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Introduction.

This paper concerns the nonlinear parabolic equation in a real Hilbert space
H, which is of the form

®) L ut+ag(u(t) 3 £,

where fe L},(R; H), ¢ is a proper l.s.c. (lower semi-continuous) convex func-
tional on H and d¢ is the subdifferential of ¢.

The existence of periodic solutions to (E) has been studied by many authors
under some assumptions on d¢ and f (see [4], [7], [8], [12].

The purpose of this paper is to show the existence of anti-periodic solutions
to (E) under some condition different from coerciveness. This is motivated by
the fact that generally elliptic operators defined on unbounded domains of R™
are not coercive. We show the existence of anti-periodic solutions in case d¢ is
odd (Theorem 1.1). Next we apply this result to a nonlinear heat equation
defined on an exterior domain of R™ (Section 3). Finally we give examples to
see that the conditions assumed in are essential for the existence
of a periodic solution to (E) (see Propositions and L.2).

1. Results.
Let H be a real Hilbert space with inner product (-, -) and norm | [. We
consider the existence of periodic solutions to the equation;

®;p, f) RO OEYON

Here ¢ is a proper l.s.c. convex functional on H and d¢p is the subdifferential
of ¢ and fe Li,(R; H).
Let g be a locally square-integrable function on R with values in H. Then
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g is said to be 2T-periodic [T-anti-periodic] if g(t+2T)=g@®) [gt+T)=—g(t)]
a.e. t=eR.
Our main result is the following :
THEOREM 1.1. Suppose ;
(1.1) ¢ is even (i.e. p(—x)=¢(x), x< H).
1.2) f is T-anti-periodic. \
Then there is a unique T-anti-periodic solution to (E).

COROLLARY 1.1. Under the conditions (1.1) and (1.2), there is a 2T-periodic
solution to (E).

REMARK 1.1. It is known that the periodic solution to (E) is unique if ¢ is
strictly convex.

Condition of differs from the topological condition given
in [7]. Hence is more useful for the case of nonlinear heat
equations defined on unbounded domains of R™ (see Section 3).

Now we give some remarks on the conditions (1.2).

The following condition often appears in considering asymptotic behavior of

solutions to (E; ¢, 0) (cf. [6], [10]:

1.3) There is a constant ¢>0 such that ¢(—cx)=@(x) holds for each x< H.
We claim that does not hold under the assumptions (1.3), (1.2).

In fact we have:

PROPOSITION 1.1. There are a l.s. c. convex functional ¢, and fie L}, (R ; H)
such that;

(1) 1, fi satisfies (1.3), (1.2), respectively.

(ii) There is no periodic solution to (E; ¢, fi1).

(See Section 4.)
We next consider the condition (1.2). We know ;

ProroSITION A (Haraux [7]). Suppose that f(-) is 2T-periodic and that
(E; o, f) has a 2T-periodic solution. Then

(L4) (ZT)“Ssz(t)dt = CI[%(@p)].

One gets directly under the assumptions and (1.2). In fact,
yields that
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(1.5) 0 € 0p(0) C R(0p).
On the other hand, by (1.2) one has

2T
(1.6) S F(Hdt =0.

and together yield
Therefore one might expect that hold if (1.6) is assumed

instead of (1.2). But we have;

PROPOSITION 1.2. There are a l.s.c. convex functional ¢, and f,= L, (R ; H)
such that;

(1) @2, fo satisfies (1.1), (1.6), respectively.

(i) There is no periodic solution to (E; @, f2).

(See Section 5.)
Finally we note that [Corollary I.1] does not hold in case of considering the
equation

By & st au) = 10,

where A is the infinitesimal generator of a unitary group in H. In fact we
have the following example;

=kt A= () Tem 1) 0= )

(Then A is odd, f is T-anti-periodic and (E)’ has no periodic solution.)

2. Proof of Theorem 1.1.

For each a=Cl[®(¢)] there is a unique solution u,=W{i((0, co); H)
NCY[0, co); H) to (E) with u(0)=a. We define a single-valued mapping S by
Sa=—uy(T) for a=CIl[D(p)].

