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1. Introduction.

Up to now, a great variety of interesting and suggestive studies on the
Mathieu-Witt systems W,, and W,, have been made by many people. In par-
ticular, Cameron [2, Chapters 2, 3] and Conway [4, Section 3] (resp., Beth
[1]) studied W,, (resp., W;,) using symmetric differences effectively, and Curtis
(resp., [6]) studied them introducing the somewhat magical concepts of the
MOG=Miracle Octad Generator (resp., the Kitten). Although these studies have
revealed many fascinating facts about the systems, it seems that the essence of
them is not yet satisfactorily elucidated — for example, it seems that the treat-
ment of both systems is not sufficiently unified and that the way of describing
blocks is not so simple.

The aim of this article is to present a description of both systems from
scratch in as orderly, unified and elementary a manner as possible, using mainly
symmetric differences and linear fractional groups PSL(2, ¢). The next section
collects some notation (including D(q, A)) and facts on symmetric differences,
which are used throughout the article. In Sections 3 and 4, in a unified
way (via D(g, A)) we construct the two systems and an infinite class of
3-(g+1, (g+1)/2, (g+1)(q—3)/8) designs, where ¢ is a prime power with g=—1
(mod4) and ¢>7. In Section 5, which is the main body of this article, we
present a simple and unified way of describing all the blocks of the two systems
(and W, W,,). Namely, (instead of the MOG and Kitten) we introduce a
concept of difference patterns or representative blocks, which enables us to
enumerate all the blocks uniformly and immediately, and to find quickly the
unique block containing five (four) given points.

All the discussions (except the proof of Proposition 3.1) in this article are
completely elementary, and a considerable part of them already may be known
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implicitly or explicitly, but we give a full description for readableness and
self-containedness.

Our motive, idea and method are greatly influenced by the above literature,
and I would like to express my deep indebtedness to the authors. I am also
very grateful to Professor Takeshi Kondo for his interest to this work and
helpful comments. Finally, I would like to thank the referee for his careful
reading and improving redundancies of the original manuscript.

2. Notation and preliminaries.

We use the following notation.
U : disjoint set union.
For a finite set S and any subsets A, B of S,
ANB={a | acA and a<& B},
A = S\A: complement of 4 in S,
AAB = (ANB)U(BNA) = (AUB)NANB) : symmetric difference of A and B.
For a permutation group H on S and for a subset A={a, b, ---} of S,
A°: image of A under = H,
A¥ ={A° | ¢=H},
Hepy = Hygp.y ={0€H| A’=A},
Hi=H,,.={6sH| a°=a, b°=0b, ---}.
For d&eSNA, Ha, cy=Hp,q denotes (Hy)co=(H)a=HiNHy).
For a subgroup K of H and g¢= H, and for a collection B of subsets of S,
K’ =o¢"'Ko,
Bo={B°|B=B}.
Throughout this article we fix the following notation.
g : prime power with ¢=—1(mod4) and ¢>7.
F,: finite field with ¢ elements.
2 = {0} UF,: projective line over F,.
Q = {x?| x&€F,\{0}} : set of non-zero square elements of F,.
U, = {0}UQ.
Vo= {0} Q.
N =F)U,: set of non-square elements of F,.
Set aX+b={ax+b | x X} for XCQ and a, b=F,.
For i:€F,,
Q:=0Q+i (Q=0Q),
U= {ithUQi =U,+i,
V= {oo}UQ: = V,o+i,
U=QU, Vi=02\V,.
w=Veo=2180.

&~
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For a, b, ¢, dEF,,

Gabea: x—(ax+b)/(cx+d),

Gap= CGa,p0,1: X—ax+D,

Op= 01,01 x—x+Db,

T=0¢-1,10:. x——1/x,

T/ = 09,1,1,0: x—1/x.

PGL(2, ¢) = {d4.b,c.a | a, b, ¢, d=F,; ad—bc+#0}.

G =PSL(2, ¢) ={0a.s.c.a | a, b, ¢, dEF,; ad—bc=Q}.
Note that G acts 2-transitively on £ and that

Go=1{04s|a€Q, bEF,

G0 = {040 | a€Q},
and |G|=(g+1g(g—1)/2.

We begin by recalling elementary well-known definitions and facts. Let S
be a set of v points and let B be a collection of k-subsets (called blocks) of S.
The pair (S, B) is called a t-(v, k, 4) design (with v>k£>t>0 and A>0) if any
t-subset of S is contained in exactly A blocks of 8. Two designs (S, B) and
(S, B’) having the same parameters ¢, v, k, 4 are said to be zsomorphic if there
is a bijection ¢ from S onto S’ such that 3°=8B’. A (v, k, A) design (S, B)

is also an s-(v, k, 4;) design for any s=t, where ZSZX(Z:D/(A;’:D, and in

particular |3B| :20:2(1;) / ( 1: ) A t-design with A=1 is called a Steiner system

and the most celebrated ones are 5-(12,6,1), 4-(11,5,1), 5-(24,8, 1),
4-(23,7, 1) and 3-(22, 6, 1) designs, which are called Mathieu designs or Witt
systems. Their existence and uniqueness (up to isomorphism) have been proved
by many people since Witt [12, 13], and they are sometimes denoted by Wiy,
Wi, W,, Wy and W,,, respectively. The number of their blocks are 12-11,
6-11, 33-23, 11-23 and 11-7, respectively.

A permutation group H on a finite set S is said to be t-homogeneous if for
any two (unordered) t-subsets of S, say T and 7, there exists ¢ = H such that
T°=T'. In general, any t-homogeneous permutation group yields a f-design:

PROPOSITION 2.1 (see, e.g. Lane [9, Theorem 2.1]). Let H be a t-homo-
geneous permutation group on a finite set S with |S|=v. Then for any ACS
with |Al=k=t, the pair (S, A¥) is a t-(v, k, A) design, where

=i (4)/(2)

SKETCH of PROOF. Setting A(T)=|{B | TCB<A¥}| for any t-subset T of
S, the t-homogeneity of H implies at once that A(T) has a constant value 4,
which is easily calculated by counting in two ways the number of ordered pairs
(T, B) satisfying TCS, |T|=t and TCBeA%. [
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From assumption ¢=—1(mod4) (this is equivalent to the assumption that
(g—1)/2 is odd), the following are easily checked:

(i) 7=Q if and only if —/=N (in particular, —1=N).

(ii) G acts 3-homogeneously on £.

(ili) G acts 2-homogeneously on F,.

