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Introduction.

In [4], Dwinger considered the completeness of Boolean powers of complete
Boolean algebras. Dwinger obtained a necessary and sufficient condition in
algebraic form:

THEOREM (Dwinger [4]). Let A and B be complete Boolean algebras. The
Boolean power A[B] is complete if and only if

\/(/\Nf(y)/\/\ \/f(u)>:1 for each f: A—> B.
reA\ysx TEZ ufz

Qur main purpose is to consider some relationship which exists among the
completeness of A[B], the distributive-like properties of B and the saturation
number of A.

In the notation of Boolean valued models of set theory, the Boolean power
A[B] is isomorphic to

A= {fev®|[feA®=1)

where A is an element of V® such that A={G|la= A} x{1}. We can have a
better perspective, if we deal with A in V® instead of A[B]. By virtue of
5.5 of Solovay and Tennenbaum [13], A[B] is complete if and only if [4 is
complete]®>=1. Since

[A4 is complete]®

= [VXCAIxc A[Vye X[y<xIAVze A [Vue X[u<z] = x<z]1]®

= A(V(A~ODA AV W),

f:A-B\zcd\yszx r£z ufz

we can obtain a proof of Dwinger’s theorem which uses Boolean valued models
of set theory. This suggests why we are going to work in V&, We assume
that the reader is familiar with the technique of Boolean valued models of set
theory, as presented, e.g. [6, 7, 13]. We assume that V® is separated, i.e.,
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[x=»]®=1 is equivalent to x=y for every x, y&V®, When no confusion
appears possible, we shall write [@®]=1 in place of [@]®’=1.
The following is fundamental in the present paper.

PROPOSITION 1. Let A and B be complete Boolean algebras.

(1) If B satisfies the (<sat(A), |A|)-DL and [sat(A)=sat(A)I®=1, then
[[A is complete]®=1.

(2) If A is well decomposable and [A is complete]® =1, then B satisfies the
(<sat(4), | A])-DL.

(For precise definitions see below.)

Let F be a free Boolean algebra with k generators. A completion F of F

satisfies the c.c.c., so that F is well decomposable. Since “F is a free Boolean
algebra” is absolute, [F is free]"®=1 for every complete Boolean algebra B.

[[Fct%clf“]—:l where F is a completion of F in V®. Hence
[[l%‘ satisfies the c.c.c.] = [[F satisfies the c.c.c.] =1.

There is an (w, co)-distributive complete Boolean algebra which is not (w,, 2)-

distributive (see [10]). Hence, shows the negative answer to the
question in [4] whether |A|=« and completeness of A[B] imply that B satisfies

~ -
the (#, x)-DL. We can not remove the assumption [sat(A4)=sat(A4)]®’=1 of
Proposition 1](1). There exist complete Boolean algebras A and B such that

[[Q?(A):sat(ﬁ)]]w’:[[ﬁ is complete]*®=0 and B satisfies the (<sat(A), co)-DL

(see Example 1).
Suppose that B is complete. In view of [Proposition 1|, the following question
appears :

~ v
Is [sat(A)=sat(A)]‘®B>=1 a necessary condition for [A is complete]®>=1?
We have a partial answer to this question.

PROPOSITION 2. Let T be a splitting tree and A be a completion of the
partially ordered set P that is obtained from (T, <r) by reversing the order. Then
‘. R ~ .
LA is complete]®=1 implies that [sat(A)=sat(A)]®=1.
Our main results are as follows:

COROLLARY 1. Let £ be a regular cardinal. The following are equivalent.

@) [[Av is complete]®= 1 for every k-saturated complete Boolean algebra A.

(2) B satisfies the (<k, o)-DL and [A is k-saturated]®=1 for every k-
saturated Boolean algebra A.
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COROLLARY 3. Suppose that k is a regular cardinal and 2<*=x. The following
are equivalent.

