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Introduction.

A finitely generated Kleinian group $G$ has some special kind of subgroups.
They are, for example, component subgroups, web and nest subgroups. By
means of those subgroups we shall construct a graph on which $G$ acts without
inversion. This is down by a special choice of the vertex set. An edge is a
separator of web type, that is a separator which lies on the boundary of only
one component of $G$ . The extremities of an edge are different ones, one is as-
sociated with components and the other is a web. This would imply $G$ acts
without inversion.

The most part of this article is devoted to construct the vertices and to
determine their stabilizers, which are associated with components. Here we
outline the idea of this procedure. To each component $\Delta$ of $G$ we associate a
set $\mathcal{L}(\Delta)$ which consists of components of $G$ linked by separators of nest type
to $\Delta$ . A separator is of nest type if it lies on the boundaries of two com-
ponents of $G$ . The linkage means a sequence of components interleaved with
separators of nest type. Then we show that the stability subgroup of $X(\Delta)$ in
$G$ is either a component subgroup or a nest subgroup. This is in Section 3
following the preliminary Sections 1 and 2. The construction of the graph is
in Section 4.

The author would like to thank the referee for valuable comments.

1. Known results and residual limit points.

Let $G$ be a finitely generated $Kle^{1}Anian$ group and denote by $\Omega(G)$ and $\Lambda(G)$

the region of discontinuity and the limit set of $G$ , respectively. A component
of $\Omega(G)$ is called a component of $G$ . Let $\Delta$ be a component of $G$ and denote by
$G_{\Delta}$ the stabilizer of $\Delta$ in $G$ , that is, $G_{\Delta}=\{g\in G|g(\Delta)=\Delta\}$ . It is well known that
$G_{\Delta}$ is a finitely generated function group having $\Delta$ as an invariant component
and is called a component subgroup of $\Delta$ . Assuming $\Omega(G_{\Delta})\neq\Delta$ , let $\Delta^{*}$ be a
component of $G_{\Delta}$ different from $\Delta$ . Then the boundary $\partial\Delta^{*}$ of $\Delta^{*}$ is a quasicon-
formal image of a circle and is called a separator for $G$ . We denote by $S(G)$
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the set of all separators for $G$ . The following are well known.

PROPOSITION 1.1. SeParators form a null sequence with respect to the spherical
metric.

PROPOSITION 1.2. The number of G-inequivalent elements of $S(G)$ is fimte.
PROPOSITION 1.3. Let $\Delta_{1}^{*}$ and $\Delta_{2}^{*}$ be $\phi stinct$ non-invanant comPonents of $G_{\Delta}$ .

If $\partial\Delta_{1}^{*}\cap\partial\Delta_{2}^{*}$ is not empty, then it consists of one $p\alpha nt$ and is the fixed poini of
a parabOljc element of $G_{\Delta}$ .

Let $s\in S(G)$ and let $E$ and $E’$ be subsets of $\hat{C}=C\cup\{\infty\}$ not contained in $s$ .
We say that $s$ separates $E$ from $E’$ if $E$ lies in the closure of one component
of $\hat{C}\backslash s$ and $E’$ lies in the closure of the other component of $\hat{C}\backslash s$ . A separator
$s$ for $G$ is of web type if there is only one component of $G$ on whose boundary
$s$ lies, and $s$ is of nest type if there are two components of $G$ on whose
boundaries $s$ lies. We denote by $S_{w}(G)$ and $S_{n}(G)$ the sets of all separators for
$G$ of web type and of nest type, respectively. Then $S(G)$ is the union of $S_{w}(G)$

and $S_{n}(G)$ . A sequence $\{s_{n}\}_{n=1}^{\infty},$ $s_{n}\in S(G)$ , is a nest sequence if $s_{n}$ separates
$s_{n-1}$ from $s_{n+1}$ for each $n>1$ . A point $p$ of $\Lambda(G)$ is called a residual limit point
if there is no component of $G$ on whose boundary $P$ lies. The set of all the
residual limit points of $G$ is denoted by $\Lambda_{0}(G)$ and is called the residual limit
set of $G$ . There are two classifications of the residual limit set. One is the
following ([1]):

Let $p\in\Lambda_{0}(G);P$ is of the first kind, denoted by $p\in L_{1}(G)$ , if there is a
nested sequence of separators converging to $p;P$ is of the second kind, denoted
by $p\in L_{2}(G)$ , if $p\not\in L_{1}(G)$ .