NoTATION. From [Proposition 2.1 and (ii), it follows that for any k(=3)-
subset ACQ, the pair (2, A% is a 3-(¢g+1, &, A) design, where

2= lG:G<A>|(§)/(qJ§1)’

We denote this design by D(q, A).

Consider a problem: What ¢ and A yield an interesting design D(q, A)?
We shall deal with the case A=V, (or U,) in Section 3 and with the case ¢=23
and A=V ,AV,AV, (or U,AU,AU,) in Section 4. The special case D(11, A) in
the former (resp., D(23, A) in the latter) is a 5-(12, 6, 1) (resp., 5-(24, 8, 1))
design. In the remainder of this section we prepare for treating them.

As is easily seen, the set 25 of all subsets of any (finite) set S forms a
commutative ring with respect to addition defined by AA B and multiplication
by ANB for A, B€25., Also, with respect to this addition and trivial scalar
multiplication, 2% forms a vector space over the field F, with a basis S. The
empty set @ is the zero element of 25, and AAA=@, A (=S \A)=SAA for
any A28, It is immediately checked that for A, B€25, we have

AAB = AAB = AAB and AAB= AAB.
Further, if a group H acts on S, then for any o= H,
(AAB)’ = A°AB° and A’ = A°.
Obviously
|AAB| = |A|+|B|—-2|ANB],
since AAB=(AN(ANB)\J(BNANB)). This equality is easily generalized by
induction :

PROPOSITION 2.2. Let Ay, A, -+, An (n=2) be subsets of a finite set. Then

| AL A DA = 3 AI=2 S Ay NAy|

154)<igsn

428 S | AgNAyNAs

1511<ig<igsn

20 3 AaNAgNAgnAy]

156;<i5<ig<iysn

F o (2P AN AN - NA L
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COROLLARY 2.3. Let Ay, A,, -+, Ay (n=2) be subsets of a finite set. Then
(1) A1DAL--DAL = [Al+H] Al + - +1A,] (mod2);
(ii) If |A;]=0(mod4) and |A:NA;|=0(mod2) for all i, j, then

A AAN--NA, ] =0(mod4);
(iii) If |Ail=a for all i and |A:NA;|=d for all distinct i, j, then
VAN AN ANAL = nla—(n—1)d) (mod4).

As mentioned before, the set 22 forms a vector space of dimension |2]=¢+1
over F,.

NoOTATION. We denote by B(g) (resp., 1(g)) the subspaces of 22 generated
by all the V; (resp., U,):

Blg) =<V i€y, Wg =<U,;|i€>.

Note that for any A= B(q) (resp., U(g)) we have A (=2 \A)=V.AA=U.LAA=DB(q)
(resp., W(g)), particularly V,=®(g) and U,=l(g) for all i€F,.

PROPOSITION 2.4. Let 6=G. and i, j€F,. Then we have
Qi=Qu, Vi=Vw and Ui=Uyg;
(ViAVj)U = Via AV]'” and (UiAUj)a = UiU AU]‘”.

PrOOF. Each ¢=G. is written as 6=0,,, (a=Q, b=F,) and so Qi=aQ;+b
=a(Q+7)+b=aQ+(ai+b)=Q+1"=Q;s, obtaining the first equality. This yields
at once the remaining equalities. O

LEMMA 2.5. For any i=Q, we have
(i) {0}uiC QUQ:s;

(i) ({0}uRINRNQ:r =@ ;

(iii) ONQ« C Q3;

(iv) Qs \Q C {0}UQ5;

(v) {0}uQi=QAQ:-.

Proor. (i), (ii) Clearly 0=1/i4+=Q;r. Let x=Q and y=(x+:)" be any
element of Q3. Then, since y=—1/(x+0)=(—1/(x+2)+1/0)+(—1/0)=x/i(x+1)+7",
we have

y & @ if and only if x+/=Q if and only if y=Q;-.
This yields (i) and (ii).
(iif), (iv) Let x(#0)=(Q \Q)\J(Q: Q). Since (1x+1)/i=x—i7, it follows

that, if x€Q\Q;r (resp., €Q\Q), then x—i*&Q (resp., =Q), ix+1&£Q (resp.,
@), and so —1/x—i=—@x+1)/x= Q. This implies that x=—1/((—1/x—17)+7)
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Q.
(v) (i) and (ii) imply that {0}UQ;CQUQ:\NQNQi)=QAQ;. (iii) and
(iv) imply that {0}UQiD(QNQ)\U(Q:N\Q)=QAQir. O
PROPOSITION 2.6. (i) V=V, Us=U.,.
(i) Vi=V AV and Ui=U,AU; for any i€Q.
(i) Vi= VoAV and Us=U,AUs  for any i€ N.
PROOF. (i) Since @Q'=N, it follows immediately that Vi=({oco}UQ)*
={0}UN=V,. Similarly Us=U.,.
(ii) Let i€Q. By W),
Vi= ({0} UQ:) = {0}UQ; = QAQsr = VAV e,
Also,
Ui = ({/}VQy)" = {1 VQi = {iFPu(QL Q)N {0}
= ({0} UQA{F 1\ UQy) (Note that & @Q and 0=Q;z.)
== UoAUiZ‘,
(iii)Let z&N. Then = Q and by (ii) we have (V;o)*=V ,AV i5;r=V AV .
Therefore, V,AVi=(V,AV,) =V, and so V;=V,AV,. Similarly we have
U?L::ﬁoAUiT. D

COROLLARY 2.7. (i) G acts on Blg) and U(g).
(i) For any distinct i, jEF,, we have

1Q:0Q;1 = |ViaV;| = | VoV, = [UsU,| = | U005 = (g+1)/2,
VNV ;| = | VinV;| = | Vin ;| = |UNU;| = |UNU;

= |UNT;| = (g+D/4,
|1Q:NQ;] = (g—3)/4.

Proor. (i) follows immediately from Propositions and 2.6, since

G=<(Gw, 7).
(i) |VoAV_ |=|Vi|=|V,]|=(¢+1)/2 by Proposition 2.6l Since G. acts
2-homogeneously on F,, there exists c=G. with {0, —1}7={z, j}. Hence

[ViaV |l = [(VoAV )| = VoAV | = (g+1)/2,

and so |V:NV;|=(V|+|V,;|—=|V.iAV,;])/2=(¢g+1)/4. Similarly we have the
other equalities. O

By Corollaries 2.3 and 2.7, we have

ProPOSITION 2.8. (i) |A|=0(mod2) for any A=DB(g).
(i) If ¢g=—1(mod8), then
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(1) |A]=0(mod4) for any A=B(q);
(2) |ANB|=0(@mod2) for any distinct A, B€B(g).
(The same is true of N(g).)