(1) B is k-representable.
(2) B satisfies the (<k, k)-DL and [[fI is K-saturated]"®=1 for every k-
saturated Boolean algebra A with |A|<k.

(3) {[A is completel® =1 for every k-saturated complete Boolean algebra A
with | A| Zk.

Let A and C be complete Boolean algebras. Then we let C<A if thereis
a function 7 from C to A such that

VilW) = Vi(W’) implies VW = VW’ for every W, W/CC.
THEOREM 2. If C<A and [4 is complete] =1, then [[é is complete]®=1.

In Section 1, we give basic definitions and notation. In Section 2, we prove
and its corollaries. is proved in Section 3.

The author would like to express his thanks to the referee for his careful
reading of the paper and his valuable advice.

1. Preliminaries.

We denote the first infinite cardinal by @ and the first uncountable cardinal
by @,. We use letters @, B for ordinals and g, £, 4, ¢# for cardinals. We denote
the least cardinal greater than « by x*. We use letters A, B, C for infinite
Boolean algebras. We denote the finite Boolean operations by Az, Vs, ~3, the
infinitary joins and meets by \Vz and Az, the least element by 0z and the
greatest element by 1. =<jp is the canonical ordering of B. We shall omit
subscripts if there is no confusion. Let B*={b=B|b>0}. For each b= B*,
{a=Bla<b} is a Boolean algebra with the restricted operations and we denote
it by Blb. Let @(X) be the Boolean algebra of all subsets of a set X. The
cardinality of a set S is denoted by |S|. B is k-complete if \/S exists for every
subset S of B with |S|<k. B is countably complete if it is w,-complete. B is
complete if it is A-complete for every A. A subset X of B is dense if for each
beB*, there is x=X such that 0<x=<b. A separative partially ordered set
(P, £) determines uniquely (up to isomorphism) a complete Boolean algebra B
such that (P, <) is isomorphic to a dense subset of B (see [6, 7]). It is called
a completion of P. In particular, every Boolean algebra B has a unique (up
to isomorphism) completion. We denote it by B. Two elements a, b of B are
disjoint if a Ab=0. A partition of B is a maximal pairwise disjoint family of
B. The set of all partitions of B is denoted by PART(B). B is k-saturated
(or satisfies the k-chain condition) if there is no partition P of B with |P|=x.
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The least cardinal £ such that B is k-saturated is called the saturation number
of B and we denote it by sat(B). The w,-chain condition is called the countable
chain condition (c.c.c.). We note that A is complete if and only if A is sat(A)-
complete (see [20.5, 11]). Let ¢ be a function from & to A. A complete
Boolean algebra B satisfies the (x, ¢)-DL (or is (x, o)-distributive) if

a<e /3<0(a)ba”3 - fealifa(a) a/<\x ba'f(a)
for every {{b, slB<o(a@)}|a<k}CPART(B). If ¢ is a constant function such
that o(a)=0d for every a<k, then the (k, ¢)-DL is equivalent to the usual
(k, 0)-distributive law ((k, 6)-DL). B satisfies the (<g, A)-DL if it satisfies the
(k, A)-DL for every £<d. And B satisfies the (x, c0)-DL if it satisfies the
(k, )-DL for every A. We note that B satisfies the (¢, ¢)-DL if and only if

(B>

[[( I o(@) = gﬂa)] —1.

