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1. Introduction.

Attempts to extend a factorial state $\varphi$ on a $C^{*}$-algebra $B$ to a factorial
state on a larger $C^{*}$-algebra $A$ mainly centred around searches for solutions of
a tensor product problem, or equivalently for weak expectations for the GNS
representation $\pi_{\varphi}$ , that is, linear contractions $P$ of $A$ into $\pi_{\varphi}(B)’’$ such that
$P|_{B^{-}}-\pi_{\varphi}$ (see [1] and the references cited therein). The eventual solutions of
the problem $[7, 9]$ were variants of this method.

In the case when there is an action $\alpha$ of an amenable group $G$ on $A$ leaving
$B$ invariant, an analogous problem is to consider an a-invariant state $\varphi$ of $B$

which is centrally ergodic in the sense that

$\pi_{\varphi}(B)’’\cap\pi_{\varphi}(B)’\cap u_{\varphi}(G)’=C\cdot 1$ ,

where $(\pi_{\varphi}, u_{\varphi})$ is the associated covariant representation of $(B, G, \alpha)$ , and to
try to find an extension to a centrally ergodic state of $A$ . It was shown in
[3] that this can be done by the method of [1] if $B$ is (semi)nuclear, but the
von Neumann algebra theory developed in $[7, 9]$ is not sufficient to provide a
general solution. A corollary of a successful solution is that if $A$ is separable
and G-central (and $B$ is nuclear), then $B$ is also G-central.

The purpose of this paper is to clarify the covariant situation. Firstly, in
Section 2, we consider the problem lifted to the $C^{*}$-crossed products. Thus the
existence of a weak expectation $\hat{Q}$ for the representation $\pi_{\varphi}\cross u_{\varphi}$ of $A\cross\alpha G$

(with respect to the subalgebra $Bx_{\alpha}G$ ) is seen to be equivalent to the existence
of a (covariant) completely positive contraction $Q$ of $A$ into $(\pi_{\varphi}(B)\cup u_{\varphi}(G))’’$

such that $Q|_{B}=\pi_{\varphi}$ . Under these circumstances, one may aPply the results of
[1] to the crossed products. Secondly, in Section 3, it is observed that, if $A$

is G-central, then $\hat{Q}$ and $Q$ always exist. Thus the question of G-centrality of
$B$ is reduced to the problem of arranging that $Q$ maps $A$ into $\pi_{\varphi}(B)’’$ .

For the theory of crossed products, the reader is referred to [8, Chapter 7];

for the basic theory of invariant states, to [4, 4.3].
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2. Covariant weak expectations.

Let $(A, G, \alpha)$ be a $C^{*}$-dynamical system, and $B$ be an $\alpha$-invariant $C^{*}$-sub-
algebra of $A$ . Let $(\mathcal{H}, \pi, u)$ be a covariant representation of $(B, G, \alpha)$ and
$\mathcal{M}=(\pi(B)\cup u(G))’’$ . A covariant weak expectaiion for $(\mathcal{H}, \pi, u)$ is a completely
positive linear contraction $Q:Aarrow \mathcal{M}$ such that $Q|_{B^{--\pi}}$ and $Q(\alpha_{t}(a))=u_{t}Q(a)u_{t}^{*}$

$(a\in A, t\in G)$ .
We may also consider the $C^{*}$-crossed product $A\cross aG$ , which is the $completio_{n}$

of $L^{1}(G;A)$ in a suitable norm, and the $C^{*}$-subalgebra $B_{G}$ of $A$ $x_{\alpha}G$ generated
by $L^{1}(G;B)$ . A weak expectation for $(\mathcal{H}, \pi\cross u)$ is a linear contraction
$\hat{Q}$ : $A\cross aGarrow \mathcal{M}suchthat\hat{Q}(y)=(\pi\cross u)(y)(y\in L^{1}(G;B))$ . Note that this definition
is not quite covered by the definition of weak expectations in [1], since there
is no reason, a priori, why it is automatically possible to embed $B\cross_{\alpha}G$ in
$A\cross\alpha G$ , or to factor $\pi\cross u$ through $B_{G}$ . (In general, $B_{G}$ is a quotient of $B\cross_{\alpha}G$ ;
the algebras coincide if $G$ is amenable.)

