Weak expectations in C^{*}-dynamical systems

By Charles J. K. Batty and Masaharu Kusuda

(Received April 20, 1987)

1. Introduction.

Attempts to extend a factorial state φ on a C^{*}-algebra B to a factorial state on a larger C^{*}-algebra A mainly centred around searches for solutions of a tensor product problem, or equivalently for weak expectations for the GNS representation π_{φ}, that is, linear contractions P of A into $\pi_{\varphi}(B)^{\prime \prime}$ such that $\left.P\right|_{B}=\pi_{\varphi}$ (see [1] and the references cited therein). The eventual solutions of the problem [7,9] were variants of this method.

In the case when there is an action α of an amenable group G on A leaving B invariant, an analogous problem is to consider an α-invariant state φ of B which is centrally ergodic in the sense that

$$
\boldsymbol{\pi}_{\varphi}(B)^{\prime \prime} \cap \boldsymbol{\pi}_{\varphi}(B)^{\prime} \cap u_{\varphi}(G)^{\prime}=\boldsymbol{C} \cdot 1
$$

where $\left(\pi_{\varphi}, u_{\varphi}\right)$ is the associated covariant representation of (B, G, α), and to try to find an extension to a centrally ergodic state of A. It was shown in [3] that this can be done by the method of [1] if B is (semi)nuclear, but the von Neumann algebra theory developed in [7,9] is not sufficient to provide a general solution. A corollary of a successful solution is that if A is separable and G-central (and B is nuclear), then B is also G-central.

The purpose of this paper is to clarify the covariant situation. Firstly, in Section 2, we consider the problem lifted to the C^{*}-crossed products. Thus the existence of a weak expectation \hat{Q} for the representation $\pi_{\varphi} \times u_{\varphi}$ of $A \times{ }_{\alpha} G$ (with respect to the subalgebra $B \times{ }_{\alpha} G$) is seen to be equivalent to the existence of a (covariant) completely positive contraction Q of A into $\left(\pi_{\varphi}(B) \cup u_{\varphi}(G)\right)^{\prime \prime}$ such that $\left.Q\right|_{B}=\pi_{\varphi}$. Under these circumstances, one may apply the results of [1] to the crossed products. Secondly, in Section 3, it is observed that, if A is G-central, then \hat{Q} and Q always exist. Thus the question of G-centrality of B is reduced to the problem of arranging that Q maps A into $\pi_{\varphi}(B)^{\prime \prime}$.

For the theory of crossed products, the reader is referred to [8, Chapter 7]; for the basic theory of invariant states, to [4, 4.3].

2. Covariant weak expectations.

Let (A, G, α) be a C^{*}-dynamical system, and B be an α-invariant C^{*}-subalgebra of A. Let (\mathscr{H}, π, u) be a covariant representation of (B, G, α) and $\mathscr{M}=(\pi(B) \cup u(G))^{\prime \prime}$. A covariant weak expectation for (\mathscr{H}, π, u) is a completely positive linear contraction $Q: A \rightarrow \mathscr{M}$ such that $\left.Q\right|_{B}=\pi$ and $Q\left(\alpha_{t}(a)\right)=u_{t} Q(a) u_{i}^{*}$ $(a \in A, t \in G)$.

We may also consider the C^{*}-crossed product $A \times{ }_{\alpha} G$, which is the completion of $L^{1}(G ; A)$ in a suitable norm, and the C^{*}-subalgebra B_{G} of $A \times{ }_{\alpha} G$ generated by $L^{1}(G ; B)$. A weak expectation for $(\mathscr{H}, \pi \times u)$ is a linear contraction $\hat{Q}: A \times{ }_{\alpha} G \rightarrow \mathcal{M}$ such that $\hat{Q}(y)=(\pi \times u)(y)\left(y \in L^{1}(G ; B)\right)$. Note that this definition is not quite covered by the definition of weak expectations in [1], since there is no reason, a priori, why it is automatically possible to embed $B \times{ }_{\alpha} G$ in $A \times{ }_{\alpha} G$, or to factor $\pi \times u$ through B_{G}. (In general, B_{G} is a quotient of $B \times{ }_{\alpha} G$; the algebras coincide if G is amenable.)