a<lk

A complete Boolean algebra B satisfies the condition P(k, 4, p) if for each a=B*
and any partitions p,=PART(Bla) (a<k) with |p,| =4, there is a function
fETla<eba such that Ngexf(a)>0 for every XCk with | X| <p. Thus, Pk, £, @)
is the k-representability ; P(k, &, ) is the property P, defined by Smith ;
P(k, 2, £*) is the (k, A)-DL. Let r<sat(A)and A<|A|. A is (x, A)-decomposable
if there is PEPART(A) such that |P|=« and |Ala|=2A for every nonzero a=P.
A is (<40, A)-decomposable if it is (x, A)-decomposable for every £<d. A is well
decomposable if it is (<sat(A), | A|)-decomposable. Each complete Boolean
algebra A is (w, | A])-decomposable and (<sat(A), 2)-decomposable. In particular,
every complete Boolean algebra with the c.c.c. is well decomposable. If [A|=
|Ata| for every ac=A*, then A is well decomposable. So each complete
Boolean algebra is isomorphic to a product of well decomposable complete
Boolean algebras (see [9]). For more details on Boolean algebras, see [11].
With respect to basic facts on partially ordered sets we refer the reader to [6,
71.

Let B be complete. The Boolean power of A by B is the Boolean algebra
A[B] such that

ALB]l = {f€B*| f(A)EPART(B)},
fvga)=\Vi{f)nglc)|bVc=a},
fAgla)y=V{fb)Ngle)lbAc=a},
~f(a) = f(~a)
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for every f, g A[B] and a< A,
0.45:(0,) =15 and
lA[B](lA) =15.

With respect to basic results on Boolean powers we refer the reader to [3].
In the following section 2 and section 3, we assume that B is complete.

2. Relationships of P(x, 4, ) to completeness of A[BI].

LEMMA 1 ([18.11, 6]). Let @(x,, ---, x») be a bounded set-theoretical formula
(i.e., it uses only bounded quantifiers).

D(ay, -+, an) if and only if [D(dy, -+, G)] =1.
We shall use Lemma 1| without any mention.

LEMMA 2. Let {a,€A%|a<k}=PART(A). The following are equivalent.

(1) [A is complete]® = 1.

(2) [(Atlan)” is complete]® =1 for every a<k and B satisfies the (k, o)-
DL where o(a)=|Ala,| for every a<k.

Proor. “If C is a Boolean algebra and {b,=C*|a<A}=PART(C), then C
is complete if and only if Clb, is complete for every a<4 and the canonical
embedding ¢: C—II,<;C b, defined by e(c)a)=cAb, is an isomorphism.” This
statement is a theorem of Zermelo-Fraenkel set theory (ZFC) and every theorem
of ZFC has Boolean value 1. Hence,

[A is complete] =1 if and only if [Va<k[Ald, is complete]] =1 and

[the canonical embedding e: A—> IL flrda is an isomorphism] = 1.

ack

Since, [e(A)=T.<:Ala.) 1=1,

fe is an isomorphism] = || 11 Atd, = (11 Araa)v]].

a<lk a<lk
This completes the proof.

Each complete Boolean algebra is a product of well decomposable complete
Boolean algebras. So, in view of our purpose, it is enough to deal with well
decomposable complete Boolean algebras by virtue of

LEMMA 3. If A is (k, A)-decomposable and [A is complete]‘®=1, then B
satisfies the (x, A)-DL. In particular, [4 is complete] ®=1 implies that B
satisfies the (<sat(A), 2)-DL and the (w, | A|)-DL.
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ProoF. There is a family {e,€A*|a<k}=PART(A) such that |Ala,|=2
for every a<k. Hence, by B satisfies the (x, 2)-DL.

PROPOSITION 1. Suppose that A is complete.

(1) If B satisfies the (<sat(A), |A])}-DL and [sat(A)=sat(A)]=1, then [A
is complete] B =1.

(2) If A is well decomposable and [[/1 is complete]‘® =1, then B satisfies the
(<sat(A), |A|)-DL.

Proor. (1) Since A is complete, [Vfe A*[\/f(E) exists]]=1 for every
k<sat(A). B satisfies the (<sat(A), | A|)-DL, so that [[VfEAE[V f(¥) exists]]=1
for every k<sat(A). Hence,

[[fi is complete] = [A is sat(ff)-complete]]
~ ~——
= [A is sat(A)-complete]

— [Vr<sat(A)V f€ ATV f(r) exists]]
= A )[erﬁftwm exists]]

kLsat(A4

=1.
(2) It is easily obtained from Lemma 3.