PROPOSITION 1. There is a $h_{J}$ ective correspOndence between covariant weak
expectatims $Q:Aarrow \mathcal{M}$ for $(\mathcal{H}, \pi, u)$ and weak expectatiom $\hat{Q}$ : $A\cross aGarrow \mathcal{M}$ for
$(\mathcal{H}, \pi\cross u)$ .

PROOF. Suppose that $Q:Aarrow \mathcal{M}$ is a covariant weak expectation for
$(\mathcal{H}, \pi, u)$ . Define $\hat{Q}$ : $L^{1}(G;A)arrow \mathcal{M}$ by

$\hat{Q}(x)=\int_{G}Q(x(t))u_{t}dt$ .
Then

$Q(x^{*})= \int_{G}\Delta(t)^{-1}Q(\alpha_{t}(x(t^{-1})^{*}))u_{t}dt$

$= \int_{G}\Delta(r)^{-1}u_{t}Q(x(t^{-1}))^{*}dt$

$= \int_{G}u_{t}^{*}Q(x(t))^{*}dt$

$=\hat{Q}(x)^{*}$ .
For $y$ in $L^{1}(G;B)$ ,

$\hat{Q}(y)=\int_{G}Q(y(t))u_{t}dt=\int_{G}\pi(y(t))u_{t}dt=(\pi\cross u)(y)$ .

Let $\xi$ be a unit vector in $\mathcal{H}$ . Consider the map $\Psi:Garrow A^{*}$ defined by

$\Psi(t)(a)=\langle Q(a)u_{t}\xi, \xi\rangle$ .
For $t_{i}$ in $G$ and $a_{i}$ in $A$ ,

$\sum_{i,j=1}^{n}\Psi(t_{t}^{-1}t_{j})$ (
$\alpha_{t_{t}^{-1}}$

(a $fa_{j})$ ) $= \sum_{i,j=1}^{n}\langle u_{t_{i}}^{*}Q(afa_{j})u_{t_{i}}u_{\iota_{i}}^{*}u_{\iota_{j}}\xi, \xi\rangle\geqq 0$
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by [10, IV. 3.4]. Thus $\Psi$ is positive-definite. Also $\Psi(e)(a)=\langle Q(a)\xi, \xi\rangle$ , so $\Psi(e)$

is a state of $A$ . By [8, 7.6.8], there is a state $\omega_{\xi}$ of $A\cross\alpha G$ such that

$\Psi(t)(a)=\omega_{\xi}(a\lambda_{t})$

where the same symbols are used to denote the canonical extension of $\omega_{\overline{\backslash }}$
. to

the multiplier algebra $M(A\cross\alpha G),$ $A$ is embedded in $M(A\cross.G)$ , and $\lambda$ is the
unitary representation of $G$ in $M(A\cross aG)$ . For $x=x^{*}$ in $L^{1}(G;A)$ ,

$\omega_{\xi}(x)=\int_{G}\omega_{\xi}(x(t)\lambda_{t})dt=\int_{G}\langle Q(x(t))u_{t}\xi, \xi\rangle dt=\langle\hat{Q}(x)\xi, \xi\rangle$ .
Thus

