algebra $A$ is a subset $I$

which is an ideal for the commutative algebra structure and a subalgebra for
the Lie algebra structure.

(b) A subspace $W$ of a Poisson vector space $V$ is coisotrolnc if the annihilator
$W^{\perp}\subset V^{*}$ is isotropic for the Poisson structure, $i$ . $e.,$ $\pi(\omega_{1}, \omega_{2})=0$ whenever $\omega_{1},$ $\omega_{2}$

$\in W^{\iota}$ .
(c) A subbundle $F$ of a Poisson vector bundle $E$ is c(risotroffic if $F^{\perp}$ is

isotropic in $E^{*}$ .
(d) A submanifold $M$ of a Poisson $P$ is coisotropic if $TM$ is coisotropic in

the restricted tangent bundle $T{}_{M}P,$ $i$ . $e.$ , if each tangent space $T_{m}M$ is coiso-
tropic in $T{}_{m}P$.

(1.2.2) PROPOSITION. Let $M$ be a closed submanifold of a Poisson manifold
P. Then the following con&tims are equivalent.

(a) $M$ is consotropic.
(b) The ideal $I_{M}\subset C^{\infty}(P)$ consisting of functions which are zero on $M$ is a

coisotrope.
(c) For every $h\in I_{M}$ , the hamiltonian vector field $X_{h}$ is tangent to $M$.

PROOF. If $f$ and $g$ belong to $I_{M}$ , then the restriction to $M$ of $df$ and $dg$

are sections of $TM^{\perp}\subset T_{M}^{*}P$. Using (1.1.3), we find that $\{f, g\}\in I_{M}$ if and only
if $\pi(df_{1M}, dg_{1M})=0$ . Since all sections of $TM^{\perp}$ are realizable in this way, we
have the equivalence of (a) and (b).

Noting that a vector field on $P$ is tangent to $M$ if and only if it annihilates
$I_{A^{r}}$ , we conclude immediately that (b) and (c) are equivalent. $\square$

(1.2.3) REMARK. The notion of coisotropic makes sense for submanifolds
which are locally closed or even immersed. In the locally closed case, (1.2.2)

is still valid since $M$ is dense in the set $\overline{M}$ where all the elements of $I_{M}$ vanish.
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On the other hand, for an immersed submanifold such as a dense leaf of a
foliation, (1.2.2) fails because $I_{M}$ is too small to detect any properties of $M$.

We note that a subspace $W\subset V$ is coisotropic if and only if it is coisotropic
as a submanifold. In this setting as well as that of vector bundles, we have
the following easily verified characterization of coisotropicity.

(1.2.4) PROPOSITION. Let $E$ be a Poisson vector bundle and $\tilde{\pi};E^{*}arrow E$ the
operator inducing the Pozsson structure, defined by $\langle\omega_{1},\tilde{\pi}\omega_{2}\rangle=\pi(\omega_{1}, \omega_{2})$ . Then the
subbundle $F\subset E$ is $c\dot{\alpha}sotropc$ if and only if $\tilde{\pi}(F^{\perp})\subset F$ .

It is also possible to study coisotropic objects by reducing to the symplectic
case, in the following way. If $V$ is a Poisson vector space, then $\tilde{\pi}(V^{*})$ inherits
a nondegenerate Poisson structure. In fact, $\pi$ passes naturally to a form $\Omega$ on
$V^{*}/Ker\tilde{\pi}\cong\tilde{\pi}(V^{*})$ . Since $\Omega$ is nondegenerate, $i.e.,$ $\Omega$ is a symplectjc structure on
$\tilde{\pi}(V^{*})$ , the inverse $\tilde{\Omega}^{-1}$ defines a nondegenerate Poisson structure $\pi_{s}$ on $\tilde{\pi}(V^{*})$ .

(1.2.5) PROPOSITION. Let $W$ be a subspace of the Ponsson vector space $V$.
Then the following condrtions are equivalent:

(a) $W$ is $c\alpha sotro1nc$ in $V$ .
(b) $W\cap\tilde{\pi}(V^{*})$ is coisotrotric in $V$ .
(c) $W\cap\tilde{\pi}(V^{*})$ is $cmsotro\ovalbox{\tt\small REJECT} c$ in $\tilde{\pi}(V^{*})$ with respect to $\pi_{s}$ .

PROOF. (b) implies (a) because any subspace containing a coisotropic one is
coisotropic. Next, we note that

$\tilde{\pi}([W\cap\tilde{\pi}(V^{*})]^{\perp})=\tilde{\pi}(W^{\perp}+\tilde{\pi}(V^{*})^{\perp})=\tilde{\pi}(W^{\perp}+Ker\tilde{\pi})=\tilde{\pi}(W^{\perp})$ .
If $W$ is coisotropic, $\tilde{\pi}(W^{\perp})\subset W$ . Since $\tilde{\pi}(W^{\perp})$ is obviously contained in $\tilde{\pi}(V^{*})$ as
well, we conclude that (a) and (b) are equivalent.

Now let $i:\tilde{\pi}(V^{*})arrow V$ be the inclusion and denote its dual by $p;V^{*}arrow\tilde{\pi}(V^{*})^{*}$ .
For a subspace $U\subset\tilde{\pi}(V^{*})$ , its annihilators $U^{\perp}$ and $U^{0}$ in $V^{*}$ and $\tilde{\pi}(V^{*})^{*}$ respec-
tively are related by $U^{\perp}=p^{-1}(U^{0})$ . From the commutativity of the diagram,

we conclude that $\tilde{\pi}(U^{\perp})=\tilde{\pi}(p^{-1}U^{0})=i\circ\tilde{\pi}_{s}(U^{0})=\tilde{\pi}_{s}(U^{0})$ . So $\tilde{\pi}(U^{\perp})\subset U$ if and only
if $\pi_{s}(U^{0})cU$ , from which we have the equivalence of (b) and (c). $\square$

Applying Proposition 1.2.5 pointwise, we have:
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(1.2.6) COROLLARY. Let $M$ be a submanifold of the Poisson manifold $P$

which has clean intersection with each symplectic leaf of P. Then $M$ is $coisotro\ovalbox{\tt\small REJECT} c$

if and only if its intersection with each symplectjc leaf is coisotrotnc in $P$, or,
equivalently, in the symplectjc leaf.

(1.3) Poisson relations. Let $P_{1}$ and $P_{2}$ be any sets; the graph of a trans-
formation $f:P_{2}arrow P_{1}$ will be defined (contrary to the most common convention)

as $\{(f(y), y)|y\in P_{2}\}$ . Accordingly, if $R\subset P_{1}\cross P_{2}$ and $S\subset P_{2}\cross P_{3}$ are subsets,
considered as relations $R:P_{2}arrow P_{1}$ and $S:P_{3}arrow P_{2}$ , the composite relation $R\circ S$ :
$P_{3}arrow P_{1}$ has as graph

{ $(x,$ $z)\in P_{1}\cross P_{3}|(x,$ $y)\in R$ and $(y,$ $z)\in S$ for some $y\in P_{2}$ }.

(1.3.1) DEFINITION. If $P_{1}$ and $P_{2}$ are Poisson manifolds, a Poisson relation
$R:P_{2}arrow P_{1}$ is a coisotropic submanifold of the product $P_{1}\cross P_{2}^{-}$ . Poisson relations
between Poisson vector spaces and bundles are defined analogously.

We will see in the next subsection that the graph of a mapping is coiso-
tropic if and only if the mapping is Poisson. For now, we go right ahead to
consider the composition of Poisson relations. Following the pattern set by
Guillemin [Gu] in the $symplectic/lagrangian$ case, we begin with the linear case.

(1.3.2) PROPOSITION. Let $W_{1}$ and $W_{2}$ be Pozsson vector spaces, $R$ and $C$

$c\alpha sotroffic$ subspaces of $W_{1}\cross W_{2}$ and $W_{2}$ respectively. Then

$R(C)=$ { $x\in W_{1}|(x,$ $y)\in R$ for some $y\in C$ }

is coisotropc in $W_{1}$ .
PROOF. Let $\pi$ denote the product Poisson structure on $W=W_{1}\cross W_{2}$ . Then

$\tilde{\pi}(W^{*})=\tilde{\pi}_{1}(W_{1}^{*})\cross\tilde{\pi}_{2}(W_{2}^{*})$ . Let $R’=R\cap\tilde{\pi}(W^{*})$ and $C’=C\cap\tilde{\pi}_{2}(W_{2}^{*})$ . By Proposition
1.2.5, $R’$ and C’ are coisotropic in the nondegenerate Poisson vector spaces
$\tilde{\pi}_{1}(V_{1}^{*})\cross\tilde{\pi}_{2}(V_{2}^{*})$ and $\tilde{\pi}_{2}(V_{2}^{*})$ respectively. Since $R(C)$ contains $R’(C’)$ , it suffices
to show that $R’(C’)$ is coisotropic in $\tilde{\pi}_{1}(V_{1}^{*});i$ . $e.$ , we are reduced to the sym-
plectic case.