To show that S has a fixed point in CI[®(¢)] we use the following fixed
point theorem ;

THEOREM A (Browder and Petryshyn [5]). Let S be a nonexpansive self-
mapping of a nonempty closed convex set C of H. Then S has a fixed point in
C if and only if for any x,=C the sequence of Picard iterates {x,} starting at
Xo (1.0, Xn+1=Sx,) s bounded in H.

Let u be the solution to (E) with arbitrary initial-value u#,&CI[®(¢)]. Then
the definition of {u,} means that u,=(—1)"u(nT), nN. Hence it is sufficient
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to show that the set {u(¢); t=0} is bounded in H.
In what follows we show the boundedness of {u(t); t=0}. By [L.I) the
relation dp(—x)=—0dp(x) holds for each x=®(d¢p). Hence

u'()—f(t) &€ —0p(u(t)) = op(—u(t))

holds for a.e. =0, where u/()=(d/dt)u(t). Therefore, by (1.2) and the monoton-
icity of d¢, we have

L T O = 2 T+ ), 1+ T+u(o)

= 2(u't+T)—fE+T)+u' ) —f@), u(@t+T)—(—u@®))
<0, a.e. 1=0,

or
2.1) lu@+T)+u®] < u(T)+uOl (=cy, 0.
On the other hand Condition also yields that 0=0d¢(0). Hence
(2.2) %Hu(t)ll = [u@I~(w' (@), u(@®)
= [u®l~{@p(u()—d¢(0), u(t)—0)+(f(t), u(t)}
= [u@-H0+1/DOMu®} = If DN,  a.e. t20.
Therefore
@3 I+ DI— @l = [ Isos = [ 1ol (=), 120

Now we assume that the set {u(#); t=0} is unbounded. Then there is the
sequence {t,} in [0, co) defined by

t. =inf{t=0; |u@®)|=n}, n=N,
where N is a large integer. Note by definition that
(2.4 l[u@l = lu@tdll =n, 0=s=<t,, n=N.
Moreover by and (1.2) one has ¢, T o0 as n—oo,
Fix an arbitrary n=N with t,=T. Let v(t) (tc[t,—T, o)) be the solution
of the initial-value problem
4 stagu) 20, 12t T,
v(t,—T) = u(t,—T).

Then one has the estimates
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@5 Ieo—uel = 7 iwlde = irwlde (=eo; an
2.6) POt S (e, telta—T, ).

and (2.6) together yield that
.7 (—v(ta), V'(s) = —((s), v'(s)),  a.e. s€ltn—T, ta),
since the definition of subdifferential yields that
(—v(ta)—v(s), —v'(s)) S e(—v(ta))—pW(s)).
By and we have
@8) @ltn), ot —o(t=TH =" @it v(s)ds

= SZ:_T(fU(S), v'(s)ds = 27 {[v(t,—DI*— v(t:)]%}
< 27wt —D* = 27 ulta—DI* < 27'n".
Put y=v(t,)—u(t,) and z=v(t,—T)+u(t.) (=ul,—T)+u(ts)). Then estimates
and mean that ||y||<c, and |z]|<c,, respectively. Hence
(2.9) W), v(t)—v(ta—T)) = (u(tn)+y, ults)+y+uts)—2)
= 2[lult) P —(crtellult)ll —coleater)
= 2n%—(c,+c)n—c{ctcy).
(2.8) and [2.9) together yield
2n%—(c,+cn—cycetc,) < 27'n?,

Since ¢, and ¢, are independent of 7, this estimate is a contraction. Therefore
the set {u(¢); t=0} is bounded.

Now applying Theorem A- we conclude that there is a T-anti-periodic
solution to (E).

The uniqueness of the anti-periodic solution to (E) is obtained byithe fol-
lowing :

ProPOSITION B (Baillon-Haraux [2]). The difference of any two 2T-periodic
solutions to (E) is a constant vector of H.

3. An application to a generalized Lin’s equation.

Since Condition differs from coerciveness, [Theorem 1.1 seems to be
more useful in case of nonlinear heat equations defined on unbounded domains
of R™,
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In this section, we show the existence of a solution to the equation;

_83(}6, H—Av(x, t) =0, (x, NELXR,
@.1) gi

%(x, H+glvix, )—h(x, )] =0, (x, hel'XR,
with
3.2) —v(x, t+T) = v(x, 1), (x, HEQXR.