The other is the following ([4]):

Let $p\in\Lambda_{0}(G);P$ is of the web kind, denoted by $p\in L_{w}(G)$ , if $p\in L_{2}(G);P$

is of the nest kind, denoted by $p\in L_{n}(G)$ , if $p\not\in L_{w}(G)$ and if there is no nested
sequence of separators of nest type converging to $p;P$ is of the general kind,
denoted by $p\in L_{g}(G)$ , if $p\not\in L_{w}(G)\cup L_{n}(G)$ .

The relation between two classifications is the following.

$L_{1}(G)=L_{n}(G)+L_{g}(G)$ , $L_{2}(G)=L_{w}(G)$ .
We prove here the following, which are well known but the author can not

find in the literature.

LEMMA 1.4. Let $G$ be a finitely generated Klevnian group with $\Lambda_{0}(G)\neq\emptyset$ and
let $K=K(G)$ be the number of inequivalent comPonents of G. Then for any col-
lection of inequivalent components $\{\Delta_{1}, \cdots , \Delta_{k}\},$ $k<K$ , there is a collection of in-
equivalent compOnents $\{\Delta_{k+1}, \cdots , \Delta_{K}\}$ satisfyng the following:

i) $\{\Delta_{1}, \cdots , \Delta_{K}\}$ is a complete list of inequivalent compOnenfs of $G$ ,
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ii) $\partial\Delta_{i}\cap\partial\Delta_{j}=\emptyset$ $(i\leqq k<j)$ , and
iii) $\partial\Delta_{i}\cap\partial\Delta_{j}=\emptyset$ $(k<i<])$ .
PROOF. Let $\{g_{k+1}, \cdots , g_{K}\}$ be a set of loxodromic elements of $G$ having

the fixed points on $\Lambda_{0}(G)$ such that the fixed points of $g_{i}$ and $g_{j}$ are distinct
$(k<i<j)$ . Let $\xi_{i}$ and $\xi_{i}’$ be the attractive and the repelling fixed points of $g_{i}$ ,
respectively, and let $U_{i}$ be a closed neighborhood of $\xi_{i}$ such that $U_{i}\cap(\overline{\Delta}_{1}\cup\cdots\cup\overline{\Delta}_{k})$

$=\emptyset$ and that $U_{i}\cap U_{j}=\emptyset(i\neq j)$ . Let $\{\Delta_{k+1}’, \cdots , \Delta_{K}’\}$ be a set of components of
$G$ such that $\{\Delta_{1}, \cdots , \Delta_{k}, \Delta_{k+1}’, \cdots , \Delta_{K}’\}$ is a complete list of inequivalent com-
ponents of $G$ . Since $\xi_{i}$ and $\xi_{i}’$ do not lie on the boundary of any component of
$G$ , there is a set of positive integers $\{n_{k+1}, \cdots , n_{K}\}$ such that $g_{i}^{n_{i}}(\Delta_{i}’)\subset U_{i}(i=$

$k+1,$ $\cdots$ , $K$ ). Putting $\Delta_{i}=g_{i}^{n_{i}}(\Delta_{i}’)$ , we have the desired collection $\{\Delta_{k+1}, \cdots , \Delta_{K}\}$ .

LEMMA 1.5. Let $G$ be a fimtely generated function group and let $K’=K’(G)$

be the number of inequivalent non-invariant components of G. Then for any col-
lection of ineqwvalent non-invariant compOnents $\{\Delta_{1}, \cdots , \Delta_{k}\},$ $k<K’$ , there is a
collection of inequivalent non-invariant compOnents $\{\Delta_{k+1}, \cdots , \Delta_{K’}\}$ satisfyzng the
following:

i) $\{\Delta_{1}, \cdots , \Delta_{K’}\}$ is a complete list of inequivalent non-invanant components

of $G$ ,
ii) $\partial\Delta_{i}\cap\partial\Delta_{j}=\emptyset$ $(i\leqq k<\gamma)$ , and
iii) $\partial\Delta_{i}\cap\partial\Delta_{j}=\emptyset$ $(k<i<j)$ .