REMARK 2.1. Although G acts on B(g) and U(g) by it is
immediately seen that if g=—1(mod8) then U,&B(q), V,&EWg) (so B(g)+#U(g))
and PGL(2, ¢) acts on neither B(¢) nor W(g). In fact, if U,=B(g) then {oo, 0}
=U,AV,=B(g), which contradicts [Proposition 2.8 (ii, 1). Hence U,&%B(g) and
so PGL(2, ¢) does not act on B(g), for PGL(2, ¢)=7’ and V§ =U.,.

On the other hand, in the case ¢=11 we have

Uy =V AV, AV AV, AV AV 0 € B(11),
Vo=UsU,AUAULAU LU, € W),

Therefore {0, 0}=U,AV,=B(11) (so there exists A=B(11) with | A|=2) and
U, =U%5B(11), V,;=Viel(ll) for all ;e F;; and so B(11)=U(11). Also, since
Vi=U, and Vi =V =V Loi1=Uj0i1B(11) for any i< Fy,, it follows that
PGL(2, 11) acts on B(11).

PROPOSITION 2.9. If g=—1(mod24), then
|Al =8 for any A (+@)=B(q) or U(g).

PROOF. Assume that there exists A<®B(g) or U(g) with |A|=4 and set
A={a, b, ¢, d}. Since G is 3-homogeneous on £, it follows that [G: G, s ol
=(q+1

3
we may take ¢=(a, b, ¢)---. Since ¢—2=0(mod3) and 3 is not a divisor of
|Gy|l=q(g—1)/2, we have G 54"\Gs=1. Hence ¢ moves d and so ANA°
={a, b, ¢}, which contradicts [Proposition 2.8 (ii, 2), since A°=3B(q) or (g) by
(i). O

By Propositions 2.8 (ii, 1) and 2.9, we have

) and so G54 is a cyclic group of order 3. As a generator of G450,

COROLLARY 2.10. Suppose g=-—1(mod24). Then
(i) For any A(+@, 2)=B(q) or U(g), we have

|A] =8, 12, 16, -+, or (g+1)—8;

(ii) For any distinct A, B€B(q) or Wg) with |A|=|B|=r and r+0, r#q+1,
we have
|ANB| =r—4, r—6, r—8, ---, or r—(q¢+1—8)/2.
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3. An infinite class of 3-designs and W,,.
In this section we deal with the designs D(q, V,) and D(q, U,).

ProrosiTION 3.1. (i) For any i€F,, we have
chi) = Gch = Geo,; = G(U,-) = G(U,-)-
(i) For any distinct i, j€F,, we have
G(ViAVj) - G(W}) = Gi,j = G(UiAUj) = G(UlTU;)-

PrROOF. The first and last equalities in (i) and (ii) are obvious.

(i) First we show that Ge, (ry=GCw, y=Gw,o. It is immediate that Ge, vy
=G« (DCGwo0={04,0 | a=Q}. Let 6&€Gx vp. Then ¢ is expressible as 6=04,s
for some a=Q, beF, and b=0"¢Q°=Q. If beN, then —b/ac@ and so
0=(—b/a)’=Q, a contradiction. Thus we have b=0, 6=0,,0 and s0 Ge, 7 "G w,o.

Secondly we show that Gy, =G, vy. Suppose this false and set H=G ).
Then, since HZ G. and H.=Gw,, acts regularly on Q=V,\{co}, it follows that
the permutation group (H, V,) is a sharply 2-transitive Frobenius group. The
Frobenius kernel N of H is elementary abelian (see, e.g. Tsuzuku [11, Theorem
2.11.77), and so we may set |N|=|V,|=(¢+1)/2=2¢ with some integer ¢. On
the other hand, from the well-known list of the subgroups of G=PSL(2, ¢) (see,
e.g. Huppert [8, I1.8.27]) e must be 1 or 2. This is contrary to our assumption
¢>7. Thus we have shown Gy =G« =G0 Therefore Gu=G%,=GC%,
=G« ; for any i€ F, Also, since the involution of PGL(2, ¢)

Ty =07't’0;: x—1/(x—1)+1
normalizes G, and interchanges oo and 7, V; and U;, it follows that

G(Ui) = G%/'i) == Ggoi,L - Goo,‘[-

(ii) From [Proposition 2.6 and (i), it follows. that Giyarp=GCGwsarnH=
G(VOAVOAV-Q:G(QAV_l):G(V_l):GW,-1 and so that G(VOAVI)—_—G}:O,_l:Go,l. If we set

g = { Gj-ii if ]—ZEQ
- Gi-jj if j—ieN (e, i—j=Q),
then GEGoo, {0, l}d—:{l., ]} and we have G(ViAVﬂ:G‘{VOAVl):G‘S,1=—‘Gi,j. Slmllarly
we have G(UiAUj):Gi,j- [

REMARK 3.1. In the case ¢=7, we have G« =G o=A;, Whereas
GwypD0i,2.1,-1, O2,1,1,-2 and Gy p=A, (A, denotes the alternating group of
degree n). Hence Gy ,#Gw,, and D(7,V,) is a 3-8, 4, 1) design by Prop-
osition 2.1.
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The following theorem is a generalization of Beth [1, Corollary 4.4].

THEOREM 3.2. The design D(q, V,) is a 3-(g+1, (¢g+1)/2, (g+1)Xqg—3)/8)
design. The set of blocks is
V§=B,U8,UB,UB,,
where
%x = {Vi l iEFq};

B, ={V.|icF,},
B, = {Vi&V,; (= Vo V) |4, j (#)EF},
gz = {VlA Vj (: ViAVj = V,AV]) l i, ] (#)EFq} .

Also, B =1Bil=q, |Bal=1B:|=(5) and V¢ =q(g+D.
The same 1is true of D(q, U,).

PRrROOF. By definition, D{(q, V,) is a 3-(¢+1, (¢g+1)/2, 1) design, where

1= (/).

Since |G pl=]|Gw, sl =(g—1)/2 by Proposition 3.1, we have 2=(¢+1)(¢—3)/8.
Next, note that G=G.\UG«7G., since G is 2-transitive on £. By Prop-
osition 2.4 we have V§~=%, and V6==%,. Also, by Proposition 2.6
Vi = (Vi |icF,)
Vitulvi lieQhu{Vi | ieN}
YUV AV o | i€ QYU VAV o | iEN}
VUV AV, | keNY UV, AV, | k€Q).

