On local deformations of a Banach space of analytic functions on a Riemann surface

Dedicated to Professor Kôtaro Oikawa on his 60th birthday

By Yasushi MIYAHARA

(Received Jan. 5, 1987)

§1. Introduction.

Let S be the set consisting of all compact bordered Riemann surfaces. For \overline{S} in S, we denote its interior and its border by S and ∂S , respectively. Let us denote by p (≥ 0) the genus of \overline{S} and by q (≥ 1) the number of boundary components of \overline{S} . We set

$$N = 2p + q - 1.$$

Furthermore we denote by A(S) the set of all functions which are analytic in S and continuous on \overline{S} . It forms a Banach space with the supremum norm

$$\|f\| = \sup_{z \in S} |f(z)|.$$

For \overline{S} and $\overline{S'}$ in S, let L(A(S), A(S')) denote the set of all continuous invertible linear mappings of A(S) onto A(S'). It is shown by Rochberg [6] that L(A(S), A(S')) is nonvoid if S and S' are homeomorphic. We set

 $c(T) = ||T|| ||T^{-1}||$

for T in L(A(S), A(S')). We have always

 $c(T) \geq 1$,

and if T1=1, we see that

$$1 \leq ||T|| \leq c(T), \quad 1 \leq ||T^{-1}|| \leq c(T)$$

and that

$$c(T)^{-1}||f|| \le ||Tf|| \le c(T)||f||$$

for all f in A(S). The above inequality implies that in the case T1=1, T is an isometry if and only if the value c(T) attains its minimum 1. Therefore the value $\log c(T)$ is considered to be the quantity representing the deviation of Tfrom isometries. This quantity was first studied by Banach and Mazur for more general cases (cf. [2]). It is well known that if there exists an isometry T in

L(A(S), A(S')) with T1=1, then there exists a conformal mapping ϕ of S' onto S such that T is induced by ϕ , namely

$$Tf = f \circ \phi$$

for all f in A(S) (cf. [4]).

In order to investigate deformations of the Banach space A(S), we introduce a space consisting of isomorphisms of A(S). We now fix an element $\overline{S}_0 \in S$ and denote by $L(S_0)$ the set of all $T \in L(A(S_0), A(S))$ with T1=1 for all $\overline{S} \in S$ that are homeomorphic to \overline{S}_0 . For T_1 and T_2 in $L(S_0)$, we say that T_1 is equivalent to T_2 , if $T_2 \circ T_1^{-1}$ is an isometry. This defines an equivalence relation in $L(S_0)$. We denote by $\mathcal{L}(S_0)$ the set of all equivalence classes [T] for all $T \in L(S_0)$. We define a function $d(\cdot, \cdot)$ in $\mathcal{L}(S_0) \times \mathcal{L}(S_0)$ as follows;

$$d([T_1], [T_2]) = \log c(T_2 \circ T_1^{-1})$$

for $[T_1]$ and $[T_2] \in \mathcal{L}(S_0)$. We can easily see that it is well defined independently of choices of representatives T_1 and T_2 and that it defines a metric on $\mathcal{L}(S_0)$. Thus $\mathcal{L}(S_0)$ is a metric space. When we take another $\overline{S}_1 \in \mathcal{S}$ which is homeomorphic to \overline{S}_0 , we can similarly define the metric space $\mathcal{L}(S_1)$. Obviously $\mathcal{L}(S_1)$ is isometric to $\mathcal{L}(S_0)$. Hence the metric space $\mathcal{L}(S_0)$ is determined independently of choices of \overline{S}_0 . The purpose of the present paper is to investigate the local and topological structure of the space $\mathcal{L}(S_0)$, which describes slight changes of deformations of A(S) by linear isomorphisms. In §4 we construct a continuous mapping of a neighborhood \mathcal{U} of every point of $\mathcal{L}(S_0)$ into the reduced Teichmüller space $T^*(S_0)$. By using this mapping we can resolve an element of \mathcal{U} , namely a slight deformation of A(S) which is very close to the identity. This is our main result, which is proved in §6.

§2. Some results on almost isometries.

We state here certain continuity properties on almost isometries, that is, linear isomorphisms T with c(T) very close to 1. They were proved by Rochberg.

THEOREM 1. For every $\varepsilon > 0$ there exists a constant d > 1 having the following property:

For \overline{S} , $\overline{S'} \in S$ and for every $T \in L(A(S), A(S'))$ satisfying c(T) < d and T1=1, there exists a homeomorphism h of ∂S onto $\partial S'$ such that

$$|f(z) - (Tf)(h(z))| \leq \varepsilon ||f||$$

for all $z \in \partial S$ and for all $f \in A(S)$ (cf. [7]).

The following theorems express in a natural form how close almost isometries are to an isomorphism induced by a conformal mapping. Theorem 2 is a corollary to Theorem A' in [5], and Theorem 3 is a result which was implicitly contained in the proof of Proposition 5 and Theorem 3 in [7].

THEOREM 2. For every $\varepsilon > 0$ and for $\overline{S} \in S$, there exists a constant d > 1 having the following property:

If $T \in L(A(S), A(S))$ satisfies c(T) < d and T1=1, then there exists a unique conformal automorphism ϕ of S such that

$$\|Tf - f \circ \phi\| \leq \varepsilon \|f\|$$

for all $f \in A(S)$.

THEOREM 3. Let \overline{S} be fixed in S. Then, for every $\varepsilon > 0$ and for every relatively compact subdomain D of S, there exists a constant d > 1 having the following property:

If $T \in L(A(S), A(S'))$ satisfies c(T) < d and T1 = 1 for $\overline{S}' \in S$, then there exists a quasiconformal mapping w of S onto S' such that its maximal dilatation K(w)is less than $1 + \varepsilon$ and

$$|f(z) - (Tf)(w(z))| \leq \varepsilon ||f||$$

for all $z \in D$ and for all $f \in A(S)$.

PROOF. Let $\varepsilon > 0$ and relatively compact subdomain D of S be arbitrarily given. Then, by the same argument as the proof of Proposition 5 and Theorem 3 in [7], we can choose a constant d>1 such that if $T \in L(A(S), A(S'))$ satisfies c(T) < d and T1=1 for $\overline{S'} \in S$ there exist a relatively compact subdomain R of S and a homeomorphism w of S onto S' satisfying the following conditions:

(i) D is a subdomain of R. The boundary of R consists of a finite number of analytic contours and the set $\overline{S} \setminus R$ is a union of a finite number of annuli A_1, \dots, A_m .

(ii) For a finite number of parametric disks D_1, \dots, D_n in S, w is conformal in $\overline{R} \setminus \bigcup_{i=1}^n D_i$.

- (iii) w is quasiconformal in D_i $(i=1, \dots, n)$ and in A_i $(i=1, \dots, m)$.
- (iv) $K(w) < 1 + \varepsilon$.
- $(\mathbf{v}) | |f(z) (Tf)(w(z))| \leq \varepsilon ||f||,$

for all $z \in \overline{R} \setminus \bigcup_{i=1}^{n} D_i$ and for all $f \in A(S)$.