PROOF. Let $\{\Delta_{1}, \cdots , \Delta_{k}, \Delta_{k+1}’, \cdots , \Delta_{K’}’\}$ be a complete list of inequivalent
non-invariant components of $G$ and let $\Delta$ be a non-invariant component of $G$

different from any element of $\{\Delta_{1}, \cdots , \Delta_{k}, \Delta_{k+1}’, \cdots , \Delta_{K’}’\}$ . Then by Proposition
1.3 we can find a set of loxodromic elements $\{g_{k+1}, \cdots , g_{K’}\}$ of $G_{\Delta}$ such that
their fixed points lie on $\partial\Delta\backslash \{\partial\Delta_{1}\cup\cdots\cup\partial\Delta_{k}\cup\partial\Delta_{k+1}’\cup\cdots\cup\partial\Delta_{K’}’\}$ and are distinct
to each other. Hence by the same argument of the proof of Lemma 1.4, we
can find a set of integers $\{n_{k+1}, \cdots , n_{K’}\}$ so that $\{g_{k+1}^{n_{k+1}}(\Delta_{k+1}’), \cdots , g_{K}^{n_{K’}}(\Delta_{K’}’)\}$ is
the desired collection.

2. Web subgroup and nest subgroup.

A finitely generated Kleinian group is called a web group if each com-
ponent subgroup is quasi-Fuchsian [2]. Let $G$ be a finitely generated Kleinian
group with $L_{w}(G)\neq\emptyset$ and let $q\in L_{w}(G)$ and $z\in\Omega(G)$ . Writing by $S(z, q)$ the
set of all separators for $G$ separating $q$ from $z$ , we denote by $s(z, q)$ the
separator of $S(z, q)$ such that there is no separator separating $q$ from $s(z, q)$ .
This $s(z, q)$ is called a maximal separator in $S(z, q)$ for $q$ and we denote by $M(q)$

the set of all maximal separators for $q$ , that is, $M(q)=\{s(z, q)|z\in\Omega(G)\}$ . The
set $\Phi(q)=\overline{\bigcup_{s\in M(q)}s}$ is called the web of $q$ and the web subgroup $W(q)$ of $q$ is the
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stabilizer of $\Phi(q)$ in $G$ ([1]). It is shown in [2] that the web subgroups are
web groups. We recall some properties of web subgroups. Writing by $d(z, q)$

the component of $\hat{C}\backslash s(z, q)$ containing $z$ , we set $D(q)=\{d(z, q)|z\in\Omega(G)\}$ .

PROPOSITION 2.1 ([1]). (1) $\Omega(W(q))=D(q)$ ,
(2) $\Phi(q)=\Lambda(W(q))=L_{w}(W(q))+M(q)$ , and
(3) $M(q)=S(W(q))\subset S_{w}(G)$ .
PROPOSITION 2.2 ([4]). For each separator $s$ of $S_{w}(G)$ there is the web sub-

group hamng $s$ as a separator.

A finitely generated Kleinian group $G$ is called a nest group if $\Lambda_{0}(G)=$

$L_{1}(G)\neq\emptyset$ ([3]). It is equivalent to say that $\Lambda_{0}(G)=L_{n}(G)\neq\emptyset$ ([4]). Let $G$ be
a finitely generated Kleinian group with $\Lambda_{0}(G)\supsetneqq L_{n}(G)\neq\emptyset$ . Then $L_{w}(G)\neq\emptyset$ .
Let $p\in L_{n}(G)$ and let $q\in L_{w}(G)$ . Writing by $S_{w}(q, p)$ the set of all separators
for $G$ of web type separating $p$ from $q$ , we denote by $\sigma(q, p)$ the separator of
$S_{w}(q, p)$ such that there is no separator in $S_{w}(q, p)$ separating $P$ from $\sigma(q, p)$ .
The set $\Psi(p)=\bigcup_{q\in L_{w}(G)}\sigma(q, p)$ is called the nest of $P$ and the nest subgroup
$N(p)$ of $P$ is the stabilizer of $\Psi(p)$ in $G$ ([4]). It is shown in [4] that the nest
subgroups are nest groups. Writing by $c(q, p)$ the component of $\hat{C}\backslash \sigma(q, p)$