In a symplectic vector space, a subspace is coisotropic if and only if it
contains a lagrangian subspace, so we are reduced to the case where $V_{1}$ and $V_{2}$

are symplectic and $R$ and $C$ are lagrangian. But this case is just Lemma 1,
p. 26, in [Gu]. $\square$

(1.3.3) REMARK. A direct proof in the Poisson case can be given based
on the following lemma from linear algebra: Let $R^{*}=\{(\omega_{1}, \omega_{2})\in W_{1}^{*}\cross W_{2}^{*}|\langle\omega_{1}, x_{1}\rangle$

$=\langle\omega_{2}, x_{2}\rangle$ for all $(x_{1}, x_{2})\in R$ }; then $R(C)^{\perp}=R^{*}(C^{\perp})$ .
We now have:

(1.3.4) THEOREM. Let $V_{1},$ $V_{2}$ and $V_{3}$ be Pozsson vector spaces, $S:V_{2}arrow V_{1}$

and $T:V_{3}arrow V_{2}$ linear Ponsso relations. Then $S\circ T;V_{3}arrow V_{1}$ is a Poisson relation.
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PROOF. Let $W_{1}=V_{1}\cross V_{3}^{-}\cross V_{2}^{-}\cross V_{3},$ $W_{2}=V_{2}^{-}\cross V_{3},$ $C=T$ and $R=\{(x_{1},$ $X_{3},$ $x_{2}$ ,
$x_{3})|(x_{1}, x_{2})\in S\}$ . $C$ is coisotropic because $T$ is (changing the sign of the Poisson
structure in $V_{2}\cross V_{3}^{-}$ does not cause any Problem); $R$ is, uP to reordering of
factors, the product of $S\subset V_{1}\cross V_{2}^{-}$ and the diagonal $\Delta_{V_{3}}\subset V_{3}^{-}\cross V_{3}$ , which is seen
$t_{O}$ be coisotropic by a direct calculation.

Applying Proposition 1.3.2, we find that $R(C)$ is coisotropic. But,

$R(C)=$ { $(x_{1},$ $x_{3})\in V_{1}\cross V_{3}|(x_{1},$ $x_{3},$ $x_{2},$ $x_{3})\in R$ and $(x_{2},$ $x_{3})\in T$ for some $x_{2}\in V_{2}$ }

$=$ { $(x_{1},$ $x_{3})\in V_{1}\cross V_{3}|(x_{1},$ $x_{2})\in S$ and $(x_{2},$ $x_{3})\in T$ for some $x_{2}\in V_{2}$ }

$=S\circ T$ . $\square$

Theorem 1.3.4, together with the obvious statements about identities and
inverses, implies tbat the Poisson vector spaces and Poisson relations form a
category containing that of symplectic vector spaces and canonical relations (see

[Gu-S2], [W3]).

To extend Theorem 1.3.4 to vector bundles, we need to make an assump-
tion to insure that the composition is smooth.

(1.3.5) COROLLARY. Let $E_{1},$ $E_{2},$ $E_{3}$ be Poisson vector bundles, $S:E_{2}arrow E_{1}$

and $T;E_{3}arrow E_{2}$ linear Poissm relations ( $i$ . $e.$ , coisotropic subbundles of $E_{1}\cross E_{2}^{-}$

and $E_{2}\cross E_{3}^{-}$ respectjvely). If $S\circ T\subset E_{1}\cross E_{3}^{-}$ is a subbundle, it is a Poisson relation.

(1.3.6) REMARKS. (a) A sufficient condition for $S\circ T$ to be a subbundle is
that $S\cross T\cap E_{1}\cross\Delta_{E_{2}}\cross E_{3}$ have constant dimension in $E_{1}\cross E_{2}\cross E_{2}\cross E_{3}$ .

(b) The condition that $S\circ T$ must be a subbundle prevents the Poisson vector
bundles and relations from forming a category.

Going on to manifolds, we need to make the usual assumptions to insure
that composition behaves nicely.

(1.3.7) DEFINITION. Let $S:P_{2}arrow P_{1}$ and $T:P_{3}arrow P_{2}$ be relations.
(a) We say that $S$ and $T$ form a clean pair if

(i) the submanifolds $Q=S\cross T$ and $D=P_{1}\cross\Delta_{P_{2}}\cross P_{3}$ intersect cleanly in
$P_{1}\cross P_{2}\cross P_{2}\cross P_{3}$ ; $i.e.,$ $Q\cap D$ is a submanifold with $T(Q\cap D)=T_{Q\cap D}Q\cap T_{Q\cap D}D$ ;

(ii) the restriction to $Q\cap D$ of the projection $pr_{13}P_{1}\cross P_{2}\cross P_{2}\cross P_{3}arrow P_{1}\cross P$

has constant rank.
(b) If (i) and (ii) are satisfied, we call the pair $(S, T)$ very clean if:

(iii) $S\circ T$ is a submanifold of $P_{1}\cross P_{3}$ ; and
(iv) the map $pr_{13}$ from $Q\cap D$ onto $S\circ T$ is a submersion.

(1.3.8) REMARK. In the $symplectic/lagrangian$ case, (i) implies (ii) in
Definition 1.3.7, but this is not so in general.

We can now state the main result of this section.
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(1.3.9) THEOREM. Let $S:P_{2}arrow P_{1}$ and $T:P_{3}arrow P_{2}$ be a very clean pair of
Poisson relations. Then $s_{\circ}\tau;P_{3}arrow P_{1}$ is a Poisson relation.

PROOF. The assumption that $(S, T)$ is a clean pair implies that, for each
$(p_{1}, p_{2})\in S$ and $(P_{2}, p_{3})\in T$ , the tangent space of $S\circ T$ at $(p_{1}, p_{3})$ equals $T_{(p_{1}.p_{2})}S$

$\circ T_{(p_{2}.p_{3})}T$ . Now Theorem 1.3.4 and Definition 1.2.1 (d) imply that $S\circ T$ is
coisotropic. $\square$

(1.3.10) REMARK. Although the class of Poisson relations is closed under
inversionand very clean composition, the difficulties connected with arbitrary
composition prevent the Poisson relations from being the mappings of a category.

2. Examples of Poisson relations and composition.

(2.1) Applying Poisson relations to coisotropic submanifolds. Let $O$ be
a Poisson manifold with just one point (and the zero Poisson structure). Then
$P\cross O^{-}\cong P$ for any Poisson manifold $P$, and so the coisotropic submanifolds $C\subset P$

are just the Poisson relations from $O$ to $P$.

(2.1.1) DEFINITION. Let $R:P_{2}arrow P_{1}$ be a relation and $C\subset P_{2}$ a submanifold.
We say that $C$ is in [very] clean position for $R$ if $R:P_{2}arrow P_{1}$ and $C:0arrow P_{2}$

are a [very] clean pair of relations.

(2.1.2) PROPOSITION. If a coisotrofflc submanifold $C\subset P_{2}$ is in very clean
posttion for a Poisson relation $R:P_{2}arrow P_{1}$ , then $R(C)$ is a coisotrolnc submanifold
of $P_{1}$ .

PROOF. There are two easy proofs available to us at this point. The first
is to notice that $R(C)=R\circ C$ , where $C$ is considered as a Poisson relation $0arrow$

$P_{2}$ , and then to apply Theorem 1.3.9. The second is to apply Proposition 1.3.2
pointwise. $\square$

(2.2) Poisson maps.

(2.2.1) PROPOSITION. Let $P_{1}$ and $P_{2}$ be Poisson manifolds, $i:Marrow P_{2}$ the
inclusion of any submamfold, and $\phi:Marrow P_{1}$ a $C^{\infty}$-mapping. Then the graph
$R=(id_{P_{1}}\cross i)(\phi)=\{(\phi(x), x)|x\in M\}\subset P_{1}\cross P_{2}^{-}$ is a Poisson relation if and only if
(2.2.2) for any $C^{\infty}$-functions $f_{1},$ $h_{1}$ on $P_{1}$ and $f_{2},$ $h_{2}$ on $P_{2}$ such that $\phi^{*}f_{1}=i^{*}f_{2}$ ,

$\phi^{*}h_{1}=i^{*}h_{2}$ , we have $\phi^{*}\{f_{1}, h_{1}\}=i^{*}\{f_{2}, h_{2}\}$ .
When these conditions hold, $M$ is necessarily cotsotropic.

PROOF. The ideal $I_{M}\subset C^{\infty}(P_{1}\cross P_{2})$ of functions vanishing on $R$ is generated
by functions of the type $(f_{1}-f_{2})(x, y)=f_{1}(x)-f_{2}(y)$ for $f_{1}\in C^{\infty}(P_{1})$ and $f_{2}\in C^{\infty}(P_{2})$

such that $\phi^{*}f_{1}=i^{*}f_{2}$ .
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On $P_{1}XP_{2}^{-},$ $\{f_{1}-f_{2}, h_{1}-h_{2}\}=\{f_{1}, h_{1}\}-\{f_{2}, h_{2}\}$ , so $\{I_{R}, I_{R}\}\subset I_{R}$ if and only if
condition (2.2.2) holds.

Finally, if $R$ is coisotropic, so is $R^{-1}(P_{1})=M$ by Proposition 2.1.2. In fact,
the submanifolds $R^{-1}\cross P_{1}=\{(x, \phi(x), y)|x\in M, y\in P_{1}\}$ and $P_{2}\cross\Delta_{P_{1}}=\{(z, w, w)|$

$z\in P_{2},$ $w\in P_{1}$ } intersect transversely and thus cleanly along $K=\{(x, \phi(x),$ $\phi(x))|$

$x\in M\}$ in $P_{2}\cross P_{1}\cross P_{1}$ , and the projection of $K$ into $P_{2}$ is a diffeomorphism with
M. $\square$

(2.2.3) COROLLARY. Let $\phi:P_{2}arrow P_{1}$ be a map between $P\alpha sson$ manifolds.
Then $\phi$ is a Poisson map if and only if its graph is a Pavsson relation.