Proposition 1. There is a bijective correspondence between covariant weak expectations $Q: A \rightarrow \mathscr{M}$ for (\mathscr{H}, π, u) and weak expectations $\hat{Q}: A \times{ }_{\alpha} G \rightarrow \mathcal{M}$ for ($\mathcal{H}, \pi \times u$).

Proof. Suppose that $Q: A \rightarrow \mathcal{M}$ is a covariant weak expectation for (\mathscr{R}, π, u). Define $\hat{Q}: L^{1}(G ; A) \rightarrow \mathcal{M}$ by

$$
\hat{Q}(x)=\int_{G} Q(x(t)) u_{t} d t
$$

Then

$$
\begin{aligned}
\hat{Q}\left(x^{*}\right) & =\int_{G} \Delta(t)^{-1} Q\left(\alpha_{t}\left(x\left(t^{-1}\right)^{*}\right)\right) u_{t} d t \\
& =\int_{G} \Delta(t)^{-1} u_{t} Q\left(x\left(t^{-1}\right)\right)^{*} d t \\
& =\int_{G} u_{t}^{*} Q(x(t))^{*} d t \\
& =\hat{Q}(x)^{*} .
\end{aligned}
$$

For y in $L^{1}(G ; B)$,

$$
\hat{Q}(y)=\int_{G} Q(y(t)) u_{t} d t=\int_{G} \pi(y(t)) u_{t} d t=(\pi \times u)(y) .
$$

Let ξ be a unit vector in \mathscr{H}. Consider the map $\Psi: G \rightarrow A^{*}$ defined by

$$
\Psi(t)(a)=\left\langle Q(a) u_{t} \xi, \xi\right\rangle
$$

For t_{i} in G and a_{i} in A,

$$
\sum_{i, j=1}^{n} \Psi\left(t_{i}^{-1} t_{j}\right)\left(\alpha_{t_{i}^{-1}}\left(a_{i}^{*} a_{j}\right)\right)=\sum_{i, j=1}^{n}\left\langle u_{t_{i}}^{*} Q\left(a_{i}^{*} a_{j}\right) u_{t_{i}} u_{\hat{t}_{i}}^{*} u_{t_{j}} \xi, \xi\right\rangle \geqq 0
$$

by [10, IV.3.4]. Thus Ψ is positive-definite. Also $\Psi(e)(a)=\langle Q(a) \xi, \xi\rangle$, so $\Psi(e)$ is a state of A. By [8, 7.6.8], there is a state ω_{ξ} of $A \times{ }_{\alpha} G$ such that

$$
\Psi(t)(a)=\omega_{\xi}\left(a \lambda_{t}\right)
$$

where the same symbols are used to denote the canonical extension of ω_{Σ} to the multiplier algebra $M\left(A \times{ }_{\alpha} G\right), A$ is embedded in $M\left(A \times{ }_{\alpha} G\right)$, and λ is the unitary representation of G in $M\left(A \times{ }_{\alpha} G\right)$. For $x=x^{*}$ in $L^{1}(G ; A)$,

$$
\omega_{\xi}(x)=\int_{G} \omega_{\xi}\left(x(t) \lambda_{t}\right) d t=\int_{G}\left\langle Q(x(t)) u_{t} \xi, \xi\right\rangle d t=\langle\hat{Q}(x) \xi, \xi\rangle .
$$