containing $q$ , we set $C(p)=\{c(q, p)|q\in L_{w}(G)\}$ . We say that a component $\Delta’$ of
$G$ is linked to a component $\Delta$ of $G$ by separators of nest type if there are com-
ponents $\Delta_{1},$ $\Delta_{2},$ $\cdots$ , $\Delta_{n}$ such that $\partial\Delta\cap\partial\Delta_{1},$ $\partial\Delta_{1}\cap\partial\Delta_{2},$ $\cdots$ , $\partial\Delta_{n}\cap\partial\Delta’$ are separators
of nest type. By Propositions 1.1 and 2.2 it is equivalent to saying that there
is no separator of web type separating $\Delta$ from $\Delta’$ . We denote by $X(\Delta)$ the set
of all components of $G$ which are linked to $\Delta$ by separators of nest type.
Clearly $X(\Delta’)=\mathcal{L}(\Delta)$ whenever $\Delta’\in \mathcal{L}(\Delta)$ . The following are shown in [4].

THEOREM 2.3. $\Omega(N(p))=\mathcal{L}(\Delta)\cup C(p)$ for some component $\Delta$ .

LEMMA 2.4. Let $g\in G$ . If there is an element $\Delta’$ of $\mathcal{L}(\Delta)$ such that $g(\Delta’)$

$\in \mathcal{L}(\Delta)$ , then $g\in N(p)$ .

PROPOSITION 2.5. The compOnent containing $\sigma(q, p)$ on its boundary is an
element of $\mathcal{L}(\Delta)$ , where $\Delta$ is the component in Theorem 2.3.

PROPOSITION 2.6. A component $\Delta$ of $G$ iS a comPomnt of $N(P)$ if and only

if there is no separatOr of web type separatjng $\Delta$ from $p$ .

3. The subgroup $N(\Delta)$ .
In this section we shall introduce and examine a subgroup $N(\Delta)$ whose

elements keep $\mathcal{L}(\Delta)$ invariant, that is, $N(\Delta)=\{g\in G|g(\mathcal{L}(\Delta))=\mathcal{L}(\Delta)\}$ . It is
shown implicitly in [4] that if $\Delta$ is a component of both $G$ and the nest sub-
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group $N(p)$ of $p\in L_{n}(G)$ , then $N(\Delta)=N(p)$ . In general, we show the following

PROPOSITION 3.1. Let $G$ be a fimtely generated Kleiman grouP with $\Lambda_{0}(G)$

$\neq\emptyset$ and let $\Delta$ be a component of G. Then $N(\Delta)$ is either a compOnent subgroup
$G_{\Delta’},$ $\Delta’\in x(\Delta)$ , or the nest subgroup $N(p),$ $p\in L_{n}(G)$ .

PROOF. Let $\Delta_{1}$ and $\Delta_{2}$ be elements of $X(\Delta)$ . We shall define the length of
linkage between $\Delta_{1}$ and $\Delta_{2}$ to be the number of separators separating them.
If $\Delta_{1}=\Delta_{2}$ , we interpret the length of linkage as zero.

We first treat the case in which there are no two elements of $\mathcal{L}(\Delta)$ such
that the length of linkage between them is 3. In this case we show that $N(\Delta)$

is a component subgroup. If $\mathcal{L}(\Delta)=\{\Delta\}$ , then clearly we have $N(\Delta)=G_{\Delta}$ . So
we assume that $x(\Delta)\neq\{\Delta\}$ . We assert that there is an element $\Delta’\in \mathcal{L}(\Delta)$ such
that $N(\Delta)=G_{\Delta’}$ . In order to prove the assertion we first show that there is an
element of $\mathcal{L}(\Delta)$ whose component subgroup is not quasi-Fuchsian. If $G_{\Delta}$ is
not quasi-Fuchsian, we have shown with this $\Delta$ . If $G_{\Delta}$ is quasi-Fuchsian, then
let $\Delta’$ be the element of $X(\Delta)$ such that the length of linkage between $\Delta’$ and $\Delta$