(2.2.4) REMARK. Another proof of Proposition 2.2.1 can be given by be-
ginning with the linear version and applying it to the derivative $T\phi$ . With
our present approach, one may derive the linear case from the general one.

(2.2.5) COROLLARY. Let $\phi:P_{1}arrow P_{2}$ be a Poisson map.
(a) If $C$ is a $c\alpha sotroffic$ submanifold of $P_{2}$ such that $\phi^{-1}(C)$ is a sub-

mamfold with $T(\phi^{-1}C)=(T\phi)^{-1}(TC)$ ($e.g$ . if $\phi$ is transverse to $C$ ), then $\phi^{-1}(C)$ is
coisotropic.

(b) If $D$ is a coisotropc submanifold of $P_{1}$ such that $\phi|_{P_{1}}$ is of constant rank
and $\phi(D)$ is a submamfold of $P_{2}$ , then $\phi(D)$ is coisotropic.

PROOF. In each case, Proposition 2.1.2 applies, with $R=\phi^{-1}$ : $P_{2}arrow P_{1}$ for (a)

and $R=\phi$ for (b). $\square$

(2.3) Equivalence relations and reduction. If $\phi:Parrow Q$ is a (set theoretic)

mapping, then $\phi^{-1}\circ\phi:Parrow P$ is the equivalence relation defined by $x\sim y$ if and
only if $\phi(x)=\phi(y)$ .

(2.3.1) PROPOSITION. Let $P$ be a Poisson mamfold, $\phi$ a submerston from $P$

to the manifold Q. Then $Q$ has a (unique) Poisson structure making $P$ into a
Poisson map if and only if $\phi^{-1}\circ\phi$ is a Poisson relation.

PROOF. We note first that $\phi^{-1}$ : $Qarrow P$ and $\phi:Parrow Q$ form avery clean pair
of relations. In fact, $\phi^{-1}\cross\phi=\{(x, \phi(x), \phi(y), y)|x, y\in P\}$ is transverse to $P\cross$

$\Delta_{Q}\cross P$ because $\phi$ is a submersion. The intersection $\{(x, \phi(x),$ $\phi(y),$ $y$ ) $|\phi(x)=$

$\phi(y)\}$ is then embedded in $P\cross P$ by the projection. It follows from Theorem
1.3.9 and Corollary 2.2.3 that $\phi^{-1_{O}}\phi$ is coisotropic if $\phi$ is a Poisson map.

The proof of the converse is similar to that of Proposition 2.2.1. We $mus_{t}$

show that $\phi^{*}(C^{\infty}(Q))$ is a subalgebra of $C^{\infty}(P)$ with respect to the Poisson
bracket. For $f_{1}$ and $f_{2}$ in $C^{\infty}(Q)$ , define $g_{i}(x, y)=f_{i}(\phi(x))-f_{i}(\phi(y))$ on $P\cross P^{-}$ .
Both $g_{1}$ and $g_{2}$ vanish on the submanifold $\phi^{-1}\circ\phi\subset P\cross P^{-};$ since $\phi^{-1_{O}}\phi$ is coiso-
tropic, so does their bracket
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$\{g_{1}, g_{2}\}(x, y)=\{f_{1^{Q}}\phi, f_{2^{\circ}}\phi\}(x)-\{f_{1}\circ\phi, f_{2^{\circ}}\phi\}(y)$ .
Thus $\{f_{1^{Q}}\phi, f_{2}\circ\phi\}$ is constant on fibres of $\phi$ and so, since $\phi$ is a submersion,
it lies in $\phi^{*}(C^{\infty}(Q))$ . $\square$

(2.3.2) REMARK. If instead of a fibration of the Poisson manifold $P$ we
merely have a foliation, then a local application of the proposition shows that
the sheaf of germs of functions constant on leaves is closed under Poisson
bracket if and only if the equivalence relation defined by the leaves of the
foliation is a (possibly immersed) coisotropic submanifold of $P\cross P^{-}$ . In the
symplectic case, this gives a new characterization of symplectically complete
foliations [L].

A proof similar to that of Proposition 2.3.1, using the full strength of
Proposition 2.2.1, leads to the following more general result.

(2.3.3) PROPOSITION. Let $i:Marrow P$ be the inclusion of a submamfold in the
Pmsson manifold $P$ and let $\phi:Parrow Q$ be a submersion. Then $(i\cross i)(\phi^{-1_{Q}}\phi)=$

{ $(x,$ $y)|x,$ $y\in M$ and $\phi(x)=\phi(y)$ } is a Poisson relation from $P$ to $P$ if and only

if $M$ is cmsotropic and

(2.3.4) there is a (unique) Poisson structure on $Q$ such that, for any $C^{\infty}$-functions
$f_{1},f_{2}$ on $Q$ and $h_{1},$ $h_{2}$ on $P$ such that $\phi^{*}f_{i}=i^{*}h_{i}$ we have $\phi^{*}\{f_{1},f_{2}\}=i^{*}\{h_{1}, h_{2}\}$ .

In the language of [Ma-R], condition (2.3.4) says that the triple $(P,$ $M$,
Ker $T\phi$ ) is Poisson reducible; $i.e.$ , Poisson brackets on $Q$ can be defined by
pullback to $M$ and extension to $P$, followed by restriction to $M$ and push-forward
to $Q$ . Note that Ker $T\phi$ must contain the characteristic “distribution” $\tilde{\pi}(TM^{\perp})$

of the coisotropic submanifold $M$ generated by the hamiltonian vector fields of
$I_{M}$ , but it could be larger. This is important because, except in the symplectic
case, $\tilde{\pi}(TM^{\perp})$ might not be a smooth subbundle of $TM$ even if $\tilde{\pi}$ has constant
rank.

3. Normal structures.

(3.1) Lie algebroid structure on the conormal bundle. The space $\Omega^{1}(P)$

of l-forms on a Poisson manifold $P$ is a Lie algebra with respect to the bracket
[Ct-D-W], [K], [Ko]

(3.1.1) $\{\omega_{1}, \omega_{2}\}=d[\pi(\omega_{1}, \omega_{2})]-\tilde{\pi}\omega_{1}\rfloor d\omega_{2}+\tilde{\pi}\omega_{2}\rfloor d\omega_{1}$ .
In fact, this bracket and the map $-\tilde{\pi};T^{*}Parrow TP$ make $T^{*}P$ into a Lie algebroid
[Ct-D-W], [M]; $i.e$ . the map induced by $\tilde{\pi}$ on sections is a Lie algebra homo-
morphism to the vector fields and, for $f\in C^{\infty}(P)$ ,
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$\backslash \prime 3.1.2)$ $\{\omega_{1}, f\omega_{2}\}=f\{\omega_{1}, \omega_{2}\}+(-\tilde{\pi}\omega_{1}\rfloor df)\omega_{2}$ .

It turns out that this Lie algebroid structure can be restricted to the
conormal bundle of any coisotropic submanifold.

(3.1.3) PROPOSITION. Let $i:Carrow P$ be the inclusion $map\mu ng$ of a coisotro$2nc$

mamfold. Then:
(a) Keri* is a subalgebra of the Lie algebra $\Omega^{1}(P),\cdot$

(b) $\{\omega\in\Omega^{1}(P)|\omega_{1C}=0\}$ is an ideal in Ker $i^{*}$ .

PROOF. For any tangent vector $X\in TP$,

(3.1.4) $\{\omega_{1}, \omega_{2}\}(X)=d[\pi(\omega_{1}, \omega_{2})](X)-(\tilde{\pi}\omega_{1}\rfloor d\omega_{2})(X)+(\tilde{\pi}\omega_{2}\rfloor d\omega_{1})(X)$

$=d[\pi(\omega_{1}, \omega_{2})](X)-d\omega_{2}(\tilde{\pi}\omega_{1}, X)+d\omega_{1}(\tilde{\pi}\omega_{2}, X)$ .
If $i^{*}\omega_{1}=i^{*}\omega_{2}=0$ , then $\pi(\omega_{1}, \omega_{2})=0$ on the coisotropic submanifold $C,$ $i^{*}d\omega_{1}=$

$i^{*}d\omega_{2}=0$ , and $\tilde{\pi}\omega_{1}$ and $\tilde{\pi}\omega_{2}$ are tangent to $C$ . Then, for $X$ tangent to $C$ , all
three terms on the right-hand side of (3.1.4) are zero; thus $i^{*}\{\omega_{1}, \omega_{2}\}=0$ , which
proves (a).