$|\langle\hat{Q}(x)\xi, \xi\rangle|\leqq\Vert x\Vert_{A\cross}a^{G}$

Since $\hat{Q}(x)^{*}=\hat{Q}(x^{*})=\hat{Q}(x),$ $\Vert\hat{Q}(x)\Vert\leqq\Vert x\Vert_{Ax_{a}G}$ . Hence $\hat{Q}$ extends by continuity to
a bounded self-adjoint linear map, also denoted by $\hat{Q}$ , of $A\cross_{\alpha}G$ into $\mathcal{M}$ which
is a contraction on the self-adjoint part. Then $\hat{Q}$ extends to an ultraweakly
continuous linear map, also denoted by $\hat{Q}$ , of $(Ax_{\alpha}G)^{**}$ into $\mathcal{M}$ which is a
contraction between the self-adjoint parts. Furthermore, $\pi\cross u=\hat{Q}\circ\Phi$ where
$\Phi:B\cross aGarrow B_{G}$ is the canonical $*$-homomorphism, so this identity remains valid
for the ultraweakly continuous extensions. Since $\pi\cross u$ is non-degenerate,
$\hat{Q}(\hat{e})=I_{f\zeta}$ , where \^e is the identity of $B_{G}^{**}$ , so \^e is a projection in $(A\cross\alpha G)^{**}$ .
Now, if $\hat{1}$ is the identity of $(A\cross aG)^{**}$ ,

$\Vert I_{\mathcal{H}}\pm\hat{Q}(1-\text{\^{e}})\Vert\wedge=\Vert Q(\text{\^{e}}\pm(\hat{1}-\text{\^{e}}))\Vert\leqq\Vert\text{\^{e}}\pm(\hat{1}-\text{\^{e}})\Uparrow=1$ .
Hence $\hat{Q}(1-\hat{e})=0\wedge$ so $\hat{Q}(i)=I_{\mathcal{H}}$ . For $x$ in $(A\cross\alpha G)^{**}$ with $0\leqq x\leqq 1\wedge$ ,

$\Vert I_{\mathcal{H}}-\hat{Q}(x)\Vert\leqq\Vert 1-x\Vert\wedge\leqq 1$ .
Since $\hat{Q}(x)$ is self-adjoint, $\hat{Q}(x)\geqq 0$ . Thus $\hat{Q}$ is positive. Since $\hat{Q}(1)=I_{\mathcal{H}}\wedge,\hat{Q}$ is a
contraction on $(A\cross aG)^{**}$ and hence on $A\cross\alpha G[4,3.2.6]$ .

Let $(f_{i})$ be an approximate unit for $L^{1}(G)$ . For $a$ in $A$ , put $(a\otimes f_{i})(t)=$

$f_{i}(t)a$ , so $a\otimes f_{i}\in L^{1}(G;A)$ and $a\otimes f_{t}arrow a$ ultraweakly in $(A\cross\alpha G)^{**}$ . Then

$Q(a)= \lim(\int_{G}f_{i}(t)u_{t}dr)Q(a)=\lim\hat{Q}(a\otimes f_{t})=\hat{Q}(a)$ ,

the limits being in the ultraweak topology.
Conversely, let $\hat{Q}$ : $A\cross\alpha Garrow \mathcal{M}$ be a weak expectation for $(\mathcal{H}, \pi\cross u)$ . Then

$\hat{Q}$ extends to an ultraweakly continuous mapping, also denoted by $\hat{Q}$ , of
$(Ax_{\alpha}G)^{**}$ into $\mathcal{M}$ . Furthermore, the kernel of $\Phi$ is contained in the kernel
of $\pi\cross u$ , so there is a representation $\rho$ of $B_{G}$ such that $\pi\cross u=\rho^{Q}\Phi$ and $\hat{Q}$ is
a weak expectation for $\rho$ in the sense of [1]. By [1, 2.1], $\hat{Q}$ is completely
positive, and satisfies the module property:

$Q(y_{1}xy_{2})=\rho(y_{1})Q(x)\rho(y_{2})$ $(y_{1}, y_{2}\in B_{c^{**}} ; x\in(A\cross aG)^{**})$ .
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Identifying $A$ with its image in $M(A\cross_{a}G)$ , put $Q=\hat{Q}|_{A}$ . Then $Q$ is a com-
pletely positive contraction of $A$ into $\mathcal{M}$ ,