For $z_0 \in D_i$, $z_1 \in \partial D_i$ and $f \in A(S)$, we have

$$|f(z_0) - (Tf)(w(z_0))| \leq |f(z_0) - f(z_1)| + |f(z_1) - (Tf)(w(z_1))| + |(Tf)(w(z_1)) - (Tf)(w(z_0))|.$$

Since all functions f/||f|| and (Tf)/||f|| for $f \in A(S)$ are uniformly bounded, they are equicontinuous on every compact subset. Hence, if we choose beforehand sufficiently small D_i $(i=1, \dots, n)$, then the first and the last terms of the

Y. Miyahara

right side of the above inequality are less than $\varepsilon ||f||$. Furthermore, by (v), the second term is also less than $\varepsilon ||f||$. Hence we obtain

$$|f(z_0) - (Tf)(w(z_0))| \leq 3\varepsilon ||f||$$

for all $f \in A(S)$. Therefore we may say that (v) holds for all $z \in \overline{R}$, consequently for all $z \in D$, and for all $f \in A(S)$.

§3. The reduced Teichmüller space.

Let \overline{S}_0 be fixed. If $\overline{S} \in S$ is homeomorphic to \overline{S}_0 , there exists a quasiconformal mapping w of S_0 onto S. We consider a pair (S, w). We say that two pairs (S_1, w_1) and (S_2, w_2) are equivalent, if there exists a conformal mapping ϕ of S_1 onto S_2 which is homotopic to $w_2 \circ w_1^{-1}$. We denote by [S, w] the equivalence class of (S, w). The set of all equivalence classes is denoted by $T^*(S_0)$. For two pairs (S_1, w_1) and (S_2, w_2) , there exists a unique quasiconformal mapping w_0 whose maximal dilatation is the smallest in the family consisting of all homeomorphisms of S_1 onto S_2 homotopic to $w_2 \circ w_1^{-1}$. Then we set

$$\rho([S_1, w_1], [S_2, w_2]) = \log K(w_0),$$

where $K(w_0)$ is the maximal dilatation of w_0 . This quantity does not depend on choices of representatives (S_1, w_1) and (S_2, w_2) . It defines a metric on $T^*(S_0)$, which is called the Teichmüller metric. The metric space $T^*(S_0)$ is called the reduced Teichmüller space of S_0 .

We consider $m = \mu(z)d\bar{z}/dz$, a differential of type (-1, 1) on a Riemann surface S, where $\mu(z)$ is a measurable function. Such a differential form is called a Beltrami differential on S. If

$$||m|| = \sup_{z \in S} |\mu(z)| < 1$$
,

a Riemannian metric

$$ds = |dz + \mu(z)d\bar{z}|$$

on S defines a new conformal structure on S as is well known. This new Riemann surface is denoted by S^m . The identity mapping of S onto itself is a quasiconformal mapping of S onto S^m , which is denoted by w^m , and it satisfies locally the Beltrami differential equation

 $w_{\bar{z}} = \mu w_{z}$.

Let $[S_1, w_1] \in T^*(S_0)$ be an arbitrary point. The following fact is well known. There exists a (3N-3)-tuple $m = (m_1, \dots, m_{3N-3})$ of Beltrami differentials on S_1 such that every point [S, w] in a neighborhood of $[S_1, w_1]$ is equal to $[S_1^{a\cdot m}, w^{a\cdot m}]$, where $a = (a_1, \dots, a_{3N-3})$ is a point of Euclidean space \mathbb{R}^{3N-3} and

$$\boldsymbol{a} \cdot \boldsymbol{m} = a_1 m_1 + \dots + a_{3N-3} m_{3N-3}.$$

We call $m = (m_1, \dots, m_{3N-3})$ a Beltrami basis on S_1 . The mapping

$$\boldsymbol{a} = (a_1, \cdots, a_{3N-3}) \longmapsto [S_1^{\boldsymbol{a} \cdot \boldsymbol{m}}, w^{\boldsymbol{a} \cdot \boldsymbol{m}}]$$

is a homeomorphism of a neighborhood of the origin of \mathbb{R}^{3N-3} onto a neighborhood of $[S_1, w_1] \in \mathbb{T}^*(S_0)$. If we consider (a_1, \dots, a_{3N-3}) local coordinates in the neighborhood of $[S_1, w_1]$, a real analytic structure is defined in $\mathbb{T}^*(S_0)$. Moreover $\mathbb{T}^*(S_0)$ is homeomorphic to \mathbb{R}^{3N-3} (cf. [3]). We can construct a Beltrami basis $\mathbb{m} = (m_1, \dots, m_{3N-3})$ so that m_i is infinitely differentiable in the real sense and the support of m_i is a compact subset of S_1 for $i=1, \dots, 3N-3$ (cf. Prop. 6 in [6]).

§4. The construction of a mapping Φ of $\mathcal{L}(S_0)$ into $T^*(S_0)$.

Suppose that \overline{S}_0 and \overline{S}_0^* in S are homeomorphic. Let T_0 be an element of $L(A(S_0), A(S_0^*))$ satisfying $T_0 1=1$, and let w_0 be a quasiconformal mapping of S_0 onto S_0^* . We consider the point $[S_0^*, w_0]$ in the reduced Teichmüller space $T^*(S_0)$. By using Theorem 3, for every $\varepsilon > 0$ and relatively compact subdomain D_0 of S_0^* , there exists a constant d > 1 having the following property: If $T \in L(A(S_0), A(S))$ satisfies $c(T \circ T_0^{-1}) < d$ and T1=1, where $\overline{S} \in S$ is homeomorphic to \overline{S}_0 , then there exists a quasiconformal mapping w of S_0^* onto S such that $K(w) < 1+\varepsilon$ and

$$|f(z) - (T \circ T_0^{-1} f)(w(z))| \leq \varepsilon ||f||$$

for all $z \in D_0$ and for all $f \in A(S_0^*)$. We now define a mapping Φ as follows;

$$\Phi(T) = (S, w \circ w_0).$$

In order to prove that Φ defines a mapping of a neighborhood of $[T_0] \in \mathcal{L}(S_0)$ into $T^*(S_0)$, we must show the following fact. There exist a positive number ε_0 and a relatively compact subdomain D_0 of S_0^* such that for every ε with $0 < \varepsilon < \varepsilon_0$, for some d > 1 and for any two equivalent isomorphisms $T, T' \in L(S_0)$ satisfying $c(T \circ T_0^{-1}) < d$, $c(T' \circ T_0^{-1}) < d$ and $T1=1, T'1=1, \Phi(T)$ and $\Phi(T')$ defined as above are equivalent, namely $\Phi(T)=(S, w \circ w_0)$ defines a point $[S, w \circ w_0]$ of $T^*(S_0)$ for $[T] \in \mathcal{L}(S_0)$.