To prove (b), we suppose that $\omega_{21C}=0$ , but that $X$ is merely in $T_{c}P$. Once
again, we must show that $\{\omega_{1}, \omega_{2}\}(X)=0$ . This time, only the third term on
the right-hand side of (3.1.4) is necessarily zero. Then we have

$\{\omega_{1}, \omega_{2}\}(X)=d[\pi(\omega_{1}, \omega_{2})](X)-d\omega_{2}(\tilde{\pi}\omega_{1}, X)$

$=(-d(\tilde{\pi}\omega_{1}\rfloor\omega_{2})-\tilde{\pi}\omega_{1}\rfloor d\omega_{2})(X)$

$=-(\mathfrak{L}_{\pi\omega_{1}}^{\sim}\omega_{2})(X)$ .
But, since $\tilde{\pi}\omega_{1}$ is tangent to $C$ and $\omega_{21C}=0$ , it follows that $\mathfrak{L}_{\pi\omega_{1}}^{\sim}\omega_{21C}=0$ , so
$\{\omega_{1}, \omega_{2}\}(X)=0$ . $\square$

(3.1.5) COROLLARY. The conormal bundle $N^{*}(C)=(T_{c}P)^{\perp}is$ a Lie algebroid
with the Lie algebra structure $pvm$ through $Propo\alpha tion3.1.3$ and the “anchor”
$\rho$ : $N^{*}(C)arrow TC$ given by the restnction of -fi.

PROOF. The ideal $\{\omega\in\Omega^{1}(P)|\omega_{1C}=0\}$ is the kernel of the restriction homo-
morphism from Ker $i^{*}$ to $SeciN^{*}(C)$ , so SectN*(C) inherits a Lie algebra struc-
ture from that on $\Omega^{1}(P)$ . The identity $\{\theta_{1}, f\theta_{2}\}=f\{\theta_{1}, \theta_{2}\}+(\rho\theta_{1}\rfloor df)\theta_{2}$ for
$\theta_{1},$ $\theta_{2}\in SectN^{*}(C)$ and $f\in C^{\infty}(C)$ follows directly from (3.1.2). $\square$

(3.1.6) EXAMPLES. (a) $C$ is a Poisson submanifold if and only if $\rho=0$ ;
in this case $N^{*}(C)$ is just a Lie algebra bundle. When $C$ is a single symplectic
Ieaf, the fibres of $N^{*}(C)$ are the transverse Lie algebras [W4]; for a general
Poisson submanifold $C$ , the fibres of $N^{*}(C)$ are subalgebras of the transverse
algebras.

(b) If $P$ is a symplectic manifold, then $N^{*}(C)$ is naturally isomorphic to
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the characteristic distribution $\tilde{\pi}(TC^{\perp}),$ $\rho:\tilde{\pi}(TC^{\perp})arrow TC$ is the inclusion, and the
Lie algebra structure on $\tilde{\pi}(TC^{\perp})$ is the usual bracket of vector fields. We note
that in this case $N^{*}(C)$ is the Lie algebroid of the holonomy groupoid [E] of
the characteristic foliation of $C$ (which may be a non-Hausdorff manifold; see
[Wi]).

(3.2) Linearized Poisson structure on the normal bundle. Since the dual
bundle $A^{*}$ to a Lie algebroid $A$ always carries a Poisson structure for which
the inclusion Seci $(A)\subset C^{\infty}(A^{*})$ is a Lie algebra homomorphism [Ct-D-W], [Cu],
Corollary 3.1.5 has the following immediate consequence.

(3.2.1) PROPOSITION. Let $C\subset P$ be a coisotropic submamfold. Then the
normal bundle $N(C)=T_{C}P/TC$ has a natural Poisson structure which is linear in
the sense that the functions $N(C)arrow R$ which are linear on fibres form a Lie sub-
algebra of $C^{\infty}(N(C))$ .

Since, as a manifold, $N(C)$ represents a tubular neighborhood of $C$ in $P$,

it is natural to try to compare the linear structure on $N(C)$ with that on $P$

near $C$ .
(3.2.2) DEFINITION. We call the Poisson structure on $N(C)$ in Proposition

3.2.1 the linearization at the coisotropic submanifold $C$ of the structure on $P$.
(3.2.3) EXAMPLE. If $x\in P$ is a point at which the Poisson structure is

zero, then $\{x\}$ is coisotropic, and the linearized structure on $N(\{x\})=T{}_{x}P$ is
just the one introduced in [W4]. It is known in various situations [C1], [C2],

[W4] whether the structure on $T{}_{x}P$ near $0$ is equivalent to the one on $P$ near $x$ .

In general, the Poisson structure on a neighborhood of $C$ depends on more
than the Lie algebroid $N^{*}(C)$ . As a minimum of extra data, one must be given
the Poisson structure transverse to the characteristic “distribution” $\rho(N^{*}C)=$

$\tilde{\pi}(TC^{\perp})\subset TC$ (cf. [Cu]). There is one case where we do not have to worry
about a structure on $C$ .

(3.2.4) DEFINITION, A submanifold $C$ of a Poisson manifold $P$ is lagrangian
if $\tilde{\pi}(TC^{\perp})=TC$ .

Clearly $C$ is lagrangian if and only if it is coisotropic and the Lie algebroid
$A=N^{*}(C)$ is transitive, $i$ . $e.$ , $\rho(A)=TC$ . Equivalently, for each $x\in C$ , the
intersection of $T_{x}C$ with the tangent space $\tilde{\pi}(T^{*}{}_{x}P)$ to the symplectic leaf
through $x$ is lagrangian in $\tilde{\pi}(T_{x}^{*}P)$ . (A slightly different definition may be
found in [Av].)

(3.2.5) EXAMPLES. (a) If $P$ is symplectic, this definition coincides with
the usual one. Here $N^{*}(C)\cong TC$ and the linear Poisson manifold $N(C)$ is just
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$T^{*}C$ with its standard symplectic structure. In this case, we know that a
neighborhood of the O-section in $T^{*}P$ is Poisson-isomorphic to a neighborhood
of $C$ in $P$ [W1]; this last result may therefore be considered as a linearization
theorem of the same nature as those cited in Example 3.2.3. (In that example,
$\{x\}$ is a lagrangian submanifold.)

(b) If $Garrow Barrow C$ is a principal bundle, then $A=TB/G$ is a vector bundle
$\rho$

over $C$ admitting an exact sequence $0arrow g(B)arrow Aarrow TCarrow 0$ , where
$g(B)$ is the bundle associated to $B$ by the adjoint representation. The sections
of $A$ are just the G-invariant vector fields on $B$ (inPnitesimal gauge transforma-
tions covering diffeomorphisms of $C$ ), so they form a Lie algebra for which $\rho$

induces a homomorphism to the vector fields on $B$ . In fact, $A$ is a transitive
Lie algebroid because $\rho$ is surjective, and the natural Poisson structure on $A^{*}$

(which fits into the dual exact sequence $0arrow T^{*}Carrow A^{*}arrow g^{*}(B)arrow 0$ ) is that of the
phase space for a classical Yang-Mills particle on $C$ with internal variable in
$g^{*}$ . This is nearly the most general example of a transitive Lie algebroid (see

[A-M], [M] for a discussion of what is missed) and so provides a linearized
model for the neighborhood of most lagrangian submanifolds in Poisson mani-
folds. Examples 3.2.3 and 3.2.5 (a) correspond to the extreme cases in which
either $C$ or $G$ reduces to a single point. It should be interesting to investigate
the linearization problem in the intermediate situations.

At the other extreme to the lagrangian submanifolds lie the Poisson sub-
manifolds. Among coisotropic submanifolds, they are characterized by the
condition $\tilde{\pi}(TC^{\perp})=0,$ $i$ . $e.,$ $\rho=0$ , the Lie algebroid $N^{*}(C)$ is a bundle of Lie
algebras, and the Poisson manifold $N(C)$ is a bundle of duals of Lie algebras.
In case $C$ is a single symplectic leaf, these Lie algebras are all isomorphic.
Once the symplectic structure on $C$ is given, the comparison between the
Poisson structures on $P$ and $N(C)$ involves the variation of symplectic structure
from leaf to leaf, as well as the linearization problem for the transverse
structure at any point of C. (See [M1], [Mn] for the case where $C$ is a co-
adjoint orbit.)

For the linearization problem near coisotropic submanifolds of symplectic
manifolds, see [G].

4. Poisson groupoids.

(4.1) Lie groupoids. We begin this section by recalling the definition of
a Lie groupoid. (See $[Ct- D\cdot W]$ or [M] for details.)

(4.1.1) DEFINITION. A group0id over a set $G_{0}$ , called the base, is a set $G$

equipped with:
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(i) maps $\alpha,$ $\beta:Garrow G_{0}$ (source and target),
(ii) a map $m$ from $G_{2^{=^{o}}}\{(x, y)\in G\cross G|\beta(x)=\alpha(y)\}$ to $G$ (multiplicction),
(iii) a map $\epsilon;G_{0}arrow G$ (identities),

(iv) a map $\iota;Garrow G$ (inverston),

such that, for all $x,$ $y,$ $z$ in $G$ for which the expressions below are defined,
(a) $\alpha(m(x, y))=a(x)$ and $\beta(m(x, y))=\beta(y)$ ,
(b) $m(m(x, y),$ $z$) $=m(x, m(y, z))$ (associativity),

(c) $m(\epsilon(\alpha(x)), x)=x=m(x, \epsilon(\beta(x)))$ (identities) ,

(d) $m(x, \iota(x))=\epsilon(\alpha(x))$ and $m(\iota(x), x)=\epsilon(\beta(x))$ (inversion).