Il

= {
= {
{

Since G.. acts 2-homogeneously on F, it follows from Proposition:2.4Zthat
(VoAV )=, for k+0 and V§=C=B,UB,UB,. Consequently

Vg — %1U%1U%2U%2. (*)

Ve
Ve

i

ObVIOUSly l%lléq: l%lléq, l%zlé(g) and |%2I§(g) and so |V061§Q+q+
( g)+(g)=Q(q+1). On the other hand, by [Proposition 3.1]
|Voal = IG:G(VO)I = ]G:Goo,ol :(J(C]‘l‘l),

which implies that |B,|=|38,|=g, mm:@m:(%) and that (+) is a disjoint

set union. As in the above, the same may be proved of D(g, U,). O
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REMARK 3.2. Since 7/ normalizes G and interchanges V, and U,, it follows
that (V§)"=(V§)¢=U§. Thus designs D(q, V,) and D(q, U,) are isomorphic.

REMARK 3.3. As is well-known, (F, Q%) is a 2-(q, (¢—1)/2, (g—3)/4)
design. (This is an Hadamard 2-design which is called the Paley design.) In
fact, since G. acts 2-homogeneously on F, and G, (=G« (as seen in the
proof of [Proposition 3.1 (i)), it follows from [Proposition 2.1] that (F,, Q%) is a
design having the above parameters. Also, by [Proposition 2.4 Q%=
{Qi=V.\{o} | i€F,}. It is easily seen that (£, B,\UPB,) is an extension of
(F,, Q%), i.e., a 3-design such that (2\{oo}=F, and) {B\{o0} | o€ BB, UD,}
=Q%, By [Theorem 3.2, it may be said that D(g, V,) is a further block-
extension of (2, B,UB,). After I proved and later [Corollary 3.4,
I realized that extremely related facts in a more general form had been proved
in Hughes-Piper [7, pp. 137-9].

COROLLARY 3.3. Let B, C be any distinct blocks of V§ (or U§). Then we
have

(i) |BAC|=4,8, 12,16, ---, ¢+1 or (¢+1)/2;
(iii) If ¢==—1(mod8), then
BACEVS (or US) if and only if |BAC|=(¢+1)/2
if and only if |BAC|=(q+1)/4.

ProoF. We refer to V§.
(i) Fori, j, k, IEF, set

A=V, or V,, A=V, or V,

Ay=Vyor V4, Ai=V,or V,.
By (x) in the proof of [Theorem 3.2, we may write

BAC = A,n0A, (n=2, 3 or 4).

Since |A;|=(¢+1)/2 and |A;NA;|=(¢g+1)/4 (¢+7) by [Corollary 2.7, it follows
from [Corollary 2.3 (iii) that

|BAC| = n(3—n)(g+1)/4 (mod4).

Hence |BAC|=0(mod4) in the cases n=3 and 4. In the case n=2, by Corol-
lary 2.7

(@+1)/2 if i#j

Bact = Al ={ [ T

(ii) follows immediately from (i).
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(iii) Assumption ¢7=—1(mod8) implies (¢+1)/2%0 (mod4). Therefore the
proof of (i) shows that if |BAC|=(¢+1)/2 then we may write B=V,; or V,,
C=V,or V; +;) and so BACeV{. O

COROLLARY 3.4. If D(q, V,) or D(g, U,) is a 4-design, then q=11.

Proor. If D(q, Vo) or D(q, U,) is a 4-(¢+1, (g+1)/2, 2) design, then the

number of blocks containing given three points is (q+1)(q——3)/8::2-(q1—_1_;3)

/(TP and so 2=(g+106-3)Xg—5)/16(—2). Since 2 must be an integer,
it follows that ¢—2 devides 3:1-3 and so ¢=11. 0O

In reality, we have more strikingly

THEOREM 3.5 (see, e.g. Beth [1, Theorem 4.6]). D11, V,) and D(11, U,)
are 5-(12, 6, 1) designs.

PrOOF. The proof is done as in that of [Proposition 2.1, and it gives an
alternative proof for a part of [1, Theorem 4.6]. Set B=Vi5L=1D and for a
5-subset T of Q={co}\UF;, set

AT)=|{Be®B | TCB}]|.

Then A(T)Z1 for all T, since otherwise there would exist two distinct blocks
B, Ce3B containing T and so |BNC|=5, whereas |BNC|=0,2,3 or 4 by

orollary 3.3, a contradiction. Counting in two ways the number of ordered
pairs (T, B) satisfying TC®, |T|=5 and TCB<3, we have

s =1%81-(9),

where the sum in the left-hand side is over all 5-subsets T of £. Therefore,
noting that the right-hand side is equal to 11-12-(2):(152> and that |Q2]=12,
A(T)<1, we obtain A(T)=1 for any 5-subset T of Q. Thus D1, V)=(2, B)
is a 5-(12, 6, 1) design. [0

4. Construction of W,,.

NOTATION. For any integer » with 0<r=g+1, we set
B.(¢) = {A€B(g) | [Al=r},
U.(g) = {A€u(g) | |Al=r}.

Clearly By(q)=s()={@} and By+,(q)=Uss:(q)={2}. From it
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follows that G acts on B,(g) and l1,(¢g) for any » and that B1>(0)DV:, Vi,
V&V, V.oV for any 4, j (#)EF, (i) is restated: If g=—1
(mod24) and B,(¢g) or U, (¢)+ @ for 1<r<gq, then »=8, 12, 16, ---, or (¢+1)—8.

By [Theorem 3.2, every block of D(q, V,) or D(q, U,) is an element of
Bg+1y2(q) or Usny2(g) and is a combination by symmetric differences of at
most two V;, V; or U;, U;, We next want to consider such a combination of
three V;, V; or U;, U;, which has a minimal cardinality, and in this section

we deal with the case ¢=23. As one of elements of B3(23) and Ue(23), for
example, we take

V =V,AV, AV, = {0, 1, 13, 14, 18, 19, 20, 22}
and

U=U,AU,0U, = {0, 4, 13, 14, 18, 19, 20, 22},

respectively. Since the involution p : x+—4/x normalizes G=PSL(2, 23) and inter-
changes V and U, it follows that (V&)e=(V°)¢=US® Thus designs D(23, V)
and D23, U) are isomorphic. In the following we refer only to D(23, U). In
the same way as D(11, U,) (Theerem 3.5), we obtain

THEOREM 4.1. Keeping the above notation and G=PSL(2, 23), we have

(i) |BNC| =0,2 or 4 for any distinct B, C<U14(23);

(ii) |Ue(23)] =759 (=33-23), |Gan| =8 (so G is a Sylow 2-subgroup of
G) and U%=U,23);

(iii) D23, U) is a 5-(24, 8, 1) design.