If it were not true, then there exist the following sequences:

- (i) $\varepsilon_n > 0$ such that $\varepsilon_n \rightarrow 0$,
- (ii) relatively compact subdomains D_n of S_0^* which exhaust S_0^* ,
- (iii) $d_n > 1$ such that $d_n \rightarrow 1$,
- (iv) $\bar{S}_n, \bar{S}'_n \in \mathcal{S}$ which are homeomorphic to \bar{S}^*_0 ,
- (v) $T_n \in L(A(S_0), A(S_n)), T'_n \in L(A(S_0), A(S'_n))$ with $T_n 1=1, T'_n 1=1$,

(vi) quasiconformal mappings w_n of S_0^* onto S_n , w'_n of S_0^* onto S'_n , satisfying the conditions

(1) $c(T_n \circ T_0^{-1}) < d_n$, $c(T'_n \circ T_0^{-1}) < d_n$,

(2) T_n is equivalent to T'_n ,

(3)
$$K(w_n) < 1 + \varepsilon_n$$
, $K(w'_n) < 1 + \varepsilon_n$,

(4)
$$\begin{cases} |f(z) - (T_n \circ T_0^{-1} f)(w_n(z))| \leq \varepsilon_n ||f|| \\ |f(z) - (T'_n \circ T_0^{-1} f)(w'_n(z))| \leq \varepsilon_n ||f|| \end{cases}$$

for all $z \in D_n$ and for all $f \in A(S_0^*)$, and

(5)
$$\Phi(T_n) \neq \Phi(T'_n),$$

namely $(S_n, w_n \circ w_0)$ is not equivalent to $(S'_n, w_n \circ w_0)$.

By the condition (2), there exists a conformal mapping ϕ_n of S'_n onto S_n such that

(6)
$$T_n \circ (T'_n)^{-1} f = f \circ \phi_n^{-1}$$

for all $f \in A(S'_n)$. We set

$$\omega_n = \phi_n \circ w'_n \, .$$

Then, the condition (5) implies that w_n is not homotopic to ω_n . By the condition (3), we note that

(7)
$$K(\boldsymbol{\omega}_n) = K(\boldsymbol{\omega}'_n) < 1 + \boldsymbol{\varepsilon}_n \,.$$

Furthermore it follows from (6) and (4) that

(8)
$$|f(z) - (T_n \circ T_0^{-1} f)(\boldsymbol{\omega}_n(z))| = |f(z) - [(T_n \circ T_n^{-1}) \circ (T_n' \circ T_0^{-1}) f](\boldsymbol{\omega}_n(z))|$$
$$= |f(z) - [(T_n' \circ T_0^{-1} f) \circ \boldsymbol{\phi}_n^{-1}](\boldsymbol{\phi}_n \circ \boldsymbol{w}_n'(z))|$$
$$= |f(z) - (T_n' \circ T_0^{-1} f)(\boldsymbol{w}_n'(z))|$$
$$\leq \varepsilon_n ||f||$$

for all $z \in D_n$ and for all $f \in A(S_0^*)$.

From now on, we use the method of uniformization. Let \overline{S} be in S. The universal covering surface of S are conformally equivalent to the unit disk $U = \{|\tilde{z}| < 1\}$ in the complex plane. Hence we may consider U the universal covering surface of S and denote by Γ the group of cover transformations of U over S. Γ is a finitely generated Fuchsian group of the second kind and Scan be identified with the orbit space U/Γ so that the natural projection $\pi: U$ $\rightarrow U/\Gamma$ is analytic. A function $f \in A(S)$ determines a unique function \tilde{f} on Usuch that $\tilde{f} = f \circ \pi$ on U. It satisfies $\tilde{f} \circ \gamma = \tilde{f}$ on U for every $\gamma \in \Gamma$. We denote by $A(U, \Gamma)$ the set of such functions \tilde{f} for all $f \in A(S)$. It forms a Banach space with the supremum norm. Evidently, $\|\tilde{f}\| = \|f\|$ for $f \in A(S)$. Let \bar{S}' be another element of S, Γ' be a Fuchsian group such that $S' = U/\Gamma'$ and π' be the projection of U onto U/Γ' . For $T \in L(A(S), A(S'))$ we define a continuous linear isomorphism \tilde{T} of $A(U, \Gamma)$ onto $A(U, \Gamma')$ by

$$\widetilde{T}\widetilde{f} = (Tf)^{\sim}$$

for all $\tilde{f} \in A(U, \Gamma)$. Evidently, $\|\tilde{T}\| = \|T\|$.

Let Γ_0 and Γ_n be the Fuchsian groups which represent S_0^* and S_n , respectively;

$$S_0^* = U/\Gamma_0$$
, $S_n = U/\Gamma_n$.

We denote by \tilde{w}_n a mapping of U onto itself which satisfies

$$\pi_n \circ \tilde{w}_n = w_n \circ \pi_0$$

where $\pi_0: U \to U/\Gamma_0$ and $\pi_n: U \to U/\Gamma_n$ are the projections. Then,

 $\Gamma_n = \tilde{w}_n \circ \Gamma_0 \circ \tilde{w}_n^{-1}.$

Without loss of generality, we may assume that

(9)
$$\tilde{w}_n(0) = 0, \qquad \tilde{w}_n(1) = 1.$$

We consider the normal polygon of Γ_n with the center at the origin, which is denoted by P_n . We denote by $\tilde{\omega}_n$ a mapping of U onto itself which satisfies

and
$$\pi_n \circ \tilde{\omega}_n = \omega_n \circ \pi_0$$

(10)
$$\tilde{\omega}_n(0) \in \bar{P}_n$$
.

We note that

(11)
$$\Gamma_n = \tilde{w}_n \circ \Gamma_0 \circ \tilde{w}_n^{-1} = \tilde{\omega}_n \circ \Gamma_0 \circ \tilde{\omega}_n^{-1}.$$

Since \tilde{w}_n is a quasiconformal mapping of U onto itself satisfying $\tilde{w}_n(0)=0$, we can symmetrically extend it to the whole complex plane. Hence we may consider \tilde{w}_n a quasiconformal mapping of the complex plane onto itself. The mappings \tilde{w}_n form a normal family in the complex plane, because $K(\tilde{w}_n)=K(w_n)$ and (3) implies that $\{K(\tilde{w}_n)\}$ is bounded. Hence we may assume that $\{\tilde{w}_n\}$ converges uniformly on \overline{U} . Similarly, we may assume that $\{\tilde{w}_n^{-1}\}$ converges uniformly on \overline{U} . Since (3) implies $K(\tilde{w}_n) \rightarrow 1$, by noting (9), we see that the limit function of $\{\tilde{w}_n\}$ is a conformal automorphism of U which fixes 0 and 1, namely the identity mapping. Similarly, the limit function of $\{\tilde{w}_n^{-1}\}$ is the identity mapping. Therefore

(12)
$$\lim_{n \to \infty} \tilde{w}_n = \mathrm{id} , \qquad \lim_{n \to \infty} \tilde{w}_n^{-1} = \mathrm{id}$$

uniformly on \overline{U} . For brevity, we set

$$T_n^* = T_n \circ T_0^{-1}.$$

It follows from (4) and (8) that

(13)
$$|\tilde{f}(\tilde{z}) - (\tilde{T}_n^* \tilde{f})(\tilde{w}_n(\tilde{z}))| \leq \varepsilon_n \|f\|$$

and

(14)
$$|\tilde{f}(\tilde{z}) - (\tilde{T}_n^* \tilde{f})(\tilde{\omega}_n(\tilde{z}))| \leq \varepsilon_n \|\tilde{f}\|$$

for all $\tilde{z} \in \tilde{D}_n$ and for all $\tilde{f} \in A(U, \Gamma_0)$, where \tilde{D}_n is the inverse image of D_n under π_n . We fix $\tilde{f} \in A(U, \Gamma_0)$ arbitrarily. Since, by using (1), we have

$$\|\tilde{T}_{n}^{*}\tilde{f}\| = \|T_{n}^{*}f\| \le \|T_{n}^{*}\|\|f\| \le c(T_{n}^{*})\|f\| \le d_{n}\|f\|$$

the functions $\tilde{T}_n^* \tilde{f}$ are uniformly bounded. Hence we may assume that $\{\tilde{T}_n^* \tilde{f}\}$ converges uniformly on every compact subset of U. We see from (12) and (13) that the limit function of $\tilde{T}_n^* \tilde{f}$ is equal to \tilde{f} . We have thus obtained that

(15)
$$\lim_{n \to \infty} \tilde{T}_n^* \tilde{f} = \tilde{f}$$

uniformly on every compact subset of U for every $\tilde{f} \in A(U, \Gamma_0)$.