In short, the elements of $G$ are invertible “mappings” in a category whose
“objects” are the points of $G_{0}$ .

(4.1.2) DEFINITION. A Lie group0id (or differentiable groupoid) $G$ over a
manifold $G_{0}$ is a groupoid with a differentiable structure for which:

(i) $\alpha$ and $\beta$ are differentiable submersions (implying that $G_{2}$ is a sub-
manifold of $G\cross G$ ),

(ii) $m,$ $\epsilon$ , and $\iota$ are differentiable maps.

Thus, a Lie group is just a Lie groupoid over a one-point base.
From now on, we will usually write $xy$ for $m(x, y)$ and $x^{-1}$ for $\iota(x)$ . We

will also identify $G_{0}$ with $G$ via the embedding $\epsilon$ so that, for instance, equation
(d) in Definition 4.1.1 becomes $xx^{-1}=\alpha(x)$ and $x^{-1}x=\beta(x)$ .

For each $x\in G$ , the left translation $l_{x}$ : $y-,xy$ is a diffeomorphism from
$\alpha^{-1}(\beta(x))$ to $\alpha^{-1}(\alpha(x))$ ; thus, the left translations interchange $\alpha- fibres$ (inverse

images of points under a), and hence the following definition makes sense.

(4.1.3) DEFINITION. A vector field $X$ on $G$ is left invariant if $X(G)\subset$

$Ker(T\alpha)$ and if for each $(x, y)\in G_{2},$ $X(xy)=Tl_{x}(X(y))$ .

The left invariant vector fields form a Lie algebra and can be identified
with the sections of the vector bundle Ker(Ta) $|_{G_{0}}$ which, since it is transverse
to $TG_{0}$ , is naturally isomorphic to the normal bundle $N(G_{0}, G)$ of $G_{0}$ in $G$ .
Equipped with the map $\rho:N(G_{0}, G)arrow TG_{0}$ given by the projection from
$Ker(T\alpha)|_{G_{0}}$ to $TG_{0}$ along $Ker(T\beta)|_{G_{0}},$ $N(G_{0}, G)$ becomes a Lie algebroid. (See

[M].)
The correspondence between local Lie groupoids and Lie algebroids is as

close as that between Lie groups and Lie algebras, but the global aspects of
this correspondence are more complicated. For instance, not every Lie algebroid
can be integrated to a global Lie groupoid [A-M], [M].
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(4.2) Basic properties of Poisson groupoids.

(4.2.1) DEFINITION. A Poisson structure on a Lie groupoid $G$ is called
multiplicative if the graph $\{(z, x, y)|z=xy\}$ of the multiplication map $m$ is a
Poisson relation from $G\cross G$ to $G$ . A Lie groupoid with a multiplicative Poisson
structure is called a Poisson groupojd.

(4.2.2) EXAMPLES. (a) A Lie group $H$ with a multiplicative Poisson
structure is just a Poisson group in the sense of Drinfel’d $[D]^{*}$ . (By Corollary
2.2.3, multiplication is a Poisson map from $H\cross H$ to $H.$ )

(b) Any Lie groupoid with the zero Poisson structure is a Poisson groupoid.
(c) Let $E$ be a Lie algebroid over $M$. The natural Poisson structure on

$E^{*}$ (see [Ct-D-W], [Cu]) is multiplicative (perhaps we should say additive) with
respect to the group structure for which $\alpha=\beta$ is the vector bundle projection
and $m$ is addition in the fibres. Conversely, for any additive Poisson structure
on a vector bundle $F$, the functions on $F$ which are linear on fibres form a
subalgebra of $C^{\infty}(F)$ under the Poisson bracket. Identifying these linear func-
tions with the sections of $F^{*}$ , we get a Lie algebroid structure on $F^{*}$ . (The

map $F^{*}arrow TM$ comes from the Poisson bracket of functions constant on fibres
with functions linear on fibres.) Thus the category of vector bundles with
additive Poisson structures is isomorphic by duality to the category of Lie
algebroids. (This extends the well-known identification of linear Poisson struc-
tures on vector spaces with duals of Lie algebras.)

If $E=M$ is the trivial groupoid, its only multiplicative Poisson structure is
zero. In case $E=TM$ has the Lie algebroid structure given by the commutator
bracket, the Poisson structure on $T^{*}M$ is the standard one. When $E$ is the
gauge algebroid of a principal bundle, $E^{*}$ is the phase space of a classical
particle in a Yang-Mills field [St], [W2].

(d) Any symplectic groupoid in the sense of [K], [W5] ( $i.e$ . the Poisson
structure is symplectic and the graph of multiplication is lagrangian) is a
Poisson groupoid. Conversely, a simple dimension counting argument using
Theorem 4.2.3 below shows that, if a multiplicative Poisson structure on a Lie
groupoid is symplectic, then the graph of multiplication is necessarily lagrangian
and not just coisotropic.

(e) Let $P$ be any set. The coarse groupoid over $P$ has $G=P\cross P,$ $G_{0}=P$,
$\alpha(a, b)=a$ , $\beta(a, b)=b$ , $(a, b)(b, c)=(a, c)$ , $\epsilon(a)=(a, a)$ , and $(a, b)^{-1}=(b, a)$ . If
$P$ is a differentiable manifold, the coarse groupoid is a Lie groupoid. If $P$ has
a Poisson structure, then the “difference” structure on $P\cross P^{-}$ is multiplicative

for the coarse groupoid. It turns out (Corollary 4.2.8 below), that every multi-

*Drinfel’d calls a multiplicative Poisson structure on a Lie group grouped. This
already sounds awkward in English, and groupojded seems even worse.
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plicative Poisson structure on the coarse groupoid is of this form. If $P$ is
symplectic, then $P\cross P^{-}$ is a symplectic groupoid.

(f) Let $P$ be a regular Poisson manifold. Then the holonomy groupoid
[E], [W] $G$ of the foliation of $P$ by its symplectic leaves has a multiplicative
Poisson structure in which the symplectic leaves are coverings of the coarse
groupoids of the leaves of $P$, with symplectic structures as in (e). This kind
of Poisson groupoid is locally, but not globally, a product of a trivial groupoid
as in (a) and a coarse groupoid as in (e). We note that the holonomy groupoid
might not be Hausdorff even if $P$ is.

Many properties of Poisson groupoids can be derived from the composition
of Poisson relations.

(4.2.3) THEOREM. Let $G$ be a Poisson groupoid.
(a) The identity

$sectionG_{0}-1$
is cmsotropic in $G$ ;

(b) The inverston $xarrow x$ is an anti-Poisson mapping;
(c) There is a umque Poisson structure on $G_{0}$ for which $\alpha$ is a Possson mapfn $ng$

(and $\beta$ is an anti-Pozsson mapping).

PROOF. (a) Observing that $u\in G$ belongs to $G_{0}$ if and only if $uy=y$ for
some $y\in G$ , we may write $G_{0}=R(C)$ , where $C\subset G\cross G$ is the diagonal and $R=$

$\{(x, y, xy)|(x, y)\in G_{2}\}\subset G\cross(G\cross G)$ is the graph of multiplication with its entries
permuted. Now $C$ is coisotropic in $G\cross G^{-}$ by Corollary 2.2.3, and $R$ is coiso-
tropic in $G^{-}\cross G^{-}\cross G$ and thus a Poisson relation from $G\cross G^{-}$ to $G^{-}$ . It will
follow from Proposition 2.1.2 that $G_{0}=R(C)$ is coisotropic in C- and hence in
$G$ once we have verified the hypothesis of very clean position.

Verifying clean position for $R(C)$ amounts essentially to showing that if
$(\delta x, \delta y, \delta z)\subset TG\cross TG\cross TG$ is any tangent vector to $R$ such that $\delta z=\delta y$ , then $\delta x$

must be tangent to $G_{0}$ . But the last assertion follows immediately from the
fact that $TG$ is itself a groupoid with multiplication given by $Tm\subset T(G\cross G\cross G)$

$\cong TG\cross TG\cross TG$ . (See [Ct-D-W].) More directly, let $(x(t), y(t),$ $x(t)y(t))$ be a
curve in $R$ tangent at $t=0$ to $(\delta x, \delta y, \delta z)$ . Since $\delta z=\delta y,$ $x(O)$ must lie in $G_{0}$ ,

and $(d/dt)|_{t=0}y(t)=(d/dt)|_{t=0}x(t)y(t)$ . Multiplying on the right by $y(t)^{-1}$ , we
find by the differentiability of multiplication that $(d/dt)|_{t=0}\alpha(y(t))=(d/dt)|_{t=0}$

$x(t)$ . Since the left-hand side of the last equation is obviously in $TG_{0}$ , so is the
right-hand side $\delta x$ .

From now on, we will leave verification of clean position to the reader,
who may use either of the methods above.