Proor. (i) follows from [Corollary 2.10] (ii).
(ii), (iii) Set B=U,23), and for a 5-subset T of Q={c0}UF,; set AT)
=|{Be®B | TcB}|. Then, by (i) we have

AT)<1 for all T. (1)
Counting argument yields

a0 =131(3), (2)

where the sum in the left-hand side is over all 5-subsets T of 2. Therefore,

by (1) we have (254)215& (§>’ namely

915 ()/(3)=m. o)

On the other hand, G acts on B and so U°CS,

1Bl =z U] = |G|/IGanl. (4)
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Let G%, be the restriction of G, on U. Then
Gw = Guan/Gy = G%» (CSY: the symmetric group on U),

and so |Gu,| is a divisor of 8!. For a€U, |Gy o|=|CGanNG,| is a common
divisor of 8! and |G,|=23-11, and hence G, .,=1. Therefore

|Ganl = 1Gw>:Gan, ol = |a®®| < |U| =8.
From this and (4) we have
B = |G|/8="759.
Comparison with (3) then yields |®8]=759.
Also, since
759-8= |G| = |U°|-|Gwpl; U°I <18l =759, |Gl =8,
it follows that
|[U%| = |B] (so U°=B) and |Gy,| =8.

Finally, noting that the right-hand side of (2) is equal to 759-(8):(24), we

5 5
conclude
AT)=1 for any 5-subset T of Q.

Thus D23, U) is a 5-(24, 8, 1) design. O

REMARK 4.1. Witt systems W, constructed by Carmichael [3, p. 432], Todd
[10], Conway and Curtis [5] coincide with D23, U,AU,AU,). In particular,
the one by Carmichael is D(23, %), where S=<011 -1.1, Cs.1.1,-3), 2 Sylow
2-subgroup of PSL(2, 23) and

0¥ = {00, 0, 1, 3, 12, 15, 21, 22} = U,AU,,AU5 = (U, AU AU Y210,

Also, Witt systems W,, constructed by Carmichael [3, p. 431] and Beth
are D(11, V,), while Wy, treated in Curtis is mainly D(11, U,).

5. Difference patterns and representative blocks.

As seen in Theorems and 4.1, if we take appropriate ¢ and A€U(qg) or
B(q), then D(q, A) becomes the Mathieu-Witt designs W,, or W, Thus, in a
sense, both designs are unified via symmetric differences of U;, U; or V;, V;
((eF,) and G=PSL(2, ¢). In order to grasp better (the blocks of) both designs,
we introduce concepts of difference patterns and representative blocks.

Throughout this section we assume that ¢ is a prime (until Remark 5.1 we
do not assume that g=—1(mod4) and ¢>7).
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DEFINITION. Among the elements of 2={co}\UF,, we define a linear order
relation as follows:

o< 0<lI<2<C < g—1.

Note that this order is changeable by translation (namely, a<b does not
necessarily imply a+c<b+c for c€F,), whereas the order as cycle in F, is
unchanged by translation: If a,, a,, -+, a, and ¢ are elements of F, and
a,<a,<--<ay, then for some ¢

ag;+c< amte< < apte<ate< - <a+c.

DEFINITION. Let £ have an order relation defined above.
(i) For a subset of 2,

A: {al’ a,, as, **, ak} (al<az<a3<"'<ak):

we define A — which we call the difference pattern or the (difference) cycle of
A—as follows: If co A,

A=(a,—a,, a;—a,, -, Qr—Qr_1, A1 —ay)

= (a3—a;, ay—as, -+, a,—ay, a:—a;)

= (a;,—ay, Qa— a1, ***, Qp1—Ap-g, Qp—Aj-1)-

If a,=0o0,
A= (OO, A3—0qyy Q4— A3y 5 Qp—0p-y, aZ_ak>

= (00, ay—as, As—ay, ">+, Qy— 0y, A3—Ay)

= (00, @y—ayg, G3—0ay, ), Qpoy—Ap-s, Qr—0p-1).

(Clearly >,cix=0 in the former case and X} ,ci\wx=0 in the latter case.) For
two expressions of ﬁ, (dy, dg, -+, dp)=(ey, €y, -+, ¢,), We say that the former
is less than the latter if d,=e;, dy=e,, -+, di-y=¢;-,, d;<e; for some ;. Among
the above & (or £—1) expressions of A, we usually take the least one.
Let 2'C, BC29 and let D=(2’, B) be a design.
(ii) Set
D=%={B| Be%},

which we call the difference pattern of D or B.
(iii) For a difference pattern d=B, we set

B(d) = {BeB | B=d},
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whose element is called a block belonging to d. Also, if (d;, d,, --+, d;) is the
least expression of d, we set

{0, dl: d1+d2; Tty dl+d2+ +dk_1} if d1¢00

{oo, 0, ds, do+dsy -+, do+ds+ -+ +dk—1} if dy=o0.

Clearly, if B(d)e®B then B(d)=®B(d), and in this case we call B(d) the repre-
sentative block corresponding to (or belonging to) d.

B(d) = {

From definition we have easily

PROPOSITION 5.1. Let 2'CQ, BC2? and let (27, B) be a design. Then the
following hold.

(i) For A, BE®,

A=8 if and only if A=B+c for some cEF,.
(i) B =\ Bd).

ded
(iii) Suppose that the translation group on F,

T={o.| ceF}

acts on B, that is, B+ce®B for all BEYB and all c=F,. Then, for a difference
pattern d=B and for any BEB(d), we have

B(d)e B(d) and B(d) = {B+c | cEF}.

REMARK 5.1. By [Proposition 5.1] we see that if the difference pattern D=3
of a design D=(2’, B) admitting the translation group T on ¥ is known, then
all the blocks of D can be completely enumerated :

B = {B(d)+c | d=B, ceF,}.

In particular, for AC®Q with | A|=3, if the difference pattern m) is known,
then the set of all blocks of D{(g, A) is

AS = {B(d)+c | d=D(g, A), cEF,}.

This means that all the blocks of D(g, A) are obtained by translating the rep-
resentative blocks by all elements of F,.

In the following, we refer only to designs defined by elements of 1(g).