Let us recall some terminology concerning trees. A tree is a partially
ordered set (T, <r), such that for each x&T, {ysT|y<x} is well ordered by
<. The order type of {y=T|y<x} is denoted by ht(x, T). The height of T
is the least @ such that T,={x&T |ht(x, T)=a}=@. It is denoted by ht(T).
T is splitting if for any t=T, there are at least two immediate successors to £.
A chain of T is a set XCT which is linearly ordered by <. Two elements
x, y of T are incomparable (x 1 y) if neither x<r;y nor y=rx. An antichain
of T isaset XCT such that any two distinct elements of X are incomparable.

Let sat(T') be the least cardinal £ such that there is no antichain X of T with
| X|=k.

PROPOSITION 2. Let T be a splitting tree and A be a completion of the

partially ordered set P that is obtained from (T, <r) by reversing the order.
Then

[A is complete]® =1 implies that {mzsat(ﬁ)]]“” =1,

v, . v, S~ v .
PrOOF. Since [T is dense in A]*®=1, to see that [sat(A)=sat(A)]® =1, it

S~ - ~
is enough to show that [sat(T)=sat(T)]®*=1. Let gk=sat(T). Since [A is com-
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plete]®=1, B satisfies the (<, 2)-DL by Hence [¥ is a cardinal]®
=1. If |T|<k, then there exists no new antichain of T in V® by the (<, 2)-DL
and so [sat(T)=k]®=1. Otherwise, |T|=x. On the other hand, ht(T)<k
because k=sat(T). Suppose that ht(T)<k, then there exists a<ht(T) such that
|T .| =k, which contradicts to x=sat(T). Therefore ht(T)=k. Suppose that

[s\atﬁ)<sat(7v‘)]]>0. Then there exists XV ® guch that [|X|=k and X is an
antichain of T]>0. Let X={p.}.cz. Without loss of generality, we can assume
that ht(p,, TY>a. Let t,, and t,,+, be two distinct immediate successors to Pq.
Since [A is complete]=1, [V o<ilsa=¢]>0 for some cc A. [\ {teT|t<&}=¢]>0.
Hence we have \VV{t€T|t<c}=c. Since r=sat(4), V{{€U<iT|tZc}=c for
some A<k. Therefore

0 < [Va<itza=¢]
< [Fa<aHeT,[t<¢ and tiAL£0]]
< [Fa<iFteT,[t<¢ and piAt+0]]
< [Fa<idteT,[t<¢ and p;=<t]]
=< [0<tpin=pi=c].
On the other hand, 0<[V o<itsa=C1=Z[t:3+:AC=0]. This is a contradiction.
PROPOSITION 3. [B is complete]®=1 if and only if B is atomic.

PROOF. (&) Obvious.
(=) Suppose that B is not atomic. Let u=\/{b= B|bis an atom} and A=B|~u.
Then A is atomless. Since 1z=[B is complete]®<[A is complete]®, we
obtain [A is complete]*“>=1,. Let x=sat(4). Then A satisfies the (<k, 2)-DL
by For each a= A*, pick 0<a*<a. We define T, (a<k) by induc-
tion. Let T,={1} and T,..={a* aA~a*|aecsT,}. If a is limit, then let
Toa={Np<af (B fFETLp<aT 5, Np<af(B)>0}. Since A is k-saturated and satisfies the
(<k, 2)-DL, VT,=1 and |T,|<k for every a<k. Put T=\U.<,To. (T, <r)isa
splitting tree with ht(T)=k where <r is the inverse of the partial ordering of
T inherited from A. Let G be the canonical generic filter of A. Since G is
V-complete, |GNT,|=1 for every a<k. Hence [T has a chain of size £l =1,
So we have [T has an antichain of size #]“=1. But this contradicts to [4 is