Thus

$$
|\langle\hat{Q}(x) \xi, \xi\rangle| \leqq\|x\|_{A \times_{\alpha} G} .
$$

Since $\hat{Q}(x)^{*}=\hat{Q}\left(x^{*}\right)=\hat{Q}(x),\|\hat{Q}(x)\| \leqq\|x\|_{A \times_{\alpha} G}$. Hence \hat{Q} extends by continuity to a bounded self-adjoint linear map, also denoted by \hat{Q}, of $A \times{ }_{\alpha} G$ into \mathscr{M} which is a contraction on the self-adjoint part. Then \hat{Q} extends to an ultraweakly continuous linear map, also denoted by \hat{Q}, of $\left(A \times{ }_{\alpha} G\right)^{* *}$ into \mathscr{M} which is a contraction between the self-adjoint parts. Furthermore, $\pi \times u=\hat{Q} \circ \Phi$ where $\Phi: B \times{ }_{\alpha} G \rightarrow B_{G}$ is the canonical *-homomorphism, so this identity remains valid for the ultraweakly continuous extensions. Since $\pi \times u$ is non-degenerate, $\hat{Q}(\hat{e})=I_{\mathscr{G}}$, where \hat{e} is the identity of $B_{G}{ }^{* *}$, so \hat{e} is a projection in $\left(A \times_{\alpha} G\right)^{* *}$. Now, if $\hat{1}$ is the identity of $\left(A \times{ }_{\alpha} G\right)^{* *}$,

$$
\left\|I_{\mathscr{H}} \pm \hat{Q}(\hat{1}-\hat{e})\right\|=\|Q(\hat{e} \pm(\hat{1}-\hat{e}))\| \leqq\|\hat{e} \pm(\hat{1}-\hat{e})\|=1
$$

Hence $\hat{Q}(\hat{1}-\hat{e})=0$ so $\hat{Q}(\hat{1})=I_{\mathscr{G}}$. For x in $\left(A \times{ }_{\alpha} G\right)^{* *}$ with $0 \leqq x \leqq \hat{1}$,

$$
\left\|I_{\mathscr{G}}-\hat{Q}(x)\right\| \leqq\|\hat{1}-x\| \leqq 1 .
$$

Since $\hat{Q}(x)$ is self-adjoint, $\hat{Q}(x) \geqq 0$. Thus \hat{Q} is positive. Since $\hat{Q}(\hat{1})=I_{\mathscr{R}}, \hat{Q}$ is a contraction on $\left(A \times{ }_{\alpha} G\right)^{* *}$ and hence on $A \times{ }_{\alpha} G$ [4, 3.2.6].

Let $\left(f_{i}\right)$ be an approximate unit for $L^{1}(G)$. For a in A, put $\left(a \otimes f_{i}\right)(t)=$ $f_{i}(t) a$, so $a \otimes f_{i} \in L^{1}(G ; A)$ and $a \otimes f_{i} \rightarrow a$ ultraweakly in $\left(A \times{ }_{\alpha} G\right)^{* *}$. Then

$$
Q(a)=\lim \left(\int_{G} f_{i}(t) u_{t} d t\right) Q(a)=\lim \hat{Q}\left(a \otimes f_{i}\right)=\hat{Q}(a),
$$

the limits being in the ultraweak topology.
Conversely, let $\hat{Q}: A \times{ }_{\alpha} G \rightarrow \mathscr{M}$ be a weak expectation for ($\mathscr{A}, \pi \times u$). Then \hat{Q} extends to an ultraweakly continuous mapping, also denoted by \hat{Q}, of $\left(A \times{ }_{\alpha} G\right)^{* *}$ into \mathscr{M}. Furthermore, the kernel of Φ is contained in the kernel of $\pi \times u$, so there is a representation ρ of B_{G} such that $\pi \times u=\rho \circ \Phi$ and \hat{Q} is a weak expectation for ρ in the sense of [1]. By [1,2.1], \hat{Q} is completely positive, and satisfies the module property:

$$
\hat{Q}\left(y_{1} x y_{2}\right)=\rho\left(y_{1}\right) \hat{Q}(x) \rho\left(y_{2}\right) \quad\left(y_{1}, y_{2} \in B_{G}{ }^{* *} ; \quad x \in\left(A \times{ }_{\alpha} G\right)^{* *}\right) .
$$

Identifying A with its image in $M\left(A \times{ }_{\alpha} G\right)$, put $Q=\left.\hat{Q}\right|_{A}$. Then Q is a completely positive contraction of A into \mathscr{M},

$$
\begin{gathered}
Q(b)=\hat{Q}(b)=\rho(b)=\pi(b) \quad(b \in B) \\
Q\left(\alpha_{t}(a)\right)=\hat{Q}\left(\lambda_{t} a \lambda_{t}^{*}\right)=\rho\left(\lambda_{t}\right) \hat{Q}(a) \rho\left(\lambda_{t}^{*}\right)=u_{t} Q(a) u_{t}^{*} \quad(a \in A) .
\end{gathered}
$$

