On local deformations of a Banach space of analytic functions on a Riemann surface

Dedicated to Professor Kôtaro Oikawa on his 60th birthday

By Yasushi Miyahara

(Received Jan. 5, 1987)

§ 1. Introduction.

Let \mathcal{S} be the set consisting of all compact bordered Riemann surfaces. For \bar{S} in \mathcal{S}, we denote its interior and its border by S and ∂S, respectively. Let us denote by $p(\geqq 0)$ the genus of \bar{S} and by $q(\geqq 1)$ the number of boundary components of \bar{S}. We set

$$
N=2 p+q-1 .
$$

Furthermore we denote by $A(S)$ the set of all functions which are analytic in S and continuous on \bar{S}. It forms a Banach space with the supremum norm

$$
\|f\|=\sup _{z \in S}|f(z)| .
$$

For \bar{S} and \bar{S}^{\prime} in S, let $L\left(A(S), A\left(S^{\prime}\right)\right)$ denote the set of all continuous invertible linear mappings of $A(S)$ onto $A\left(S^{\prime}\right)$. It is shown by Rochberg [6] that $L(A(S)$, $A\left(S^{\prime}\right)$) is nonvoid if S and S^{\prime} are homeomorphic. We set

$$
c(T)=\|T\|\left\|T^{-1}\right\|
$$

for T in $L\left(A(S), A\left(S^{\prime}\right)\right)$. We have always

$$
c(T) \geqq 1,
$$

and if $T 1=1$, we see that

$$
1 \leqq\|T\| \leqq c(T), \quad 1 \leqq\left\|T^{-1}\right\| \leqq c(T)
$$

and that

$$
c(T)^{-1}\|f\| \leqq\|T f\| \leqq c(T)\|f\|
$$

for all f in $A(S)$. The above inequality implies that in the case $T 1=1, T$ is an isometry if and only if the value $c(T)$ attains its minimum 1. Therefore the value $\log c(T)$ is considered to be the quantity representing the deviation of T from isometries. This quantity was first studied by Banach and Mazur for more general cases (cf. [2]). It is well known that if there exists an isometry T in
$L\left(A(S), A\left(S^{\prime}\right)\right)$ with $T 1=1$, then there exists a conformal mapping ϕ of S^{\prime} onto S such that T is induced by ϕ, namely

$$
T f=f \circ \phi
$$

for all f in $A(S)$ (cf. [4]).
In order to investigate deformations of the Banach space $A(S)$, we introduce a space consisting of isomorphisms of $A(S)$. We now fix an element $\bar{S}_{0} \in \mathcal{S}$ and denote by $L\left(S_{0}\right)$ the set of all $T \in L\left(A\left(S_{0}\right), A(S)\right)$ with $T 1=1$ for all $\bar{S} \in \mathcal{S}$ that are homeomorphic to \bar{S}_{0}. For T_{1} and T_{2} in $L\left(S_{0}\right)$, we say that T_{1} is equivalent to T_{2}, if $T_{2} \circ T_{1}^{-1}$ is an isometry. This defines an equivalence relation in $L\left(S_{0}\right)$. We denote by $\mathcal{L}\left(S_{0}\right)$ the set of all equivalence classes [T] for all $T \in L\left(S_{0}\right)$. We define a function $d(\cdot, \cdot)$ in $\mathcal{L}\left(S_{0}\right) \times \mathcal{L}\left(S_{0}\right)$ as follows;

$$
d\left(\left[T_{1}\right],\left[T_{2}\right]\right)=\log c\left(T_{2} \circ T_{1}^{-1}\right)
$$

for $\left[T_{1}\right]$ and $\left[T_{2}\right] \in \mathcal{L}\left(S_{0}\right)$. We can easily see that it is well defined independently of choices of representatives T_{1} and T_{2} and that it defines a metric on $\mathcal{L}\left(S_{0}\right)$. Thus $\mathcal{L}\left(S_{0}\right)$ is a metric space. When we take another $\bar{S}_{1} \in \mathcal{S}$ which is homeomorphic to \bar{S}_{0}, we can similarly define the metric space $\mathcal{L}\left(S_{1}\right)$. Obviously $\mathcal{L}\left(S_{1}\right)$ is isometric to $\mathcal{L}\left(S_{0}\right)$. Hence the metric space $\mathcal{L}\left(S_{0}\right)$ is determined independently of choices of \bar{S}_{0}. The purpose of the present paper is to investigate the local and topological structure of the space $\mathcal{L}\left(S_{0}\right)$, which describes slight changes of deformations of $A(S)$ by linear isomorphisms. In $\S 4$ we construct a continuous mapping of a neighborhood \mathcal{U} of every point of $\mathcal{L}\left(S_{0}\right)$ into the reduced Teichmüller space $T^{\#}\left(S_{0}\right)$. By using this mapping we can resolve an element of \mathcal{U}, namely a slight deformation of $A(S)$ into a slight deformation of S in $T^{\#}\left(S_{0}\right)$ and a linear automorphism of $A(S)$ which is very close to the identity. This is our main result, which is proved in $\S 6$.

§ 2. Some results on almost isometries.

We state here certain continuity properties on almost isometries, that is, linear isomorphisms T with $c(T)$ very close to 1 . They were proved by Rochberg.

Theorem 1. For every $\varepsilon>0$ there exists a constant $d>1$ having the following property:

For $\bar{S}, \bar{S}^{\prime} \in \mathcal{S}$ and for every $T \in L\left(A(S), A\left(S^{\prime}\right)\right)$ satisfying $c(T)<d$ and $T 1=1$, there exists a homeomorphism h of ∂S onto ∂S^{\prime} such that

$$
|f(z)-(T f)(h(z))| \leqq \varepsilon\|f\|
$$

for all $z \in \partial S$ and for all $f \in A(S)$ (cf. [7]).

The following theorems express in a natural form how close almost isometries are to an isomorphism induced by a conformal mapping. Theorem 2 is a corollary to Theorem A^{\prime} in [5], and Theorem 3 is a result which was implicitly contained in the proof of Proposition 5 and Theorem 3 in [7].

Theorem 2. For every $\varepsilon>0$ and for $\bar{S} \in \mathcal{S}$, there exists a constant $d>1$ having the following property:

If $T \in L(A(S), A(S))$ satisfies $c(T)<d$ and $T 1=1$, then there exists a unique conformal automorphism ϕ of S such that

$$
\|T f-f \circ \phi\| \leqq \varepsilon\|f\|
$$

for all $f \in A(S)$.
Theorem 3. Let \bar{S} be fixed in \mathcal{S}. Then, for every $\varepsilon>0$ and for every relatively compact subdomain D of S, there exists a constant $d>1$ having the following property:

If $T \in L\left(A(S), A\left(S^{\prime}\right)\right)$ satisfies $c(T)<d$ and $T 1=1$ for $\bar{S}^{\prime} \in \mathcal{S}$, then there exists a quasiconformal mapping w of S onto S^{\prime} such that its maximal dilatation $K(w)$ is less than $1+\varepsilon$ and

$$
|f(z)-(T f)(w(z))| \leqq \varepsilon\|f\|
$$

for all $z \in D$ and for all $f \in A(S)$.
Proof. Let $\varepsilon>0$ and relatively compact subdomain D of S be arbitrarily given. Then, by the same argument as the proof of Proposition 5 and Theorem 3 in [7], we can choose a constant $d>1$ such that if $T \in L\left(A(S), A\left(S^{\prime}\right)\right)$ satisfies $c(T)<d$ and $T 1=1$ for $\bar{S}^{\prime} \in \mathcal{S}$ there exist a relatively compact subdomain R of S and a homeomorphism w of S onto S^{\prime} satisfying the following conditions:
(i) D is a subdomain of R. The boundary of R consists of a finite number of analytic contours and the set $\bar{S} \backslash R$ is a union of a finite number of annuli A_{1}, \cdots, A_{m}.
(ii) For a finite number of parametric disks D_{1}, \cdots, D_{n} in S, w is conformal in $\bar{R} \backslash \bigcup_{i=1}^{n} D_{i}$.
(iii) w is quasiconformal in $D_{i}(i=1, \cdots, n)$ and in $A_{i}(i=1, \cdots, m)$.
(iv) $K(w)<1+\varepsilon$.
(v) $|f(z)-(T f)(w(z))| \leqq \varepsilon\|f\|$,
for all $z \in \bar{R} \backslash \bigcup_{i=1}^{n} D_{i}$ and for all $f \in A(S)$.
For $z_{0} \in D_{i}, z_{1} \in \partial D_{i}$ and $f \in A(S)$, we have

$$
\begin{aligned}
\left|f\left(z_{0}\right)-(T f)\left(w\left(z_{0}\right)\right)\right| \leqq & \left|f\left(z_{0}\right)-f\left(z_{1}\right)\right|+\left|f\left(z_{1}\right)-(T f)\left(w\left(z_{1}\right)\right)\right| \\
& +\left|(T f)\left(w\left(z_{1}\right)\right)-(T f)\left(w\left(z_{0}\right)\right)\right| .
\end{aligned}
$$

Since all functions $f /\|f\|$ and $(T f) /\|f\|$ for $f \in A(S)$ are uniformly bounded, they are equicontinuous on every compact subset. Hence, if we choose beforehand sufficiently small $D_{i}(i=1, \cdots, n)$, then the first and the last terms of the
right side of the above inequality are less than $\varepsilon\|f\|$. Furthermore, by (v), the second term is also less than $\varepsilon\|f\|$. Hence we obtain

$$
\left|f\left(z_{0}\right)-(T f)\left(w\left(z_{0}\right)\right)\right| \leqq 3 \varepsilon\|f\|
$$

for all $f \in A(S)$. Therefore we may say that (v) holds for all $z \in \bar{R}$, consequently for all $z \in D$, and for all $f \in A(S)$.