$Q(b)=\hat{Q}(b)=\rho(b)=\pi(b)$ $(b\in B)$

$Q(\alpha_{t}(a))=\hat{Q}(\lambda_{t}a\lambda_{t}^{*})=\rho(\lambda_{t})\hat{Q}(a)\rho(\lambda_{t}^{*})=u_{t}Q(a)u_{t}^{*}$ $(a\in A)$ .
Thus $Q$ is a covariant weak expectation.

For $x$ in $L^{1}(G;A),$ $x=|_{G}x(t)\lambda_{t}dt\vee$
’ the integral being ultraweakly convergent

in $(A\cross\alpha G)^{**}$ . Hence

$Q(x)= \int_{G}\hat{Q}(x(t)\lambda_{t})dt=\int_{G}\hat{Q}(x(t))\rho(\lambda_{t})dt=\int_{G}Q(x(t))u_{t}dt$ .

This establishes the bijective correspondence.

REMARKS. 1. From the proof of Proposition 1, we see that a covariant
weak expectation $Q$ satisfies the module property

$Q(b_{1}ab_{2})=\pi(b_{1})Q(a)\pi(b_{2})$ $(a\in A;b_{1}, b_{2}\in B)$ .
This may also be deduced from Stinespring’s theorem for any completely
positive mapping $Q:Aarrow \mathcal{M}$ such that $Q|_{B^{-}}-\pi$ .

2. There is a standard argument to show that any linear contraction
$Q:Aarrow \mathcal{M}$ , such that $Q|_{B^{-}}-\pi$ , is positive. Moreover, $Q$ is completely positive
if it satisfies any one of the following additional properties:

(i) $Q$ is a complete contraction,
(ii) $Q$ maps $A$ into $\pi(B)’’[1,2.1]$ ,
(iii) $Q$ is covariant, and for $t_{i}$ in $G$ and $a_{i}$ in $A$ ,

$\sum_{i.j=1}^{n}u_{t_{i}}^{*}Q(afa_{j})u_{\iota_{j}}\geqq 0$

(see the proof of Proposition 1).

However, in general, $Q$ may not be completely positive, even if it is covariant.
For example, let $A$ be the $C^{*}$-algebra $M_{2}$ of $2\cross 2$ complex matrices, $B$ be the

subalgebra of diagonal matrices, $G=\{0,1\},$ $\alpha_{1}=Ad\{\begin{array}{ll}0 11 0\end{array}\},$ $\pi$ be the identity re-

presentation of $B$ on $C^{2},$ $u_{1}=\{\begin{array}{ll}0 11 0\end{array}\}$ , and $Q$ be the transpose map.

3. A covariant weak expectation $Q$ may fail to map $A$ into $\pi(B)’’$ . For
example, let $A=M_{2}\otimes M_{2}$ , $B=M_{2}\otimes I_{2}$ , $G=U(2)$ , $\alpha_{t}=Ad(t\otimes\overline{t})$ , $\mathcal{H}=C^{2}\otimes C^{2}$ ,
$\pi(b\otimes I_{2})=b\otimes I_{2}(b\in M_{2}),$ $u_{t}=t\otimes\overline{t}$ . Then $(\mathcal{H}, \pi, u)$ is a covariant representation
of $(B, G, \alpha)$ with $u(G)$-invariant cyclic vector $(1/\sqrt{2})((1,0)\otimes(1,0)+(0,1)\otimes(0,1))$ ,
and $\pi(B)’’=\pi(B)=M_{2}\otimes I_{2},$ $\mathcal{M}=M_{2}\otimes M_{2}$ . The identity representation $Q=\pi_{0}$ of
$A$ is a covariant weak expectation, mapping $A$ onto $\mathcal{M}$ . Here $Q=\pi_{0}\cross u$ .
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4. Suppose that $G$ is amenable, and let $m$ be an invariant mean on $L^{\infty}(G)$ .
Suppose that there is a completely positive contraction $P:Aarrow \mathcal{M}$ such that
$P|_{B}=\pi$ . Then there is a covariant weak expectation $Q:Aarrow \mathcal{M}$ given by