Thus Q is a covariant weak expectation.
For x in $L^{1}(G ; A), x=\int_{G} x(t) \lambda_{t} d t$, the integral being ultraweakly convergent in $\left(A \times{ }_{\alpha} G\right)^{* *}$. Hence

$$
\hat{Q}(x)=\int_{G} \hat{Q}\left(x(t) \lambda_{t}\right) d t=\int_{G} \hat{Q}(x(t)) \rho\left(\lambda_{t}\right) d t=\int_{G} Q(x(t)) u_{t} d t .
$$

This establishes the bijective correspondence.
Remarks. 1. From the proof of Proposition 1, we see that a covariant weak expectation Q satisfies the module property

$$
Q\left(b_{1} a b_{2}\right)=\pi\left(b_{1}\right) Q(a) \pi\left(b_{2}\right) \quad\left(a \in A ; b_{1}, b_{2} \in B\right) .
$$

This may also be deduced from Stinespring's theorem for any completely positive mapping $Q: A \rightarrow \mathcal{M}$ such that $\left.Q\right|_{B}=\pi$.
2. There is a standard argument to show that any linear contraction $Q: A \rightarrow \mathcal{M}$, such that $\left.Q\right|_{B}=\pi$, is positive. Moreover, Q is completely positive if it satisfies any one of the following additional properties:
(i) Q is a complete contraction,
(ii) Q maps A into $\pi(B)^{\prime \prime}[1,2.1]$,
(iii) Q is covariant, and for t_{i} in G and a_{i} in A,

$$
\sum_{i, j=1}^{n} u_{t_{i}}^{*} Q\left(a_{i}^{*} a_{j}\right) u_{t_{j}} \geqq 0
$$

(see the proof of Proposition 1).
However, in general, Q may not be completely positive, even if it is covariant. For example, let A be the C^{*}-algebra M_{2} of 2×2 complex matrices, B be the subalgebra of diagonal matrices, $G=\{0,1\}, \alpha_{1}=\operatorname{Ad}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \pi$ be the identity representation of B on $C^{2}, u_{1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, and Q be the transpose map.
3. A covariant weak expectation Q may fail to map A into $\pi(B)^{\prime \prime}$. For example, let $A=M_{2} \otimes M_{2}, \quad B=M_{2} \otimes I_{2}, \quad G=U(2), \quad \alpha_{t}=\operatorname{Ad}(t \otimes \bar{t}), \quad \mathscr{H}=\boldsymbol{C}^{2} \otimes \boldsymbol{C}^{2}$, $\pi\left(b \otimes I_{2}\right)=b \otimes I_{2}\left(b \in M_{2}\right), u_{t}=t \otimes \bar{t}$. Then (\mathscr{H}, π, u) is a covariant representation of (B, G, α) with $u(G)$-invariant cyclic vector $(1 / \sqrt{2})((1,0) \otimes(1,0)+(0,1) \otimes(0,1))$, and $\pi(B)^{\prime \prime}=\pi(B)=M_{2} \otimes I_{2}, \mathcal{M}=M_{2} \otimes M_{2}$. The identity representation $Q=\pi_{0}$ of A is a covariant weak expectation, mapping A onto \mathscr{M}. Here $Q=\pi_{0} \times u$.
4. Suppose that G is amenable, and let m be an invariant mean on $L^{\infty}(G)$. Suppose that there is a completely positive contraction $P: A \rightarrow \mathscr{M}$ such that $\left.P\right|_{B}=\pi$. Then there is a covariant weak expectation $Q: A \rightarrow \mathscr{M}$ given by

$$
\langle Q(a) \xi, \eta\rangle=m\left(t \rightarrow\left\langle u_{t}^{*} P\left(\alpha_{t}(a)\right) u_{t} \xi, \eta\right\rangle\right) \quad(\xi, \eta \in \mathscr{A}) .
$$

In particular, if there is an injective von Neumann algebra \boldsymbol{N} such that $\pi(B)^{\prime \prime}$ $\cong N \subseteq \mathscr{M}$, then there is a weak expectation $\hat{Q}: A \times{ }_{\alpha} G \rightarrow \mathcal{M}$. If B is nuclear, one may take $\Omega=\pi(B)^{\prime \prime}$ or $\Omega=\mathscr{M}$ since $B \times{ }_{\alpha} G$ is nuclear [5]. If B is seminuclear [6], there is a weak expectation $P: A \rightarrow \pi(B)^{\prime \prime}$ and hence a covariant weak expectation $Q: A \rightarrow \mathcal{M}$.