is 1. If $G_{\Delta’}$ is quasi-Fuchsian, then $\hat{C}=\Delta\cup\Delta’\cup\partial\Delta$ so $\Lambda_{0}(G)=\emptyset$ , which con-
tradicts the assumption that $\Lambda_{0}(G)\neq\emptyset$ . Hence $\Delta’$ is a component having the
desired property. Thus we have shown that there is an element of $\mathcal{L}(\Delta)$ whose
comPonent subgrouP is not quasi-Fuchsian. We denote this comPonent by $\Delta’$ .
By this $\Delta’$ we show our assertion that $N(\Delta)=G_{\Delta’}$ . Let $\Delta’’$ be an element of
$\mathcal{L}(\Delta)$ with the length of linkage between $\Delta’$ and $\Delta’’$ is 1 and let $\Delta^{*}$ be the non-
invariant component of $G_{\Delta’}$ containing $\Delta’’$ . Note that $\partial\Delta’\cap\partial\Delta’’=\partial\Delta^{*}$ . We assert
that $G_{\Delta’}$ is quasi-Fuchsian so that $\Delta’’=\Delta^{*}$ . Contrary to our assertion, if $G_{\Delta^{r}}$ is
not quasi-Fuchsian, then the complement of the closure of $\Delta^{*}$ is a non-invariant
component of $G_{\Delta^{r}}$ . Let $g$ and $h$ be elements of $G_{\Delta’}$ and $G_{\Delta’}$ , respectively, such
that they do not keep $\Delta^{*}$ invariant. Then $g(\Delta’’)$ is linked to $\Delta’$ by a separator
of nest $type_{-}g(\partial\Delta^{*})$ and $h(\Delta’)$ is linked to $\Delta’’$ by a separator of nest type $h(\partial\Delta^{*})$ .
Hence $g(\Delta’)$ and $h(\Delta’)$ belong to $\mathcal{L}(\Delta)$ and the length of linkage between them
is 3. This contradicts our assumption on the length of linkage. Thus we have
our assertion that $G_{\Delta^{\rho}}$ is quasi-Fuchsian so that $\Delta’’=\Delta^{*}$ . Clearly this implies
$N(\Delta)=G_{\Delta’}$ .

Next we treat the case where there are two elements of $\mathcal{L}(\Delta)$ such that the
length of linkage between them is 3. In this case we show that $N(\Delta)=N(p)$ ,
$p\in L_{n}(G)$. Let $\Delta_{1},$ $\Delta_{2},$ $\Delta_{3},$ $\Delta_{4}$ and $s_{1},$ $s_{2},$ $s_{3}$ be elements of $x(\Delta)$ and separators
of nest type, respectively, such that $\partial\Delta_{i}\cap\partial\Delta_{i+1}=s_{i}(i=1,2,3)$ so that the length
of linkage between $\Delta_{1}$ and $\Delta_{4}$ is 3. Since both $G_{\Delta_{2}}$ and $G_{\Delta_{3}}$ are not quasi-
Fuchsian, we can find $g\in G_{\Delta_{2}}\backslash G_{\Delta_{3}}$ and $h\in G_{\Delta_{3}}\backslash G_{\Delta_{2}}$ such that $g(s_{2})\cap(s_{1}\cup s_{2})=$

$h(s_{2})\cap(s_{2}\cup s_{3})=\emptyset$ . For example, let $g$ (or h) be a loxodromic element of $G_{\Delta_{2}}$

(or $G_{\Delta_{3}}$) having the fixed points on $s_{1}$ (or $s_{3}$ ). Let $p$ and $q$ be the attractive