$\langle Q(a)\xi, \eta\rangle=m(tarrow\langle u_{t}^{*}P(\alpha_{t}(a))u_{t}\xi, \eta\rangle)$ $(\xi, \eta\in \mathcal{H})$ .
In particular, if there is an injective von Neumann algebra $\mathfrak{N}$ such that $\pi(B)’’$

$\subseteqq \mathfrak{N}\subseteqq \mathcal{M}$ , then there is a weak expectation $\hat{Q}$ : A $x_{\alpha}Garrow \mathcal{M}$ . If $B$ is nuclear,
one may take $\mathfrak{N}=\pi(B)’’$ or $\mathfrak{N}=\mathcal{M}$ since $B\cross aG$ is nuclear [5]. If $B$ is semi-
nuclear [6], there is a weak expectation $P:Aarrow\pi(B)’’$ and hence a covariant
weak expectation $Q:Aarrow \mathcal{M}$ .

Recall that there is an affine homeomorphism between $\alpha$-invariant states $\varphi$

of $B$ and states $\tilde{\varphi}$ of $Bx_{a}G$ with $\tilde{\varphi}(\lambda_{t})=1$ for all $t$ in $G$ , given by

$\tilde{\varphi}(y)=\int_{G}\varphi(y(t))dt$ $(y\in L^{1}(G;B))$

(see, for example, [2, 4.1]). The GNS representation of $\tilde{\varphi}$ is $(\mathcal{H}_{\varphi}, \pi_{\varphi}\cross u_{\varphi})$ .

THEOREM 2. Let $\varphi$ be an $\alpha$-invariant state of $B$ with associated covanant
represmtatjOn $(\mathcal{H}_{\varphi}, \pi_{\varphi}, u_{\varphi})$ of $(B, G, \alpha)$ , and let $\mathcal{M}_{\varphi}$ be the von Neumann algebra
generated by $\pi_{\varphi}(B)\cup u_{\varphi}(G)$ . There are bijective corresPondences between:

(i) $(\alpha\otimes 1)$-invariant states $\omega$ of $A\otimes_{\max}\mathcal{M}_{\varphi}’$ such that

$(*)$ $\omega(b\otimes d)=\langle\pi_{\varphi}(b)d\xi_{\varphi}, \xi_{\varphi}\rangle$ $(b\in B, d\in \mathcal{M}_{\varphi}’)$ ,

(ii) covariant weak expectations $Q:Aarrow \mathcal{M}_{\varphi}$ for $(\mathcal{H}_{\varphi}, \pi_{\varphi}, u_{\varphi})$ ,
(iii) $\alpha$-invariant states $\psi$ of $A$ such that $\psi|_{B}=\varphi$ and $E_{\psi}\pi_{\psi}(A)E_{\psi}\subseteqq \mathcal{M}_{\varphi}$ , where

$E_{\psi}$ is the projection of $\mathcal{H}_{\psi}$ onto $\mathcal{H}_{\varphi}$ ,
(iv) weak expectations $\hat{Q}$ : $A\cross aGarrow \mathcal{M}_{\varphi}$ for $(\mathcal{H}_{\varphi}, \pi_{\varphi}\cross u_{\varphi})$ ,
(v) states $iJ$ of $(Ax_{\alpha}G)\otimes_{\max}\mathcal{M}_{\varphi}’$ such that

$(**)$ $\tilde{\omega}(x\otimes d)=\int_{G}\langle\pi_{\varphi}(x(t))d\xi_{\varphi}, \xi_{\varphi}\rangle dt$ $(x\in L^{1}(G;B))$ ,