PROPOSITION 5.2. Let ¢>7 be a prime with gq=—1(mod4). Then

~ T ——

D(g, Toy = (O Ty HTLT: | ic QputT,nl,; | i Q)
\D(q, Uy = g+1.
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All the blocks of D(q, U,) are obtained by translating U,, U,, U,nU;, U,AU,
(feQ) by all ceF,

PROOF. As seen in the proof of [Theorem 3.2,
USe = {U=U,+i | i€F},
U= {U;=U,+i | icF,},
UG = (T} UlU, AU, | keNPH{T,AU ,=U,0U, | kEQ}.

By Proposition 2.4 we have for ¢,,,=G. (a€Q, i€F,)

(UoAU ) ai = aUAU )41 = (UoAU o) +i = U AU - o)+ (ak+1),
UorU) et = (UDU gp)+i
Hence the blocks set of D(q, U,) is
B = U = U= UU§=0 = {Uy+i | icF}\I{U,+i | iEF,}
VWU AU )+i | jEQ, i€FYU{ULUN+i | jEQ, iSF,).
Consequently we obtain

B = (Do} VTS ULTLAT, | 7EQYUITLAT, | jEQ).

In particular,
IB] < 1+14+(g—1)/2+(g—1)/2 = g+1.

By [Proposition 5.1 (iii), for d&B and BEB(d) we have
B(d) = {B+i | icF,}.

If B+i=B+; for some distinct 7, j&F,, then ¢;,-;&€G,. This can not happen,
since ¢;_; is of order a prime ¢ and |G| =|Gwo| =(¢—1)/2 by Proposition 3.1
Thus B4i+# B+j for any distinct 7, e F, and |8(d)|=¢. Therefore by Prop-
osition 5.1 (ii)

1B] = | UB(d)| = B]-1B(d)| = |Blq.

dey
Noting that |8|=(¢+1)g (Theorem 3.2) and |B|<g¢+1, we conclude |B|=¢+1.
The last assertion of the proposition follows Remark 5.1. O

Here we recall that, in general, for a given ¢-(v, k, 1) design D=(S, B),
the derived design D, with respect to a point a<S is the ((—1)-(v—1, k—1, 2)
design (S,, B,), where S,=S\{a} and B,={B\{a} | e BB}. By definition

D, =B, = {B-{a} | ac BEB}.

NOTATION. For the remainder of this section we fix
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Wy, = D(ll, Uo), W, = (Wm)oo;
W24 = D(23, UOAU1AU4), Wza = (Wu)oo and sz = (Wzs)o .

The following theorem is a main result of this article.

THEOREM 5.3. The difference patterns and the representative blocks of the
Mathieu-Witt systems, and a way of obtaining all the blocks are summarized in
Table 2 at the end of this article.

PRroOF. In the following, we shall determine the difference patterns, from
which the corresponding representative and all the blocks are immediately
obtained by [Proposition 5.]] (iii) and Remark 5.1.

I. The case W,,: By Proposition 5.2] we need only compute the differ-
ence patterns of the following blocks.

U,= {0, 1,3, 4,5, 9}, U= {,2,6,7,8, 10} ;
U,AU, =1{0,2,3,6,9,10}, U,oU,= {0, 1,4,5,7,8};
UoAU, = 1{0,5,6,7,8,9}, UyAUs={oo,1,2,3,4,10};
UAU,=1{0,1,2,3,7,8}, UsAU,= {0,4,5,6,9, 10} ;
U, pUs = {0, 1,4, 6,8, 10}, UyaUs={,2,3,5,7,9};
UrUs = {0,2,4,5,7, 10}, UAU,= {0, 1,3,6,8,9}.

——

Accordingly we have at once 0., IEJO, m, U,AU; (€Q), which turn out
Table 2.
. The case Wy : Set G=PSL(2, 23) and B=U® where

U=U,AU,AU, = {0, 4, 13, 14, 18, 19, 20, 22} .
First we note that
B = {aU+b, aU+by+c | acsQ; b, cEF;}

and so that
B = {aU, aU+b) | a=Q, b=F,,}.

In fact, since every element of U%" is written as
(aU+b)y = (aU+b/a)y =1/a-(U+b/a)y = a’-{U+b'y
where a, a’Q and b, b’ F,;, we have
B = [J Ceol_J{J Oo7Cco
=A{aU+b | acQ, beF,} U{ca’U+b'y+d | a’, ceQ ; b, d=Fys}
= {aU~+b, alU+by+c | asQ; b, c&F,s}.
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In the following we compute (;TJ and m (a=Q, beF,,) for B. Since

we have immediately Table 1.

Q=1{1,23146,8,9, 12, 13, 16, 18} and
7 = (00, 0)(1, 22)(2, 11)(3, 15)(4, 17)(5, 9)(6, 19)(7, 13)(8, 20)(10, 16)

(12, 21)(14, 18),

Table 1.
al aU~ a(U+6)°

‘ o U WUT6)7

0413141819202 | {0,1,6,7,8,14,17,18) (6,8,9, 11, 15, 16, 19, 22}
(1,1,2,1,4,9,1,4) (,1,1,6,3,1,6,5) (1,2,4,1,3,3,7,2)

, | (085813151721 {c0,2,5,11,12,13,14,16} | {7,9,12,15,16,18,21,22}
(2,2,4,2,3,2,3,5) (0,1,1,1,2,9,3,6) (1,2,3,1,8,2,3,3)
{0,8,11,12, 14, 16,19,20} | {co,1,3,5,8,18,19, 21} {1,2,4, 10,11, 18, 20, 22}

’ (1,2,2,3,1,3,8,3) (0,1,2,3,2,2,3,10) (1,2,6,1,7,2,2,2)
{0,3,6,7,10,11, 16,19} {c0,1,3,4,5,9, 10, 22} {1,7,9,13,14,18,19, 21}

: (1,3,1,5,3,4,3,3) (0,1,1,4,1,12,2,2) (1,4,1,2,3,6,2,4)
{0,1,5,9,15,16, 17, 22} {c0,2,6,10,13,15,16,19} | {2,4,8,13, 17,20, 21, 22}

0 (1,1,5,1,1,4,4,6) (c0,1,3,6,4,4,3,2) (1,1,3,2,4,5,4,3)
{0,6,9,12,14,15,20,22} | {co,2,6,8,10,18,20,21} | {2,3,5,13,14,15,18, 19}