(b) The graph of inversion is $R(C)$ , where $R=m^{-1}=\{(x, y, xy)|(x, y)\in G_{2}\}$ ,
thought of this time as a Poisson relation from $G$ to $G\cross G$ , and $C=G_{0}$ . The
clean position hypothesis is easily verified, so $R(C)$ is coisotropic in $G\cross G$ by
Proposition 2.1.2. Thus $\iota$ is a Poisson map from $G$ to $G^{-},$ $i$ . $e$ . an anti-Poisson
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map from $G$ to $G$ .
(c) Since $\alpha(z)=\alpha(x)$ if and only if $z=xy$ for some $y$ (let $y=x^{-1}z$), the equi-

valence relation $A=\{(z, x)|\alpha(z)=\alpha(x)\}$ is $R(C)$ , where $R=m=\{(xy, x, y)|(x, y)$

$\in G_{2}\}$ considered as a Poisson relation from $G$ to $G\cross G^{-}$ , and $C=G$ . Then $A$

is coisotropic by Proposition 2.1.2; it now follows from Proposition 2.3.1 that
$G_{0}$ carries a unique Poisson structure for which $\alpha$ is a Poisson map. $\square$

(4.2.4) EXAMPLES. The induced Poisson structures on $G_{0}$ for Examples
4.2.2 are the following:

(a) for $G$ a Poisson group, the trivial structure on a point;
(b) for $G$ a groupoid with zero Poisson structure, the zero Poisson struc-

ture on $G_{0}$ ;
(c) for $E^{*}$ the dual of a Lie algebroid over $M$, the zero Poisson structure

on $M$ ;
(d) for a symplectic groupoid, the Poisson structure on the base, as in [K],

[W5];

(e) for a coarse groupoid $P\cross P^{-}$ , the given Poisson structure on $P$ ;
(f) for the holonomy groupoid of a regular Poisson manifold $P$, the given

Poisson structure on $P$.
(4.2.5) REMARK. Examples 4.2.2 (e) and (f) show that there may exist

several global Poisson groupoids over $P$ even if there is no global symplectic
groupoid. For example, let $P=S^{2}\cross R$ with the structure described in [W5].

The next result, like Theorem 4.2.3, extends a result already known for
symplectic groupoids [K], [W5].

(4.2.6) PROPOSITION. $\alpha^{*}(C^{\infty}(G_{0}))$ and $\beta^{*}(C^{\infty}(G_{0}))$ are Poisson commuting sub-
algebras of $C^{\infty}(G)$ .

PROOF. Let $f$ and $h$ be in $C^{\infty}(G_{0})$ . On $G\cross G^{-}\cross G^{-}$ , define $F(z, x, y)=$

$f(\alpha(z))-f(\alpha(x))$ and $H(z, x, y)=h(\beta(z))-h(\beta(y))$ . On the relation $m=$

$\{(z, x, y)|z=xy\}$ we have $\alpha(z)=a(x)$ and $\beta(z)=\beta(y)$ , so $F$ and $H$ vanish on $m$ .
Since $m$ is coisotropic, $\{F, H\}(z, x, y)=0$ whenever $z=xy$ . But

$\{F, H\}(z, x, y)=\{f(\alpha(z))-f(\alpha(x)), h(\beta(z))-h(\beta(y))\}$

$=\{f(\alpha(z)), h(\beta(z))\}=\{\alpha^{*}f, \beta^{*}h\}(z)$ .
Since every $z$ occurs as the first component of an element of $m(z=z\beta(z))$ , we
may conclude that $\{\alpha^{*}f, \beta^{*}h\}=0$ . $\square$

(4.2.7) COROLLARY. $(a, \beta);Garrow G_{0}\cross G_{0}^{-}$ is a Pozsson map.

(4.2.8) COROLLARY. Every multiplicative Pmsson structure on the coarse
groupoid $P\cross P$ is of the “difference” form in 4.2.2 (e).
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PROOF. The map $(\alpha, \beta)$ is a diffeomorphism in this case. $\square$

(4.2.9) COROLLARY. The orbit equivalence relation on $G_{0}$ , in which $u\sim v$ if
and only if there is an $x\in G$ with $\alpha(x)=u$ and $\beta(x)=v$ , is a Poisson relation. If
$G_{0}/\sim is$ a manifold, it therefore inherits a natural Poisson structure.

PROOF. The orbit equivalence relation is $(a, \beta)(G)\subset G_{0}\cross G_{0}^{-}$ . $\square$

(4.2.10) EXAMPLE. In case $\Gamma$ is an $\alpha$-connected symplectic groupoid over
$\Gamma_{0}$ , the orbits are the symplectic leaves of $\Gamma$ (see [Ct-D-W], [W5]), so $\Gamma_{0}/\sim$

inherits the zero Poisson structure.

The following consequence of Proposition 4.2.6 will be used in \S 4.4.

(4.2.11) COROLLARY. For each $g\in C^{\infty}(G_{0})$ , the hamiltoman vector field $X_{\alpha^{2}g}$

is tangent to the $\beta- fibres$ , and vice versa.

(4.3) Reduction for Poisson group actions. As another application of the
coisotropic calculus, we prove the following theorem of Semenov-Tian-Shansky
[S].

(4.3.1) THEOREM. Let $G$ be a Pozsson group, $P$ a Poisson manifold, and
1: $G\cross Parrow P$ a Poisson action ( $i$ . $e$ . a group action which is also a Ponsson map). If
$H$ is any coisotropic subgroup of $G$ for which $P/H$ has a $C^{\infty}$ structure making the
projection $p:Parrow P/H$ a submerston, then there is a unique Pmsson stmcture on
$P/H$ for which $p$ is a Poisson map.

PROOF. According to Proposition 2.3.1, we must check that $s=p\circ p^{-1}$ is a
Poisson relation. Since $S=\{(a, b)\in P\cross P|l(g, a)=l(h, b)$ for some $g$ and $h$ in
$H\},$ $S=R(C)$ where $R=\{(a, b, g, h, l(g, a), l(h, b)|(a, b)\in P\cross P, (g, h)\in H\cross H\}$

considered as a relation from $G\cross G\cross P\cross P$ to $P\cross P$, and $C=H\cross H\cross\Delta_{P}$ where
$\Delta_{P}$ is the diagonal in $P\cross P$. $R$ is coisotropic in $P\cross P^{-}\cross G\cross G^{-}\cross P^{-}\cross P$ because
it is obtained by permutation of components from two copies of $l$ , and $C$ is
coisotropic in $c-\cross G\cross P\cross P^{-}$ since $H$ is coisotropic in $G$ by assumption. Thus
$S=R(C)$ is coisotropic in $P\cross P^{-}$ by Proposition 2.1.2. $\square$

(4.3.2) REMARK. Semenov-Tian-Shansky’s proof of Theorem 4.3.1 is already
quite simple, but our proof has the advantage of extending immediately to
Poisson groupoid actions. (See [Mi-W] for the symplectic case.) In fact, apply-
ing this extended version to the action of a Poisson groupoid on itself by left
translations recovers Theorem 4.2.3 (c).

(4.4) Duality. Since the identity section $G_{0}$ of a Poisson groupoid $G$ is
coisotropic by Theorem 4.2.3 (a), the conormal bundle $N^{*}(G_{0}, G)$ is equipped
with a Lie algebroid structure, according to Corollary 3.1.5. Notice that, as a
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vector bundle, $N^{*}(G_{0}, G)$ is dual to the Lie algebroid of $G$ .
(4.4.1) DEFINITION. Let $G$ and $G$ be Poisson groupoids over $G_{0}$ provided

witb a nondegenerate pairing between the vector bundles $N(G_{0}, G)$ and $N(G_{0}, G’)$ ,

so that each of these bundles is isomorphic to the dual of the other. We say
that $G$ and $G$ ’ are dual to one another if the Lie algebroid structure on $N(G_{0}, G)$

$\cong N^{*}(G_{0}, G’)$ is the one induced by the Poisson structure on $G^{*}$ , and vice versa.

Drinfel’d proved in [D] that each Poisson group has a dual group which is
unique up to covering, and that dual pairs of Poisson groups are in functorial
1-1 correspondence with infinitesimal objects called Lie algebroids. We expect

that a similar result holds for Poisson groupoids, though we have not yet been
able to prove it. (In general, the dual may exist only as a local groupoid.)

Nevertheless, the concept of duality is already interesting because, as we will
see below, it provides a natural organization among the Poisson groupoids in
Example 4.2.2.

(4.4.2) EXAMPLES. (See 4.2.2.) (a) The duality of Poisson groups in our
sense is the same as described by Drinfel’d. In particular, each Lie group $H$

with the zero Poisson structure is dual to the additive group $h^{*}$ with the Lie-
Poisson structure.

$(b)-(c)$ Any Lie groupoid $G$ with the zero Poisson structure is dual to the
vector bundle $N^{*}(G_{0}, G)$ with the additive Poisson structure which it carries as
the dual of the Lie algebroid of $G$ .

$(d)-(e)$ A symplectic groupoid $\Gamma$ over the Poisson manifold $P$ is dual to
the coarse groupoid $P\cross P^{-}$ with the “difference” Poisson structure.*

(f) The holonomy groupoid of a regular Poisson manifold $P$ with the Pois-
son structure of Example 4.2.2 (f) is dual to itself. The pairing between the
Lie algebroid (which is $\tilde{\pi}(T^{*}P)\subset TP$ ) and itself is given by the symplectic
structure along the leaves.

Some special cases of the examples in 4.4.2 are worth noting. If $\Gamma$ is a
symplectic groupoid, then the coarse groupoid $\Gamma\cross\Gamma^{-}$ is dual to itself. This is
a special case of $(d)-(e)$ as well as of (f). The gauge groupoid of a principal
bundle, with the zero Poisson structure, is dual to the phase space of a classical
particle in a Yang-Mills field [St], [W2]; this is a special case of $(b)-(c)$ . In
particular, any coarse groupoid $X\cross X$ with the zero Poisson structure is dual
to the cotangent bundle $T^{*}X$ with the standard Poisson structure; this is also
a special case of $(d)-(e)$ .