§ 3. The reduced Teichmüller space.

Let \bar{S}_{0} be fixed. If $\bar{S} \in \mathcal{S}$ is homeomorphic to \bar{S}_{0}, there exists a quasiconformal mapping w of S_{0} onto S. We consider a pair (S, w). We say that two pairs (S_{1}, w_{1}) and (S_{2}, w_{2}) are equivalent, if there exists a conformal mapping ϕ of S_{1} onto S_{2} which is homotopic to $w_{2} \circ w_{1}^{-1}$. We denote by $[S, w]$ the equivalence class of (S, w). The set of all equivalence classes is denoted by $\boldsymbol{T}^{\#}\left(S_{0}\right)$. For two pairs $\left(S_{1}, w_{1}\right)$ and $\left(S_{2}, w_{2}\right)$, there exists a unique quasiconformal mapping w_{0} whose maximal dilatation is the smallest in the family consisting of all homeomorphisms of S_{1} onto S_{2} homotopic to $w_{2} \circ w_{1}^{-1}$. Then we set

$$
\rho\left(\left[S_{1}, w_{1}\right],\left[S_{2}, w_{2}\right]\right)=\log K\left(w_{0}\right),
$$

where $K\left(w_{0}\right)$ is the maximal dilatation of w_{0}. This quantity does not depend on choices of representatives $\left(S_{1}, w_{1}\right)$ and $\left(S_{2}, w_{2}\right)$. It defines a metric on $T^{\#}\left(S_{0}\right)$, which is called the Teichmüller metric. The metric space $T^{\#}\left(S_{0}\right)$ is called the reduced Teichmüller space of S_{0}.

We consider $m=\mu(z) d \bar{z} / d z$, a differential of type $(-1,1)$ on a Riemann surface S, where $\mu(z)$ is a measurable function. Such a differential form is called a Beltrami differential on S. If

$$
\|m\|=\sup _{z \in S}|\mu(z)|<1,
$$

a Riemannian metric

$$
d s=|d z+\mu(z) d \bar{z}|
$$

on S defines a new conformal structure on S as is well known. This new Riemann surface is denoted by S^{m}. The identity mapping of S onto itself is a quasiconformal mapping of S onto S^{m}, which is denoted by w^{m}, and it satisfies locally the Beltrami differential equation

$$
w_{\bar{z}}=\mu w_{z}
$$

Let $\left[S_{1}, w_{1}\right] \in \boldsymbol{T}^{\#}\left(S_{0}\right)$ be an arbitrary point. The following fact is well known. There exists a ($3 N-3$)-tuple $\boldsymbol{m}=\left(m_{1}, \cdots, m_{3 N-3}\right)$ of Beltrami differentials on S_{1} such that every point $[S, w]$ in a neighborhood of $\left[S_{1}, w_{1}\right]$ is equal to $\left[S_{1}^{a \cdot m}, w^{\boldsymbol{a} \cdot m}\right]$, where $\boldsymbol{\alpha}=\left(a_{1}, \cdots, a_{3 N-3}\right)$ is a point of Euclidean space $\boldsymbol{R}^{3 N-3}$ and

$$
\boldsymbol{a} \cdot \boldsymbol{m}=a_{1} m_{1}+\cdots+a_{3 N-3} m_{3 N-3} .
$$

We call $\boldsymbol{m}=\left(m_{1}, \cdots, m_{3 N-3}\right)$ a Beltrami basis on S_{1}. The mapping

$$
\boldsymbol{a}=\left(a_{1}, \cdots, a_{3 N-3}\right) \longmapsto\left[S_{1}^{a \cdot m}, w^{\boldsymbol{a} \cdot m}\right]
$$

is a homeomorphism of a neighborhood of the origin of $\boldsymbol{R}^{3 N-3}$ onto a neighborhood of $\left[S_{1}, w_{1}\right] \in \boldsymbol{T}^{\#}\left(S_{0}\right)$. If we consider ($a_{1}, \cdots, a_{3 N-3}$) local coordinates in the neighborhood of $\left[S_{1}, w_{1}\right]$, a real analytic structure is defined in $T^{\#}\left(S_{0}\right)$. Moreover $\boldsymbol{T}^{\#}\left(S_{0}\right)$ is homeomorphic to $\boldsymbol{R}^{3 N-3}$ (cf. [3]). We can construct a Beltrami basis $\boldsymbol{m}=\left(m_{1}, \cdots, m_{3 N-3}\right)$ so that m_{i} is infinitely differentiable in the real sense and the support of m_{i} is a compact subset of S_{1} for $i=1, \cdots, 3 N-3$ (cf. Prop. 6 in [6]).

§4. The construction of a mapping Φ of $\mathcal{L}\left(S_{0}\right)$ into $T^{\#}\left(S_{0}\right)$.

Suppose that \bar{S}_{0} and \bar{S}_{0}^{*} in \mathcal{S} are homeomorphic. Let T_{0} be an element of $L\left(A\left(S_{0}\right), A\left(S_{0}^{*}\right)\right)$ satisfying $T_{0} 1=1$, and let w_{0} be a quasiconformal mapping of S_{0} onto S_{0}^{*}. We consider the point [S_{0}^{*}, w_{0}] in the reduced Teichmüller space $T^{\#}\left(S_{0}\right)$. By using Theorem 3, for every $\varepsilon>0$ and relatively compact subdomain D_{0} of S_{0}^{*}, there exists a constant $d>1$ having the following property: If $T \in$ $L\left(A\left(S_{0}\right), A(S)\right)$ satisfies $c\left(T \circ T_{0}^{-1}\right)<d$ and $T 1=1$, where $\bar{S} \in \mathcal{S}$ is homeomorphic to \bar{S}_{0}, then there exists a quasiconformal mapping w of S_{0}^{*} onto S such that $K(w)$ $<1+\varepsilon$ and

$$
\left|f(z)-\left(T_{\circ} T_{0}^{-1} f\right)(w(z))\right| \leqq \varepsilon\|f\|
$$

for all $z \in D_{0}$ and for all $f \in A\left(S_{0}^{*}\right)$. We now define a mapping Φ as follows;

$$
\Phi(T)=\left(S, w \circ w_{0}\right) .
$$

In order to prove that Φ defines a mapping of a neighborhood of $\left[T_{0}\right] \in \mathcal{L}\left(S_{0}\right)$ into $T^{*}\left(S_{0}\right)$, we must show the following fact. There exist a positive number ε_{0} and a relatively compact subdomain D_{0} of S_{0}^{*} such that for every ε with $0<\varepsilon<\varepsilon_{0}$, for some $d>1$ and for any two equivalent isomorphisms $T, T^{\prime} \in L\left(S_{0}\right)$ satisfying $c\left(T \circ T_{0}^{-1}\right)<d, c\left(T^{\prime} \circ T_{0}^{-1}\right)<d$ and $T 1=1, T^{\prime} 1=1, \Phi(T)$ and $\Phi\left(T^{\prime}\right)$ defined as above are equivalent, namely $\Phi(T)=\left(S, w^{\circ} w_{0}\right)$ defines a point $\left[S, w \circ w_{0}\right]$ of $\boldsymbol{T}^{\#}\left(S_{0}\right)$ for $[T] \in \mathcal{L}\left(S_{0}\right)$.

If it were not true, then there exist the following sequences:
(i) $\varepsilon_{n}>0$ such that $\varepsilon_{n} \rightarrow 0$,
(ii) relatively compact subdomains D_{n} of S_{0}^{*} which exhaust S_{0}^{*},
(iii) $d_{n}>1$ such that $d_{n} \rightarrow 1$,
(iv) $\bar{S}_{n}, \bar{S}_{n}^{\prime} \in \mathcal{S}$ which are homeomorphic to \bar{S}_{0}^{*},
(v) $T_{n} \in L\left(A\left(S_{0}\right), A\left(S_{n}\right)\right), T_{n}^{\prime} \in L\left(A\left(S_{0}\right), A\left(S_{n}^{\prime}\right)\right)$ with $T_{n} 1=1, T_{n}^{\prime} 1=1$, and
(vi) quasiconformal mappings w_{n} of S_{0}^{*} onto S_{n}, w_{n}^{\prime} of S_{0}^{*} onto S_{n}^{\prime}, satisfying the conditions

$$
\begin{equation*}
c\left(T_{n} \circ T_{0}^{-1}\right)<d_{n}, \quad c\left(T_{n}^{\prime} \circ T_{0}^{-1}\right)<d_{n} \tag{1}
\end{equation*}
$$