We can find a function of $A(S_0^*)$ which has a simple zero at $\zeta = \pi_0(0)$ and has no zeros in \overline{S}_0^* except ζ (cf. [7]). Let us denote this function by f_{ζ} . By setting $\tilde{f} = \tilde{f}_{\zeta}$ in (14), we obtain

$$|\tilde{f}_{\zeta}(\tilde{z}) - (\tilde{T}_n^* \tilde{f}_{\zeta})(\tilde{\omega}_n(\tilde{z}))| \leq \varepsilon_n \|\tilde{f}_{\zeta}\|$$

for all $\tilde{z} \in \tilde{D}_n$. Since $\tilde{f}_{\zeta}(0) = 0$,

$$|(\widetilde{T}_n^*\widetilde{f}_{\zeta})(\widetilde{\omega}_n(0))| \leq \varepsilon_n \|\widetilde{f}_{\zeta}\|.$$

Hence

(16)
$$\lim_{n \to \infty} (\widetilde{T}_n^* \widetilde{f}_{\zeta})(\widetilde{\omega}_n(0)) = 0.$$

Now we fix a number r_0 with $0 < r_0 < 1$ such that \tilde{f}_{ζ} has no zeros on $|\tilde{z}| = r_0$, and set

$$C_n = \pi_n(\overline{P}_n \cap \{ |\tilde{z}| = r_0 \}), \qquad R_n = \pi_n(\overline{P}_n \cap \{ r_0 < |\tilde{z}| < 1 \}).$$

If r_0 is sufficiently close to 1, C_n is a union of several loops on S_n and R_n is a union of several ring domains on S_n whose boundary consist of C_n and a component of ∂S_n . Since f_{ζ} has no zeros on \overline{S}_0^* except ζ , we can choose an r_0 sufficiently close to 1 and a sufficiently small $\delta > 0$ such that

(17) $|f_{\zeta}(z)| \ge \delta$

on \overline{R}_n , consequently

$$|\widetilde{f}_{\zeta}(\widetilde{z})| \geq \delta$$

for all $\tilde{z} \in \overline{P}_n \cap \{r_0 \leq |\tilde{z}| \leq 1\}$. Therefore we obtain

$$|(\widetilde{T}_{n}^{*}\widetilde{f}_{\zeta})(\widetilde{z})| \geq \delta/2$$

on $|\tilde{z}| = r_0$, that is,

(18)
$$|(T_n^*f_{\zeta})(z)| \ge \delta/2$$

on C_n for all sufficiently large *n*. Because, by (15), $\tilde{T}_n^* \tilde{f}_{\zeta}$ converges to \tilde{f}_{ζ} uniformly on $|\tilde{z}| = r_0$. On the other hand, by Theorem 1, there exists a homeomorphism h_n of ∂S_0^* onto ∂S_n such that

$$|f_{\zeta}(z) - (T_n^* f_{\zeta})(h_n(z))| \leq \varepsilon_n ||f_{\zeta}||$$

for all $z \in \partial S_0^*$. Hence

(19)
$$|(T_n^* f_{\zeta})(z) - f_{\zeta}(h_n^{-1}(z))| < \delta/2$$

on ∂S_n for all sufficiently large *n*. Consequently, by using (17),

(20)
$$|(T_n^* f_{\zeta})(z)| \ge |f_{\zeta}(h_n^{-1}(z))| - \delta/2 \ge \delta/2$$

on ∂S_n for all sufficiently large *n*. It follows from (19) and (20) that the change of argument of $T_n^* f_{\zeta}$ around ∂S_n is the same as that of f_{ζ} around ∂S_0^* for every sufficiently large *n*. Therefore, by the argument principle, $T_n^* f_{\zeta}$ has the same number of zeros as f_{ζ} , namely exactly one zero in \overline{S}_n for every sufficiently large *n*. Since $\tilde{T}_n^* \tilde{f}_{\zeta}$ converges to \tilde{f}_{ζ} uniformly on every compact subset of *U*, Hurwitz's theorem shows us that $\tilde{T}_n^* \tilde{f}_{\zeta}$ has a zero in a neighborhood Δ of $\tilde{z}=0$ for every sufficiently large *n*. Since P_n converges to the normal polygon of Γ_0 with the center at the origin, we can choose Δ so that

$$\Delta \subset \bigcap_{n=1}^{\infty} P_n.$$

Hence $\tilde{T}_n^* \tilde{f}_{\zeta}$ has no zeros in $\bar{P}_n \cap \{r_0 \leq |\tilde{z}| \leq 1\}$, that is, $T_n f_{\zeta}$ has no zeros in R_n for every sufficiently large n. Then, by using (18) and (20), the minimum principle guarantees that

$$|(T_n^*f_{\zeta})(z)| \geq \delta/2$$

in R_n , namely

(21) $|(\widetilde{T}_{n}^{*}\widetilde{f}_{\zeta})(\widetilde{z})| \geq \delta/2$

in $\overline{P}_n \cap \{r_0 \leq |\tilde{z}| \leq 1\}$.

By (10), (16) and (21) we see that the sequence $\{\tilde{\omega}_n(0)\}\$ has no accumulating points on $|\tilde{z}|=1$. Consequently, there exists a number r_1 with $0 < r_1 < 1$ such that

$$(22) \qquad \qquad |\tilde{\omega}_n(0)| < r_1$$

for all *n*. On the other hand, the mappings $\tilde{\omega}_n$ form a normal family, for (7) implies that $\{K(\tilde{\omega}_n)\}$ is bounded. Accordingly, we may assume that $\{\tilde{\omega}_n\}$ converges uniformly on every compact subset of *U*. The limit function

$$\alpha = \lim_{n \to \infty} \tilde{\omega}_n$$

is not a constant, for (22) holds for every *n*. Since (7) implies that $K(\tilde{\omega}_n) \rightarrow 1$, α is a conformal automorphism of *U*, consequently it is a Möbius transformation. By considering the limit of (14) as $n \rightarrow \infty$, we obtain

$$\tilde{f}(\alpha(\tilde{z})) = \tilde{f}(\tilde{z})$$

in U for all $\tilde{f} \in A(U, \Gamma_0)$. If $\alpha \notin \Gamma_0$, then there is a $\tilde{z}_0 \in U$ such that

 $\pi_0(\alpha(\widetilde{z}_0)) \neq \pi_0(\widetilde{z}_0)$.

