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\S 1. Introduction.

The classical h-cobordism theorem and the s-cobordism theorem have played
an important role in studying differential topology [15], [16].

In the present paper, we discuss equivariant versions of these theorems.
Let $G$ be a compact Lie group and $X$ a finite G-CW-complex. In 1974, S.

Illman [6] defined the equivariant Whitehead group $Wh_{G}(X)$ of $X$ and the equi-
variant Whitehead torsion $\tau_{G}(f)$ for a G-homotopy equivalence $f:Xarrow Y$ between
finite G-CW-complexes $X$, $Y$ as an element of $Wh_{G}(X)$ . When $\tau_{G}(f)=0,$ $f$ is
called a simple $G$ -homotopy equivalence. In this paper, we deal with only smooth
G-manifolds.

Let $(W;X, Y)$ be a smooth G-h-cobordism. Namely $W$ is a compact G-
manifold with boundary $\partial W=X\perp Y$ (disjoint union) and the inclusions

$i_{X}$ : $Xarrow W$ and $i_{Y}$ : $Yarrow W$

are G-homotopy equivalences.
When $G$ is a finite group, $W$ admits a unique smooth G-triangulation [7].

Accordingly the equivariant Whitehead torsion $\tau_{G}(j_{X})$ is well-defined. On the
other hand, the recent investigation of Matumoto and Shiota [13] enables us to
define the equivariant Whitehead torsion $\tau_{G}(i_{X})$ even when $G$ is a compact Lie
group. Notice that $\tau_{G}(i_{X})$ is often written as $\tau_{G}(W, X)$ .

As in the non-equivariant case, a G-h-cobordism $(W;X, Y)$ is called a $G$-s-
cobordism when $\tau_{G}(i_{X})$ vanishes.

We say that a G-h-cobordism (resp. G-s-cobordism) theorem holds if a $G$-h-
cobordism (resp. G-s-cobordism) $(W;X, Y)$ implies a G-diffeomorphism

$W\cong X\cross I$ rel $X$
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where $I$ is the interval $[0,1]$ with trivial G-action.
Unfortunately the G-h-cobordism theorem and the G-s-cobordism theorem do

not hold in general [12]. Accordingly we need to add some assumptions for a
theorem of this sort.

Let $H,$ $K$ be isotropy groups appearing in $W$ and

$W^{H}=\lrcorner LW_{\lambda}^{H}\lambda$ $W^{K}=\lrcorner LW_{\mu}^{K}\mu$

be the decompositions to connected components. We now consider two condi-
tions.

$(^{*}1)$ If $W_{\mu}^{K}\supsetneqq W_{\lambda}^{H}$ , then $\dim W_{\mu}^{K}-\dim W_{\lambda}^{H}\geqq\dim G+3$ for any pair of com-
ponents $W_{\mu}^{K}$ and $W_{\lambda}^{H}$ .

$(^{*}2)$ If $H$ is a maximal isotropy group, then

dim$W_{\lambda}^{H}\geqq\dim G+6$

for any component $W_{\lambda}^{H}$ .
Then our first theorem is the following

THEOREM 1. Let $G$ be a comPact Lie grouP and $(W;X, Y)$ a G-s-cobordlesm.
If $W$ satisfes the conditims $(^{*}1)$ and $(^{*}2)$ above, then we have a $G$-diffeomorphism

$W\cong X\cross I$ rel $X$ .
In particular, $X$ is G-&ffeomorPhic to $Y$.

If we stabilize a G-h-cobordism $(W;X, Y)$ with respect to disks of suitable
representations, then the conditions $(^{*}1)$ and $(^{*}2)$ are automatically satisfied.
However the restriction homomorphism (to a closed subgroup $H$ of $G$ ) $Wh_{G}(X)$

$arrow Wh_{H}(X)$ is defined only for the case of the index $|G/H|$ being finite, and we
need to use such restriction homomorphisms to diagonal actions in stable ver-
sions. Thus we assume hereafter that the group $G$ is finite and have the fol-
lowing

THEOREM 2 (stable equivariant s-cobordism theorem). Let $G$ be a finite group
and $(W;X, Y)$ a G-s-cobordism. Then there exist an orthogonal $G$-representation
space $V$ and a $G$-diffeomorphism

$W\cross V(1)\cong X\cross V(1)\cross I$ rel $X\cross V(1)$ .
In partjcular, we have $G$-diffeomorphisms

$X\cross V(1)\cong Y\cross V(1)$ and $X\cross SV(1)\cong Y\cross SV(1)$ .
Here $V(1)(resP\cdot SV(1))$ denotes the closed unit disk (resP. the unit $sPhere$) of $V$.

Let $M_{1},$ $M_{2}$ be closed G-manifolds. A G-homotopy equivalence $f:M_{1}arrow M_{2}$

will be called a tangential $G$-homotoPy equivalence if there exist a G-representa-
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tion space $V$ and a G-vector bundle isomorphism:

$T(M_{1})\oplus V\infty\cong f^{*}T(M_{2})\oplus V\approx$

where $T(M_{i})$ are tangent G-vector bundles of $M_{i}(i=1,2),$ $V\approx$ is the trivial G-
vector bundle $M_{1}\cross Varrow M_{1}$ and $f^{*}T(M_{2})$ is the induced G-vector bundle of $T(M_{2})$

via the map $f$.
A tangential G-homotopy equivalence $f;M_{1}arrow M_{2}$ is called a tangential simple

G-homotopy equivalence if $f$ is a simple G-homotopy equivalence.
Then we have the following equivariant version of [5], [14].

THEOREM 3. Let $G$ be a finite group. Let $M_{1}$ and $M_{2}$ be closed G-manifolds
and $f:M_{1}arrow M_{2}$ a G-map. Then $f$ is tangential simple G-homotopy equivalence if
and only if there exist an orthogonal G-representation space $V$ and a G-diffeomor-
phism

$\overline{f}:M_{1}\cross V(1)arrow M_{2}\cross V(1)$

such that the following diagram
$M_{1}\cross V(1)arrow^{f^{\overline}}M_{2}\cross V(1)$

$M_{1}\downarrow\pi$

$arrow^{f}$

$M_{2}\downarrow\pi$

is $G$-homotoPy commutative, where $\pi$ are the Projection maPs.