° (1,5,2,1,6,3,3,2) (0,1,4,4,2,2,8,2) (1,1,3,1,6,1,2,8)
{0,1,2,10,11,13,14,19} | {c0,1,3,8,9,11,15,17} {3,6,7,8, 10,12, 14, 20}

? (1,1,8,1,2,1,5,4) (0,1,2,4,2,7,2,5) 1,1,2,2,2,6,6,3)
{0,2,7,9,10,11, 18, 21} {c0,3,4,7,9,12, 15, 20} {3,4,8,11, 16, 17,19, 21}

2 1,1,7,3,2,2,5,2) (0,1,3,2,3,3,5,6) (1,2,2,5,1,4,3,5)
{0,4,6,7,8, 10, 17, 21} {0,4,9,12,13,14,21,22} | {1,2,5,9,10,11,12, 17}

B 1,1,2,7,4,2,4,2) (0,1,1,7,1,5,5,3) (1,1,1,5,7,1,3,4)
{0,1,5,7,12,17,18, 21} {c0,4,12,13,16,17,19, 20} | {3,4,5,6,7,10,13, 15}

1 (1,3,2,1,4,2,5,5) (,1,2,1,7,8,1,3) (1,1,1,1,3,3,2,11)
{0,2,3,4,5, 15, 20, 22} {,2,6,7,11,16,18,22} | {1,5,6,12, 14, 16,17, 20}

8 (1,1,1,10,5,2,1,2) (0,1,4,5,2,4,3,4) (1,3,4,4,1,6,2,2)
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Using Table 1, we have readily the following equalities: For any a0,

aU+1)Y+7a =6a-U", a(U+2Y+22a = 124U,
alU+3y~+a =2a-U", a(U+4Y~+4a = 3a-U",
a(U+5y+4+21a = 12a-U~, a(U+7y+18a = 9a(U+6)",
a(U+8)y+22a = 3a-U, a(U4+97+a =8a-U",
a(U+10y4+20a = 6a-U~, a(U+117+19a = 2a(U+6)7,

a(U412"+6a = 12a(U+6)*, aU—+13Y+21a = 8a(U-+6),
a(U414y+16a = 124 U, a(U+15y+13a = (U+6)",
a(U+16y+11a = 4a(U+6)°, aU4+17)+2a =8a-U,
a(U+18y¥+3a = 13a-U, a(U+197+20a = 8a-U",
a(U+207+4a = 9a(U+6), aU+21+19%9a =13a-U,
a(U+22y7+8a =8a-U.

Consequently we obtain

B = {alU, aU%, aU+6) | a=Q},
which turns out Table 2. (Incidentally, we have

{aUF6) | a=Q} = {aUFT)y | a=Q} = {aUF1Ly | ac Q}
= {aUF12y | a=Q} = {aU+13) | a=Q} = {aU+15) | a=Q}
= {a(UF16) | a=Q} = {aU+20y | a=Q}

and we see that {6, 7, 11, 12, 13, 15, 16, 20} is a block.)

M. The cases W, and W,,;: Eliminating co from the difference pattern
(containing co) of Wy, (resp., W), we have at once that of Wy, (resp., Was).
which are given in Table 2.

Thus the proof of is complete. O

REMARK 5.2. In the same way as above, we can compute the difference
patterns of D11, V,) and D23, V,AV,AV,. As a result, they are obtained
by inverting those of D(11, U,) and D23, U,AU,AU,):

(s, day -, dg) € D(L, Vo) if and only if (ds, =+, ds, di) € DL, Uy);

e ———
(dy, dsy -+, dg) € D23, V0V, AV ,) if and only if
/-'\—__ —
(dS; Tt d2r dl) e D(23; UOAUlAU,;) .

REMARK 5.3. Set G(¢)=PSL(2, ¢), and in the case ¢=23 set U=U,AU,AU,,
U'=U{oo}, V=V,AV,AV, and V'=V\{0}=0Q,AQ,AQ,. Then it is easily
checked that D(23, V)=({co}\UF,, V@) =W,, (see Section 4) and (D23, V))e
=(Fas, V') W,y =(F,,, U’%*¥=) (note that m: W,, etc., and see Re-
mark 5.1), whereas D(11, V,)=({oco}\UF},, VOG“”)E W, (see Remark 3.2) and
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(Fi1, Q§9=)£ W,,. In particular, note that the design (isomorphic to) W,; can
be constructed only by Fu, @oA0@,AQ, and the (affine) group G(23).
={04,5 | a€Q, bEFy}.

Incidentally, we refer to the blocks of W,,=(Ws),. For each d=(d,, d,, -+, d;)
(the least expression)e Wzs, set

d{ = dl; dé = d1+d2, Tty g = d1‘|‘d2+ +d6; and
B(d)= {0, d3, d3, -+, d¢} (the representative block of W, corresponding to d).

By Remark 5.1 (or [Theorem 5.3)
the set of blocks of Wy, = {B(d)+: | d= Wzs, i€ F,}.

For each de W23, it is obvious that 0= B(d)+:, i€F,; if and only if
1€{0, —di, —ds, ---, —di}. Therefore, translating B(d) by all elements of F,,
(resp., by only seven elements 0, —di, —d3, ---, —d;) we obtain the blocks of
W.s (resp., W,,) belonging to d. Thus all the blocks of W, are immediately
obtained from the difference pattern or representative blocks of W, :

PROPOSITION 5.4. The set of blocks of W,={B(d)\{0}, (B(d)—d{)»{0},
(B(d)—d3)N{0}, -, (B(d)—d)NO} | d=(ds, ds, -+, di)E Wi}

REMARK 5.4. When describing the blocks of W,,, though the difference
pattern of W, is useful as seen above, that of W, itself is useless or meaning-
less, for |W221=11-7=the number of all blocks of W,,.

The difference patterns or representative blocks have some advantages. One
of them is to give a unified and simple way of describing the blocks of all the
Mathieu-Witt systems (though somewhat heterogeneous for W,;), as seen in
Table 2.

As another advantage, we take examples from W,,. (Of course, as for 1
and 2 below, the same may be said of Wy,, Wy, and W.)

1. A criterion whether a given 8-element set is a block or not: For a given
8-subset A of Q={co}\UF,, A is a block of W, if and only if AcW,, (i.e., A
is a cycle in Table 2). For instance, {co, 0, 1, 3, 12, 15, 21, 22} is a block of
W... (However, it is not a block of D23, V,AV,AV)).)