600 T. SASAKI

and the repelling fixed points of $hg$ , respectively. It is not difficult to see that
$s_{2}$ separates $P$ from $q$ , so $\{(hg)^{n}(s_{2})\}$ is a nest sequence of the separators con-
verging to $P$ so that $p\in\Lambda_{0}(G)\backslash L_{w}(G)$ . More precisely, we show that $p\in L_{n}(G)$ .
For each positive integer $n,$ $(hg)^{n}(\Delta_{3})$ is linked to $\Delta_{2}$ by separators of nest type
$s_{2},$ $h(s_{2}),$ $hg(s_{2}),$ $\cdots$ , $(hg)^{n- 1}(s_{2}),$ $(hg)^{n}(s_{2})$ such that

$\partial\Delta_{2}\cap\partial\Delta_{3}=s_{2}$ , $\partial\Delta_{3}\cap\partial h(\Delta_{2})=\partial h(\Delta_{3})\cap\partial h(\Delta_{2})=h(s_{2})$ ,

$\partial h(\Delta_{2})\cap\partial hg(\Delta_{3})=\partial hg(\Delta_{2})\cap\partial hg(\Delta_{3})=hg(s_{2}),$ $\cdots$

$\partial(hg)^{n-1}(\Delta_{3})\cap\partial(hg)^{n-1}h(\Delta_{2})=(hg)^{n-1}h(s_{2})$ ,

$\partial(hg)^{n-1}h(\Delta_{2})\cap\partial(hg)^{n}(\Delta_{3})=(hg)^{n}(s_{2})$ .
This implies that there is no separator of web type separating $P$ from $\Delta_{2}$ . This
clearly implies that there is no nest sequence of separators of web type con-
verging to $p$ , so $p\in L_{n}(G)$ . By Theorem 2.3 and Proposition 2.6 we see that
$\mathcal{L}(\Delta)$ is the set of all components of both $G$ and $N(p)$ . Since each element of
$N(p)$ keeps $X(\Delta)$ invariant, we have $N(p)\subset N(\Delta)$ . Conversely, since each ele-
ment of $N(\Delta)$ maps $\Delta$ to an element of $X(\Delta)$ , we see by Lemma 2.4 that
$N(\Delta)\subset N(p)$ . Hence $N(\Delta)=N(p)$ . $q.e.d$ .

In view of Proposition 3.1, we can generalize some results in \S 2. The
generalizations are just for component subgroups, so their proofs are clear.
We denote by $C(\Delta)$ the set of all components of $N(\Delta)$ which are not components
of $G$ .

THEOREM 3.2. $\Omega(N(\Delta))=\mathcal{L}(\Delta)\cup C(\Delta)$ .
LEMMA 3.3. Let $g$ be an element of G. If there is an element $\Delta’$ of $\mathcal{L}(\Delta)$

such that $g(\Delta’)\in \mathcal{L}(\Delta)$ , then $g\in N(\Delta)$ .
PROPOSITION 3.4. A comp0nent of $G$ which contains the boundary of an ele-

ment of $C(\Delta)$ on its boundary is an element of $\mathcal{L}(\Delta)$ .
PROPOSITION 3.5. For each separat0r $s$ of $S_{w}(G)$ there is an $N(\Delta)$ having $s$

as a separator.

4. Graph.

First we recall some terminology and definitions from the graph theory in
[5]. A graph $\Gamma$ consists of a set $X=vert\Gamma$ , a set $Y=edge\Gamma$ and two maps
$Yarrow X\cross X,$ $y-(o(y), t(y))$ and $Yarrow Y,$ $y\mapsto\overline{y}$ which satisfy the following condition:
for each $y\in Y$ we have $y=y=,\overline{y}\neq y$ and $o(y)=t(\overline{y})$ . Each element of $X$ is
called a vertex, an element $y\in Y$ is called an (oriented) edge, and $\overline{y}$ is called
the inverse edge. The vertices $o(y)$ and $t(y)$ are called the origin and the
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terminus of $y$ , respectively. The extremities of $y$ are $o(y)$ and $t(y)$ . Two
vertices of $\Gamma$ are adjacent if they are the extremities of some edge. An orien-
tation of $\Gamma$ is a subset $Y_{+}$ of $Y$ such that $Y$ is the disjoint union $Y_{+}$ and $\overline{Y}_{+}$ .
An oriented graph is defined by giving two sets $X$ and $Y_{+}$ and a map $Y_{+}arrow X\cross X$.