REMARK. Browder and Quinn had an isovariant s-cobordism theorem in [20].

REMARK. An equivariant s-cobordism theorem is stated in [17]. Unfortu-
nately the assumption of the theorem is not stated in terms of the equivariant
torsion $\tau_{G}(W, X)$ in the sense of Illman [6]. One of our tasks for the proofs of
Theorems 1 and 2 is to show that a filtration inherits the property of G-deforma-
tion retractions (see \S 4). Accordingly we can define equivariant torsions suc-
cessively. The other task is to show that it follows from the assumption
$\tau_{G}(W, X)=0$ that these successive equivariant torsions also vanish.

REMARK. An equivariant s-cobordism theorem for finite $G$ in the category
of $PL$ and Top is studied in [18].

\S 2. Naturality of equivariant Whitehead torsions.

We first review some of the basic facts about equivariant simple homotopy
theory for the benefit of the reader. For further details we refer to [2].

In [6], Illman described the basic properties of the equivariant Whitehead
group $Wh_{G}(X)$ for a finite G-CW-complex $X$, got a decomposition of $Wh_{G}(X)$ and
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described it algebraically for abelian $G$ .
Each element of $Wh_{G}(X)$ is represented by a finite G-CW-pair $(V, X)$ such

that $X$ is a strong G-deformation retract of $V$. The element represented by
such a pair (V, $X$ ) is denoted by $\tau_{G}(V, X)$ and is called the Whitehead G-torsion
of (V, $X$).

By a family $\mathcal{F}$ of closed subgroups of $G$ , we understand a collection of
closed subgroups $H$ of $G$ such that $H\in \mathcal{F}$ implies $(H)\subset \mathcal{F}$ , where $(H)$ denotes
the conjugacy class of $H$.

For a family $\mathcal{F}$ of closed subgroups of $G$ , Illman introduced the notion of
restricted Whitehead group $Wh_{G}(X, \mathcal{F})$ consisting of those elements $\tau_{G}(V, X)$ such
that all the isotropy groups of $V-X$ belong to $\mathcal{F}$ . Then $Wh_{G}(X, \mathcal{F})$ is a sub-
group of $Wh_{G}(X)$ .

In 1978, H. Hauschild [4] gave the natural direct sum decomposition

$Wh_{G}(X)\cong(H)\perp Wh_{G}(X, (H))$

where $(H)$ runs over all conjugacy classes of closed subgroups of $G$ . He de-
scribed $Wh_{G}(X)$ algebraically based on this decomposition in a way.

Let $H$ be a closed subgroup of $G$ and $X$ a G-space. We denote by $X^{H}$ the
H-fixed point set of $X$ and by $WH$ the quotient group $NH/H$ where $NH$ is the
normalizer of $H$ in $G$ .

Then the G-action on $X$ induces a $WH$ action on $X^{H}$ and there holds the
following natural isomorphism

$Wh_{G}(X, (H))\cong Wh_{WH}(X^{H}, \{e\})$

which is also due to Hauschild [4].

The WH-action on $X^{H}$ induces the WH-action on the set of connected com-
ponents of $X^{H}$ . Taking $WH$ orbits of the induced action, we get a decomposi-
tion

$X^{H}=\perp WH\cdot X_{a}^{H}\alpha$

as a topological sum of WH-subspaces, where the $X_{a}^{H}$ ’s are connected components
of $X^{H}$ . Denote by $A_{H}$ the index set $\{\alpha\}$ of the above decomposition. We call
each summand $WH\cdot X_{\alpha}^{H}$ a $WH$-component of $X^{H}$ and $X_{\alpha}^{H}$ a representatjve
component of the WH-component $WH\cdot X_{a}^{H}$ .

Then there holds a direct sum decomposition [2]

$Wh_{WH}(X^{H}, \{e\})\cong a\in A_{H}\perp Wh_{WH}(WH\cdot X_{a}^{H}, \{e\})$ .
We now put

$W_{\alpha}H=\{w\in WH|w\cdot X_{a}^{H}\subset X_{a}^{H}\}$

which is a closed subgroup of $WH$. $X_{\alpha}^{H}$ is a $W_{a}$ H-space and we can express
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$WH\cdot X_{\alpha}^{H}=WH\cross X_{\alpha}^{H}W_{\alpha}H$

Then there holds a kind of Shapiro isomorphism [2]

$Wh_{WH}(WH\cdot X_{\alpha}^{H}, \{e\})\cong Wh_{W_{a}H}(X_{a}^{H}, \{e\})$ .
We are now in a position to pass to universal covering spaces.
Denote by $\tilde{X}_{a}^{H}$ the universal covering space of $X_{\alpha}^{H}$ . Choose a point $x_{0}$ of

$X_{\alpha}^{H}$ . Then $\pi_{1}=\pi_{1}(X_{a}^{H}, x_{0})$ operates on $\tilde{X}_{\alpha}^{H}$ as the covering transformation group.
By [1], [8], we have a Lie group $\Gamma_{\alpha}$ satisfying the short exact sequence

$1arrow\pi_{1}arrow\Gamma_{\alpha}arrow^{q}W_{a}Harrow 1$

and $\tilde{X}_{a}^{H}$ is a $\Gamma_{\alpha}$-space such that the $\Gamma_{a}$ -action contains the $\pi_{1}$-action and the
covering projection $P:\tilde{X}_{a}^{H}arrow X_{\alpha}^{H}$ is q-equivariant.

Then there holds an isomorphism [2]

$Wh_{W_{\alpha}H}(X_{a}^{H}, \{e\})\cong Wh_{\Gamma_{\alpha}}(\tilde{X}_{\alpha}^{H}, \{e\})$ .
We now consider the final step of reductions of $Wh_{G}(X)$ .
Denote by $\Gamma_{a.0}$ the component of $\Gamma_{\alpha}$ including the unit element. As is

well-known, $\Gamma_{\alpha.0}$ is a closed normal subgroup of $\Gamma_{\alpha}$ . Then we have the fol-
Iowing isomorphism [2]

$Wh_{\Gamma_{a}}(\tilde{X}_{\alpha}^{H}, \{e\})\cong Wh(\Gamma_{\alpha}/\Gamma_{\alpha.0})$

where the right hand side is the Whitehead group defined algebraically (see [3]).