Here © is an exterior domain of R™ with smooth compact boundary /" and n
denotes the outer normal vector on I.

The equation with n=1 (2=[0, o)) is discussed in [1; Section 6.2].
According to the function g with argument wv(x, t)—h(x, t) has the form
c[v(x, t)—c,sint]® in Lin’s problem and is also a power function in radiation
problems. In most physical situation g and 4 are continuous and h(2) is periodic,
representing a pulsating energy source.

Our result is the following :

THEOREM 3.1. Suppose;

(gl) g is a nondegenerate measurable function on R,
(g2) gisodd (i.e. g(—r)=—g(r), r=R),

(h1) h(-, )y e WiR; CXI")),

h2) (-, t+T)= —h(-, t), t=R.

Then there is a unique solution v WELAR ; L¥(2)) to (3.1) and (3.2).

To show this we express the equation in the subdifferential form
3.3) ditu(t)+ago(u(t)) > ft), t=R,

which is defined in the space L% Q), as follows:

Extend the function A on 2XR satisfying h(-, ) WELHR; LX) N
L% (R; H¥2)), h(-, t+T)=—h(-, t), tcR, and (@/on)h(x, t)=0, (x, )l XR.
Put

u(x, t) =v(x, )—h(x, t), flx, 1) = %—i;(x, H—Ah(x, t).
Then we have the following ;
3.4) f, e LE(R; LX)  with f(-, t+T) = —f(8), tER.
(3.5) v(-, 1) € WELHR; LY£)) if and only if u(-, t) € WLAR; L¥XQ)).
3.6) v satisfies if and only if u satisfies
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aa—?(x, H—Au(x, t) = f(x, 1), (x, H e XR,

g;i(x, H+glulx, )] =0, (x, el XR.
Put
2~_lgg|vu<x)|2dx+grc[u(s)jds,

if u= H(Q) and the second term is finite,
400, otherwise,

3.7 o(u) =

where G is the function defined by G(r):S:g(s)ds, reR. Since g is nonnega-

tive by (gl), G is a convex function on R. Hence ¢ is a ls.c. convex func-
tional on L% Q). By definition,

2. O% _
5 Do) = {ue HHD); S(s)+8[u(s)]=0 on I'}

0p(u) = {—Au} for ueD@¢).

By (3.5), (3.6) and (3.8), we have;

LEMMA 3.1. veWLAR; L¥Q)) is a solution to (3.1) if and only if u is a
solution to the equation (3.3) with ¢ defined by (3.7).

((3.5), (3.6) and (3.8), hence also[Lemma 3.1, are obtained under the assumptions
(gl) and (hl).) Next, by (g2) and (h2), we have;

LEMMA 3.2. (i) ¢ is even, and (i) f(-, t+T)=—f(:, 1), teR.

Now, applying [Theorem 1.1, we get the existence and the uniqueness of the
solution to and Hence we proved

4. Proof of Proposition 1.1.

To prove Proposition 1.1 we constract a l.s.c. convex functional ¢; and
fre Li (R ; H) with the following property ;

(@) f, is T-anti-periodic.

(b) There are a l.s.c. convex functional ¢ on H and c=(0, 1] such that

4.1) 0¢ is linear, and
4.2) c{:i(x)—¢:(0)} < d(x)—¢(0) = @:(x)—:(0), xEH.
(¢) There is no periodic solution of (E; ¢, fi1).