(4.4.3) REMARK. Since not every Lie algebroid comes from a global Lie

*Note that, if $\Gamma_{P}$ is given the zero Poisson structure, it is dual to $TP$ with the
tangent Poisson structure of [Av] (also see [Cu]).
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groupoid [A-M], [M], and not every Poisson manifold is the base of a sym-
plectic groupoid, examples $(b)-(c)$ and $(d)-(e)$ show that a global dual to a Poisson
manifold may not exist.

Examples 4.2.6 and 4.4.2 suggest the following general fact.

(4.4.4) THEOREM. If $G$ and $G’$ are dual Poisson groupoids over $G_{0}$ , then the
Poisson structures which they induce by Theorem 4.2.3 (c) are $oppo\alpha te$ to one
another.

In order to prove the theorem, we will give another description of the in-
duced Poisson structure on the base of a Poisson groupoid.

(4.4.5) PROPOSITION. Let $(G, \pi)$ be a PozSson groupoid, $\pi_{0}$ the Poisson struc-
ture $mG_{0}$ for which $a$ is a Poisson map. Then the map $\tilde{\pi}_{0}$ ; $T^{*}G_{0}arrow TG_{0}$ may be
factored through the normal bundle $N(G_{0}, G)$ as $\tilde{\pi}_{0}=-\rho\sigma$ , where $\rho:N(G_{0}, G)arrow$

$TG_{0}$ depends $mly$ on the groupojd structure, and $\sigma:T^{*}G_{0}arrow N(G_{0}, G)$ depends only
on the Poisson structure. Specifically, $\rho$ is given by the pr0jecti0n from Ker $(T\alpha)|_{G_{0}}$

to $TG_{0}$ along Ker $(T\beta)|_{G_{0}}$ , wfule $\sigma$ is dual to the map from $N^{*}(G_{0}, G)$ to $TG_{0}$

obtained by restricting $\tilde{\pi}$ along the coisotropic submamfold $G_{0}$ .
PROOF. Let $\theta$ be a cotangent vector to $G_{0}$ at the point $u$ . First of all, we

have $\sigma(\theta)=\tilde{\pi}(\theta’)(mod TG_{0})$ , where $\theta’$ is any cotangent vector to $G$ at $u$ whose
pullback to $T_{u}G_{0}$ is $\theta$ . In particular, we may take $\theta’$ to be $(T\beta)^{*}(\theta)$ . Applying
Corollary 4.2.11 by thinking of $\theta$ as the differential of a function $g$ on $G_{0}$ , so
that $\tilde{\pi}(\theta’)$ is the normal component at $u$ of the hamiltonian vector field of $\beta^{*}g$ ,
we conclude that $\tilde{\pi}(\theta’)$ lies in Ker $(T\alpha)$ . Thus, to compute $\rho(\sigma(\theta))$ , we need
only project $\tilde{\pi}(\theta’)$ into $TG_{0}$ along Ker $(T\beta)$ ; $i$ . $e$ . we apply $T\beta$ itself. Thus
$\rho(\sigma(\theta))=T\beta(\tilde{\pi}(\theta’))=T\beta(\tilde{\pi}((T\beta)^{*}(\theta)))$ .

Since $\beta$ is an anti-Poisson map, we have $\tilde{\pi}_{0}=-T\beta\circ\tilde{\pi}^{\circ}(T\beta)^{*}$ , from which we
conclude that $\rho(\sigma(\theta))=-\tilde{\pi}_{0}(\theta)$ . $\square$

PROOF OF THEOREM 4.4.4. To apply the previous proposition, we must
compare the maps $\rho’$ and $\sigma’$ arising from the dual groupoid $G’$ with $\rho$ and $\sigma$ .
Since $N(G_{0}, G’)\cong N^{*}(G_{0}, G)$ , we think of the bundle map $\rho’$ associated with the
Lie algebroid of $G’$ as a bundle map $\rho’$ : $N^{*}(G_{0}, G)arrow TG_{0}$ . Since this Lie alge-
broid structure is just the one determined by the coisotropic submanifold $G_{0}\subset G$ ,
we find that $\rho’=-\sigma^{*}$ (see Corollary 3.1.5). Since duality is a symmetric rela-
tion, we also have $\sigma’=-\rho^{*}$ .

Now $\tilde{\pi}_{0}=-\rho’\sigma’=-\sigma^{*}\rho^{*}=(-\rho\sigma)^{*}=\tilde{\pi}_{0}^{*}=-\tilde{\pi}_{0}$ , and so $\pi_{0}^{f}=-\pi_{0}$ . $\square$

(4.4.6) REMARK. It would be interesting to find further structure in the
category of Poisson groupoids over a given Poisson manifold and its opposite.
In particular, what is the special role of the (local) symplectic groupoid? (Note



724 A. WEINSTEIN

Remark 4.2.7.)

(4.5) Symplectic double groupoids. In this section, we outline a symplectic
approach to understanding the global duality of Poisson groupoids. The suc-
cessful application of this approach will depend upon future developments in the
theory of symplectic groupoids over Poisson manifolds.

If $P$ is any Poisson manifold, there is always a local symplectic groupoid
$\Gamma_{P}$ over $P[K]$ , [W5]; $i.e$ . $a;\Gamma_{P}arrow P$ is a Poisson map. If $P$ has the zero
Poisson structure, we can take $T^{*}P$ for $\Gamma_{P}$ ; for this and other reasons, it is
useful to think of $\Gamma_{P}$ as a “Poisson cotangent bundle” or “phase space” [K] for
a general Poisson manifold $P$.

To avoid dealing with the unsolved problem of determining which Poisson
manifolds are enlargeable in the sense that $\Gamma_{P}$ exists as a global groupoid, we
will not distinguish below between local and global groupoids.

If $P=E^{*}$ , where $E$ is the Lie algebra [algebroid] of a Lie group [groupoid]
$G$ , then we can take $\Gamma_{P}=T^{*}G$ ; the fundamental theorems of Lie then suggest
that operations on general Poisson manifolds might be “lifted” to their sym-
plectic groupoids.

The lifting procedure should be defined in the following way. If $C$ is a
coisotropic submanifold of $P$, then $\alpha^{-1}(C)$ is coisotropic in $\Gamma_{P}$ by Corollary 2.2.5.
We may apply the “method of characteristics” [Ct-D-W], [Gu-Sl], [Gu-S2]

to $\alpha^{-1}(C)$ and the lagrangian submanifold $(\Gamma_{P})_{0}$ , taking the intersection
$a^{-1}(C)\cap(\Gamma_{P})_{0}\cong C$ and flowing out along the characteristics of $C$ to obtain a
lagrangian submanifold $L_{C}$ in $\Gamma_{P}$ which turns out to be closed under the groupoid
operations.

When $P$ has the zero Poisson structure, $L_{c}\subset T^{*}P$ is just the conormal
bundle. In general, $L_{c}$ is only an “immersed submanifold” of $\Gamma_{P}$ , $i$ . $e$ . the
image of a lagrangian immersion $i:\Lambda_{C}arrow\Gamma_{P}$ for some manifold $\Lambda_{c}$ . If we
restrict our attention to a small enough neighborhood of the zero section, then
$L_{c}$ is a well-defined local lagrangian subgroupoid (with base $C$ ) whose Lie
algebroid is the conormal bundle $N^{*}(C, P)$ with the bracket of Corollary 3.1.5.

It is easy to see that $\Gamma_{P_{1}\cross P_{2}}\cong\Gamma_{P_{1}}\cross\Gamma_{P_{2}}$ and $\Gamma_{P^{-}}=\Gamma_{P}^{-}$ for any Poisson mani-
folds $P_{1},$ $P_{2}$ and $P$. Thus we can lift any Poisson relation $R:P_{1}arrow P_{2}$ to a
canonical relation $L_{R}$ : $\Gamma_{P_{1}}arrow\Gamma_{P_{2}}$ which is (at least locally) a “groupoid relation”
as well. In particular, the domain of $L_{R}$ is a subgroupoid of $\Gamma_{P_{1}}$ , and $L_{R}$ if
single valued is a homomorphism from its domain to $\Gamma_{P_{2}}$ . Furthermore, one
may check the functorial property $L_{R_{1}\circ R_{2}}=L_{R_{1}}\circ L_{R_{2}}$ when $R_{1}$ and $R_{2}$ form a
clean pair. (We do not write $\Gamma_{R}$ for $L_{R}$ in order to avoid confusion in the
case where $R$ is a Poisson manifold itself.)

Now if $G$ is a Poisson groupoid over $G_{0}$ , the Poisson relations $m:G\cross Garrow G$ ,



Poisson group0jds 725

$c;Garrow G^{-}$ , and $G_{0}$ : $Oarrow G$ lift to canonical relations $L_{m}$ : $\Gamma_{G}\cross\Gamma_{G}arrow\Gamma_{G},$ $L_{c}$ : $\Gamma_{G}arrow\Gamma_{\overline{G}}$ ,
and $L_{G_{0}}$ : $Oarrow\Gamma_{G}$ which endow $\Gamma_{G}$ (at least locally) with a second symplectic
groupoid structure, this time with $L_{G_{0}}$ as its base. Since $L_{m}$ is a subgroupoid,
the two groupoid structures are compatible, making $\Gamma_{G}$ into a double group0id
(see [B] or [Ct-D-W] for the precise definition).