Putting all this together, we have the following theorem.

THEOREM 4. Let $X$ be a finite G-CW-comPlex. Then we have a direct sum
decompositim

$Wh_{G}(X)\cong(H)a\in A_{H}\lrcorner L\perp Wh(\Gamma_{\alpha}/\Gamma_{a.0})$ .

Since one verifies the naturalities of all the processes of the reductions
above, one has the following theorem on which our theorems are based.

THEOREM 5 ([2]). Let $f:Xarrow Y$ be a $G$-map between finite G-CW-comPlexes
and $H$ a closed subgroup of G. SuPpox that the restnction $f^{H}$ : $X^{H}arrow Y^{H}$ gives a
bijection of the connected components and induces isomorphjsms of fundamental
groups for any base pmnts. Then there holds the isomorphjsm

$f_{*}:$
$Wh_{G}(X, (H))arrow^{\cong}Wh_{G}(Y, (H))$ .

For the detailed proof of Theorems 4 and 5, see [2]. Theorem 4 is proved
also by Illman [8] in a different approach.
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\S 3. Decomposition of G-manifolds.

In this section, we recall the decomposition theorem of smooth G-manifolds
of [11] for the benefit of the reader.

Let $G$ be a compact Lie group. There is a partial order among the set of
conjugacy classes of closed subgroups of $G$ , i.e., $(H_{1})\leqq(H_{2})$ if and only if there
exists $g\in G$ such that $gH_{1}g^{-1}\subset H_{2}$ .

Let $W$ be a compact G-manifold. We shall denote the isotropy group at
$x\in W$ by $G_{x}$ , namely

$G_{x}=\{g\in G|gx=x\}$ .
For a closed subgroup $H$ of $G$ , we shall put

$W(H)=\{x\in W|(G_{x})=(H)\}$ .
Since $W$ is compact, there are only finitely many isotropy types, say

$\{(G_{x})|x\in W\}=\{(H_{1}), (H_{2}), \cdots , (H_{k})\}$ .
It is possible to arrange $\{(H_{i})\}$ in such order that $(H_{i})\geqq(H_{J})$ implies $i\leqq j$ .

We get a filtration
$W=W_{1}\supset W_{2}\supset\cdots\supset W_{k}$

consisting of compact G-manifolds $W_{i}$ with corners such that

$\{(G_{x})|x\in W_{i}\}=\{(H_{i}), (H_{i+1}), \cdots , (H_{k})\}$

as follows.
For this, we introduce some notations. Let $\pi;Earrow M$ be a differentiable G-

vector bundle over a compact G-manifold $M$. As is well known, there is a G-
invariant Riemannian metric $\langle, \rangle$ on $E$. Concerning the metric $\langle$ , $\rangle$ , we set

$\Vert v\Vert=\sqrt{\langle v,v\rangle}$ for $v\in E$ .
Then we put for $r>0$,

$E(r)=\{v\in E|\Vert v\Vert\leqq r\}$ ,

SE$(r)=\{v\in E|\Vert v\Vert=r\}$ ,

$E^{Q}(r)=E(r)-SE(r)=\{v\in E|\Vert v\Vert<r\}$ .
Obviously $E(r)$ and SE$(r)$ are compact G-manifolds.

Since $(H_{1})$ is a maximal conjugacy class, $W(H_{1})$ is a compact G-invariant
submanifold of $W$ . We identify the normal bundle $\nu_{1}$ of $W(H_{1})$ in $W$ with an
open tubular neighborhood of $W(H_{1})$ in $W$ and impose a G-invariant Riemannian
metric on $\nu_{1}$ .

Concerning the metric on $\nu_{1}$ , we set
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$W_{2}=W-\circ\nu_{1}(1)$ .
Then $W_{:}$ is a compact G-manifold with corner and satisfies

$\{(G_{x})|x\in W_{2}\}=\{(H_{2}), (H_{3}), \cdots , (H_{k})\}$ .

Suppose that we get a filtration

$W=W_{1}\supset W_{2}\supset\cdots\supset W_{i}$

consisting of compact G-manifolds $W_{j}$ with corners such that

$\{(G_{x})|x\in W_{j}\}=\{(H_{j}), (H_{j+1}), \cdots (H_{k})\}$

for every $j\leqq i$ . Since $(H_{i})$ is a maximal conjugacy class among the set

$\{(G_{x})|x\in W_{i}\}$ ,

$W_{i}(H_{i})$ is a compact G-invariant submanifold of $W_{i}$ . We identify the normal
bundle $\nu_{i}$ of $W_{i}(H_{i})$ in $W_{i}$ with an open tubular neighborhood of $W_{i}(H_{i})$ in $W_{i}$

and impose a G-invariant Riemannian metric on $\nu_{i}$ . Concerning this metric, we
set

$W_{i+1}=W_{i}-\mathring{\nu}_{i}(1)$ .
Then $W_{i+1}$ is a compact G-manifold with corner and satisfies

$\{(G_{x})|x\in W_{i+1}\}=\{(H_{i+1}), (H_{i+2}), \cdots (H_{k})\}$ .
This completes the inductive construction.

Thus we have shown the following decomposition theorem.

THEOREM 6 ([11]). Let $W$ be a compacf G-manifold and $(H_{1}),$ $\cdots$ , $(H_{k})$ the
isotroPy tyPes aPpeanng in W. Arrange $\{(H_{i})\}$ in such order that $(H_{i})\geqq(H_{j})$ im-
plies $i\leqq j$ . Then there exist compact G-manifolds $M_{i}$ with corners and G-vector
bundles $\nu_{i}arrow M_{i}$ for $1\leqq i\leqq k$ such that

$M_{i}(H_{i})=M_{i}\simeq W(H_{i})G$

and that we have a $decompo\alpha tion$

$W\cong\nu_{1}(1)\cup\nu_{2}(1)\cup\cdots\cup\nu_{k}(1)$ .
Moreover if we set

$W_{i}=\nu_{i}(1)\cup\nu_{i+1}(1)\cup\cdots\cup\nu_{k}(1)$ ,
then we have

$\{(G_{x})|x\in W_{t}\}=\{(H_{i}), (H_{i+1})\ldots , (H_{k})\}$

and a $G$-diffeomorphism
$M_{i}\cong W_{i}(H_{i})$ :
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\S 4. Excision theorem of G-deformation retractions.