(vi) states $\emptyset$ of $A\cross aG$ such that $\phi Q\Phi=\tilde{\varphi}$ and $E_{\phi}\pi_{\phi}(A\cross aG)E_{\phi}\subseteqq \mathcal{M}_{\varphi}$ , where
$\Phi$ is the $*$-homomorPhism of $B\cross_{a}G$ onto $B_{G’}$ and $E_{\phi}$ is the prOjectjOn of $\mathcal{H}_{\phi}$

onto $[\pi_{\phi(B)\xi_{\phi}]}$ .
PROOF. The proof of [1, 2.3] shows that there is a correspondence between

states $\omega$ of $A\otimes_{\max}\mathcal{M}_{\varphi}’$ satisfying $(*)$ and completely positive contractions
$Q:Aarrow \mathcal{M}_{\varphi}$ such that $Q|_{B}=\pi_{\varphi}$ , given by

$\omega(a\otimes d)=\langle Q(a)d\xi_{\varphi}, \xi_{\varphi}\rangle$ $(a\in A, d\in \mathcal{M}_{\varphi}’)$ .
(The proof in [1] did not use the assumption that the $C^{*}$-subalgebra $D$ is
ultraweakly dense in $\pi_{\varphi}(B)’$ except to show that $Q(A)\subseteqq\pi_{\varphi}(B)’(=D’’)$ . Now
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taking $D=D’’=\mathcal{M}_{\varphi}’$ , the same proof gives the present result.) Furthermore,

$Q$ is covariant

$\Leftrightarrow$ $\langle Q(\alpha_{t}(a))\pi_{\varphi}(b_{1})d\xi_{\varphi}, \pi_{\varphi}(b_{2})\xi_{\varphi}\rangle=\langle u_{\varphi}(t)Q(a)u_{\varphi}(t)^{*}\pi_{\varphi}(b_{1})d\xi_{\varphi}, \pi_{\varphi}(b_{2})\xi_{\varphi}\rangle$

$(a\in A ; b_{1}, b_{2}\in B ; t\in G ; d\in \mathcal{M}_{\varphi}’)$

$\Leftrightarrow$ $\langle Q(b_{2}^{*}\alpha_{t}(a)b_{1})d\xi_{\varphi}, \xi_{\varphi}\rangle=\langle Q(\alpha_{\iota-1}(b_{2}^{*})a\alpha_{t^{-1}}(b_{1}))u_{\varphi}(t)^{*}du_{\varphi}(t)\xi_{\varphi}, \xi_{\varphi}\rangle$

$(a\in A ; b_{1}, b_{2}\in B ; t\in G ; d\in \mathcal{M}_{\varphi}’)$

$\Leftrightarrow$ $\omega(b_{2}^{*}\alpha_{t}(a)b_{1}\otimes d)=\omega(\alpha_{\iota-1}(b_{2}^{*})a\alpha_{\iota- 1}(b_{1})\otimes d)$

$(a\in A ; b_{1}, b_{2}\in B ; t\in G ; d\in \mathcal{M}_{\varphi}’)$

$\Leftrightarrow$ $\omega(\alpha_{t}(a)\otimes d)=\omega(a\otimes d)$ $(a\in A;t\in G;d\in \mathcal{M}_{\varphi}’)$

$\Leftrightarrow$ $\omega$ is $(\alpha\otimes 1)$-invariant.

This establishes the correspondence between (i) and (ii).

It was also shown in [1, 2.3] that the restriction map of the state space of
$A\otimes_{\max}\mathcal{M}_{\varphi}’$ into the state space of $A$ gives an affine homeomorphism between
states ru satisfying $(*)$ and states $\psi$ of $A$ with $\psi|_{B^{--\varphi}}$ and $E_{\psi}\pi_{d},(A)E_{\psi}\subseteqq \mathcal{M}_{\varphi}$ .
Clearly, if $\omega$ is $(\alpha\otimes 1)$-invariant, $\psi$ is $\alpha$-invariant. On the other hand, if $\psi$ is
$\alpha$-invariant, then it follows, for example by the uniqueness of $\omega$ , that $\omega$ is
$(\alpha\otimes 1)$-invariant. This establishes the correspondence between (i) and (iii).