Recall that there is an affine homeomorphism between α-invariant states φ of B and states $\tilde{\varphi}$ of $B \times{ }_{\alpha} G$ with $\tilde{\varphi}\left(\lambda_{t}\right)=1$ for all t in G, given by

$$
\tilde{\varphi}(y)=\int_{G} \varphi(y(t)) d t \quad\left(y \in L^{1}(G ; B)\right)
$$

(see, for example, $[2,4.1])$. The GNS representation of $\tilde{\varphi}$ is $\left(\mathscr{H}_{\varphi}, \pi_{\varphi} \times u_{\varphi}\right)$.
Theorem 2. Let φ be an α-invariant state of B with associated covariant representation $\left(\mathscr{H}_{\varphi}, \pi_{\varphi}, u_{\varphi}\right)$ of (B, G, α), and let \mathscr{M}_{φ} be the von Neumann algebra generated by $\pi_{\varphi}(B) \cup u_{\varphi}(G)$. There are bijective correspondences between:
(i) $(\alpha \otimes 1)$-invariant states ω of $A \otimes_{\max } \mathscr{H}_{\varphi}^{\prime}$ such that

$$
\begin{equation*}
\omega(b \otimes d)=\left\langle\pi_{\varphi}(b) d \xi_{\varphi}, \xi_{\varphi}\right\rangle \quad\left(b \in B, d \in \mathscr{M}_{\varphi}^{\prime}\right), \tag{*}
\end{equation*}
$$

(ii) covariant weak expectations $Q: A \rightarrow \mathscr{M}_{\varphi}$ for $\left(\mathscr{H}_{\varphi}, \pi_{\varphi}, u_{\varphi}\right)$,
(iii) α-invariant states ψ of A such that $\left.\psi\right|_{B}=\varphi$ and $E_{\psi} \pi_{\varphi}(A) E_{\psi} \subseteq \mathscr{M}_{\varphi}$, where E_{ψ} is the projection of \mathscr{I}_{φ} onto \mathscr{H}_{φ},
(iv) weak expectations $\hat{Q}: A \times{ }_{\alpha} G \rightarrow \mathscr{M}_{\varphi}$ for $\left(\mathscr{H}_{\varphi}, \pi_{\varphi} \times u_{\varphi}\right)$,
(v) states $\tilde{\omega}$ of $\left(A \times{ }_{\alpha} G\right) \otimes_{\max } \mathscr{H}_{\varphi}^{\prime}$ such that

$$
\begin{equation*}
\tilde{\omega}(x \otimes d)=\int_{G}\left\langle\pi_{\varphi}(x(t)) d \xi_{\varphi}, \xi_{\varphi}\right\rangle d t \quad\left(x \in L^{1}(G ; B)\right), \tag{**}
\end{equation*}
$$

(vi) states $\tilde{\psi}$ of $A \times{ }_{\alpha} G$ such that $\tilde{\psi} \circ \Phi=\tilde{\varphi}$ and $E_{\tilde{\psi} \pi_{\tilde{\psi}}\left(A \times{ }_{\alpha} G\right) E_{\tilde{\psi}} \subseteq \mathscr{M}_{\varphi} \text {, where }}$ Φ is the $*$-homomorphism of $B \times{ }_{\alpha} G$ onto $B_{G^{\prime}}$ and $E_{\tilde{\psi}}$ is the projection of $\mathscr{H}_{\tilde{\psi}}$ onto $\left[\pi_{\tilde{\psi}}(B) \xi_{\tilde{\psi}}\right]$.