Let $W$ be a compact G-manifold with boundary $\partial W=X\perp Y$ (disjoint union).

Let
$W=W_{1}\supset W_{2}\supset\cdots\supset W_{k}$

be the filtration of Theorem 6.
We now set

$X_{i}=X\cap W_{i}$ , $Y_{i}=Y\cap W_{i}$ .
Then we have the following theorem which is crucial for the inductive

proof of our equivariant s-cobordism theorem.

THEOREM 7 (Excision theorem of G-deformation retractions). SuPpose that
$(W;X, Y)$ is a G-h-cobordism. Namely both $X$ and $Y$ are G-deformation retracts
of W. If $W$ satisfies the condition $(^{*}1)$ in \S 1, then both $X_{i}$ and $Y_{i}$ are G-
deformation retracts of $W_{i}$ for each $i,$ $1\leqq i\leqq k$ .

PROOF. Although the assumption of Lemma 3.1 of [11] is slightly different
from the condition $(^{*}1)$ , we proved it actually under the condition $(^{*}1)$ . There-
fore Theorem 7 was already shown in the proof of Lemma 3.1 of [11].

REMARK. In [12], we have shown that the excision theorem of G-deforma-
tion retractions does not hold in general if the condition $(^{*}1)$ is not satisfied.
Accordingly the equivariant torsion itself is not defined in general.

The counter example of the equivariant s-cobordism theorem is provided by
making use of the failure of the excision theorem of G-deformation retractions.

REMARK. The excision theorem of G-deformation retractions does not
follow from [10].

The rest of the section will be devoted to showing how to employ Matumoto-
Shiota’s well-definedness of the equivariant Whitehead torsion in our case. Let
$(W;X, Y)$ and $(W_{i} ; X_{i}, Y_{i})$ be the G-h-cobordisms in Theorem 7. Then their
method is briefly as follows. Takea G-diffeomorphismf: $(W;X, Y)arrow(W’ ; X’, Y’)$

such that $(W’ ; X’, Y’)$ is an analytic G-h-cobordism embedded in a representa-
tion space $V$ of $G$ analytically and equivariantly. Then $(W’ ; X’, Y’)$ is endowed
with an equivariant analytic stratification by isotropy types. Now the quotient
$W’/G$ is embedded in $R^{n}$ subanalytically for some $n>0$ and has subanalytic
stratification by isotropy types. Moreover the quotient map $\pi’$ : $W’arrow W’/G$ is
subanalytic. Next take a subanalytic triangulation of the triple $(W’/G;X’/G$ ,
$Y’/G)$ compatibly with the stratification. After taking a barycentric subdivision
of this triangulation they lift each simplex to a subanalytic simplex embedded in
$W’$ satisfying certain conditions (cf. [13], Lemma 4.4) and take its G-orbit. The
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collection of them forms a G-CW-suMivision of $(W’ ; X’, Y’)$ . Finally take the
pull-back of such a G-CW-complex by $f$, then we get a G-CW-subdivision of
$(W;X, Y)$ . This type of G-CW-subdivisions of $(W;X, Y)$ is unique up to sub-
divisions and G-isomorphisms.

In our case we use the above mentioned filtration

$W=W_{1}\supset W_{2}\supset\cdots\supset W_{k}$ .
Construct the same filtration

$W’=W_{1}’\supset W_{2}’\supset\cdots\supset W_{k}’$

making use of real analytic induced invariant metric from $V$ , which refines
subanalytic stratifications of $W’$ and of $W’/G$ respectively. Take Matumoto-
Shiota’s construction of a G-CW-subdivision of $W’$ so that it is compatible with
these refined stratifications, and pull back to $W$ the filtration and G-CW-sub-
division of $W’$ by $f$. Then we get well-defined equivariant Whitehead torsion
at each stage of our inductive argument.

\S 5. Equivariant s-cobordism theorem.

Let $A$ be a G-manifold and $B$ a G-invariant submanifold of $A$ . Denote by
$I$ the unit interval $[0,1]$ with trivial G-action. Then a G-diffeomorphism $f:A$

$arrow B\cross I$ which is an extension of the canonical G-diffeomorphism $B(\subset A)arrow B\cross\{0\}$

is called a G-diffeomorphism relative $B$ and is denoted by

$A\cong B\cross I$ rel $B$ .
For a compact G-manifold $M$, we denote its boundary by $\partial M$. Let $W,$ $X,$ $Y,$ $Z$ ,

be compact G-manifolds with corners satisfying

$\partial W=(X\perp Y)\cup Z$ ,

$\partial X=X\cap Z$ , $\partial Y=Y\cap Z$ and $\partial XIL\partial Y=\partial Z$ .
We prove Theorem 1 in the following form.