Let $G$ be a group acting on $\Gamma$. An invertion is a pair consisting of an
element $g\in G$ and an edge $y\in Y$ such that $gy=\overline{y}$ ; if there is no such pair $G$

acts without inversion; this is equivalent to say that an orientation $Y_{+}$ is
preserved by $G$ . Using the quotients of $X$ and $Y$ under the action of $G$ , the
quotient graph $G\backslash \Gamma$ is defined. A tree of representatives of $\Gamma$ mod $G$ is any
subtree $T$ of $\Gamma$ which is the lift of a maximal tree in $G\backslash \Gamma$. A fundamental
domain of $\Gamma$ mod $G$ is a subgraph $U$ of $\Gamma$ such that $Uarrow G\backslash \Gamma$ is an isomorphism.

Now we define a graph. Let $G$ be a finitely generated Kleinian group with
$L_{g}(G)\neq\emptyset$ . We set

$X=\{\mathcal{L}(\Delta)|\Delta\in\Omega(G)\}\cup\{\Phi(q)|q\in L_{w}(G)\}$ ,

$Y_{+}=S_{w}(G)$ and $Y=Y_{+}\cup\overline{Y}_{+}$ .

The subset $\{\mathcal{L}(\Delta)\}\cross\{\Phi(q)\}$ of $X\cross X$ is associated with $S_{w}(G)$ by Propositions
3.5 and 2.2. Hence there is a natural map $Y_{+}arrow X\cross X,$ $y-(o(y), t(y))\in\{\mathcal{L}(\Delta)\}$

$\cross\{\Phi(q)\}$ . Thus we have a graph and denote it by $\Gamma$.

PROPOSITION 4.1. $\Gamma$ is a tree and $G$ acts on $\Gamma$ without inverszon.

PROOF. Since $\{\mathcal{L}(\Delta)\}$ and $\{\Phi(q)\}$ consist of subsets of $\Omega(G)$ and $\Lambda(G)$ ,

respectively, $G$ acts on $\{\mathcal{L}(\Delta)\}\cross\{\Phi(q)\}$ preserving the order of factors. Hence
the orientation $Y_{+}$ is preserved by $G$ and $G$ acts on $\Gamma$ without inversion. To
see $\Gamma$ is a tree we must show that $\Gamma$ is connected and there is no circuit in $\Gamma$.
Proposition 1.1 implies that, for any two separators, there are only a finite
number of separators separating them. Hence, in view of the definitions of the
web $\Phi(q)$ and the nest $\Psi(p)$ , we see that there are a finite number of edges
connecting two vertices. Therefore $\Gamma$ is connected. Since separators are Jordan
curves lying in $\hat{C}$ and they do not cross each other, it is clear that there is no
circuit. Hence $\Gamma$ is a tree.

Next we investigate the quotient graph $G\backslash \Gamma$ and the structure of $G$ . The
following is adequate to our purpose.

LEMMA 4.2 ([5]). Let $G$ be a group acting without inverston on a connected
graph $\Gamma$ , and let $T$ be a tree of representatjves of $\Gamma$ mod G. Let $U$ be a sub-
graph of $\Gamma$ contaimng $T$, each edge of which has an extremity in $T$, and such
that $G\cdot U=\Gamma$ . For each edge $y$ of $U$ with origin in $T$, let $g_{y}$ be an element of
$G$ such that $g_{y}t(y)\in vert$ T. Then the group generated by the elements $g_{y}$ and
the stafnlizers $G_{x}(x\in vertT)$ is equal to $G$ .
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We denote by $l,$ $m,$ $n$ the numbers of the following:

$l=the$ number of the edges of $G\backslash \Gamma$ ,

$m=the$ number of the vertices of $G\backslash \Gamma$ associated with components, and
$n=the$ number of the vertices of $G\backslash \Gamma$ which are webs.