Proof. The proof of [1,2.3] shows that there is a correspondence between states ω of $A \otimes_{\max } \mathcal{M}_{\varphi}^{\prime}$ satisfying (*) and completely positive contractions $Q: A \rightarrow \mathscr{M}_{\varphi}$ such that $\left.Q\right|_{B}=\pi_{\varphi}$, given by

$$
\omega(a \otimes d)=\left\langle Q(a) d \xi_{\varphi}, \xi_{\varphi}\right\rangle \quad\left(a \in A, d \in \mathscr{M}_{\varphi}^{\prime}\right) .
$$

(The proof in [1] did not use the assumption that the C^{*}-subalgebra D is ultraweakly dense in $\pi_{\varphi}(B)^{\prime}$ except to show that $Q(A) \cong \pi_{\varphi}(B)^{\prime}\left(=D^{\prime \prime}\right)$. Now
taking $D=D^{\prime \prime}=\mathscr{M}_{\varphi}^{\prime}$, the same proof gives the present result.) Furthermore, Q is covariant

$$
\begin{aligned}
& \Longleftrightarrow\left\langle Q\left(\alpha_{t}(a)\right) \pi_{\varphi}\left(b_{1}\right) d \xi_{\varphi}, \pi_{\varphi}\left(b_{2}\right) \xi_{\varphi}\right\rangle=\left\langle u_{\varphi}(t) Q(a) u_{\varphi}(t) * \pi_{\varphi}\left(b_{1}\right) d \xi_{\varphi}, \pi_{\varphi}\left(b_{2}\right) \xi_{\varphi}\right\rangle \\
&\left(a \in A ; b_{1}, b_{2} \in B ; t \in G ; d \in \mathscr{M}_{\varphi}^{\prime}\right) \\
& \Longleftrightarrow\left\langle Q\left(b_{2}^{*} \alpha_{t}(a) b_{1}\right) d \xi_{\varphi}, \xi_{\varphi}\right\rangle=\left\langle Q\left(\alpha_{t-1}\left(b_{2}^{*}\right) a \alpha_{t-1}\left(b_{1}\right)\right) u_{\varphi}(t)^{*} d u_{\varphi}(t) \xi_{\varphi}, \xi_{\varphi}\right\rangle \\
& \quad\left(a \in A ; b_{1}, b_{2} \in B ; t \in G ; d \in \mathscr{M}_{\varphi}^{\prime}\right) \\
& \Longleftrightarrow \omega\left(b_{2}^{*} \alpha_{t}(a) b_{1} \otimes d\right)=\omega\left(\alpha_{t-1}\left(b_{2}^{*}\right) a \alpha_{t-1}\left(b_{1}\right) \otimes d\right) \\
& \quad\left(a \in A ; b_{1}, b_{2} \in B ; t \in G ; d \in \mathscr{M}_{\varphi}^{\prime}\right) \\
& \Longleftrightarrow \omega\left(\alpha_{t}(a) \otimes d\right)=\omega(a \otimes d) \quad\left(a \in A ; t \in G ; d \in \mathscr{M}_{\varphi}^{\prime}\right) \\
& \Longleftrightarrow \omega \text { is }(\alpha \otimes 1) \text {-invariant. }
\end{aligned}
$$

This establishes the correspondence between (i) and (ii).
It was also shown in [1,2.3] that the restriction map of the state space of $A \otimes_{\max } \mathscr{M}_{\varphi}^{\prime}$ into the state space of A gives an affine homeomorphism between states ω satisfying (*) and states ψ of A with $\left.\psi\right|_{B}=\varphi$ and $E_{\psi} \pi_{\psi}(A) E_{\psi} \cong \mathscr{M}_{\varphi}$. Clearly, if ω is $(\alpha \otimes 1)$-invariant, ψ is α-invariant. On the other hand, if ψ is α-invariant, then it follows, for example by the uniqueness of ω, that ω is ($\alpha \otimes 1$)-invariant. This establishes the correspondence between (i) and (iii).