REMARK 4.1. Property (b) yields (1.3). In fact, (4.1) yields that ¢ is even.
Hence by (4.2)
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r(—cx)—¢1(0) = c7H(—ex)—P(0)} = ¢ {¢p(ex)—P(0)}
= cH{gler+1—00)—gO)} < ¢ eg(x)+(1— X0~ ()}
= (x)—¢(0) < 1(x)—¢:(0), xeH.
This estimate means that (1.3) holds.
We construct ¢;, ¢ and f, in the space [ Let ¢, >0 and {e;}:2, be the
orthogonal basis of (.. Put
2, = ey— i e"e,, 2y = ¢,+ Téls"en,

X, ={x€l®; (z1, x)>0 and (e, x)>0},

where (-, -) denotes the inner product in (.. We define the functionals as
follows :

$(x) = 67(eo, x)*+37 3 @) e en, 1,
27N(zy, x)*+3¢(x) if xeX,,

e1(x) =1 27Uz, 2)*+3P(x)  if xEX,,
3(x) otherwise,

f(t) = P(t)eo ’

where
1, te2mT, Cm+1)T —e¢,),
| —2e, te@m+1)T —e,, Cm+1)T),
@3 o) = -1, te[@m+DT, @m+2)T—e,),
2¢7t, te[@m+2)T —e,, @m+2)T).

Then properties (a) and (b) hold with arbitrary &, (0, 1).
We claim that (c) holds with sufficiently small ¢, &>0. Indeed, let
usWiY[0, o); (%) be the solution of the initial-value problem

L w+op o) 310, 10
u(0) = e,.

To see (c), we have only to show that the set {u(@mT); me N} is unbounded
in [* with the aid of Theorem A in Section 2. We show this in a few lemmas.

LEMMA 4.1, Put uyt)=(es, u@®), k=0, 1, 2, -, and a()=S51c*us(t). Then
one has

J —ut)+a(t)+ o) if uh)elX,
4.4) —d?uo(t) :{ —uy(t)—at)+p() if u@eX,,
—u()+ 0@ at)+p@) otherwise,
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with 0(t)e[—1, 1], and, for n=1,
e {uy)—a®)—n"'u,@)}, if u@)eX,,

a _ | Mul—a®)—n"'u.(0)}, if wEX,
(4.5) dt ualt) = e {—al)—n"tu,@)}, if u)eXNX.,
e {—n"u,()}, otherwise.

PROOF. By definition, one has

(xo—a(x))e,+ é eM—xotalx)+nx.)en, i xe X,
(xota(x))e,+ 21 e"(xotalx)+n"x,)e,, if x€X,,

aSP1(x) = -
{Oa(x)eo—l— 33 en(alo)+nxen; O[—1, 1]}, if reX.NX,

oo
Xolot+ 2 e"nxqe,, otherwise,
n=1

where x,=(e;, x), k=0,1, 2, ---, and a(x)=>12,e*x,. In fact, for example, if
x< X, then one has

0p:(x) = (21, x)z:+ ii}ln“‘s"(en, x)en
= (xo—a(x)){eo— i n‘ls”en}+ f} n-le"xqe,.
n=1 n=1
Noting that a(u())=a(t) and that x,=0 on X,NX,, we get both and
(@5)
LEMMA 4.2, Let 6>0 be fixed. Let &, &,>0 be such that
(4.6) (1420)e(1—¢)2 < 10719,

2 1
“.7) (14-20)e; < §5(1~ T—-H)

Then for each t=0 one has

(4.8) la®)] =370,

lug@®)—1]1 £ 0 if te2mT, Cm+1)T —¢,),
(4.9) lu@+1l =06  if tel@m+DT, Cm+2)T—e¢,),
luo®)| £ 14+0  otherwise.

PrOOF. Put I={t>0; |a(t)|<3"'0}. Since u(0)=e¢, we see by that
there is a positive number ¢, satisfying [0, t,)CI. We first show that [4.9) holds
for t<[0, #,). By

(4.10) |(d/dtyus®)+ut)—p®)| =0/3  for t[0, t,].
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Suppose that a nonnegative integer m satisfies
4.11) 2mT £ty and |u(2mT)—1| £ 0.
By the definition of p, if te[2mT, 2m+1)T—e&,)N[0, t,] then

(d/dbu(t) £ —r if up—1=3"104r,
(d/dbu ) < r if uy—1=—(3"'0+7),

where »=20/{3(T—e,+1)} (<(2/3)0). Hence

|ut)—1| £ 0, if te[2mT, Cm+1)T—e,)N [0, o],
[u(@m+1DT —e)—1| <370+7, if @m+1)T—e¢,<t,.