Since $A(S_0^*)$ separates points on S_0^* , there exists a function $f \in A(S_0^*)$ such that

$$f(\pi_{0}(lpha(\widetilde{z}_{0})))
eq f(\pi_{0}(\widetilde{z}_{0}))$$
 ,

namely

 $\tilde{f}(\boldsymbol{\alpha}(\boldsymbol{\tilde{z}}_0)) \neq \tilde{f}(\boldsymbol{\tilde{z}}_0)$

This is a contradiction. Therefore we know

 $lpha\in {\varGamma}_{{\scriptscriptstyle 0}}$

Now we set

$$\chi_n(\gamma) = \tilde{w}_n^{-1} \circ \tilde{\omega}_n \circ \gamma \circ \tilde{\omega}_n^{-1} \circ \tilde{w}_n$$

for every $\gamma \in \Gamma_0$. By noting (11) we see that χ_n is an automorphism of Γ_0 . Since (12) implies that

 $\lim_{n\to\infty}\tilde{w}_n^{-1}\circ\tilde{\omega}_n=\alpha$

we obtain

 $\lim_{n\to\infty}\chi_n(\gamma)=\alpha\circ\gamma\circ\alpha^{-1}$

for all $\gamma \in \Gamma_0$. Hence, by the discontinuity of Γ_0 ,

(23)
$$\chi_n(\gamma) = \alpha \circ \gamma \circ \alpha^{-1}$$

for every $\gamma \in \Gamma_0$ and for every sufficiently large *n*, because $\chi_n(\gamma) \in \Gamma_0$ and $\alpha \circ \gamma \circ \alpha^{-1} \in \Gamma_0$. Since Γ_0 is finitely generated, we can choose a number n_0 independent of $\gamma \in \Gamma_0$ such that (23) holds for every *n* with $n \ge n_0$ and for every $\gamma \in \Gamma_0$. Therefore

$$\widetilde{w}_n^{-1} \circ \widetilde{\omega}_n \circ \gamma \circ \widetilde{\omega}_n^{-1} \circ \widetilde{w}_n = \alpha \circ \gamma \circ \alpha^{-1}$$

for every $\gamma \in \Gamma_0$ and for every n with $n \ge n_0$. This implies that $w_n^{-1} \cdot \omega_n$ is homotopic to the identity mapping of S_0^* , namely w_n is homotopic to ω_n for every n with $n \ge n_0$. This contradicts the before mentioned fact that w_n is not homotopic to ω_n for every n. Thus we have proved that $\Phi(T)=(S, w \cdot w_0)$ defines a point $[S, w \cdot w_0]$ of $T^*(S_0)$ for $[T] \in \mathcal{L}(S_0)$. Therefore we obtain a mapping Φ of a neighborhood of $[T_0] \in \mathcal{L}(S_0)$ into $T^*(S_0)$.

§ 5. Some properties of the mapping Φ .

We use the same notations as in the previous section. Let \mathcal{U} be the neighborhood of $[T_0]$ in which the mapping Φ is defined. \mathcal{U} consists of all $[T] \in \mathcal{L}(S_0)$ satisfying

$$d([T], [T_0]) < \log d.$$

Then, for every $[T] \in \mathcal{U}$, we see that

$$\rho(\Phi([T]), \Phi([T_0])) = \rho([S, w \circ w_0], [S_0^*, w_0])$$

$$\leq \log K(w)$$

$$< \log (1+\varepsilon).$$

This implies that Φ is continuous at $[T_0]$. In order to prove the continuity of Φ at another point $[T_1] \in \mathcal{U}([T_1] \neq [T_0])$, we consider the mapping Φ_1 of a neighborhood $\mathcal{U}_1(\subset \mathcal{U})$ of $[T_1]$ which is defined in the same way as used in defining Φ . We can show that $\Phi = \Phi_1$ in \mathcal{U}_1 if \mathcal{U} and \mathcal{U}_1 are sufficiently small. Indeed, if $\Phi \neq \Phi_1$ in any small neighborhood \mathcal{U}_1 of $[T_1]$ for any small neighborhood \mathcal{U} of $[T_0]$, there exists a sequence $[T_n^*]$ converging to $[T_0]$ such that

$$\Phi([T_n^*]) \neq \Phi_1([T_n^*]).$$

Then, we can derive a contradiction by the same argument as in the previous section. Since Φ_1 is continuous at $[T_1]$, Φ is also continuous at $[T_1]$. Hence Φ is continuous in U.

Next we prove that Φ is a mapping of \mathcal{U} onto a neighborhood \mathcal{R} of $[S_0^*, w_0]$. We take an ε with $0 < \varepsilon < \varepsilon_0$ and a d with d > 1 as before. Let \mathcal{U} be the neighborhood of $[T_0]$ consisting of all [T] such that $d([T], [T_0]) < \log d$, and let \mathcal{R} be the neighborhood of $[S_0^*, w_0]$ consisting of all $[S, w] \in T^*(S_0)$ such that

(24)
$$\rho([S, w], [S_0^*, w_0]) < \log(1+\varepsilon).$$

We fix an arbitrary point $[S, w] \in \mathcal{N}$. We may assume that

$$K(w \circ w_0^{-1}) < 1 + \varepsilon$$
,

because (24) means that there exists a quasiconformal mapping ϕ of S_0^* onto S homotopic to $w \circ w_0^{-1}$ satisfying

$$K(\phi) < 1 + \varepsilon$$
 .

As we mentioned in §3, we choose a Beltrami basis

$$\boldsymbol{m}=(m_1,\cdots,m_{3N-3})$$

on S_0^* such that each m_i is infinitely differentiable in the real sense and the support of m_i is a compact subset of S_0^* for every *i* with $1 \le i \le 3N-3$. If ε is

sufficiently small, there is an $\eta > 0$ such that

$$[S, w \circ w_0^{-1}] = [(S_0^*)^{a \cdot m}, w^{a \cdot m}]$$

holds as a point of $T^*(S_0^*)$ for some $a \in \mathbb{R}^{3N-3}$ with $|a| < \eta$. Then,

$$[S, w] = [(S_0^*)^{a \cdot m}, w^{a \cdot m} \cdot w_0]$$

holds as a point of $T^*(S_0)$. Since every Beltrami differential m_i of m has a compact support in S_0^* , $w^{a \cdot m}$ is conformal in some neighborhood of ∂S . Let $\gamma_1, \dots, \gamma_N$ be smooth contours in $(S_0^*)^{a \cdot m}$ which form a homology basis on $(S_0^*)^{a \cdot m}$. We denote by $P_i(\omega)$ the period of a closed differential ω along γ_i , that is,

$$P_i(\boldsymbol{\omega}) = \int_{\boldsymbol{\gamma}_i} \boldsymbol{\omega}$$

for every *i* with $1 \le i \le N$. Let $\omega_1, \dots, \omega_N$ be a basis of the space of analytic Schottky differentials on $(S_0^*)^{a \cdot m}$ satisfying

$$P_i(\boldsymbol{\omega}_j) = \boldsymbol{\delta}_{ij}$$
 (*i*, *j*=1, ..., *N*)