The Lie algebroid of $LG_{0}$ is naturally isomorphic to the conormal bundle of
$G_{0}$ in $G,$ $i.e$ . the dual of the Lie algebroid of $G$ , with the bracket of Corollary
3.1.5. Since the roles of the two groupoid structures can be interchanged, we
may conclude that $G$ and $L_{G_{0}}$ are dual to one another. At least locally, then,
we see that a dual pair of Poisson group0ids is exactly the pair of bases of a
symplectic double groupond.

(4.5.1) EXAMPLES. (See 4.2.2 and 4.4.2.) (a) If $G$ and $G^{*}$ are Poisson
groups, then according to Karasev [K], the corresponding symplectic double
groupoid $\Gamma_{G}$ is $G\cross G^{*}$ . (Actually, this is probably true only locally, in general.)

We note that Manin and Drinfel’d [D] also endow $g\oplus g^{*}$ with a Lie algebra
structure, which suggests that $\Gamma_{G}$ might carry a group structure in addition to
its two groupoid structures. For instance, if $G$ has the zero Poisson bracket,
then $\Gamma_{G}=T^{*}G$ . In this case, the Manin-Drinfel’d structure on $g\oplus g^{*}$ integrates
to the semidirect product group structure on $T^{*}G\cong G\cross g^{*}$ (with $G$ acting on
$g^{*}$ by the coadjoint representation). Of course, the (canonical) symplectic struc-
ture is not multiplicative for this group structure.

$(b)-(c)$ If $G$ is any Lie groupoid with the zero Poisson structure, then again
$\Gamma_{G}=T^{*}G$ with the groupoid structure described in [Ct-D-W] along with that of
addition in the fibres.

$(d)-(e)$ If $G$ is a symplectic groupoid over $G_{0}$ , then $\Gamma_{G}=G\cross G^{-}$ with the
coarse and product groupoid structures. The two bases are $G$ and $G_{0}\cross G_{0}^{-}$ . In
particular, if $G=G_{0}\cross G_{0}^{-}$ (with $G_{0}$ symplectic), then $\Gamma_{G}=G_{0}\cross G_{0}^{-}\cross G_{0}\cross G_{0}^{-}$ with
two coarse groupoid structures related by interchange of the factors. If $G=$

$T^{*}M$ for a manifold $M$ with the zero Poisson structure, then $\Gamma_{G}=T^{*}M\cross T^{*}M^{-}$

$\cong T^{*}(M\cross M)$ with the coarse and cotangent groupoid structures.
(f) Let $G$ be the holonomy groupoid of a regular Poisson manifold $P$. We

suppose for simplicity that $P=S\cross M$ where $S$ is symplectic $andM$ has the zero
Poisson structure. Then $G=S\cross S^{-}\cross T^{*}C$ and $\Gamma_{G}=S\cross S^{-}\cross S^{-}\cross S\cross T^{*}C\cross T^{*}C^{-}$ .
The first groupoid structure is coarse in the first four factors and again in the
second two. The second structure (lifted from that on $G$ ) is also coarse in the
first four factors (with a change in their order) and is given by fibre addition
in the last two.

(4.5.2) QUESTIONS. (i) As suggested by Example 4.5.1 (a), is there a natural
groupoid structure on $\Gamma_{G}$ with base $G_{0}$ (rather than $G$ or $G^{*}$ ) for every Poisson
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group0id $GP$

(ii) What are the group0id structures on $\Gamma_{G}$ in the general case of Example
4.5.1 (f) ?

References

[A-M] R. Almeida and P. Molino, Suites d’Atiyah et feuilletages transversalement com-
plets, C. R. Acad. Sci. Paris, 300 (1985), 13-15.

[Av] G. Alvarez-Sanchez, Geometric methods of classical mechanics applied to control
theory, Ph. D. Thesis, University of California, Berkeley, 1986.

[B] R. Brown, Higher-dimensional Group Theory, Low-Dimensional Topology (Brown

and Thickstun eds.), I, Cambridge University Press, 1982, pp. 215-238.
[C1] J. F. Conn, Normal forms for analytic Poisson structures, Ann. of Math., 119

(1984), 577-601.
[C2] J. F. Conn, Normal forms for smooth Poisson structures, Ann. of Math., 121 (1985),

565-593.
[Cs] A. Connes, Sur la th\’eorie non commutative de l’int\’egration, Alg\‘ebres d’Op\’era-

teurs, Lecture Notes in Math., 725, Springer, 1979, pp. 19-143.
[Ct-D-W] A. Coste, P. Dazord et A. Weinstein, Groupo\"ides symplectiques, Publications

du D\’epartement de Math\’ematiques, Universit\’e Claude Bernard-Lyon I, $2/A$ , 1987.
[Cu] T. J. Courant, Dirac manifolds, Ph. D. Thesis, University of California, Berkeley,

1987.
[D] V. G. Drinfel’d, Hamiltonian structures on Lie groups, Lie bialgebras, and the

geometric meaning of the classical Yang-Baxter equations, Soviet Math. Dokl.,
27 (1983), 68-71.

[E] C. Ehresmann, Structures feuillet\’ees, Proc. 5th Canadian Math. Congress, Mon-
treal, 1961, pp. 109-172.

[G] M. Gotay, On coisotropic embeddings of presymplectic manifolds, Proc. Amer.
Math. Soc., 84 (1982), 111-114.

[Gu] V. Guillemin, Clean intersections and Fourier integrals, Fourier Integral Operators
and Partial Differential Equations, Lecture Notes in Math., 459, Springer, 1975,
pp. 23-35.

[Gu-Sl] V. Guillemin and S. Sternberg, Geometric asymptotics, Math. Surveys, 14,
Amer. Math. Soc., Providence, 1977.

[Gu-S2] V. Guillemin and S. Sternberg, Some problems in integral geometry and some
related problems in microlocal analysis, Amer. J. Math., 101 (1979), 915-955.

[K] M. V. Karasev, Analogues of objects of Lie group theory for nonlinear Poisson
brackets, Math. USSR-Izv., 28 (1987), 497-527.

[Ko] J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, \’Elie Cartan et les
math\’ematiques d’aujourdhui, Ast\’erisque (hors s\’erie), (1985), 257-271.

[L] P. Libermann, Problemes d’\’equivalence et g\’eom\’etrie symplectique, IIIe rencontre
de g\’eom\’etrie du Schnepfenried, 10-15 mai 1982, I., Ast\’erisque, 107-t08 (1983), 43-68.

[M] K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, LMS,
Lecture Notes Series, 124, Cambridge Univ. Press, 1987.

[Ma-R] J. E. Marsden and T. Ratiu, Reduction of Poisson manifolds, Lett. Math. Phys.,
11 (1986), 161-169.

[Mi-W] K. Mikami and A. Weinstein, Moments and reduction for symplectic groupoids,
Publ. RIMS, Kyoto Univ., 24 (1988), 121-140.



Poisson group0jds 727

[M1] P. Molino, Structure transverse aux orbites de la representation coadjointe: le
cas des orbites r\’eductives, Sem. Geom. Diff., (Universit\’e des Sciences et Tech-
niques du Languedoc, Montpellier, 1983-84), 55-62.

[Mn] R. Montgomery, The bundle picture in mechanics, Ph. D. Thesis, University of
California, Berkeley, 1986.

[S] M. A. Semenov-Tian-Shansky, Dressing transformations and Poisson group actions,
Publ. RIMS, Kyoto University, 21 (1985), 1237-1260.

[St] S. Sternberg, Minimal coupling and the symplectic mechanics of a classical particle
in the presence of a Yang-Mills field, Proc. Nat. Acad. Sci. U.S.A., 74 (1977),

5253-5254.
[W1] A. Weinstein, Symplectic manifolds and their lagrangian submanifolds, Adv. in

Math., 6 (1971) , 329-346.
[W2] A. Weinstein, A universal phase space for particles in Yang-Mills fields, Lett.

Math. Phys., 2 (1978), 417-420.
[W3] A. Weinstein, Symplectic geometry, Bull. Amer. Math. Soc., 5 (1981), 1-13.
[W4] A. Weinstein, The local structure of Poisson manifolds, J. Diff. Geom., 18 (1983),

523-557.
[W5] A. Weinstein, Symplectic groupoids and Poisson manifolds, Bull. Amer. Math.

Soc., 16 (1987), 101-104.
[Wi] H. Winkelnkemper, The graph of a foliation, Ann. Global Anal. Geom., 1 (1983),

51-75.

Alan WEINSTEIN
Department of Mathematics
University of California
Berkeley, CA 94720
U. S. A.


	Introduction.
	1. Composition of Poisson ...
	(1.3.4) THEOREM. ...
	(1.3.9) THEOREM. ...

	2. Examples of Poisson ...
	3. Normal structures.
	4. Poisson groupoids.
	(4.2.3) THEOREM. ...
	(4.3.1) THEOREM. ...
	(4.4.4) THEOREM. ...

	References