THEOREM 8. Let $W,$ $X,$ $Y,$ $Z$ be as above. $SuPPo$se that both $X$ and $Y$ are
G-deformation retracts of $W$ and

(i) $Z\cong\partial X\cross I$ rel $\partial X$

(ii) $\tau_{G}(W, X)=0$

(iii) the conditions $(^{*}1),$ $(^{*}2)$ are satisfied for $W$.
Then there exists a $G$-diffeomorphism

$W\cong X\cross I$ rel $X$

which is an extenston of the $G$-diffeomorphism of (i).
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PROOF. We prove Theorem 8 by induction on the number of isotropy types

of $W$.
Suppose that $W$ has only one isotropy type, say $(H)$ . In this case, we have

the isomorphism

$Wh_{WH}(X^{H}, \{e\})\cong Wh_{G}(X(H), (H))\cong Wh_{G}(X, (H))$ .
Note that both $X^{H}$ and $Y^{H}$ are WH-deformation retracts of $W^{H}$ . It follows
from the above isomorphism that

$\tau_{WH}(W^{H}, X^{H})=\tau_{G}(W(H), X(H))=\tau_{G}(W, X)=0$ .
Since $WH$ acts freely on $W^{H},$ $W^{H}/WH,$ $X^{H}/WH$ and $Y^{H}/WH$ are $compact^{-}mani-$

folds with corners and satisfy:

$\partial W^{H}/WH=(X^{H}/WH\perp Y^{H}/WH)\cup Z^{H}/WH$ ,

$\partial X^{H}/WH=X^{H}/WH\cap Z^{H}/WH$ ,

$\partial Y^{H}/WH=Y^{H}/WH\cap Z^{H}/WH$ ,

$\partial X^{H}/WH\rfloor 1\partial Y^{H}/WH=\partial Z^{H}/WH$ .
Obviously we have the induced diffeomorphism

$Z^{H}/WH\cong(\partial X^{H}/WH)\cross I$ rel $\partial X^{H}/WH$ .
Moreover one verifies that both $X^{H}/WH$ and $Y^{H}/WH$ are deformation retracts
of $W^{H}/WH$ and that

$\tau(W^{H}/WH, X^{H}/WH)=0$

by [6]. It follows from the classical s-cobordism theorem that we get a dif-
feomorphism

$W^{H}/WH\cong(X^{H}/WH)\cross I$ rel $X^{H}/WH$

extending the above diffeomorphism since $\dim(W^{H}/WH)\geqq 6$ . For the relative
s-cobordism theorem, see for example [19].

The projection $\pi;W^{H}arrow W^{H}/WH$ is a principal WH-bundle. Hence by the
homotopy property of principal bundles, we have a WH-diffeomorphism

$W^{H}\cong X^{H}\cross I$ rel $X^{H}$

extending the induced WH-diffeomorphism

$Z^{H}\cong\partial X^{H}\cross I$ rel $\partial X^{H}$ .

Since $W$ has only one isotropy type $(H)$ , there are the canonical G-diffeomor-
phisms:

$W\cong G/H\cross W^{H}WH$ $X\cong G/H\cross X^{H}WH$
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$Y\cong G/H\cross Y^{H}WH$ $Z\cong G/H\cross Z^{H}WH$

Thus we get a G-diffeomorphism

$W\cong X\cross I$ rel $X$

extending the given G-diffeomorphism (i).

This completes the first step of the inductive proof.
Next we assume that Theorem 8 holds for the case where the number of

the isotropy types is less than $k$ .
Let $W,$ $X,$ $Y,$ $Z$ be as before such that the number of isotropy types of $W$

is $k$ . Let $\{(H_{i})|i=1, \cdots , k\}$ be the isotropy types indexed as in \S 3.
Since $(H_{1})$ is maximal among the set of isotropy types of $W,$ $W(H_{1}),$ $X(H_{1})$ ,

$Y(H_{1})$ and $Z(H_{1})$ are compact G-invariant submanifolds of $W$ . Obviously we
have

$\partial W(H_{1})=(X(H_{1})\perp Y(H_{1}))\cup Z(H_{1})$ ,

$\partial X(H_{1})=X(H_{1})\cap Z(H_{1})$ ,

$\partial Y(H_{1})=Y(H_{1})\cap Z(H_{1})$ ,
$\partial X(H_{1})\perp\partial Y(H_{1})=\partial Z(H_{1})$

and we have a G-diffeomorphism

$Z(H_{1})\cong\partial X(H_{1})\cross I$ rel $\partial X(H_{1})$

which is the restriction of the G-diffeomorphism (i). As is well-known, there
exist the canonical G-diffeomorphisms

$W(H_{1})\cong G/H_{1}\cross W^{H_{1}}WH_{1}$ $X(H_{1})\cong G/H_{1}\cross X^{H_{1}}WH_{1}$

$Y(H_{1})\cong G/H_{1}\cross Y^{H_{1}}WH_{1}$ $Z(H_{1})\cong G/H_{1}\cross Z^{H_{1}}WH_{1}$

Since both $X^{H_{1}}$ and $Y^{H_{1}}$ are $WH_{1}$-deformation retracts of $W^{H_{1}}$ , we may assert
that both $X(H_{1})$ and $Y(H_{1})$ are G-deformation retracts of $W(H_{1})$ .

It follows from [6] that

$\tau_{G}(W, X)=0$ implies $\tau_{G}(W(H_{1}), X(H_{1}))=0$ .
We are now in a position to employ the arguments in the case where $W$

has only one isotropy type and we get a G-diffeomorphism

$W(H_{1})\cong X(H_{1})\cross I$ rel $X(H_{1})$

extending the above G-diffeomorphism

$Z(H_{1})\cong\partial X(H_{1})\cross I$ rel $\partial X(H_{1})$ .
Next we consider the normal bundle Vl of $W(H_{1})$ in $W$ . By the G-homotopy
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property of G-vector bundles, we have an isomorphism of G-vector bundles

$\nu_{1}\cong(\nu_{1}|X(H_{1}))\cross I$

which is an extension of the canonical bundle isomorphism

$\nu_{1}|Z(H_{1})\cong(\nu_{1}|\partial X(H_{1}))\cross I$

induced from the product structure above.
In particular, we have G-diffeomorphisms

$\nu_{1}(1)\cong(\nu_{1}(1)|X(H_{1}))\cross I$ rel $\nu_{1}(1)|X(H_{1})$ ,

$S\nu_{1}(1)\cong(S\nu_{1}(1)|X(H_{1}))\cross I$ rel $S\nu_{1}(1)|X(H_{1})$ .
Therefore we have

$\tau_{G}(\nu_{1}(1), \nu_{1}(1)|X(H_{1}))=0$

and
$\tau_{G}(S\nu_{1}(1), S\nu_{1}(1)|X(H_{1}))=0$ .