(cf. [1]). Let z_0 be a point of $(S_0^*)^{a \cdot m}$. We now construct an isomorphism $T^{a \cdot m} \in L(A(S_0^*), A((S_0^*)^{a \cdot m}))$ as follows. For $f \in A(S_0^*)$, let us denote by f_1 the unique harmonic function on $(S_0^*)^{a \cdot m}$ with boundary values $f \circ (w^{a \cdot m})^{-1}$. We set

$$\theta = (df_1 + i^* df_1)/2.$$

It is an analytic differential on $(S_0^*)^{a \cdot m}$. For $z \in (S_0^*)^{a \cdot m}$ we set

(26)
$$(T^{\boldsymbol{a}\cdot\boldsymbol{m}}f)(z) = f((w^{\boldsymbol{a}\cdot\boldsymbol{m}})^{-1}(z_0)) + \int_{z_0}^{z} \left\{ \theta - \sum_{j=1}^{N} P_i(\theta) \boldsymbol{\omega}_j \right\} .$$

Since the integrand is exact, the integral is independent of the path. It was proved that $T^{a \cdot m}$ is a continuous and invertible linear mapping of $A(S_0^*)$ onto $A((S_0^*)^{a \cdot m})$, namely, $T^{a \cdot m} \in L(A(S_0^*), A((S_0^*)^{a \cdot m}))$ (cf. [6]). We note that $T^{a \cdot m} 1=1$. If we set

$$T=T^{a\cdot m}\circ T_{o},$$

T is in $L(A(S_0), A((S_0^*)^{a \cdot m}))$. We can make $K(w^{a \cdot m})$ close to 1, consequently we can make $\rho([(S_0^*)^{a \cdot m}, w^{a \cdot m} \cdot w_0], [S_0^*, w_0])$ close to 0 by choosing a sufficiently small $\eta > 0$. Hence, by using the same argument as the proof of Proposition 8 in [6] we can deduce that if we choose a sufficiently small $\eta > 0$ for every $\varepsilon_1 > 0$

(27)
$$|f(z) - (T^{a \cdot m} f)(w^{a \cdot m}(z))| \leq \varepsilon_1 ||f||$$

for all $z \in S_0^*$, for all $f \in A(S_0^*)$ and for all α with $|\alpha| < \eta$. By setting $\varepsilon_1 = \sqrt{d} - 1$, (27) yields

$$\|T^{\boldsymbol{a}\cdot\boldsymbol{m}}f\| \leq \sqrt{d} \|f\|, \qquad \|(T^{\boldsymbol{a}\cdot\boldsymbol{m}})^{-1}f\| \leq \sqrt{d} \|f\|,$$

consequently

$$c(T \circ T_0^{-1}) = c(T^{a \cdot m}) = ||T^{a \cdot m}|| ||(T^{a \cdot m})^{-1}|| < d$$

if we choose a sufficiently small $\eta > 0$. Then we see that $[T] \in U$, and by the definition of Φ and (25) we obtain

$$\Phi([T]) = [(S_0^*)^{a \cdot m}, w^{a \cdot m} \cdot w_0] = [S, w].$$

Therefore Φ is a mapping of \mathcal{U} onto \mathcal{N} .

REMARK. Φ is not injective. To show this, we take the identity mapping $I \in L(A(S_0), A(S_0))$. Then we see that

$$\Phi([I]) = [S_0, \text{ id}].$$

For $\varepsilon > 0$, Theorem 2 guarantees the existence of a d > 1 having the following property: If $T \in L(A(S_0), A(S_0))$ satisfies c(T) < d and T1=1, then there exists a unique conformal automorphism ϕ of S_0 such that

$$|f(z) - (Tf)(\phi(z))| \leq \varepsilon ||f||$$

for all $z \in S_0$ and for all $f \in A(S_0)$. However, there exists a $T \in L(A(S_0), A(S_0))$ which is not an isometry and satisfies c(T) < d and T1=1. Then, $[T] \neq [I]$ and by the definition of Φ we have

$$\Phi([T]) = [S_0, \phi] = [S_0, id] = \Phi([I]).$$

Hence Φ is not injective.

We now look for the inverse image of an arbitrary point $[S_1, w_1] \in \mathcal{I}$ under $\boldsymbol{\Phi}$. There is a $[T_1] \in \mathcal{U}$ such that $\boldsymbol{\Phi}([T_1]) = [S_1, w_1]$. We may assume $T_1 \in L(A(S_0), A(S_1))$. Since $c(T_1 \circ T_0^{-1}) < d$, by Theorem 3, for every $\varepsilon > 0$ there exists a quasiconformal mapping w'_1 of S_0^* onto S_1 such that $K(w'_1) < 1 + \varepsilon$ and

$$|f(z) - (T_1 \circ T_0^{-1} f)(w_1'(z))| \leq \varepsilon ||f||$$

for all z in a relatively compact subset D_0 of S_0^* and for all $f \in A(S_0^*)$. Then, by the definition of Φ ,

$$\Phi([T_1]) = [S_1, w_1' \cdot w_0] = [S_1, w_1].$$

We take an element $[T] \in \mathfrak{N}$ such that

$$\Phi([T]) = [S_1, w_1].$$

Let T be in $L(A(S_0), A(S))$. Similarly, for every $\varepsilon > 0$, there exists a quasiconformal mapping w of S_0^* onto S such that $K(w) < 1 + \varepsilon$ and

$$|f(z) - (T \circ T_0^{-1} f)(w(z))| \leq \varepsilon ||f||$$

for all $z \in D_0$ and for all $f \in A(S_0^*)$. Then,

$$\Phi([T]) = [S, w \circ w_0] = [S_1, w'_1 \circ w_0].$$

Hence there is a conformal mapping ϕ of S_1 onto S such that ϕ is homotopic

to $w \circ (w'_1)^{-1}$. Let us denote by T_{ϕ} the isometry in $L(A(S_1), A(S))$ induced by ϕ , that is,

$$T_{\phi}f = f \circ \phi^{-1}$$

for all $f \in A(S_1)$. We set

$$T' = T_{\phi}^{-1} \circ T \circ T_{1}^{-1}.$$

Then, $T' \in L(A(S_1), A(S_1))$ and $[T' \circ T_1] = [T]$. Moreover,

$$c(T') = c(T \circ T_1^{-1}) \leq c(T \circ T_0^{-1})c(T_1 \circ T_0^{-1}) < d^2$$

that is, c(T') is close to 1.

Conversely, we take a $T' \in L(A(S_1), A(S_1))$ with c(T') < d. By Theorem 2, for every $\varepsilon > 0$, there exists a conformal automorphism ϕ of S_1 such that

$$|g(z) - (T'g)(\phi(z))| \leq \varepsilon ||g||$$

for all $z \in S_1$ and for all $g \in A(S_1)$. Hence

$$|f(z) - (T' \circ T_1 \circ T_0^{-1} f)(\phi \circ w'_1(z))|$$

$$\leq |f(z) - (T_1 \circ T_0^{-1} f)(w'_1(z))| + |(T_1 \circ T_0^{-1} f)(w'_1(z)) - (T'(T_1 \circ T_0^{-1} f))(\phi(w'(z)))|$$

$$\leq \varepsilon ||f|| + \varepsilon ||T_1 \circ T_0^{-1} f||$$

$$\leq \varepsilon (1+d) ||f||$$

for all $z \in D_0$ and for all $f \in A(S_0^*)$. Therefore, by the definition of Φ , we see that

$$\Phi([T' \circ T_1]) = [S_1, \phi \circ w'_1 \circ w_0] = [S_1, w'_1 \circ w_0] = [S_1, w_1].$$

Thus we can conclude that if we choose a d>1 sufficiently close to 1, the inverse image $\Phi^{-1}([S_1, w_1])$ is the set of $[T' \circ T_1]$ such that $T' \in L(A(S_1), A(S_1))$ and c(T') < d. Particularly, $\Phi^{-1}([S_0^*, w_0])$ is the set of $[T' \circ T_0]$ such that $T' \in L(A(S_0^*), A(S_0^*))$ and c(T') < d.