The correspondence between (ii) and (iv) is immediate from Proposition 1, while the correspondences between (iv), (v) and (vi) again follow from [1]. One merely has to observe that the condition ($* *$) is equivalent to the requirement that

$$
\widetilde{\omega}(x \otimes d)=\left\langle\left(\pi_{\varphi} \times u_{\varphi}\right)(x) d \xi_{\varphi}, \xi_{\varphi}\right\rangle,
$$

and that if $\tilde{\omega}$ exists, then $\tilde{\omega}(y \otimes 1)=\tilde{\varphi}(y)\left(y \in L^{1}(G ; B)\right)$, so $\tilde{\varphi}$ factors through $B_{G}, \pi_{\varphi} \times u_{\varphi}$ induces a representation ρ_{φ} of B_{G} and the weak expectations \hat{Q} for $\left(\mathscr{H}_{\varphi}, \pi_{\varphi} \times u_{\varphi}\right)$ correspond to the weak expectations for the representation ($\mathscr{H}_{\varphi}, \rho_{\varphi}$) of the C^{*}-subalgebra B_{G}.

Remarks. 1. The correspondences of Theorem 2 are all affine homeomorphisms in the weak* and point-ultraweak topologies. The correspondence between (iii) and (vi) is the canonical correspondence between α-invariant states ψ of A and states $\tilde{\psi}$ of $A \times{ }_{\alpha} G$ with $\tilde{\psi}\left(\lambda_{t}\right)=1(t \in G)$.
2. This is an opportunity to correct an error of detail in the proof of Theorem 1 of [3]. Instead of working with $A \otimes_{\max } \pi_{\varphi}(B)^{\prime}$, one should consider $A \otimes_{\max } D$, where D is an ultraweakly dense C^{*}-subalgebra of $\pi_{\varphi}(B)^{\prime}$ and the action $\operatorname{Ad} u_{\varphi}$ of G leaves D invariant and is strongly continuous on D. This
ensures that one can apply an invariant mean to a measurable (even, continuous) function to obtain a G-invariant extension of $\tilde{\varphi}$ to $A \otimes_{\max } D$.

3. G-centrality.

Recall that an α-invariant state ψ of A is said to be G-abelian if, for each a, b in A and u_{ψ}-invariant vector η in \mathscr{H}_{ψ},

$$
\inf \left|\left\langle\pi_{\psi}\left(a^{\prime} b-b a^{\prime}\right) \eta, \eta\right\rangle\right|=0
$$

where the infimum is taken over all a^{\prime} in the convex hull of $\left\{\alpha_{t}(a): t \in G\right\}$. Moreover, A is said to be G-abelian if every α-invariant state ψ is G-abelian; equivalently, for each $\psi, \mathscr{M}_{\psi}^{\prime}\left(=\pi_{\psi}(A)^{\prime} \cap u_{\psi}(G)^{\prime}\right)$ is abelian; equivalently, the α invariant states of A form a Choquet simplex [4, 4.3.11].

Proposition 3. Suppose that G is amenable, and A is G-abelian. For each α-invariant state φ of B, there is a covariant weak expectation for $\left(\mathscr{H}_{\varphi}, \pi_{\varphi}, u_{\varphi}\right)$.

Proof. The first step is to note that B is G-abelian. This is well known, but for completeness we give the proof. We have to show that for each α invariant φ, and a, b in B,

$$
\begin{equation*}
\inf \left|\varphi\left(a^{\prime} b-b a^{\prime}\right)\right|=0 \tag{*}
\end{equation*}
$$

Since G is amenable, there is an α-invariant state ψ of A extending φ, and then (*) follows from the G-abelianness of ψ.

Now $\mathscr{M}_{\varphi}^{\prime}\left(=\pi_{\varphi}(A)^{\prime} \cap u_{\varphi}(G)^{\prime}\right)$ is abelian, so \mathscr{M}_{φ} is of type I, hence injective, and the existence of a weak expectation $\hat{Q}: A \times{ }_{\alpha} G \rightarrow \mathscr{M}_{\varphi}$ follows, since $B_{G} \cong B \times{ }_{\alpha} G$.