The correspondence between (ii) and (iv) is immediate from Proposition 1
while the correspondences between (iv), (v) and (vi) again follow from [1].

One merely has to observe that the condition $(**)$ is equivalent to the require-
ment that

$\tilde{\omega}(x\otimes d)=\langle(\pi_{\varphi}\cross u_{\varphi})(x)d\xi_{\varphi}, \xi_{\varphi}\rangle$ ,

and that if $\tilde{\omega}$ exists, then $\tilde{\omega}(y\otimes 1)=\tilde{\varphi}(y)(y\in L^{1}(G;B))$ , so $\tilde{\varphi}$ factors through
$B_{G},$ $\pi_{\varphi}\cross u_{\varphi}$ induces a representation $\rho_{\varphi}$ of $B_{G}$ and the weak expectations $\hat{Q}$ for
$(\mathcal{H}_{\varphi}, \pi_{\varphi}\cross u_{\varphi})$ correspond to the weak expectations for the representation $(\mathcal{H}_{\varphi}, \rho_{\varphi})$

of the $C^{*}$-subalgebra $B_{G}$ .

REMARKS. 1. The correspondences of Theorem 2 are all affine homeo-
morphisms in the weak* and point-ultraweak topologies. The correspondence
between (iii) and (vi) is the canonical correspondence between $\alpha$-invariant states
$\psi$ of $A$ and states $\tilde{\psi}$ of $A\cross aG$ with $\tilde{\psi}(\lambda_{t})=1(t\in G)$ .

2. This is an opportunity to correct an error of detail in the proof of
Theorem 1 of [3]. Instead of working with $A\otimes_{\max}\pi_{\varphi}(B)’$ , one should consider
$A\otimes_{\max}D$ , where $D$ is an ultraweakly dense $C^{*}$-subalgebra of $\pi_{\varphi}(B)’$ and the
action Ad $u_{\varphi}$ of $G$ leaves $D$ invariant and is strongly continuous on $D$ . This
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ensures that one can apply an invariant mean to a measurable (even, continuous)

function to obtain a G-invariant extension of $\tilde{\varphi}$ to $A\otimes_{\max}D$ .

3. G-centrality.

Recall that an $\alpha$-invariant state $\psi$ of $A$ is said to be G-abelian if, for each
$a,$

$b$ in $A$ and $u_{\psi}$-invariant vector $\eta$ in $\mathcal{H}_{\psi}$ ,

$inf|\langle\pi_{\psi}(a’b-ba’)\eta, \eta\rangle|=0$

where the infimum is taken over all $a’$ in the convex hull of $\{\alpha_{t}(a):t\in G\}$ .
Moreover, $A$ is said to be G-abelian if every a-invariant state $\psi$ is G-abelian;
equivalently, for each $\psi,$ $\mathcal{M}_{\psi}’(=\pi_{\psi}(A)’\cap u_{\psi}(G)’)$ is abelian; equivalently, the $\alpha-$

invariant states of $A$ form a Choquet simplex [4, 4.3.11].

PROPOSITION 3. SuPpose that $G$ is amenable, and $A$ is G-abelian. For each
$\alpha$-invariant state $\varphi$ of $B$ , there is a covanant weak expectation for $(\mathcal{H}_{\varphi}, \pi_{\varphi}, u_{\varphi})$ .