§6. Main theorem.

From the fact stated in the previous section we can conjecture the following theorem. It means that a slight deformation of A(S) is composed of a slight deformation of S in the reduced Teichmüller space and a linear automorphism of A(S) which is very close to the identity. It is our aim to prove this theorem.

THEOREM. Suppose that \overline{S}_0 and $\overline{S}_0^* \in S$ are homeomorphic and that S_0^* has no conformal automorphisms except the identity mapping. Let T_0 be an arbitrary element of $L(A(S_0), A(S_0^*))$ and $[S_0^*, w_0]$ be a point of the reduced Teichmüller space $T^*(S_0)$, where w_0 is a quasiconformal mapping of S_0 onto S_0^* . Furthermore we denote by \mathcal{K} the subset of $\mathcal{L}(S_0^*)$ consisting of all equivalence classes of elements of $L(A(S_0^*), A(S_0^*))$. Then there exist a neighborhood \mathcal{U} of $[T_0]$ in $\mathcal{L}(S_0)$, a

neighborhood \mathfrak{N} of $[S_0^*, w_0]$ in $T^*(S_0)$ and a neighborhood \mathfrak{V} of the equivalence class [I] of the identity $I \in L(A(S_0^*), A(S_0^*))$ in $\mathcal{L}(S_0^*)$ such that \mathfrak{V} is homeomorphic to the direct product $\mathfrak{N} \times (\mathfrak{K} \cap \mathfrak{V})$.

PROOF. We use the same notations as before. In the previous section we proved that Φ is a mapping of a neighborhood \mathcal{U} of $[T_0]$ onto a neighborhood \mathfrak{N} of $[S_0^*, w_0]$. For every $[T] \in \mathcal{U}$ with $T \in L(A(S_0), A(S))$, we set

$$\Phi([T]) = [S, w],$$

where w is a quasiconformal mapping of S_0 onto S. We choose a Beltrami basis $m = (m_1, \dots, m_{3N-3})$ on S_0^* such that m_i is infinitely differentiable in the real sense and the support of m_i is a compact subset of S_0^* for every i with $1 \le i \le 3N-3$. Then there exists a unique $a = (a_1, \dots, a_{3N-3})$ about the origin of R^{3N-3} such that (25) holds. Accordingly, there exists a conformal mapping ϕ of S onto $(S_0^*)^{a \cdot m}$ such that $\phi \circ w$ is homotopic to $w^{a \cdot m} \circ w_0$. We define

(28)
$$\Psi(T) = (T_{\phi} \circ T \circ T_0^{-1})^{-1} \circ T^{a \cdot m},$$

where T_{ϕ} is the isometry induced by ϕ and $T^{a \cdot m}$ is the isomorphism defined by (26). We note that $\Psi(T) \in L(A(S_0^*), A(S_0^*))$ and

$$c(\Psi(T)) \leq c(T_{\phi})c(T \circ T_0^{-1})c(T^{a \cdot m}) < d^2.$$

We now take another $T' \in L(A(S_0), A(S'))$ such that $[T'] \in U$ and

$$\boldsymbol{\Phi}([T']) = [S', w'] = [(S_0^*)^{\boldsymbol{a}' \cdot \boldsymbol{m}}, w^{\boldsymbol{a}' \cdot \boldsymbol{m}} \circ w_0]$$

for a unique a' about the origin of \mathbb{R}^{3N-3} . Let ϕ' be a conformal mapping of S' onto $(S_0^*)^{a' \cdot m}$ such that $\phi' \circ w'$ is homotopic to $w^{a' \cdot m} \circ w_0$. Then

$$\Psi(T') = (T_{\phi'} \circ T' \circ T_0^{-1})^{-1} \circ T^{a' \cdot m}.$$

Suppose that [T]=[T']. This implies that $T' \circ T^{-1}$ is induced by a conformal mapping. Hence

(29)
$$[T_{\phi} \circ T \circ T_0^{-1}] = [T_{\phi'} \circ T' \circ T_0^{-1}].$$

Since $\Phi([T])=\Phi([T'])$, namely [S, w]=[S', w'], we see that a=a'. By assumption, S_0^* has no conformal automorphisms except the identity. Since a is close to the origin, $(S_0^*)^{a \cdot m}$ is known to have the same property. It follows from (29) that

$$(30) T_{\phi} \circ T \circ T_{0}^{-1} = T_{\phi'} \circ T' \circ T_{0}^{-1}.$$

Because $(T_{\phi'} \circ T' \circ T_0^{-1}) \circ (T_{\phi} \circ T \circ T_0^{-1})^{-1}$ is induced by a conformal automorphism of $(S_0^*)^{a \cdot m}$, namely the identity mapping. Hence

(31)
$$(T_{\phi} \circ T \circ T_0^{-1})^{-1} \circ T^{a \cdot m} = (T_{\phi'} \circ T' \circ T_0^{-1})^{-1} \circ T^{a \cdot m}, \quad \text{i. e. } \Psi(T) = \Psi(T').$$

Thus Ψ is well defined in U by (28), that is,

$$\Psi([T]) = \left[(T_{\phi} \circ T \circ T_0^{-1})^{-1} \circ T^{a \cdot m} \right].$$

We denote by \mathcal{K} the subset of $\mathcal{L}(S^*_0)$ consisting of all equivalence classes of elements of $L(A(S^*_0), A(S^*_0))$ and denote by \mathcal{V} the neighborhood of [I] in $\mathcal{L}(S^*_0)$ consisting of all [T] with $T \in L(A(S^*_0), A(S^*_0))$ such that $c(T) < d^2$. We have shown that Ψ is a mapping of \mathcal{V} into $\mathcal{K} \cap \mathcal{V}$. We now define a new mapping σ of \mathcal{V} into the direct product $\mathfrak{N} \times (\mathcal{K} \cap \mathcal{V})$ by

$$\sigma([T]) = (\Phi([T]), \Psi([T])).$$

If $\sigma([T])=\sigma([T'])$, then $\Phi([T])=\Phi([T'])$ and $\Psi([T])=\Psi([T'])$. Hence, as shown before, we have a=a' and we obtain (30) from (31). Therefore we see that [T]=[T'], namely σ is injective. In order to prove that σ is surjective, we represent every element [S, w] of \mathcal{N} in the form of (25). Let

$$([S, w], [T]) = ([(S_0^*)^{a \cdot m}, w^{a \cdot m} \circ w_0], [T])$$

be an arbitrary element of $\mathfrak{N} \times (\mathfrak{K} \cap \mathfrak{V})$, where $T \in L(A(S_0^*), A(S_0^*))$ and $c(T) < d^2$. By Theorem 2, if $\varepsilon > 0$ is given,