complete]‘4>=1 as in the proof of

Let Pr be the set of all finite antichains of T ordered by reversed inclusion
and Br be the complete Boolean algebra associated to Pr. The following lemma
is a slight modification of Theorem 3 in or Lemma 24.3 of [6]. We omit
the proof, since it seems to be a folklore and can be proved by a straightforward
generalization of the methods in the indicated parts in [1, 6].
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LEMMA 4. Let k be a regular cardinal and T be a tree with ht(T)=k which

has no chain of size k. Then, Pr has no antichain of size k; i.e. Br satisfies the
k-chain condition.

LEMMA 5. If B satisfies Pk, 4, 3), then [A is k-saturated]=1 for every k-
saturated Boolean algebra A with | A|ZA.

PROOF. Suppose that there exists a k-saturated Boolean algebra A with
| A| <2 such that [A is k-saturated]<1. There exists gV ® such that

b= [[;1 is not E-saturated]

= [g: ¥ —> A* and Ve, B<c[a#f == g(a)Ag(B)=0]]
> 0.

Put p. .=[d=g(@]Ab for every ac=A and a<k. Let P,={p..lasA}
ePART(Ab). Since |P,|<|A| =4, thereis f&Il.«.P. such that f(a)Af(8)>0
for every a, f<#. Put f(@)=paa, Since p..=[0=g@IANb<[0= A*]Ab=0,
a,>0 for every a<k. If a#p<k, then

[GaAGs=0] = [Go=g(@IALds=2(B)IND
= fa)Af(B) > 0.

Therefore {a,|a<k} is a pairwise disjoint family of size &. This contradicts
that A is k-saturated.

THEOREM 1. Let k be a regular cardinal. The following are equivalent.

(1) B satisfies Pk, 1<%, k).

(2) B satisfies P(k, 1<%, 3) and the (<k, 2~*)-DL.

(3) B satisfies the (<k, 2<*)-DL and [4 is k-saturated]=1 for every k-
saturated Boolean algebra A with |A| <A<~

) [A is complete]=1 for every k-saturated complete Boolean algebra A with
|A] <2<

Proor. (1)=(2) follows from definitions.

(2)=(3) follows from [Lemma 5

(3)=(4) follows from the same argument as in the proof of
(D.

(4)=(1): We first show that there exists a well decomposable complete
Boolean algebra A with sat(4)=« and |A|=2<t. Then, it follows from [A4 is
complete]=1 that B satisfies the (<x, 2<*)-DL. Let C be a completion of a’.
free product P« P(a), FF be a free Boolean algebra with 4 generators and A
be a completion of F[C]. Since [[17“ satisfies the c.c.c.]®>=1, we have sat(A)
=sat(C)=k. It is easy to show that A is well decomposable. Hence |A|=]A|<*,
A=|F|<|A| L(AX2<)<%, Since k is regular, (A<5)<*=2<¢, Therefore we have



Boolean powers 453

|A|=A<F. Suppose that B does not satisfy P(k, 1<%, ). There exist a>0 and
P,=PART(Bla) (a<k) with | P,| £4<* such that, for every fETl.<cPa, Nacxf(@)
=0 for some XCk with | X|<k. Without loss of generality, we may assume
that a=1. Since B satisfies the (<&, £<*)-DL, we may also assume that P, is a
common refinement of {P;|Bf<a} for each a<k and P,NPg=@ for every
a#p<k. Put T=\J{P,|la<k}. (T, <r) is a tree with ht(T)=¢ and has no
chain of size k¥, where <7 is the inverse of the partial ordering of T inherited
from B. Then, by Br satisfies the k-chain condition. Let G be the
canonical generic filter of B. Since G is V-complete, IGmf’alzl. Put ¢g,=
{pa}=GNP, for each a<k. We note that [# is a cardinal]=1 and [GNT isa
chain of T of size ¥]=1, so that [By is ¥-saturated]=0. Since |7 |<A<, |Br|
S(A)<F=4<¢, Hence, by the assumtion, [[ET is complete]=1, so that [V .<q:a
=¢]>0 for some c&Br. Since Br is k-saturated, there exist {b,}.<,CPr (#<k)
such that c=V,<ub,. Put d=sup{ht@t, T)|da<pltcb.]}<xk. Then,

0< LY, qe=Cl= [Fa<ilgsAb,#01].