If tel@m+1)T —e,, Cm+1TIN[O, ¢,], then
lu @) < 1+94, if te[@m4+1)T—e,, Cm+1TIN[O, t,],
|u@m+DT)+1| <48, if Cm+DT LS,

Similarly we can show
lu®)+1| =0, if te[@m4+1T, @m+2)T —e,)N[O, 0],
lu )| < 149, if te[@m+2)T —e,, @m+2)TIN[O, t,],
[u(@m4+-2)T)—1]| <90, if Cm+2)T<t,.

Since u(0)=e,, integer 0 satisfies the assumption [4.1I)) Now it is easy to see
that holds for each t=[0, ¢,].

Next we show that I=[0, o). By and one has
[(d/dtyu,@)+e"n " u,@)| < e™(1+20)
for t<t, and n=1. Hence we get
(4.12) lu.@)| < n(1+20), 1<t,, n=1.
By and one has

la(t)] = | g}lekuk(t)l < (1+25)éakk = (1420)s(1—e)"* < 10°15

for 0<=t<t,, from which it follows that I=[0, o).
Consequently estimates and [(4.9) hold for each ¢=0.

LEMMA 4.3, There is a sequence {t,} [0, co) satisfying

(4.13) lut)l = n(1=20), nzl.

PrROOF. We see by that
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u(t) € X, if Ju(t)—1|=9,
ut) € X, if Ju(t)+1]=d.

Hence by and we see that for each n=1, there is a positive number
t, satisfying u,(t,)=n(1—20). Since |u(t,)|=|u.(t,)| by the definition of u,(¢),
we have (4.13

5. Proof of Proposition 1.2,

We constract ¢;, f; with required properties in the space (% Let &, £ >0.
Put

(o) (=]
Zi=¢e,— > g"e,, 2, = o+ ) &"e, and M=2,
n=1 n=1

where {e,}.z0 is the orthogonal basis of (2. We define the functionals ¢, and
f. as follows;

ﬁDz(x) = ¢1(x)+¢2(x),
i) =27, 27+ F n7enen, 27},

o) = { 27 'M{(z,, x)*—4} if (z,, x)2>4,
0 if (z,, x)*<4,
f2() = p()eo
with
1, te2mT, 2mT+r—e,),
| e, te2mT +r—e,, 2mT +7),

CO=0 _aMr1),  te[2mT4r, @mtdT—e),

4e7t te[@m+2)T —ey, Cm-+-2)T).

T
Here 7 is the constant such that S: p(t)dt=0 holds. Then both and

hold.
We claim that (E;¢,, f,) has no periodic solution if e, & >0 are sufficiently
small. Let u(¢) be the solution of

(5.1) [ ditu<t>+asoz<u<t)> S f.1), >0,
u(0) = e,.

We show that the set {u(t); t=0} is unbounded.
By definition, one has

y(O), if (221 x>2<4:
(5.2) 0¢pa(x) =[ y(M), if (2., x)*>4,
{y(6);0<[0, MT}, if (2., x)°=4,
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where x,=(e;, x), k=0, 1, 2, -+, a(x)=2%,e*x, and
(8) = {(B+DxoH(0—Dalm)} et 3 e(6—Dxot(O+Datx)+n"x,}en.

Put u.()=(e,, u(t)), n=0, 1, 2, ---, and a(t)=a(u(®)). Then by [5.2) one has
the following ;

(i) If te[2mT, 2mT+r—e,) and (z,, u(t))<4, then

4w = — w0 a1,

d

i ua(t) = eMut)—a®)—n"u,@)}, nz=l

(ii) If te2mT+r, 20m+1)T —¢;) and (z,, u(t))>4, then

& ut) = — (M D)+ (M—Da@)—3(M+1),
d

Eun(t) = e"{—(M—=Du()—M+Dalt)—n"u,@)}, nz=l

Therefore, putting I={t=0;|a(®)| <370} for a fixed 6>0, we obtain in the
same way as in Section 4 that I=[0, o). Moreover, as is seen in Section 4, it
follows from (i) and (ii) that for each n=1 there is a positive number ¢,
satisfying '

This estimate means that the set {u(f); t=0} is unbounded in /%, or equivalently
that (E; ¢, f») has no periodic solution.
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