PROOF. The first step is to note that $B$ is G-abelian. This is well known,

but for completeness we give the proof. We have to show that for each $\alpha-$

invariant $\varphi$ , and $a,$
$b$ in $B$ ,

$(*)$ inf $|\varphi(a’b-ba’)|=0$ .
Since $G$ is amenable, there is an $\alpha$-invariant state $\psi$ of $A$ extending $\varphi$ , and
then $(*)$ follows from the G-abelianness of $\psi$ .

Now $\mathcal{M}_{\varphi}’(=\pi_{\varphi}(A)’\cap u_{\varphi}(G)’)$ is abelian, so $\mathcal{M}_{\varphi}$ is of type I, hence injective, and
the existence of a weak expectation $\hat{Q}$ : $A\cross\alpha Garrow \mathcal{M}_{\varphi}$ follows, since $B_{G}\cong B\cross_{a}G$ .

Recall also that an a-invariant state $\psi$ of $A$ is said to be G-central if, for
each $a,$

$b$ in $A$ and $u_{\psi}$-invariant vector $\eta$ in $\mathcal{H}_{\psi}$ , and $x$ in $\pi_{\varphi}(A)’$ ,

$inf|\langle\pi_{\psi}(a’b-ba’)x\eta, \eta\rangle|=0$

where the infimum is taken over all $a’$ in the convex hull of $\{\alpha_{t}(a):t\in G\}$ .
Moreover, $A$ is said to be G-central if every $\alpha$-invariant state $\psi$ is G-central;
equivalently, $A$ is G-central if $\pi_{\psi}(A)’\cap u_{\psi}(G)’\subseteqq\pi_{\psi}(A)’$ for each $\psi$ ; equivalently,
the $\alpha$-invariant states of $A$ form a Choquet simplex whose boundary measures
are subcentral [4, 4.3.14].

In [3], attention was given to the question whether $B$ is G-central, assuming
that $A$ is G-central and $G$ is amenable. In separable cases, it is enough to
show that every centrally ergodic state $\varphi$ of $B$ is compressible in $A$ (that is,
there is a weak expectation $P:Aarrow\pi_{\varphi}(B)’’$ for $\pi_{\varphi}$). Proposition 3 shows that
there exist covariant expectations $Q:Aarrow \mathcal{M}_{\varphi}$ , but in general there is no reason
to suppose that $\varphi$ is compressible.
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One non-amenable instance when the existence of $Q$ implies the existence
of $P$ is described in the following result.

PROPOSITION 4. Let $G$ be the unitary group of the $C^{*}$-algebra $\tilde{B}$ spanned
by $B$ and a unit of $A$ (adjointed to $A$ if necessary), and let $a$ be the inner action
of $G$ on A. Let $\varphi$ be a trace ( $\alpha$-invariant state) of B. Any covariant weak
expectatjOn $Q:Aarrow \mathcal{M}_{\varphi}$ mapsA into $\pi_{\varphi}(B)’$ . Conversely, any weak expectatjOn
$P:Aarrow\pi_{\varphi}(B)’$ is convariant.

PROOF. It is possible to prove the first statement directly, but we give an
alternative proof using the correspondences developed above. Let $\psi$ be the a-
invariant state of $A$ corresponding to $Q$ given by Theorem 2. The $\alpha$-invariance
means that $\psi$ is B-central ($\psi(ab)=\psi(ba)$ for $a$ in $A,$ $b$ in $B$), and by [1, 3.1] $\psi$

corresponds to a weak expectation $P:Aarrow\pi_{\varphi}(B)’’$ . Since the correspondences
are the same and one-one, $P=Q$ .

Conversely, the covariance of $P$ follows from the identity:

$P(\alpha_{v}(a))=P(vav^{*})=\pi_{\varphi}(v)P(a)\pi_{\varphi}(v^{*})=u_{\varphi}(v)P(a)u_{\varphi}(v)^{*}$

for $a$ in $A$ , unitary $v$ in $\tilde{B}$ .

Various examples where $\varphi$ is a trace were given in [1, Section 4].
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