Hence we obtain [Ja<jiVi€b,[t L p.5]1>0. Since [p3<rpws+]1=1, we have
[Fa<pVteb,[tL pus:11>0. Therefore [Ja< #[g:541Aba#0]]1>0. On the other
hand, by the definition of b,, we obtain 1=I[q25+1/\5=0]]g[[Va>7c[f]25+1/\5a:0]]].
This is a contradiction.

We are interested in the cases =2 or A=oco. For A=co, we obtain the
following :

COROLLARY 1. Let k be a regular cardinal. The following are equivalent.

(1) [A is complete]®=1 for every k-saturated complete Boolean algebra A.

(2) B satisfies the (<, c0)-DL and [A is E-saturated]®=1 for every k-
saturated Boolean algebra A.

In the case of 21=2, it is related to the Smith’s condition P,, and consequently
to the k-representability as follows.

LEMMA 6. If B satisfies P(x, &, k), then B satisfies Pk, 2#, k) for every p<k.

PrROOF. Let a=B* and P,€PART(Bla) (a<k) with |P,|=2# Without
loss of generality, we can assume that |P,|=2# for every a<k. Let 7, be a
bijection from P, to P(u). We define ¢, s=Bla for a<k and B<pg by
Ga, p=V perymD-

Put ¢, 5=q.,p and ¢} pg=~qa, s/\a.

Let Q. s=1{¢% 5, ¢k s} €EPART(Bla). Note that

p=_AN g5 sN_ /N 4qas for every pEP,.
B&T o (D)

BETH(D
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Since B satisfies P(k, &, k),
ElfeH%QQa,ﬁ such that VXCkX p[| X[ <k implies A, prexf(a, B)>0].
<p

We define g€Il.«.Pa by gl@)=ANgs<.f(a, B). Let Y={B<pu|f(a, B)=ql s}.
There is p= P, such that 7,(p)=Y. Then
glay= Nfle, By= AN @A N qis=1pE P,.
B<p Bery(m Berq(pd
Hence g&Il.«.P.. For every ZCk with |Z|<k, Naczg8(@)=Asczf(a, 5)>0.
Therefore B satisfies Pk, 2, k). e

If £ is a regular cardinal such that 2<*=2# for some p¢<t or 2<*=g, then
B satisfies the Smith’s condition P, i.e. P(, &, k) if and only if B satisfies
P(x, 2<%, k) as above. Hence we obtain the following :

COROLLARY 2. Let k be a regular cardinal such that 2<*=2# for some p<k
or 2<*=g. The following are equivalent.

(1) B satisfies the Smith’s condition P,.

(2) B satisfies the (<k, 2<*)-DL and [A is E-saturated]‘®=1 for every k-
saturated Boolean algebra A with | A| <2<,

() [4 is complete]®=1 for every k-saturated complete Boolean algebra A
with | A <2<,

In [12], Smith showed that if x<*=g, then P, is equivalent to the x-repre-
sentability. Hence we obtain the following:

COROLLARY 3. Suppose that k is regular and 2<*=gk. The following are
equivalent.

(1) B is k-representable.

(2) B satisfies the (<k, k)-DL and [4 s E-saturated]‘®=1 for every k-saturated
Boolean algebra A with |A|Z«k.

3) [[A is complete] ®=1 for every k-saturated complete Boolean algebra
A with |A]|Z«k.