 $|f(z) - (T^{-1}f)(z)| \leq \varepsilon ||f||$

for all $z \in S_0^*$ and for all $f \in A(S_0^*)$. If we set

 $T^* = T_{\phi}^{-1} \circ T^{a \cdot m} \circ T^{-1} \circ T_0,$

then $T^* \in L(A(S_0), A(S))$ and

$$c(T^*) \leq c(T^{a \cdot m})c(T \circ T_0^{-1}) < d^2.$$

We obtain from (28) and (33)

$$\Psi([T^*]) = [T].$$

Moreover it follows from (27) and (32) that if $\varepsilon > 0$ is given,

$$\begin{aligned} |f(z) - (T^* \circ T_0^{-1} f)(\phi^{-1} \circ w^{a \cdot m}(z))| \\ &= |f(z) - (T_{\phi}^{-1} \circ T^{a \cdot m} \circ T^{-1} f)(\phi^{-1} \circ w^{a \cdot n}(z))| \\ &= |f(z) - (T^{a \cdot m} \circ T^{-1} f)(w^{a \cdot m}(z))| \\ &= |f(z) - (T^{-1} f)(z)| + |(T^{-1} f)(z) - (T^{a \cdot m}(T^{-1} f))(w^{a \cdot m}(z))| \\ &\leq \varepsilon ||f|| + \varepsilon ||T^{-1} f|| \\ &\leq \varepsilon (1 + ||T^{-1}||) ||f|| \end{aligned}$$

for all $z \in S_0^*$ and for all $f \in A(S_0^*)$. Hence, by the definition of Φ , we obtain

$$\Phi([T^*]) = [S, \phi^{-1} \circ w^{a \cdot m} \circ w_0] = [(S_0^*)^{a \cdot m}, w^{a \cdot m} \circ w_0].$$

Therefore

$$\sigma([T^*]) = ([(S_0^*)^{a \cdot m}, w^{a \cdot m} \circ w_0], [T]),$$

that is, σ is surjective.

In order to prove that σ is continuous, we must show that Ψ is continuous. Let [T] be an arbitrary element of \mathcal{U} . We set

$$\Phi([T]) = [S, w] = [(S_0^*)^{a \cdot m}, w^{a \cdot m} \cdot w_0].$$

It is sufficient to show that

(34)
$$\lim_{n \to \infty} c(\Psi(T_n) \cdot \Psi(T)^{-1}) = 1$$

for every sequence $[T_n] \in \mathcal{U}$ satisfying

(35) $\lim_{n \to \infty} c(T_n \circ T^{-1}) = 1.$

Let us set

$$\Phi([T_n]) = [S_n, w_n].$$

Then there exist a unique $a_n \in \mathbb{R}^{3N-3}$ such that

$$[S_n, w_n] = [(S_0^*)^{a_n \cdot m}, w^{a_n \cdot m} \cdot w_0]$$

and a conformal mapping ϕ_n of S_n onto $(S_0^*)^{a_n \cdot m}$ such that $\phi_n \cdot w_n$ is homotopic to $w^{a_n \cdot m} \cdot w_0$. Since Φ is continuous, (35) implies that $\Phi([T_n]) = [S_n, w_n]$ converges to $\Phi([T]) = [S, w]$. Hence we know that $a_n \rightarrow a$. As we defined Ψ by (28),

$$\Psi(T_n) = (T_{\phi_n} \circ T_n \circ T_0^{-1})^{-1} \circ T^{a_n \cdot m}.$$

Hence we obtain

(36)
$$\Psi(T_{n}) \circ \Psi(T)^{-1} = (T_{\phi_{n}} \circ T_{n} \circ T_{0}^{-1})^{-1} \circ T^{a_{n} \cdot m} \circ (T^{a \cdot m})^{-1} \circ T_{\phi} \circ T \circ T_{0}^{-1}$$
$$= (T_{0}^{*})^{-1} \circ T_{n}^{*} \circ T_{0}^{*}$$

where

$$T_0^* = T \circ T_0^{-1} \in L(A(S_0^*), A(S))$$

and

$$T_n^* = T \circ T_n^{-1} \circ T_{\phi_n}^{-1} \circ T^{a_n \cdot m} \circ (T^{a \cdot m})^{-1} \circ T_{\phi} \in L(A(S), A(S)).$$

We note that

(37)
$$c(T_n^*) \leq c(T_n \circ T^{-1})c(T^{a_n \cdot m} \circ (T^{a \cdot m})^{-1}).$$

Since $a_n \rightarrow a$, by the same argument as the proof of Proposition 8 in [6], we can show that

$$\lim_{n\to\infty} c(T^{a_n\cdot m}(T^{a\cdot m})^{-1}) = 1.$$

Hence it follows from (35) and (37) that

(38)
$$\lim_{n \to \infty} c(T_n^*) = 1.$$

Since S has no conformal automorphisms except the identity mapping we see from (38) and Theorem 2 that

$$\lim_{n \to \infty} \frac{\|T_n^* f - f\|}{\|f\|} = 0$$

uniformly for $f \in A(S)$. Consequently

$$\lim_{n \to \infty} \frac{\|(T_n^* \circ T_0^*) f - T_0^* f\|}{\|f\|} = 0$$

uniformly for $f \in A(S_0^*)$. Hence, by the continuity of $(T_0^*)^{-1}$,

 $\lim_{n \to \infty} \frac{\|((T_0^*)^{-1} \circ T_n^* \circ T_0^*) f - f\|}{\|f\|} = 0$

uniformly for $f \in A(S_0^*)$. This implies that

 $\lim_{n\to\infty} \|(T_0^*)^{-1} \circ T_n^* \circ T_0^*\| = 1.$

Similarly,

 $\lim_{n \to \infty} \|(T_0^*)^{-1} \circ (T_n^*)^{-1} \circ T_0^*\| = 1.$

Hence

$$\lim_{n \to \infty} c((T_0^*)^{-1} \circ T_n^* \circ T_0^*) = 1.$$

Therefore (34) follows from (36).

Conversely, by the same argument as above, we can prove that (35) follows from (34), namely the inverse mapping σ^{-1} is continuous. Thus σ is a homeomorphism of \mathcal{V} onto $\mathfrak{N} \times (\mathcal{K} \cap \mathcal{V})$. Our proof has been completed.

References

- L. V. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comment. Math. Helv., 24 (1950), 100-134.
- [2] S. Banach, Théorie des Opérations Linéaires, Warsaw, 1932.
- [3] L. Bers, Universal Teichmüller space, Analytic methods in mathematical physics, Gordon and Breach, London, 1968, pp. 65-83.
- [4] M. Nagasawa, Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, Kôdai Math. Sem. Rep., 11 (1959), 182-188.
- [5] R. Rochberg, Almost isometries of Banach spaces and moduli of planar domains,

Pacific J. Math., 49 (1973), 445-466.

- [6] R. Rochberg, Almost isometries of Banach spaces and moduli of Riemann surfaces, Duke Math. J., 40 (1973), 41-52.
- [7] R. Rochberg. Almost isometries of Banach spaces and moduli of Riemann surfaces II, Duke Math. J., 42 (1975), 167-182.

Yasushi MIYAHARA

Department of Mathematics Faculty of Science Science University of Tokyo Shinjuku-ku, Tokyo 162 Japan