(2) T_{n} is equivalent to T_{n}^{\prime},

$$
\begin{gather*}
K\left(w_{n}\right)<1+\varepsilon_{n}, \quad K\left(w_{n}^{\prime}\right)<1+\varepsilon_{n}, \tag{3}\\
\left\{\begin{array}{l}
\left|f(z)-\left(T_{n} \circ T_{0}^{-1} f\right)\left(w_{n}(z)\right)\right| \leqq \varepsilon_{n}\|f\| \\
\left|f(z)-\left(T_{n}^{\prime} \circ T_{0}^{-1} f\right)\left(w_{n}^{\prime}(z)\right)\right| \leqq \varepsilon_{n}\|f\|
\end{array}\right. \tag{4}
\end{gather*}
$$

for all $z \in D_{n}$ and for all $f \in A\left(S_{0}^{*}\right)$, and

$$
\begin{equation*}
\Phi\left(T_{n}\right) \neq \Phi\left(T_{n}^{\prime}\right), \tag{5}
\end{equation*}
$$

namely $\left(S_{n}, w_{n} \circ w_{0}\right)$ is not equivalent to ($S_{n}^{\prime}, w_{n} \circ w_{0}$).
By the condition (2), there exists a conformal mapping ϕ_{n} of S_{n}^{\prime} onto S_{n} such that

$$
\begin{equation*}
T_{n} \circ\left(T_{n}^{\prime}\right)^{-1} f=f \circ \phi_{n}^{-1} \tag{6}
\end{equation*}
$$

for all $f \in A\left(S_{n}^{\prime}\right)$. We set

$$
\omega_{n}=\phi_{n} \circ w_{n}^{\prime} .
$$

Then, the condition (5) implies that w_{n} is not homotopic to ω_{n}. By the condition (3), we note that

$$
\begin{equation*}
K\left(\boldsymbol{\omega}_{n}\right)=K\left(w_{n}^{\prime}\right)<1+\varepsilon_{n} . \tag{7}
\end{equation*}
$$

Furthermore it follows from (6) and (4) that

$$
\begin{align*}
\left|f(z)-\left(T_{n} \circ T_{0}^{-1} f\right)\left(\omega_{n}(z)\right)\right| & =\left|f(z)-\left[\left(T_{n} \circ T_{n}^{\prime-1}\right) \cdot\left(T_{n}^{\prime} \circ T_{0}^{-1}\right) f\right]\left(\omega_{n}(z)\right)\right| \tag{8}\\
& =\left|f(z)-\left[\left(T_{n}^{\prime} \circ T_{0}^{-1} f\right) \circ \phi_{n}^{-1}\right]\left(\phi_{n} \circ w_{n}^{\prime}(z)\right)\right| \\
& =\left|f(z)-\left(T_{n}^{\prime} \circ T_{0}^{-1} f\right)\left(w_{n}^{\prime}(z)\right)\right| \\
& \leqq \varepsilon_{n}\|f\|
\end{align*}
$$

for all $z \in D_{n}$ and for all $f \in A\left(S_{0}^{*}\right)$.
From now on, we use the method of uniformization. Let \bar{S} be in \mathcal{S}. The universal covering surface of S are conformally equivalent to the unit disk $U=\{|\tilde{z}|<1\}$ in the complex plane. Hence we may consider U the universal covering surface of S and denote by Γ the group of cover transformations of U over $S . \quad \Gamma$ is a finitely generated Fuchsian group of the second kind and S can be identified with the orbit space U / Γ so that the natural projection $\pi: U$ $\rightarrow U / \Gamma$ is analytic. A function $f \in A(S)$ determines a unique function \tilde{f} on U such that $\tilde{f}=f \circ \pi$ on U. It satisfies $\tilde{f} \circ \gamma=\tilde{f}$ on U for every $\gamma \in \Gamma$. We denote by $A(U, \Gamma)$ the set of such functions \tilde{f} for all $f \in A(S)$. It forms a Banach
space with the supremum norm. Evidently, $\|\tilde{f}\|=\|f\|$ for $f \in A(S)$. Let \bar{S}^{\prime} be another element of $\mathcal{S}, \Gamma^{\prime}$ be a Fuchsian group such that $S^{\prime}=U / \Gamma^{\prime}$ and π^{\prime} be the projection of U onto U / Γ^{\prime}. For $T \in L\left(A(S), A\left(S^{\prime}\right)\right)$ we define a continuous linear isomorphism \tilde{T} of $A(U, \Gamma)$ onto $A\left(U, \Gamma^{\prime}\right)$ by

$$
\tilde{T} \tilde{f}=(T f)^{\sim}
$$

for all $\tilde{f} \in A(U, \Gamma)$. Evidently, $\|\widetilde{T}\|=\|T\|$.
Let Γ_{0} and Γ_{n} be the Fuchsian groups which represent S_{0}^{*} and S_{n}, respectively;

$$
S_{0}^{*}=U / \Gamma_{0}, \quad S_{n}=U / \Gamma_{n} .
$$

We denote by \tilde{w}_{n} a mapping of U onto itself which satisfies

$$
\pi_{n} \circ \tilde{w}_{n}=w_{n} \circ \pi_{0}
$$

where $\pi_{0}: U \rightarrow U / \Gamma_{0}$ and $\pi_{n}: U \rightarrow U / \Gamma_{n}$ are the projections. Then,

$$
\Gamma_{n}=\tilde{w}_{n} \circ \Gamma_{0} \circ \tilde{w}_{n}^{-1} .
$$

Without loss of generality, we may assume that

$$
\begin{equation*}
\tilde{w}_{n}(0)=0, \quad \tilde{w}_{n}(1)=1 . \tag{9}
\end{equation*}
$$

We consider the normal polygon of Γ_{n} with the center at the origin, which is denoted by P_{n}. We denote by $\widetilde{\omega}_{n}$ a mapping of U onto itself which satisfies
and

$$
\begin{equation*}
\widetilde{\omega}_{n}(0) \in \bar{P}_{n} . \tag{10}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\Gamma_{n}=\tilde{w}_{n} \circ \Gamma_{0} \circ \tilde{w}_{n}^{-1}=\tilde{\omega}_{n} \circ \Gamma_{0} \circ \tilde{\omega}_{n}^{-1} . \tag{11}
\end{equation*}
$$

Since \tilde{w}_{n} is a quasiconformal mapping of U onto itself satisfying $\tilde{w}_{n}(0)=0$, we can symmetrically extend it to the whole complex plane. Hence we may consider \tilde{w}_{n} a quasiconformal mapping of the complex plane onto itself. The mappings \tilde{w}_{n} form a normal family in the complex plane, because $K\left(\tilde{w}_{n}\right)=K\left(w_{n}\right)$ and (3) implies that $\left\{K\left(\tilde{w}_{n}\right)\right\}$ is bounded. Hence we may assume that $\left\{\tilde{w}_{n}\right\}$ converges uniformly on \bar{U}. Similarly, we may assume that $\left\{\tilde{w}_{n}^{-1}\right\}$ converges uniformly on \bar{U}. Since (3) implies $K\left(\tilde{w}_{n}\right) \rightarrow 1$, by noting (9), we see that the limit function of $\left\{\tilde{w}_{n}\right\}$ is a conformal automorphism of U which fixes 0 and 1 , namely the identity mapping. Similarly, the limit function of $\left\{\tilde{w}_{n}^{-1}\right\}$ is the identity mapping. Therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \tilde{w}_{n}=\mathrm{id}, \quad \lim _{n \rightarrow \infty} \tilde{w}_{n}^{-1}=\mathrm{id} \tag{12}
\end{equation*}
$$

uniformly on \bar{U}. For brevity, we set

$$
T_{n}^{*}=T_{n} \circ T_{0}^{-1} .
$$

It follows from (4) and (8) that

$$
\begin{equation*}
\left|\tilde{f}(\tilde{z})-\left(\tilde{T}_{n}^{*} \tilde{f}\right)\left(\tilde{w}_{n}(\tilde{z})\right)\right| \leqq \hat{\boldsymbol{\varepsilon}_{n}} \| f \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\tilde{f}(\tilde{z})-\left(\tilde{T}_{n}^{*} \tilde{f}\right)\left(\tilde{\omega}_{n}(\tilde{z})\right)\right| \leqq \varepsilon_{n}\|\tilde{f}\| \tag{14}
\end{equation*}
$$

for all $\tilde{z} \in \tilde{D}_{n}$ and for all $\tilde{f} \in A\left(U, \dot{\Gamma}_{0}\right)$, where \tilde{D}_{n} is the inverse image of D_{n} under π_{n}. We fix $\tilde{f} \in A\left(U, \Gamma_{0}\right)$ arbitrarily. Since, by using (1), we have

$$
\left\|\tilde{T}_{n}^{*} \tilde{f}\right\|=\left\|T_{n}^{*} f\right\| \leqq\left\|T_{n}^{*}\right\|\|f\| \leqq c\left(T_{n}^{*}\right)\|f\| \leqq d_{n}\|f\|
$$

the functions $\tilde{T}_{n}^{*} \tilde{f}$ are uniformly bounded. Hence we may assume that $\left\{\tilde{T}_{n}^{*} \tilde{f}\right\}$ converges uniformly on every compact subset of U. We see from (12) and (13) that the limit function of $\tilde{T}_{n}^{*} \tilde{f}$ is equal to \tilde{f}. We have thus obtained that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \tilde{T}_{n}^{*} \tilde{f}=\tilde{f} \tag{15}
\end{equation*}
$$

uniformly on every compact subset of U for every $\tilde{f} \in A\left(U, \Gamma_{0}\right)$.
We can find a function of $A\left(S_{0}^{*}\right)$ which has a simple zero at $\zeta=\pi_{0}(0)$ and has no zeros in \bar{S}_{0}^{*} except ζ (cf. [7]). Let us denote this function by f_{ζ}. By setting $\tilde{f}=\tilde{f}_{\zeta}$ in (14), we obtain

$$
\left|\tilde{f}_{5}(\tilde{z})-\left(\tilde{T}_{n}^{*} \tilde{f}_{\xi}\right)\left(\tilde{\omega}_{n}(\tilde{z})\right)\right| \leqq \varepsilon_{n}\left\|\tilde{f}_{\xi}\right\|
$$

for all $\tilde{z} \in \widetilde{D}_{n}$. Since $\tilde{f}_{\zeta}(0)=0$,

$$
\left|\left(\widetilde{T}_{n}^{*} \tilde{f}_{\zeta}\right)\left(\widetilde{\omega}_{n}(0)\right)\right| \leqq \varepsilon_{n}\left\|\tilde{f}_{\zeta}\right\|
$$

Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\tilde{T}_{n}^{*} \tilde{f}_{\zeta}\right)\left(\widetilde{\omega}_{n}(0)\right)=0 \tag{16}
\end{equation*}
$$

Now we fix a number r_{0} with $0<r_{0}<1$ such that \tilde{f}_{ζ} has no zeros on $|\tilde{z}|=r_{0}$, and set

$$
C_{n}=\pi_{n}\left(\bar{P}_{n} \cap\left\{|\tilde{z}|=r_{0}\right\}\right), \quad R_{n}=\pi_{n}\left(\bar{P}_{n} \cap\left\{r_{0}<|\tilde{z}|<1\right\}\right) .
$$

If r_{0} is sufficiently close to $1, C_{n}$ is a union of several loops on S_{n} and R_{n} is a union of several ring domains on S_{n} whose boundary consist of C_{n} and a component of ∂S_{n}. Since f_{ζ} has no zeros on \bar{S}_{0}^{*} except ζ, we can choose an r_{0} sufficiently close to 1 and a sufficiently small $\delta>0$ such that

$$
\begin{equation*}
\left|f_{5}(z)\right| \geqq \delta \tag{17}
\end{equation*}
$$

on \bar{R}_{n}, consequently

$$
\left|\tilde{f}_{\xi}(\tilde{z})\right| \geqq \delta
$$

for all $\tilde{z} \in \bar{P}_{n} \cap\left\{r_{0} \leqq|\tilde{z}| \leqq 1\right\}$. Therefore we obtain

$$
\left|\left(\tilde{T}_{n}^{*} \tilde{f}_{\xi}\right)(\tilde{z})\right| \geqq \delta / 2
$$

on $|\tilde{z}|=r_{0}$, that is,

$$
\begin{equation*}
\left|\left(T_{n}^{*} f_{5}\right)(z)\right| \geqq \delta / 2 \tag{18}
\end{equation*}
$$

on C_{n} for all sufficiently large n. Because, by (15), $\tilde{T}_{n}^{*} \tilde{f}_{5}$ converges to \tilde{f}_{5} uniformly on $|\tilde{z}|=r_{0}$. On the other hand, by Theorem 1, there exists a homeomorphism h_{n} of ∂S_{0}^{*} onto ∂S_{n} such that

$$
\left|f_{\zeta}(z)-\left(T_{n}^{*} f_{5}\right)\left(h_{n}(z)\right)\right| \leqq \varepsilon_{n}\left\|f_{\zeta}\right\|
$$

for all $z \in \partial S_{0}^{*}$. Hence

$$
\begin{equation*}
\left|\left(T_{n}^{*} f_{5}\right)(z)-f_{5}\left(h_{n}^{-1}(z)\right)\right|<\delta / 2 \tag{19}
\end{equation*}
$$

on ∂S_{n} for all sufficiently large n. Consequently, by using (17),

$$
\begin{equation*}
\left|\left(T_{n}^{*} f_{5}\right)(z)\right| \geqq\left|f_{5}\left(h_{n}^{-1}(z)\right)\right|-\delta / 2 \geqq \delta / 2 \tag{20}
\end{equation*}
$$

on ∂S_{n} for all sufficiently large n. It follows from (19) and (20) that the change of argument of $T_{n}^{*} f_{\zeta}$ around ∂S_{n} is the same as that of f_{ζ} around ∂S_{0}^{*} for every sufficiently large n. Therefore, by the argument principle, $T_{n}^{*} f_{\zeta}$ has the same number of zeros as f_{5}, namely exactly one zero in \bar{S}_{n} for every sufficiently large n. Since $\widetilde{T}_{n}^{*} \tilde{f}_{5}$ converges to \tilde{f}_{ζ} uniformly on every compact subset of U, Hurwitz's theorem shows us that $\widetilde{T}_{n}^{*} \tilde{f}_{\zeta}$ has a zero in a neighborhood Δ of $\tilde{z}=0$ for every sufficiently large n. Since P_{n} converges to the normal polygon of Γ_{0} with the center at the origin, we can choose Δ so that

$$
\Delta \subset \bigcap_{n=1}^{\infty} P_{n}
$$

Hence $\tilde{T}_{n}^{*} \tilde{f}_{5}$ has no zeros in $\bar{P}_{n} \cap\left\{r_{0} \leqq|\tilde{z}| \leqq 1\right\}$, that is, $T_{n} f_{5}$ has no zeros in R_{n} for every sufficiently large n. Then, by using (18) and (20), the minimum principle guarantees that

$$
\left|\left(T_{n}^{*} f_{\xi}\right)(z)\right| \geqq \delta / 2
$$

in R_{n}, namely

$$
\begin{equation*}
\left|\left(\tilde{T}_{n}^{*} \tilde{f}_{\zeta}\right)(\tilde{z})\right| \geqq \delta / 2 \tag{21}
\end{equation*}
$$

in $\bar{P}_{n} \cap\left\{r_{0} \leqq|\tilde{z}| \leqq 1\right\}$.
By (10), (16) and (21) we see that the sequence $\left\{\tilde{\omega}_{n}(0)\right\}$ has no accumulating points on $|\tilde{z}|=1$. Consequently, there exists a number r_{1} with $0<r_{1}<1$ such that

$$
\begin{equation*}
\left|\widetilde{\omega}_{n}(0)\right|<r_{1} \tag{22}
\end{equation*}
$$

for all n. On the other hand, the mappings $\tilde{\omega}_{n}$ form a normal family, for (7) implies that $\left\{K\left(\tilde{\omega}_{n}\right)\right\}$ is bounded. Accordingly, we may assume that $\left\{\tilde{\omega}_{n}\right\}$ converges uniformly on every compact subset of U. The limit function

$$
\alpha=\lim _{n \rightarrow \infty} \tilde{\omega}_{n}
$$

is not a constant, for (22) holds for every n. Since (7) implies that $K\left(\widetilde{\omega}_{n}\right) \rightarrow 1$, α is a conformal automorphism of U, consequently it is a Möbius transformation. By considering the limit of (14) as $n \rightarrow \infty$, we obtain

$$
\tilde{f}(\alpha(\tilde{z}))=\tilde{f}(\tilde{z})
$$

in U for all $\tilde{f} \in A\left(U, \Gamma_{0}\right)$. If $\alpha \notin \Gamma_{0}$, then there is a $\tilde{z}_{0} \in U$ such that

$$
\pi_{0}\left(\alpha\left(\tilde{z}_{0}\right)\right) \neq \pi_{0}\left(\tilde{z}_{0}\right) .
$$

Since $A\left(S_{0}^{*}\right)$ separates points on S_{0}^{*}, there exists a function $f \in A\left(S_{0}^{*}\right)$ such that

$$
f\left(\pi_{0}\left(\alpha\left(\tilde{z}_{0}\right)\right)\right) \neq f\left(\pi_{0}\left(\tilde{z}_{0}\right)\right),
$$

namely

$$
\tilde{f}\left(\alpha\left(\tilde{z}_{0}\right)\right) \neq \tilde{f}\left(\tilde{z}_{0}\right.
$$