We now set
$W_{2}=W-\mathring{\nu}_{1}(1)$ , $X_{2}=X\cap W_{2}$ , $Y_{2}=Y\cap W_{2}$

and
$Z_{2}=(Z-\mathring{\nu}_{1}(1)|Z(H_{1}))\cup S\nu_{1}(1)$ .

Then $W_{2},$ $X_{2},$ $Y_{2},$ $Z_{2}$ are compact G-manifolds with corners and $Z_{2}$ has the
induced product structure

$Z_{2}\cong\partial X_{2}\cross I$ rel $\partial X_{2}$ .

Moreover it is easy to see that

$\partial W_{2}=(X_{2}4LY_{2})\cup Z_{2}$ ,

$\partial X_{2}=X_{2}\cap Z_{2}$ , $\partial Y_{2}=Y_{2}\cap Z_{2}$,

$\partial X_{2}\lrcorner L\partial Y_{2}=\partial Z_{2}$ .
It follows from Theorem 7 that both $X_{2}$ and $Y_{2}$ are G-deformation retracts

of $W_{2}$ .
Next we will show that

$\tau_{G}(W_{2}, X_{2})=0$ .
For this, we make use of the following geometric sum theorem due to Illman [6].

THEOREM 9 (Illman). Let $(A, B)$ be a finite $G- CW- p\alpha r$ and $A_{1},$ $A_{2}$ G-sub-
comPlexes of $A$ such that $A=A_{1}\cup A_{2}$ . Set

$A_{0}=A_{1}\cap A_{2}$ and $B_{k}=B\cap A_{k}$ $(k=0,1,2)$ .
Denote by $i_{k}$ : $B_{k}arrow B$ the inclusion maps $(k=0,1,2)$ . Suppose that the incluston
maps $j_{k}$ : $B_{k}arrow A_{k}$ are all G-homotopy equivalences.
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Then the inclusion $Barrow A$ is also a $G$-homotopy equivalence and we have the
equality

$\tau_{G}(A, B)=i_{1*}\tau_{G}(A_{1}, B_{1})+i_{2*}\tau_{G}(A_{2}, B_{2})-i_{0*}\tau_{G}(A_{0}, B_{0})$ .

Apply Theorem 9 to the following case:

$A=W$ , $B=X$ , $A_{1}=\nu_{1}(1)$ , $A_{2}=W_{2}$ .
Then we have

$A_{0}=A_{1}\cap A_{2}=S\nu_{1}(1)$ , $B_{0}=X\cap S\nu_{1}(1)=S\nu_{1}(1)|X(H_{1})$ ,

$B_{1}=X\cap\nu_{1}(1)=\nu_{1}(1)|X(H_{1})$ and $B_{2}=X\cap W_{2}=X_{l}$ .
The maps corresponding to the maps in Theorem 9 are the following inclusion
maps:

$j_{0}$ : $S\nu_{1}(1)|X(H_{1})-X$ ,

$j_{1}$ : $\nu_{1}(1)|X(H_{1})arrow X$ ,

$j_{2}$ : $X_{2}arrow X$ ,

$j_{0}$ : $S\nu_{1}(1)|X(H_{1})-S\nu_{1}(1)$ ,

$j_{1}$ : $\nu_{1}(1)|X(H_{1})arrow\nu_{1}(1)$ ,

$j_{2}$ : $X_{2}arrow W_{2}$ .
Note that $j_{k}$ are all G-homotopy equivalences $(k=0,1,2)$ . It follows from
Theorem 9 that

$\tau_{G}(W, X)=i_{1*}\tau_{G}(\nu_{1}(1), \nu_{1}(1)|X(H_{1}))$

$+i_{2*}\tau_{G}(W_{2}, X_{2})-i_{0*}\tau_{G}(S\nu_{1}(1), S\nu_{1}(1)|X(H_{1}))$ .
Thus we have

$i_{2*}\tau_{G}(W_{2}, X_{2})=0$ .
Consider the Hauschild decomposition:

$Wh_{G}(X_{2})\cong(H)\perp Wh_{G}(X_{2}, (H))$ .

Since the set of the isotropy types of $W_{2}$ is $\{(H_{2}), (H_{3}), \cdots , (H_{k})\}$ , the element
$\tau_{G}(W_{2}, X_{2})$ can be written as

$\tau_{G}(W_{2}, X_{2})=i=2JL\tau_{G}(W_{2}kX_{2})(H_{i})$

corresponding to the Hauschild decomposition. By the assumPtion $(^{*}1)$ , the in-
clusion map

$j_{2}^{H_{i}}$ ; $X_{2}^{H_{i}}arrow X^{H_{l}}$ $i\geqq 2$

gives a bijection of the connected components and induces isomorphisms of
fundamental groups for any base points. It follows from Theorem 5 that the
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homomorphism

$i_{2^{*}}:$ $Wh_{G}(X_{2}, (H_{i}))arrow Wh_{G}(X, (H_{i}))$ , $i\geqq 2$ ,

is an isomorphism. Since $i_{2*}\tau_{G}(W_{2}, X_{2})(H_{i})=0$ for any $i\geqq 2$ , we have

$\tau_{G}(W_{2}, X_{2})(H_{i})=0$ for $2\leqq i\leqq k$ .
It turns out that

$\tau_{G}(W_{2}, X_{2})=0$ .
Clearly $W_{2}$ satisfies the conditions $(^{*}1),$ $(^{*}2)$ .

Thus we have shown that $W_{2},$ $X_{2},$ $Y_{2},$ $Z_{2}$ instead of $W,$ $X,$ $Y,$ $Z$ in Theorem
8 satisfy all the conditions of Theorem 8. Since the number of the isotropy
types of $W_{2}$ is equal to $k-1$ , we get a G-diffeomorphism

$W_{2}\cong X_{2}\cross I$ rel $X_{2}$

which is an extension of the product structure on $Z_{2}$ , by the inductive hypothesis.
Note that

$Z\subset(\nu_{1}(1)|Z(H_{1}))\cup Z_{2}$

and that the product structure on the right hand side agrees with that of $Z$ .
Thus we obtain a product structure on $W$ which is an extension of the

product structure on $Z$ .
This makes the proof of Theorem 8 complete.

\S 6. Equivariant stable s-cobordism theorem.