2. Finding the block which contains five given points: As an example, let
A=1{0, 5, 6, 15, 18} be five given points. From the table of W,,, looking for a
cycle whose appropriate subsum is 171:(5, 1,9, 3,5), we find the unique cycle
( /1, 1, éi,i, %/1, 5, 4\ ). Hence, the desired block is
b 9 3 '

44 8141 2171 i 0, 4, 5, 6, 14, 15, 17, 18}
0/\{5 6/\15/\18 ie, {0,4,5,6, 14, 15, 17,

N’ N’ N N NS
b 1 9 3 3
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Table 2.
Difference pattern Representative blocks Number
(,1,1,1,6,2) (e,1,1,2,3,4) {,0,1,2,3,9} {=,0,1,2,4,7}
(,1,1,3,1,5) (=,1,2,1,4,3) {e,0,1,2,5,6} {e,0,1,3,4,8}
(=,1,2,2,2,4) (e,1,3,2,3,2) {=,0,1,3,57 {=,0,1,4,6,9} 1
1,1,1,1,2,5) (1,1,1,4,1,3) {0,1,2,3,4,6} {0,1,2,3,7,8}
1,1,2,1,3,3)  (1,1,3,2,2,2) {0,1,2,4,5,8} {0,1,2,57,9}
1,1,4,2,1,2)  (1,2,2,1,2,3) {0,1,2,6,8,9 {0,1,3,5,6,8}
1,1,1,6,2) (1,1,2,3,4) {0,1,2,3,9 {0,1,2,4,7}
(1,1,3,1,5) (1,2,1,4,3) {0,1,2,5,6} {0,1,3,4,8} 6
1,2,2,2,4) (1,3,2,3,2) {0,1,3,5,7} {0,1,4,6,9}
(=,1,1,1,2,9,3,6) (=,1,1,4,1,12,2,2) {=,0,1,2,3,514,17} {=,0,1,2,6,7,19,21}
(=,1,1,6,3,1,6,5) (=,1,1,7,1,5,5,3) {=,0,1,2,8,11,12,18} {=,0,1,2,9,10,15, 20}
(=,1,2,1,7,8,1,3) (=,1,2,3,2,2 3 10) {=,0,1,3,4,11,19,20} {=,0,1,3,6,8,10,13}
(=,1,2,4,2,7,2,5) (=,1,3,2,3,3,5,6) {e,0,1,3,7,9,16,18} {e,0,1,4,6,9,12,17}
(,1,3,6,4,4,3,2) (=,1,4,4,2,28,2) {=,0,1,4,10,14,18,21} {~,0,1,5,9,11,13, 21}
(=,1,4,5,2,4,3,4) {=,0,1,5,10,12,16,19}
(1,1,1,1,3,3,2,1)  (1,1,1,5,7,1,3,4) {0,1,2,3,4,7,10,12}  {0,1,2,3,8, 15,16, 19}
(1,1,1,10,5,2,1,2) (1,1,2,1,4,9,1,4) {0,1,2,3,13,18,20,21} {0,1,2,4,5,9,18,19}
(1,1,2,2,2,6,6,3) (1,1,2,7,4,2,4,2) {0,1,2,4,6,8,14, 20}  {0,1,2,4,11,15,17,21} 3
(1,1,3,1,6,1,2,8)  (1,1,3,2,4,5,4,3) {0,1,2,5,6,12,13, 15}  {0,1,2,5,7, 11, 16, 20}
(1,1,4,4,6,1,1,5)  (1,1,7,3,2,2,5,2) {0,1,2,6,10,16,17, 18} {0,1,2,9,12, 14, 16,21}
1,1,8,1,2,1,5,4) (1,2,2,3,1,3,8,3) {0,1,2,10,11,13, 14,19} {0,1,3,5,8,9, 12, 20}
1,2,2,51,4,3,5) (1,2,3,1,8,2,3,3) {0,1,3,5,10,11,15,18} {0,1,3,6,7,15,17, 20}
(1,2,3,6,2,4,1,4) (1,2,4,1,3,3,7,2) {0,1,3,6,12,14,18,19} {0,1,3,7,8,11,14, 21}
1,2,6,1,7,2,2,2) (1,3,1,5,3,4,3,3) {0,1,3,9,10,17,19, 21} {0,1,4,5,10,13,17,20}
(1,3,2,1,4,2,5,5)  (1,3,4,4,1,6,2,2) {0,1,4,6,7,11,13,18}  {0,1,4,8,12,13,19,21}
(1,5,2,1,6,3,3,2)  (2,2,4,2,3,2,3,5) {0,1,6,8,9,15,18, 21}  {0,2,4,8, 10,13, 15,18}
1,1,1,2,8,3,6) (1,1,4,1,12,2,2) {0,1,2,3,5,14,17} {0,1,2,6,7,19, 21}
(1,1,6,3,1,6,5) (1,1,7,1,5,5,3) {0,1,2,8,11,12,18} {0,1,2,9,10, 15, 20}
1,2,1,7,8,1,3) (1,2,3,2,2,3,10) {0,1,3,4,11,19, 20} {0,1,3,6,8,10,13} 1
(1,2,4,2,7,2,5) (1,3,2,3,3,5,6) {0,1,3,7,9,16,18} {0,1,4,6,9,12,17}
(1,3,6,4,4,3,2)  (1,4,4,2,2,8,2) 0,1,4,10,14,18, 21} {0,1,5,9,11,13, 21}
(1,4,5,2,4,3,4) {0,1,5,10, 12, 16, 19}

Wi=D(11,U,), Wu=(Wi)e; Wu=D (23, UnU,aU,), W= (Ws)e.

All the blocks of Wy, Wy (resp., Wy, Wys) are obtained by translating
the representative blocks by all elements of Fy; (resp., Fa3).

The above way is independent of the given five points, whereas the way using
the MOG [5, pp. 28-29] is slightly dependent.
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3. A criterion whether a given 12-element set is an element of W;,(23) or
not: Let A be a given 12-subset of Q={co} UF,s. Taking any five points of
A, let B be the unique block containing them. Then, it is easily seen that
Ac,,(23) if and only if AABEWN,23) (i.e., AAB=W,,). For instance

{0, 0,1, 3,6, 8, 11, 12, 14, 17, 20, 22} < U,5(23)
and V,&WU,,(23).

REMARK 5.5. Thus the difference pattern of W,, has some advantages, but
in general it may be less useful than the MOG due to Curtis. For example,
when discussing the involutions or the maximal subgroups of the Mathieu group
M,,, the MOG is very useful, whereas our difference pattern may be useless.
But then what is the essence of the MOG or the difference pattern?
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