This is a contradiction. Therefore we know

$$
\alpha \in \Gamma_{0}
$$

Now we set

$$
\chi_{n}(\gamma)=\tilde{w}_{n}^{-1} \circ \tilde{\omega}_{n} \circ \gamma \circ \tilde{\omega}_{n}^{-1} \circ \tilde{w}_{n}
$$

for every $\gamma \in \Gamma_{0}$. By noting (11) we see that χ_{n} is an automorphism of Γ_{0}. Since (12) implies that

$$
\lim _{n \rightarrow \infty} \tilde{\omega}_{n}^{-1} \stackrel{\tilde{\omega}_{n}}{ }=\alpha
$$

we obtain

$$
\lim _{n \rightarrow \infty} \chi_{n}(\gamma)=\alpha \circ \gamma \circ \alpha^{-1}
$$

for all $\gamma \in \Gamma_{0}$. Hence, by the discontinuity of Γ_{0},

$$
\begin{equation*}
\chi_{n}(\gamma)=\alpha \circ \gamma \circ \alpha^{-1} \tag{23}
\end{equation*}
$$

for every $\gamma \in \Gamma_{0}$ and for every sufficiently large n, because $\chi_{n}(\gamma) \in \Gamma_{0}$ and $\alpha \circ \gamma \circ \alpha^{-1} \in \Gamma_{0}$. Since Γ_{0} is finitely generated, we can choose a number n_{0} independent of $\gamma \in \Gamma_{0}$ such that (23) holds for every n with $n \geqq n_{0}$ and for every $\gamma \in \Gamma_{0}$. Therefore

$$
\tilde{w}_{n}^{-1} \circ \tilde{\omega}_{n} \circ \gamma^{\circ} \tilde{\omega}_{n}^{-1} \circ \tilde{w}_{n}=\alpha \circ \gamma \circ \alpha^{-1}
$$

for every $\gamma \in \Gamma_{0}$ and for every n with $n \geqq n_{0}$. This implies that $w_{n}^{-1} \circ \omega_{n}$ is homotopic to the identity mapping of S_{0}^{*}, namely w_{n} is homotopic to ω_{n} for every n with $n \geqq n_{0}$. This contradicts the before mentioned fact that w_{n} is not homotopic to ω_{n} for every n. Thus we have proved that $\Phi(T)=\left(S, w^{\circ} w_{0}\right)$ defines a point $\left[S, w^{\circ} w_{0}\right]$ of $T^{\#}\left(S_{0}\right)$ for $[T] \in \mathcal{L}\left(S_{0}\right)$. Therefore we obtain a mapping Φ of a neighborhood of $\left[T_{0}\right] \in \mathcal{L}\left(S_{0}\right)$ into $T^{\#}\left(S_{0}\right)$.

§5. Some properties of the mapping Φ.

We use the same notations as in the previous section. Let \mathcal{V} be the neighborhood of $\left[T_{0}\right]$ in which the mapping Φ is defined. q consists of all $[T] \in$ $\mathcal{L}\left(S_{0}\right)$ satisfying

$$
d\left([T],\left[T_{0}\right]\right)<\log d
$$

Then, for every $[T] \in Q$, we see that

$$
\begin{aligned}
\rho\left(\Phi([T]), \Phi\left(\left[T_{0}\right]\right)\right) & =\rho\left(\left[S, w^{\circ} w_{0}\right],\left[S_{0}^{*}, w_{0}\right]\right) \\
& \leqq \log K(w) \\
& <\log (1+\varepsilon)
\end{aligned}
$$

This implies that Φ is continuous at $\left[T_{0}\right]$. In order to prove the continuity of Φ at another point $\left[T_{1}\right] \in \mathcal{U}\left(\left[T_{1}\right] \neq\left[T_{0}\right]\right)$, we consider the mapping Φ_{1} of a neighborhood $U_{1}(\subset \mathcal{C})$ of $\left[T_{1}\right]$ which is defined in the same way as used in defining Φ. We can show that $\Phi=\Phi_{1}$ in \mathcal{U}_{1} if \mathcal{U} and \mathcal{U}_{1} are sufficiently small. Indeed, if $\Phi \neq \Phi_{1}$ in any small neighborhood Q_{1} of [T_{1}] for any small neighborhood U of $\left[T_{0}\right]$, there exists a sequence $\left[T_{n}^{*}\right]$ converging to $\left[T_{0}\right]$ such that

$$
\Phi\left(\left[T_{n}^{*}\right]\right) \neq \Phi_{1}\left(\left[T_{n}^{*}\right]\right) .
$$

Then, we can derive a contradiction by the same argument as in the previous section. Since Φ_{1} is continuous at $\left[T_{1}\right], \Phi$ is also continuous at $\left[T_{1}\right]$. Hence Φ is continuous in U.

Next we prove that Φ is a mapping of \mathcal{U} onto a neighborhood Ω of [S_{0}^{*}, w_{0}]. We take an ε with $0<\varepsilon<\varepsilon_{0}$ and a d with $d>1$ as before. Let \mathcal{U} be the neighborhood of $\left[T_{0}\right]$ consisting of all $[T]$ such that $d\left([T],\left[T_{0}\right]\right)<\log d$, and let Ω be the neighborhood of $\left[S_{0}^{*}, w_{0}\right]$ consisting of all $[S, w] \in \boldsymbol{T}^{\#}\left(S_{0}\right)$ such that

$$
\begin{equation*}
\rho\left([S, w],\left[S_{0}^{*}, w_{0}\right]\right)<\log (1+\varepsilon) . \tag{24}
\end{equation*}
$$

We fix an arbitrary point $[S, w] \in \mathscr{N}$. We may assume that

$$
K\left(w \cdot w_{0}^{-1}\right)<1+\varepsilon,
$$

because (24) means that there exists a quasiconformal mapping ϕ of S_{0}^{*} onto S homotopic to $w \circ w_{0}^{-1}$ satisfying

$$
K(\phi)<1+\varepsilon .
$$

As we mentioned in $\S 3$, we choose a Beltrami basis

$$
\boldsymbol{m}=\left(m_{1}, \cdots, m_{3 N-3}\right)
$$

on S_{0}^{*} such that each m_{i} is infinitely differentiable in the real sense and the support of m_{i} is a compact subset of S_{0}^{*} for every i with $1 \leqq i \leqq 3 N-3$. If ε is
sufficiently small, there is an $\eta>0$ such that

$$
\left[S, w^{\circ} w_{0}^{-1}\right]=\left[\left(S_{0}^{*}\right)^{a \cdot m}, w^{a \cdot m}\right]
$$

holds as a point of $\boldsymbol{T}^{\#}\left(S_{0}^{*}\right)$ for some $\boldsymbol{a} \in \boldsymbol{R}^{3 N-3}$ with $|\boldsymbol{a}|<\eta$. Then,

$$
\begin{equation*}
[S, w]=\left[\left(S_{0}^{*}\right)^{a \cdot m}, w^{a \cdot m_{o}} w_{0}\right] \tag{25}
\end{equation*}
$$

holds as a point of $\boldsymbol{T}^{\#}\left(S_{0}\right)$. Since every Beltrami differential m_{i} of \boldsymbol{m} has a compact support in $S_{0}^{*}, w^{a \cdot m}$ is conformal in some neighborhood of ∂S. Let $\gamma_{1}, \cdots, \gamma_{N}$ be smooth contours in $\left(S_{0}^{*}\right)^{a \cdot m}$ which form a homology basis on $\left(S_{0}^{*}\right)^{a \cdot m}$. We denote by $P_{i}(\omega)$ the period of a closed differential ω along γ_{i}, that is,

$$
P_{i}(\omega)=\int_{\gamma_{i}} \omega
$$

for every i with $1 \leqq i \leqq N$. Let $\omega_{1}, \cdots, \omega_{N}$ be a basis of the space of analytic Schottky differentials on $\left(S_{0}^{*}\right)^{a \cdot m}$ satisfying

$$
P_{i}\left(\omega_{j}\right)=\delta_{i j} \quad(i, j=1, \cdots, N)
$$

(cf. [1]). Let z_{0} be a point of $\left(S_{0}^{*}\right)^{a \cdot m}$. We now construct an isomorphism $T^{\boldsymbol{a} \cdot \boldsymbol{m}} \in L\left(A\left(S_{0}^{*}\right), A\left(\left(S_{0}^{*}\right)^{\boldsymbol{a} \cdot m}\right)\right)$ as follows. For $f \in A\left(S_{0}^{*}\right)$, let us denote by f_{1} the unique harmonic function on $\left(S_{0}^{*}\right)^{\boldsymbol{a} \cdot \boldsymbol{m}}$ with boundary values $f \circ\left(w^{a \cdot m}\right)^{-1}$. We set

$$
\theta=\left(d f_{1}+i^{*} d f_{1}\right) / 2
$$

It is an analytic differential on $\left(S_{0}^{*}\right)^{\boldsymbol{a} \cdot \boldsymbol{m}}$. For $z \in\left(S_{0}^{*}\right)^{\boldsymbol{a} \cdot \boldsymbol{m}}$ we set

$$
\begin{equation*}
\left(T^{\boldsymbol{a} \cdot \boldsymbol{m}} f\right)(z)=f\left(\left(w^{\boldsymbol{a} \cdot \boldsymbol{m}}\right)^{-1}\left(z_{0}\right)\right)+\int_{z_{0}}^{z}\left\{\theta-\sum_{j=1}^{N} P_{i}(\theta) \omega_{j}\right\} \tag{26}
\end{equation*}
$$