In this section, we assume that $G$ is a finite group.
First we state the following lemma which follows directly from the defini-

tion of an elementary G-collapse and an elementary G-expansion.

LEMMA 10. Let $(W, X)$ be a finite G-CW-pair such that $X$ is a G-defoma-
tion retract of W. If $\tau_{G}(W, X)=0$ , then

$\tau_{G}(W\cross Y, X\cross Y)=0$

for any finite G-CW-comPlex $Y$ .

In view of [11], any compact G-manifold has a finite G-CW-structure.
Hence we have the following corollary.

COROLLARY 11. Let $W$ be a compact G-manifold and $X$ a compact G-sub-
manifold of $W$ such that $X$ is a G-deformation retract of W. If $\tau_{G}(W, X)=0$ ,

then we have
$\tau_{G}(W\cross Y, X\cross Y)=0$

for any compact G-manifold $Y$.
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PROOF OF THEOREM 2. In [11], it is shown that there exists an orthogonal
G-representation space $V$ such that $W\cross V(1)$ and $W\cross SV(1)$ satisfy the condi-
tions $(^{*}1),$ $(^{*}2)$ in \S 1.

First we will apply Theorem 8 to the triad

$(W\cross SV(1);X\cross SV(1), Y\cross SV(1))$ .
It follows from Corollary 11 that $\tau_{G}(W, X)=0$ implies

$\tau_{G}(W\cross SV(1), X\cross SV(1))=0$ .
Hence by Theorem 8 we get a G-diffeomorphism

$W\cross SV(1)\cong X\cross SV(1)\cross I$ rel $X\cross SV(1)$ .
Next we will apply Theorem 8 to the triad

$(W\cross V(1);X\cross V(1), Y\cross V(1))$ .
As above, we get

$\tau_{G}(W\cross V(1), X\cross V(1))=0$ .

Appealing to Theorem 8 again, we have a G-diffeomorphism

$W\cross V(1)\cong X\cross V(1)\cross I$ rel $X\cross V(1)$

which is an extension of the above product structure on $W\cross SV(1)$ .
This makes the proof of Theorem 2 complete.

\S 7. Stable equivalence of G-manifolds.

In this section, we assume that $G$ is a finite group.
Let $M_{1},$ $M_{2}$ be closed G-manifolds and $f:M_{1}arrow M_{2}$ a tangential simple G-

homotopy equivalence. It is well-known that there exist an orthogonal G-
representation space $V_{1}$ and a G-embedding $e:M_{1}arrow V_{1}$ . We assume that $V_{1}$

includes $R$ with trivial G-action as a direct summand. For any positive integer
$m$ , we denote by $V_{1}^{m}$ the direct sum of m-copies of $V_{1}$ and by $j:V_{1}arrow V_{1}^{m}$ the
inclusion to the first factor. Set $V=V_{1}^{m}$ .

Then the composition

$M_{1}arrow^{f\cross e}M_{2}\cross V_{1}arrow^{id\cross j}M_{2}\cross V$

is a G-embedding. One verifies that the normal bundle of the G-embedding is
isomorphic to the product bundle

$M_{1}\cross Varrow M_{1}$ ,

if $V_{1}$ is sufficiently large. Thus we get a G-embedding
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$i$ : $M_{1}\cross V(1)arrow M_{2}\cross V$ .
By this embedding, we identify $M_{1}\cross V(1)$ with the image $i(M_{1}\cross V(1))$ . If we
choose a sufficiently large number $r$, there holds the following inclusion

$M_{1}\cross V(1)\subset M_{2}\cross\mathring{V}(r)$ .
We now set

$W=M_{2}\cross V(r)-M_{1}\cross V^{\circ}(1)$

and get a triad
$(W;M_{1}\cross SV(1), M_{2}\cross SV(r))$ .

The proof that the triad above is a G-h-cobordism for $m\geqq 3$ is shown in the
proof of Lemma 3.2 in [11].

Next we will show that the G-h-cobordism is in fact a G-s-cobordism.
For this, we first show that the G-embedding

$i$ : $M_{1}\cross V(1)arrow M_{2}\cross V(r)$

is a simple G-homotopy equivalence. Consider the following G-homotopy com-
mutative diagram

$M_{1}$

$arrow^{f}$
$M_{2}$

$|\pi$

$j$

$|j$

$M_{1}\cross V(1)arrow M_{2}\cross V(r)$

where $\pi$ is the projection map and $j$ is the natural inclusion map. In view of
[3], [6], we have

$\tau_{G}(i)=\tau_{G}C\cdot f\cdot\pi)=\tau_{G}(j\cdot f)+(j\cdot f)_{*}\tau_{G}(\pi)$

$=\tau_{G}(j)+j_{*}\tau_{G}(f)+C\cdot f)_{*}\tau_{G}(\pi)$ .
Since $\pi,$ $f$ and $j$ are all simple G-homotopy equivalences, we may conclude that
$i$ is also a G-simple homotopy equivalence.

Next we will show that

$\tau_{G}(W, M_{1}\cross SV(1))=0$ .
For this, we apply Theorem 9 to the following case:

$A=M_{2}\cross V(r)$ , $B=M_{1}\cross V(1)$ ,

$A_{1}=M_{1}\cross V(1)=B$ , $A_{2}=W$ .
Then we have

$A_{0}=A_{1}\cap A_{2}=M_{1}\cross SV(1)$ ,

$B_{0}=B\cap A_{0}=M_{1}\cross SV(1)=A_{0}$ .
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$B_{1}=B\cap A_{1}=A_{1}=B=M_{1}\cross V(1)$ ,

$B_{2}=B\cap A_{2}=M_{1}\cross SV(1)=A_{0}$ .
The maps corresponding to those maps in Theorem 9 are the following inclu-
sion maps:

$i_{0}=j_{2}$ : $M_{1}\cross SV(1)arrow M_{1}\cross V(1)$ ,

$i_{1}=id$ : $M_{1}\cross V(1)arrow M_{1}\cross V(1)$

and
$j_{0}=id$ : $M_{1}\cross SV(1)arrow M_{1}\cross SV(1)$ ,

$j_{1}=id$ : $M_{1}\cross V(1)arrow M_{1}\cross V(1)$ ,

$j_{2}$ : $M_{1}\cross SV(1)arrow W$ .
Note that $j_{k}$ are all G-homotopy equivalences $(k=0,1,2)$ . It follows from
Theorem 9 that there holds