In [5], assuming 2“<2%1;, Gregory showed that there exists an (w, w)-
distributive complete Boolean algebra that does not satisfy P,,. The following
example, shooting a closed unbounded set [2], enables us to remove the assump-
tion 2¢<2%1,

ExaMPLE 1. Let SCw, be a stationary and co-stationary set. Let (T, <7)
be the tree of closed subset of S under end extension. Let P be the partially
ordered set that is obtained from (7T, <r) by reversing the order and B be its
completion. It was proved in [2] that B satisfies the (w, o0)-DL. T has no
uncountable chain and |{teT |ht(t, T)=a}| <2 for every a<w,, so that B does
not satisfy P(wi, 2%, w;). Hence B satisfies neither P,, nor P(2, 2¢, w), i.e. B
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is not 2¢-representable. By virtue of the proof of [Theorem 1, we have

[Br satisfies the c.c.c.]® = [Br is complete]®=0.

3. Partial order < on complete Boolean algebras.

Let A be a complete Boolean algebra. Put X(b, f)={asA|bA f(a)>0} for
each b=B* and f: A—»B. We omit f if there is no confusion. b B* is stable
w.r.t. [ if VX(b)=\VX(c) for every c<bh.

LEMMA 7. [A is complete]®=1 if and only if \/{b=B|b is stable w.r.t.
f}=1 for every f: A—B.

PROOF. (=): Let f be a function from A to B. Let W&V be such that
dom(W)=dom(A) and W(d)=f(a) for all ac A. Then [[WC:A]]-—-I. Since [A is
complete]®=1,

Vi{beB|bL[\VW=4a] for some a=A} =1.
Put b=[\VW=d]>0. We show that b is stable w.r.t. f. Let 0<cZb. X(c)=
{(x€AleAf(x)>0l={xc A|cA[¥€W]>0}. Then c<[WcX(c)]. Hence
¢ S VW= X0 = [VW=(VX(©)],
so that a<\/ X(¢). On the other hand, for each x& X(c),
0 < cA[xeW] < [VW=alA[xeW] < [¥<4].

Hence we have x<a for every x=X(c). So we get VX(c)<a. Therefore
V X(c)=a for every ¢<b, so that b is stable w.r.t. f.

(&) Let [[WC]&]]:l and f(a)=[dsW] for all a= A. 1If b is stable w.r.t.
f, then

b < IWCXb)] < VweWlwsVX0)]].

Suppose that b%[[\/Wz\/X(vb)]. Then bA[VweW[wAE=0]]>0 for some ¢c<
VXW®). Put d=bA[VweW[wA{=0]]. Since b is stable w.r.t. f, VX(d)=
VX(b)>c. Hence dA[xW]>0 for some x<c. This is a contradiction.

THEOREM 2. Let C be a complete Boolean algebra. If C<A and [4 is
complete]=1, then [C is complete]=1.

PROOF. Suppose that 7 makes CZA. Let f be a function from C to B.
We define f*: A—B as follows:

fa)=flc) if a=i(c)si(C),
f*¥a)=10 if a<i(C).
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If b is stable w.r.t. f*, then b is stable w.r.t. f. Hence
1=V{bsB|bis stable w.r.t. f*} <V {bsB|b is stable w.r.t. f}.
Therefore [[é is complete]=1 by

ExAMPLE 2. Let C be a subalgebra of A. It is well known that, in
general, \/W does not coincide with \/z(W) where WCC and 7 is the canonical
embedding. It is easy to show that ; makes C<A. So [A4 is complete] =1
implies that [é is complete]=1.

ExampLE 3. Let X be a topological space and Reg(X) be the Boolean

algebra of all regular open sets of X. Let 7 be the canonical injection from
Reg(X) to (X). Since VW =int(cl(\UW)=int(cl(\V:(W)), i makes Reg(X)<®(X).

~——
Hence, if B satisfies the (] X|, 2)-DL, then [Reg(X) is complete]=1.
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