Since the integrand is exact, the integral is independent of the path. It was proved that $T^{\boldsymbol{a} \cdot \boldsymbol{m}}$ is a continuous and invertible linear mapping of $A\left(S_{0}^{*}\right)$ onto $A\left(\left(S_{0}^{*}\right)^{\boldsymbol{a} \cdot \boldsymbol{m}}\right)$, namely, $T^{\boldsymbol{a} \cdot \boldsymbol{m}} \in L\left(A\left(S_{0}^{*}\right), A\left(\left(S_{0}^{*}\right)^{\boldsymbol{a} \cdot m}\right)\right)$ (cf. [6]). We note that $T^{\boldsymbol{a} \cdot \boldsymbol{m}} 1=1$. If we set

$$
T=T^{a \cdot m_{\circ}} T_{0}
$$

T is in $L\left(A\left(S_{0}\right), A\left(\left(S_{0}^{*}\right)^{\boldsymbol{a} \cdot \boldsymbol{m}}\right)\right)$. We can make $K\left(w^{\boldsymbol{a} \cdot \boldsymbol{m}}\right)$ close to 1 , consequently we can make $\rho\left(\left[\left(S_{0}^{*}\right)^{\boldsymbol{a} \cdot \boldsymbol{m}}, w^{\boldsymbol{a} \cdot m_{\circ}} w_{0}\right],\left[S_{0}^{*}, w_{0}\right]\right)$ close to 0 by choosing a sufficiently small $\eta>0$. Hence, by using the same argument as the proof of Proposition 8 in [6] we can deduce that if we choose a sufficiently small $\eta>0$ for every $\varepsilon_{1}>0$

$$
\begin{equation*}
\left|f(z)-\left(T^{a \cdot m} f\right)\left(w^{a \cdot m}(z)\right)\right| \leqq \varepsilon_{1}\|f\| \tag{27}
\end{equation*}
$$

for all $z \in S_{0}^{*}$, for all $f \in A\left(S_{0}^{*}\right)$ and for all \boldsymbol{a} with $|\boldsymbol{a}|<\eta$. By setting $\varepsilon_{1}=\sqrt{ } \bar{d}-1$, (27) yields

$$
\left\|T^{a \cdot m} f\right\| \leqq \sqrt{d}\|f\|, \quad\left\|\left(T^{a \cdot m}\right)^{-1} f\right\| \leqq \sqrt{d}\|f\|
$$

consequently

$$
c\left(T \circ T_{0}^{-1}\right)=c\left(T^{a \cdot m}\right)=\left\|T^{a \cdot m}\right\|\left\|\left(T^{a \cdot m}\right)^{-1}\right\|<d
$$

if we choose a sufficiently small $\eta>0$. Then we see that $[T] \in \mathcal{Q}$, and by the definition of Φ and (25) we obtain

$$
\Phi([T])=\left[\left(S_{0}^{*}\right)^{a \cdot m}, w^{a \cdot m} w_{0}\right]=[S, w] .
$$

Therefore Φ is a mapping of U onto Ω.
Remark. Φ is not injective. To show this, we take the identity mapping $I \in L\left(A\left(S_{0}\right), A\left(S_{0}\right)\right)$. Then we see that

$$
\Phi([I])=\left[S_{0}, \mathrm{id}\right] .
$$

For $\varepsilon>0$, Theorem 2 guarantees the existence of a $d>1$ having the following property: If $T \in L\left(A\left(S_{0}\right), A\left(S_{0}\right)\right)$ satisfies $c(T)<d$ and $T 1=1$, then there exists a unique conformal automorphism ϕ of S_{0} such that

$$
|f(z)-(T f)(\phi(z))| \leqq \varepsilon\|f\|
$$

for all $z \in S_{0}$ and for all $f \in A\left(S_{0}\right)$. However, there exists a $T \in L\left(A\left(S_{0}\right), A\left(S_{0}\right)\right)$ which is not an isometry and satisfies $c(T)<d$ and $T 1=1$. Then, $[T] \neq[I]$ and by the definition of Φ we have

$$
\Phi([T])=\left[S_{0}, \phi\right]=\left[S_{0}, \mathrm{id}\right]=\Phi([I]) .
$$

Hence Φ is not injective.
We now look for the inverse image of an arbitrary point $\left[S_{1}, w_{1}\right] \in \mathscr{N}$ under Φ. There is a $\left[T_{1}\right] \in \mathscr{U}$ such that $\Phi\left(\left[T_{1}\right]\right)=\left[S_{1}, w_{1}\right]$. We may assume $T_{1} \in$ $L\left(A\left(S_{0}\right), A\left(S_{1}\right)\right)$. Since $c\left(T_{1} \circ T_{0}^{-1}\right)<d$, by Theorem 3, for every $\varepsilon>0$ there exists a quasiconformal mapping w_{1}^{\prime} of S_{0}^{*} onto S_{1} such that $K\left(w_{1}^{\prime}\right)<1+\varepsilon$ and

$$
\left|f(z)-\left(T_{1} \circ T_{0}^{-1} f\right)\left(w_{1}^{\prime}(z)\right)\right| \leqq \varepsilon\|f\|
$$

for all z in a relatively compact subset D_{0} of S_{0}^{*} and for all $f \in A\left(S_{0}^{*}\right)$. Then, by the definition of Φ,

$$
\Phi\left(\left[T_{1}\right]\right)=\left[S_{1}, w_{1}^{\prime} \cdot w_{0}\right]=\left[S_{1}, w_{1}\right]
$$

We take an element $[T] \in \mathscr{N}$ such that

$$
\Phi([T])=\left[S_{1}, w_{1}\right]
$$

Let T be in $L\left(A\left(S_{0}\right), A(S)\right)$. Similarly, for every $\varepsilon>0$, there exists a quasiconformal mapping w of S_{0}^{*} onto S such that $K(w)<1+\varepsilon$ and

$$
\left|f(z)-\left(T \circ T_{0}^{-1} f\right)(w(z))\right| \leqq \varepsilon\|f\|
$$

for all $z \in D_{0}$ and for all $f \in A\left(S_{0}^{*}\right)$. Then,

$$
\Phi([T])=\left[S, w^{\circ} w_{0}\right]=\left[S_{1}, w_{1}^{\prime} \circ w_{0}\right] .
$$

Hence there is a conformal mapping ϕ of S_{1} onto S such that ϕ is homotopic
to $w^{\circ}\left(w_{1}^{\prime}\right)^{-1}$. Let us denote by T_{ϕ} the isometry in $L\left(A\left(S_{1}\right), A(S)\right)$ induced by ϕ, that is,

$$
T_{\phi} f=f \circ \phi^{-1}
$$

for all $f \in A\left(S_{1}\right)$. We set

$$
T^{\prime}=T_{\phi}^{-1} \circ T \circ T_{1}^{-1}
$$

Then, $T^{\prime} \in L\left(A\left(S_{1}\right), A\left(S_{1}\right)\right)$ and $\left[T^{\prime} \cdot T_{1}\right]=[T]$. Moreover,

$$
c\left(T^{\prime}\right)=c\left(T \circ T_{1}^{-1}\right) \leqq c\left(T \circ T_{0}^{-1}\right) c\left(T_{1} \circ T_{0}^{-1}\right)<d^{2},
$$

that is, $c\left(T^{\prime}\right)$ is close to 1 .
Conversely, we take a $T^{\prime} \in L\left(A\left(S_{1}\right), A\left(S_{1}\right)\right)$ with $c\left(T^{\prime}\right)<d$. By Theorem 2, for every $\varepsilon>0$, there exists a conformal automorphism ϕ of S_{1} such that

$$
\left|g(z)-\left(T^{\prime} g\right)(\phi(z))\right| \leqq \varepsilon\|g\|
$$

for all $z \in S_{1}$ and for all $g \in A\left(S_{1}\right)$. Hence

$$
\begin{aligned}
& \left|f(z)-\left(T^{\prime} \circ T_{1} \circ T_{0}^{-1} f\right)\left(\phi \circ w_{1}^{\prime}(z)\right)\right| \\
& \leqq\left|f(z)-\left(T_{1} \circ T_{0}^{-1} f\right)\left(w_{1}^{\prime}(z)\right)\right|+\left|\left(T_{1} \circ T_{0}^{-1} f\right)\left(w_{1}^{\prime}(z)\right)-\left(T^{\prime}\left(T_{1} \circ T_{0}^{-1} f\right)\right)\left(\phi\left(w^{\prime}(z)\right)\right)\right| \\
& \leqq \varepsilon\|f\|+\varepsilon\left\|T_{1} \circ T_{0}^{-1} f\right\| \\
& \leqq \varepsilon(1+d)\|f\|
\end{aligned}
$$

for all $z \in D_{0}$ and for all $f \in A\left(S_{0}^{*}\right)$. Therefore, by the definition of Φ, we see that

$$
\Phi\left(\left[T^{\prime} \circ T_{1}\right]\right)=\left[S_{1}, \phi^{\circ} w_{1}^{\prime} \circ w_{0}\right]=\left[S_{1}, w_{1}^{\prime} \circ w_{0}\right]=\left[S_{1}, w_{1}\right] .
$$

Thus we can conclude that if we choose a $d>1$ sufficiently close to 1 , the inverse image $\Phi^{-1}\left(\left[S_{1}, w_{1}\right]\right)$ is the set of $\left[T^{\prime} \circ T_{1}\right]$ such that $T^{\prime} \in L\left(A\left(S_{1}\right), A\left(S_{1}\right)\right)$ and $c\left(T^{\prime}\right)<d$. Particularly, $\Phi^{-1}\left(\left[S_{0}^{*}, w_{0}\right]\right)$ is the set of $\left[T^{\prime} \circ T_{0}\right]$ such that $T^{\prime} \in$ $L\left(A\left(S_{0}^{*}\right), A\left(S_{0}^{*}\right)\right)$ and $c\left(T^{\prime}\right)<d$.