Recall also that an α-invariant state ψ of A is said to be G-central if, for each a, b in A and u_{ψ}-invariant vector η in \mathscr{H}_{φ}, and x in $\pi_{\varphi}(A)^{\prime}$,

$$
\inf \left|\left\langle\pi_{\varphi}\left(a^{\prime} b-b a^{\prime}\right) x \eta, \eta\right\rangle\right|=0
$$

where the infimum is taken over all a^{\prime} in the convex hull of $\left\{\alpha_{t}(a): t \in G\right\}$. Moreover, A is said to be G-central if every α-invariant state ψ is G-central ; equivalently, A is G-central if $\pi_{\psi}(A)^{\prime} \cap u_{\varphi}(G)^{\prime} \subseteq \pi_{\psi}(A)^{\prime \prime}$ for each ψ; equivalently, the α-invariant states of A form a Choquet simplex whose boundary measures are subcentral [4, 4.3.14].

In [3], attention was given to the question whether B is G-central, assuming that A is G-central and G is amenable. In separable cases, it is enough to show that every centrally ergodic state φ of B is compressible in A (that is, there is a weak expectation $P: A \rightarrow \pi_{\varphi}(B)^{\prime \prime}$ for $\left.\pi_{\varphi}\right)$. Proposition 3 shows that there exist covariant expectations $Q: A \rightarrow \mathscr{M}_{\varphi}$, but in general there is no reason to suppose that φ is compressible.

One non-amenable instance when the existence of Q implies the existence of P is described in the following result.

Proposition 4. Let G be the unitary group of the C^{*}-algebra \tilde{B} spanned by B and a unit of A (adjointed to A if necessary), and let α be the inner action of G on A. Let φ be a trace (α-invariant state) of B. Any covariant weak expectation $Q: A \rightarrow \mathcal{M}_{\varphi}$ maps A into $\pi_{\varphi}(B)^{\prime \prime}$. Conversely, any weak expectation $P: A \rightarrow \pi_{\varphi}(B)^{\prime \prime}$ is convariant.

Proof. It is possible to prove the first statement directly, but we give an alternative proof using the correspondences developed above. Let ψ be the α invariant state of A corresponding to Q given by Theorem 2. The α-invariance means that ψ is B-central ($\psi(a b)=\psi(b a)$ for a in A, b in B), and by [1,3.1] ψ corresponds to a weak expectation $P: A \rightarrow \pi_{\varphi}(B)^{\prime \prime}$. Since the correspondences are the same and one-one, $P=Q$.

Conversely, the covariance of P follows from the identity :

$$
P\left(\alpha_{v}(a)\right)=P\left(v a v^{*}\right)=\pi_{\varphi}(v) P(a) \pi_{\varphi}\left(v^{*}\right)=u_{\varphi}(v) P(a) u_{\varphi}(v)^{*}
$$

for a in A, unitary v in \tilde{B}.
Various examples where φ is a trace were given in [1, Section 4].

References

[1] R. J. Archbold and C. J. K. Batty, Extensions of factorial states of C^{*}-algebras, J. Funct. Anal., 63 (1985), 86-100.
[2] C. J. K. Batty, Simplexes of states of C^{*}-algebras, J. Operator Theory, 4 (1980), 3-23.
[3] C. J. K. Batty, G-central subalgebras, and extensions of KMS states, J. Funct. Anal., 66 (1986), 11-20.
[4] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
[5] P. Green, The local structure of twisted covariance algebras, Acta Math., 140 (1978), 191-250.
[6] C. Lance, Tensor products and nuclear C^{*}-algebras, Proc. Symp. Pure Math., 38, Part 1, Amer. Math. Soc., Providence, R. I., 1982, pp. 379-399.
[7] R. Longo, Solution of the factorial Stone-Weierstrass conjecture. An application of standard W^{*}-inclusions, Invent. Math., 76 (1984), 145-155.
[8] G.K. Pedersen, C^{*}-Algebras and their Automorphism Groups, Academic Press, London, 1979.
[9] S. Popa, Constructing semiregular maximal abelian subalgebras in factors, Invent. Math., 76 (1984), 157-161.
[10] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, Berlin-HeidelbergNew York, 1979.

Charles J. K. Batty Masaharu Kusuda
St. John's College Department of Applied Mathematics Oxford OX1 3JP Faculty of Engineering Science
England
Osaka University
Toyonaka, Osaka 560
Japan