By the Ahlfors finiteness theorem and by the assumption on $L_{g}(G)$ , those three
numbers are positive integers. Since a tree of representatives $T$ of $\Gamma$ mod $G$

has the same number of vertices as that of $G\backslash \Gamma,$ $T$ consists of $m+n$ vertices
and $m+n-1$ edges. We denote by $x_{1},$ $\cdots$ , $x_{m}$ the vertices associated with com-
ponents and by $x_{m+1},$ $\cdots$ , $x_{m+n}$ the vertices which are webs. Let $y$ be an edge

in $T$. Then there are vertices $x_{i}$ and $x_{m+j}$ such that they are adjacent by $y$ .
Let $N_{i}$ and $W_{m+j}$ be the nest or the component and the web subgroups of $G$

which are stabilizers of $x_{i}$ and $x_{m+j}$ , respectively. Since the stabilizer $G_{y}$ of $y$

in $G$ is the stability subgroup of a separator of web type, both $N_{t}$ and $W_{m+j}$

contain $G_{y}$ as a subgroup. This implies that the group generated by $N_{1},$ $\cdots$ ,
$N_{m},$ $W_{m+1},$ $\cdots$ , $W_{m+n}$ is the amalgam of the $N_{1},$ $\cdots$ , $N_{m},$ $\cdots$ , $W_{m+1},$ $\cdots$ , $W_{m+n}$

along the $G_{y}$ (cf. page 37 in [5]). We denote this amalgam by $G_{T}$ . In a special

case that $m+n=l+1$ , we have the following

PROPOSITION 4.3. If $m+n=l+1$ , then $T$ is a fundamental domain of $\Gamma$ mod $G$

so that $G$ is equal to the amalgam $G_{T}$ .

PROOF. The condition $7n+n=l+1$ implies that the quotient graph $G\backslash \Gamma$ is
a tree. Hence the injection $Tarrow G\backslash \Gamma$ is surjective. Therefore $T$ is a funda-
mental domain of $\Gamma$ mod $G$ . Lemma 4.2 implies that $G=G_{T}$ .

Now we consider the case in which $T$ is not a fundamental domain. This
implies that $m+n\leqq l$ . Let $y_{i}$ ($i=m+n,$ $\cdots$ , l) be the edge in $G\backslash \Gamma$ but not in $T$.
Then one of the extremities of $y_{i}$ does not lie in $T$. Let $g_{i}$ be an element of
$G$ such that $g_{i}$ maps the extremity of $y_{i}$ which does not lie in $T$ to a vertex
of $T$. We denote by $S$ the group generated by those $g_{i}$ . Then Lemma 4.2 tells
us the following

PROPOSITION 4.4. If $m+n\leqq l$ , then $G$ is generated by the amalgam $G_{T}$ and
$S=\langle g_{m+n}, g_{l}\rangle$ .

REMARK 1. Using Lemmas 1.4 and 1.5, we can choose a tree of represen-
tative $T$ such that any two edges of $T$ are disjoint as the Jordan curves in $\hat{C}$ .
Moreover, one can choose the set $\{g_{m+n}, \cdots , g_{l}\}$ such that $S$ is a Schottky
group with $\{y_{m+n}, g_{m+n}(y_{m+n}), \cdots , y_{l}, g_{l}(y_{l})\}$ as the defining curves.

REMARK 2. The path connecting $y_{i}$ to $g_{i}(y_{i})$ in tbe tree $T$ has length
greater than zero. The straight path consisting of the transforms of this path
and $y_{i}$ by the cyclic group $\langle g_{i}\rangle$ has the ends in $L_{g}(G)$ .
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REMARK 3. The graph $\Gamma$ is not locally finite. A vertex is called a terminal
vertex if it is the extremity of only one edge in $Y_{+}$ . Each terminal vertex of
$\Gamma$ is a component of both $G$ and a web subgroup of a point in $L_{w}(G)$ .

REMARK 4. If we adopt the definition that $G$ is an amalgam if it can be
written $G\simeq G_{1^{*}A}G_{2}$ with $G_{1}\neq A\neq G_{2}$ (cf. page 58 in [5]), then we should abandon
some $N_{i}$ in the amalgam $G_{T}$ . This does happen for terminal vertices which are
components of both $G$ and web subgroups.
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