§6. Main theorem.

From the fact stated in the previous section we can conjecture the following theorem. It means that a slight deformation of $A(S)$ is composed of a slight deformation of S in the reduced Teichmüller space and a linear automorphism of $A(S)$ which is very close to the identity. It is our aim to prove this theorem.

Theorem. Suppose that \bar{S}_{0} and $\bar{S}_{0}^{*} \in \mathcal{S}$ are homeomorphic and that S_{0}^{*} has no conformal automorphisms except the identity mapping. Let T_{0} be an arbitrary element of $L\left(A\left(S_{0}\right), A\left(S_{0}^{*}\right)\right)$ and $\left[S_{0}^{*}, w_{0}\right]$ be a point of the reduced Teichmüller space $T^{\#}\left(S_{0}\right)$, where w_{0} is a quasiconformal mapping of S_{0} onto S_{0}^{*}. Furthermore we denote by \mathcal{K} the subset of $\mathcal{L}\left(S_{0}^{*}\right)$ consisting of all equivalence classes of elements of $L\left(A\left(S_{0}^{*}\right), A\left(S_{0}^{*}\right)\right)$. Then there exist a neighborhood \cup of $\left[T_{0}\right]$ in $\mathcal{L}\left(S_{0}\right)$, a
neighborhood π of $\left[S_{0}^{*}, w_{0}\right]$ in $\boldsymbol{T}^{\#}\left(S_{0}\right)$ and a neighborhood \mathbb{V} of the equivalence class [I] of the identity $I \in L\left(A\left(S_{0}^{*}\right), A\left(S_{0}^{*}\right)\right)$ in $\mathcal{L}\left(S_{0}^{*}\right)$ such that \mathcal{Q} is homeomorphic to the direct product $\pi \times(\mathcal{K} \cap \vee)$.

Proof. We use the same notations as before. In the previous section we proved that Φ is a mapping of a neighborhood \mathcal{U} of $\left[T_{0}\right]$ onto a neighborhood η of $\left[S_{0}^{*}, w_{0}\right]$. For every $[T] \in \mathcal{U}$ with $T \in L\left(A\left(S_{0}\right), A(S)\right)$, we set

$$
\Phi([T])=[S, w],
$$

where w is a quasiconformal mapping of S_{0} onto S. We choose a Beltrami basis $\boldsymbol{m}=\left(m_{1}, \cdots, m_{3 N-3}\right)$ on S_{0}^{*} such that m_{i} is infinitely differentiable in the real sense and the support of m_{i} is a compact subset of S_{0}^{*} for every i with $1 \leqq i \leqq 3 N-3$. Then there exists a unique $\boldsymbol{a}=\left(a_{1}, \cdots, a_{3 N-3}\right)$ about the origin of $\boldsymbol{R}^{3 \dot{N}-3}$ such that (25) holds. Accordingly, there exists a conformal mapping ϕ of S onto $\left(S_{0}^{*}\right)^{a \cdot m}$ such that $\phi \circ w$ is homotopic to $w^{a \cdot m_{0}} w_{0}$. We define

$$
\begin{equation*}
\Psi(T)=\left(T_{\dot{\phi}} \circ T \circ T_{0}^{-1}\right)^{-1} \circ T^{a \cdot m}, \tag{28}
\end{equation*}
$$

where T_{ϕ} is the isometry induced by ϕ and $T^{a \cdot m}$ is the isomorphism defined by (26), We note that $\Psi(T) \in L\left(A\left(S_{0}^{*}\right), A\left(S_{0}^{*}\right)\right)$ and

$$
c(\Psi(T)) \leqq c\left(T_{\phi}\right) c\left(T \cdot T_{0}^{-1}\right) c\left(T^{a \cdot m}\right)<d^{2} .
$$

We now take another $T^{\prime} \in L\left(A\left(S_{0}\right), A\left(S^{\prime}\right)\right)$ such that $\left[T^{\prime}\right] \in \mathcal{U}$ and

$$
\Phi\left(\left[T^{\prime}\right]\right)=\left[S^{\prime}, w^{\prime}\right]=\left[\left(S_{0}^{*}\right)^{a^{\prime} \cdot m}, w^{a^{\prime} \cdot m_{0}} w_{0}\right]
$$

for a unique \boldsymbol{a}^{\prime} about the origin of $\boldsymbol{R}^{3 N-3}$. Let ϕ^{\prime} be a conformal mapping of S^{\prime} onto $\left(S_{0}^{*}\right)^{a^{\prime} \cdot m}$ such that $\phi^{\prime} \circ w^{\prime}$ is homotopic to $w^{a^{\prime} \cdot m_{0}} w_{0}$. Then

$$
\Psi\left(T^{\prime}\right)=\left(T_{\phi^{\prime}} \circ T^{\prime} \circ T_{0}^{-1}\right)^{-1} \circ T^{a^{\prime} \cdot m} .
$$

Suppose that $[T]=\left[T^{\prime}\right]$. This implies that $T^{\prime} \circ T^{-1}$ is induced by a conformal mapping. Hence

$$
\begin{equation*}
\left[T_{\phi} \circ T_{\circ} \circ T_{0}^{-1}\right]=\left[T_{\phi^{\prime}} \circ T^{\prime} \circ T_{0}^{-1}\right] . \tag{29}
\end{equation*}
$$

Since $\Phi([T])=\Phi\left(\left[T^{\prime}\right]\right)$, namely $[S, w]=\left[S^{\prime}, w^{\prime}\right]$, we see that $\boldsymbol{a}=\boldsymbol{a}^{\prime}$. By assumption, S_{0}^{*} has no conformal automorphisms except the identity. Since \boldsymbol{a} is close to the origin, $\left(S_{0}^{*}\right)^{a \cdot m}$ is known to have the same property. It follows from (29) that

$$
\begin{equation*}
T_{\phi^{\circ}} \circ T_{\circ} \circ T_{0}^{-1}=T_{\phi^{\prime}} \circ T^{\prime} \circ T_{0}^{-1} . \tag{30}
\end{equation*}
$$

Because $\left(T_{\phi^{\prime}} \circ T^{\prime} \circ T_{0}^{-1}\right) \circ\left(T_{\phi} \circ T^{\circ} \circ T_{0}^{-1}\right)^{-1}$ is induced by a conformal automorphism of $\left(S_{0}^{*}\right)^{a \cdot m}$, namely the identity mapping. Hence

$$
\begin{equation*}
\left(T_{\phi^{\circ}} T \circ T_{0}^{-1}\right)^{-1} \circ T^{a \cdot m}=\left(T_{\phi^{\prime}} \circ T^{\prime} \circ T_{0}^{-1}\right)^{-1} \circ T^{a \cdot m}, \quad \text { i. e. } \Psi(T)=\Psi\left(T^{\prime}\right) \tag{31}
\end{equation*}
$$

Thus Ψ is well defined in U by (28), that is,

$$
\Psi([T])=\left[\left(T_{\phi^{\circ}} \circ T \circ T_{0}^{-1}\right)^{-1} \circ T^{a \cdot m}\right]
$$

We denote by \mathcal{K} the subset of $\mathcal{L}\left(S_{0}^{*}\right)$ consisting of all equivalence classes of elements of $L\left(A\left(S_{0}^{*}\right), A\left(S_{0}^{*}\right)\right)$ and denote by $\subset V$ the neighborhood of [I] in $\mathcal{L}\left(S_{0}^{*}\right)$ consisting of all $[T]$ with $T \in L\left(A\left(S_{0}^{*}\right), A\left(S_{0}^{*}\right)\right)$ such that $c(T)<d^{2}$. We have shown that Ψ is a mapping of \mathcal{U} into $\mathcal{K} \cap \odot$. We now define a new mapping σ of \mathcal{U} into the direct product $\Re \times(\mathbb{K} \cap \subset \vee)$ by

$$
\sigma([T])=(\Phi([T]), \Psi([T]))
$$

If $\sigma([T])=\sigma\left(\left[T^{\prime}\right]\right)$, then $\Phi([T])=\Phi\left(\left[T^{\prime}\right]\right)$ and $\Psi([T])=\Psi\left(\left[T^{\prime}\right]\right)$. Hence, as shown before, we have $\boldsymbol{\alpha}=\boldsymbol{a}^{\prime}$ and we obtain (30) from (31), Therefore we see that $[T]=\left[T^{\prime}\right]$, namely σ is injective. In order to prove that σ is surjective, we represent every element $[S, w]$ of \Re in the form of (25), Let

$$
([S, w],[T])=\left(\left[\left(S_{0}^{*}\right)^{a \cdot m}, w^{a \cdot m} \circ w_{0}\right],[T]\right)
$$

be an arbitrary element of $\mathcal{N} \times(\mathcal{K} \cap \odot)$, where $T \in L\left(A\left(S_{0}^{*}\right), A\left(S_{0}^{*}\right)\right)$ and $c(T)<d^{2}$. By Theorem 2, if $\varepsilon>0$ is given,

$$
\begin{equation*}
\left|f(z)-\left(T^{-1} f\right)(z)\right| \leqq \varepsilon\|f\| \tag{32}
\end{equation*}
$$

for all $z \in S_{0}^{*}$ and for all $f \in A\left(S_{0}^{*}\right)$. If we set

$$
\begin{equation*}
T^{*}=T_{\phi}^{-1} \circ T^{a \cdot m} \circ T^{-1} \circ T_{0} \tag{33}
\end{equation*}
$$

then $T^{*} \in L\left(A\left(S_{0}\right), A(S)\right)$ and

$$
c\left(T^{*}\right) \leqq c\left(T^{a \cdot m}\right) c\left(T \circ T_{0}^{-1}\right)<d^{2}
$$

We obtain from (28) and (33)

$$
\Psi\left(\left[T^{*}\right]\right)=[T]
$$

Moreover it follows from (27) and (32) that if $\varepsilon>0$ is given,

$$
\begin{aligned}
& \left|f(z)-\left(T^{*} \circ T_{0}^{-1} f\right)\left(\phi^{-1} \circ w^{a \cdot m}(z)\right)\right| \\
& \quad=\left|f(z)-\left(T_{\phi}^{-1} \circ T^{a \cdot m \circ} T^{-1} f\right)\left(\phi^{-1} \circ w^{a \cdot n}(z)\right)\right| \\
& \quad=\left|f(z)-\left(T^{a \cdot m} \circ T^{-1} f\right)\left(w^{a \cdot m}(z)\right)\right| \\
& \quad=\left|f(z)-\left(T^{-1} f\right)(z)\right|+\left|\left(T^{-1} f\right)(z)-\left(T^{a \cdot m}\left(T^{-1} f\right)\right)\left(w^{a \cdot m}(z)\right)\right| \\
& \quad \leqq \varepsilon\|f\|+\varepsilon\left\|T^{-1} f\right\| \\
& \quad \leqq \varepsilon\left(1+\left\|T^{-1}\right\|\right)\|f\|
\end{aligned}
$$

for all $z \in S_{0}^{*}$ and for all $f \in A\left(S_{0}^{*}\right)$. Hence, by the definition of Φ, we obtain

$$
\Phi\left(\left[T^{*}\right]\right)=\left[S, \phi^{-1} \circ w^{a \cdot m_{0}} w_{0}\right]=\left[\left(S_{0}^{*}\right)^{a \cdot m}, w^{a \cdot m_{0}} w_{0}\right] .
$$

Therefore

$$
\boldsymbol{\sigma}\left(\left[T^{*}\right]\right)=\left(\left[\left(S_{0}^{*}\right)^{a \cdot m}, w^{a \cdot m} w_{0}\right],[T]\right),
$$

that is, σ is surjective.
In order to prove that σ is continuous, we must show that Ψ is continuous. Let [T] be an arbitrary element of \mathcal{U}. We set

$$
\Phi([T])=[S, w]=\left[\left(S_{0}^{*}\right)^{a \cdot m}, w^{a \cdot m_{0}} w_{0}\right] .
$$

It is sufficient to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} c\left(\Psi\left(T_{n}\right) \cup \Psi(T)^{-1}\right)=1 \tag{34}
\end{equation*}
$$

for every sequence $\left[T_{n}\right] \in \mathcal{U}$ satisfying

$$
\begin{equation*}
\lim _{n \rightarrow \infty} c\left(T_{n} \circ T^{-1}\right)=1 \tag{35}
\end{equation*}
$$

Let us set

$$
\Phi\left(\left[T_{n}\right]\right)=\left[S_{n}, w_{n}\right] .
$$

Then there exist a unique $\boldsymbol{\alpha}_{n} \in \boldsymbol{R}^{3 N-3}$ such that

$$
\left[S_{n}, w_{n}\right]=\left[\left(S_{0}^{*}\right)^{\boldsymbol{a}_{n} \cdot \boldsymbol{m}}, w^{a_{n} \cdot m_{0}} w_{0}\right]
$$

and a conformal mapping ϕ_{n} of S_{n} onto $\left(S_{0}^{*}\right)^{a_{n} \cdot m}$ such that $\phi_{n}{ }^{\circ} w_{n}$ is homotopic to $w^{a_{n} \cdot m_{0}} w_{0}$. Since Φ is continuous, (35) implies that $\Phi\left(\left[T_{n}\right]\right)=\left[S_{n}, w_{n}\right]$ converges to $\Phi([T])=[S, w]$. Hence we know that $\boldsymbol{a}_{n} \rightarrow \boldsymbol{a}$. As we defined Ψ by (28),

$$
\Psi\left(T_{n}\right)=\left(T_{\phi_{n}} \circ T_{n} \circ T_{0}^{-1}\right)^{-1} \circ T^{a_{n} \cdot m} .
$$

Hence we obtain

$$
\begin{align*}
\Psi\left(T_{n}\right) \circ \Psi(T)^{-1} & =\left(T_{\phi_{n}} \circ T_{n} \circ T_{0}^{-1}\right)^{-1} \circ T^{a_{n} \cdot m_{\circ}}\left(T^{a \cdot m}\right)^{-1} \circ T_{\phi^{\circ}} \circ T_{\circ} T_{0}^{-1} \tag{36}\\
& =\left(T_{0}^{*}\right)^{-1} \circ T_{n}^{*} \circ T_{0}^{*}
\end{align*}
$$

where

$$
T_{0}^{*}=T_{\circ} T_{0}^{-1} \in L\left(A\left(S_{0}^{*}\right), A(S)\right)
$$

and

$$
T_{n}^{*}=T \circ T_{n}^{-1} \circ T_{\phi_{n}}^{-1} \circ T^{a_{n} \cdot m_{\circ}}\left(T^{a \cdot m}\right)^{-1} \circ T_{\phi} \in L(A(S), A(S))
$$

We note that

$$
\begin{equation*}
c\left(T_{n}^{*}\right) \leqq c\left(T_{n} \circ T^{-1}\right) c\left(T^{a_{n} \cdot m} \circ\left(T^{a \cdot m}\right)^{-1}\right) . \tag{37}
\end{equation*}
$$

Since $\boldsymbol{a}_{n} \rightarrow \boldsymbol{a}$, by the same argument as the proof of Proposition 8 in [6], we can show that

$$
\lim _{n \rightarrow \infty} c\left(T^{a_{n} \cdot m_{o}}\left(T^{a \cdot m}\right)^{-1}\right)=1
$$

Hence it follows from (35) and (37) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} c\left(T_{n}^{*}\right)=1 \tag{38}
\end{equation*}
$$

Since S has no conformal automorphisms except the identity mapping we see from (38) and Theorem 2 that

$$
\lim _{n \rightarrow \infty} \frac{\left\|T_{n}^{*} f-f\right\|}{\|f\|}=0
$$

uniformly for $f \in A(S)$. Consequently

$$
\lim _{n \rightarrow \infty} \frac{\left\|\left(T_{n}^{*} \cdot T_{0}^{*}\right) f-T_{0}^{*} f\right\|}{\|f\|}=0
$$

uniformly for $f \in A\left(S_{0}^{*}\right)$. Hence, by the continuity of $\left(T_{0}^{*}\right)^{-1}$,

$$
\lim _{n \rightarrow \infty} \frac{\left\|\left(\left(T_{0}^{*}\right)^{-1} \circ T_{n}^{*} \circ T_{0}^{*}\right) f-f\right\|}{\|f\|}=0
$$

uniformly for $f \in A\left(S_{0}^{*}\right)$. This implies that

$$
\lim _{n \rightarrow \infty}\left\|\left(T_{0}^{*}\right)^{-1} \circ T_{n}^{*} \circ T_{0}^{*}\right\|=1 .
$$

Similarly,

$$
\lim _{n \rightarrow \infty}\left\|\left(T_{0}^{*}\right)^{-1} \circ\left(T_{n}^{*}\right)^{-1} \circ T_{0}^{*}\right\|=1
$$

Hence

$$
\lim _{n \rightarrow \infty} c\left(\left(T_{0}^{*}\right)^{-1} \circ T_{n}^{*} \circ T_{0}^{*}\right)=1
$$

Therefore (34) follows from (36),
Conversely, by the same argument as above, we can prove that (35) follows from (34), namely the inverse mapping σ^{-1} is continuous. Thus σ is a homeomorphism of \mathcal{U} onto $\Re \times(\mathcal{K} \cap \subset)$. Our proof has been completed.

References

[1] L.V. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comment. Math. Helv., 24 (1950), 100-134.
[2] S. Banach, Théorie des Opérations Linéaires, Warsaw, 1932.
[3] L. Bers, Universal Teichmüller space, Analytic methods in mathematical physics, Gordon and Breach, London, 1968, pp. 65-83.
[4] M. Nagasawa, Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, Kôdai Math. Sem. Rep., 11 (1959), 182-188.
[5] R. Rochberg, Almost isometries of Banach spaces and moduli of planar domains,

Pacific J. Math., 49 (1973), 445-466.
[6] R. Rochberg, Almost isometries of Banach spaces and moduli of Riemann surfaces, Duke Math. J., 40 (1973), 41-52.
[7] R. Rochberg. Almost isometries of Banach spaces and moduli of Riemann surfaces II, Duke Math. J., 42 (1975), 167-182.

Yasushi Miyahara

Department of Mathematics
Faculty of Science
Science University of Tokyo
Shinjuku-ku, Tokyo 162
Japan