$\tau_{G}(M_{2}\cross V(r), M_{1}\cross V(1))=i_{1*}\tau_{G}(M_{1}\cross V(1), M_{1}\cross V(1))$

$+i_{2*}\tau_{G}(W, M_{1}\cross SV(1))-i_{0*}\tau_{G}(M_{1}\cross SV(1), M_{1}\cross SV(1))$ .
By definition, we have

$\tau_{G}(M_{1}\cross V(1), M_{1}\cross V(1))=0$ ,

$\tau_{G}(M_{1}\cross SV(1), M_{1}\cross SV(1))=0$ .
Thus we have

$i_{2*}\tau_{G}(W, M_{1}\cross SV(1))=\tau_{G}(M_{2}\cross V(r), M_{1}\cross V(1))$

$=\tau_{G}(i)=0$ .

Finally we will show that $i_{2*}$ is an isomorphism. If the $m$ above is greater
than two, we have

$\dim V^{G}=m\dim V_{1}^{G}\geqq m\geqq 3$ .

Hence for any subgroup $H$ of $G,$ $SV(1)^{H}$ is connected and simply connected. It
turns out that the inclusion map

$j_{2}^{H}$ : $(M_{1}\cross SV(1))^{H}=M_{1}^{H}\cross SV(1)^{H}arrow(M_{1}\cross V(1))^{H}=M_{1}^{H}\cross V(1)^{H}$

gives a bijection of the connected components and induces isomorphisms of
fundamental groups for any base points. Accordingly there holds an isomorphism

$i_{2*}:$ $Wh_{G}(M_{1}\cross SV(1), (H))\cong Wh_{G}(M_{1}\cross V(1), (H))$

by Theorem 5. Since $H$ is an arbitrary subgroup of $G$ , it follows from the
Hauschild decomposition that

$j_{2*};$ $Wh_{G}(M_{1}\cross SV(1))\cong Wh_{G}(M_{1}\cross V(1))$

is an isomorphism.
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Since $i_{2*}\tau_{G}(W, M_{1}\cross SV(1))=0$ , we conclude that

$\tau_{G}(W, M_{1}\cross SV(1))=0$ .
Namely the triad $(W;M_{1}\cross SV(1), M_{2}\cross SV(r))$ is a G-s-cobordism.

If we take $m$ as $m\geqq 6$ , then the conditions $(^{*}1),$ $(^{*}2)$ of Theorem 1 are
satisfied and we have a G-diffeomorphism

$W\cong M_{1}\cross SV(1)\cross I$ rel $M_{1}\cross SV(1)$ .

Therefore we obtain the following G-diffeomorphisms

$M_{2}\cross V(r)=M_{1}\cross V(1)\cup W\cong M_{1}\cross V(1)\cup(M_{1}\cross SV(1)\cross I)$

$\cong M_{1}\cross V(1)$ .
Obviously $M_{2}\cross V(r)$ and $M_{2}\cross V(1)$ are G-diffeomorphic and we have the required
G-diffeomorphism

$f:M_{1}\cross V(1)arrow M_{2}\cross V(1)$ .
The G-homotopy commutativity of the following diagram:

$M_{1}\cross V(1)arrow^{f^{\overline}}M_{2}\cross V(1)$

$M_{1}|\pi$

$arrow^{f}$

$M_{2}1^{\pi}$

is obvious.
Conversely suppose that there exists a G-diffeomorphism

$\overline{f}:M_{1}\cross V(1)arrow M_{2}\cross V(1)$

so that the diagram above is G-homotopy commutative. Since two projection
maps $\pi:M_{1}\cross V(1)arrow M_{1}$ , $\pi:M_{2}\cross V(1)arrow M_{2}$ , and $\overline{f}$ are all simple G-homotopy
equivalences, one can show that $f$ is also a simple $G$ -homotopy equivalence as
before.

This makes the proof of Theorem 3 complete.

References

[1] D. R. Anderson, Torsion invariants and actions of finite groups, Michigan Math.
J., 29 (1982), 27-42.

[2] S. Araki, Equivariant Whitehead groups and G-expansion categories, to appear.
[3] M. M. Cohen, A course in simple homotopy theory, Graduate Texts in Math., 10,

Springer, 1973.
[4] H. Hauschild, Aquivariante Whiteheadtorsion, Manuscripta Math., 26 (1978), 63-82.
[5] M. W. Hirsch, On tangential equivalence of manifolds, Ann. of Math., 83 (1966),

211-217.



Equivariant s-cobordism theorems 367

[6] S. Illman, Whitehead torsion and group actions, Ann. Acad. Sci. Fenn., Ser. AI,
558 (1974), 1-45.

[7] S. Illman, Smooth equivariant triangulations of G-manifolds for G a finite group,
Math. Ann., 233 (1978), 199-220.

[8] S. Illman, Actions of compact Lie groups and the equivariant Whitehead group,
preprint, Purdue University, 1983, to appear in Osaka J. Math.

[9] S. Illman, Equivariant Whitehead torsion and actions of compact Lie groups, Con-
temp. Math., 36 (1985), 91-106.

[10] I. M. James and G. B. Segal, On equivariant homotopy type, Topology, 17 (1978),
267-272.

[11] K. Kawakubo, Compact Lie group actions and fiber homotopy type, J. Math. Soc.
Japan, 33 (1981), 295-321.

[12] K. Kawakubo, Stable equivalence of G-manifolds, to appear.
[13] T. Matumoto and M. Shiota, Unique triangulation of the orbit space of a differentia-

ble transformation group and its applications, to appear.
[14] B. Mazur, Stable equivalence of differentiable manifolds, Bull. Amer. Math. Soc.,

67 (1961), 377-384.
[15] B. Mazur, Relative neighborhoods and the theorem of Smale, Ann. of Math., 77

(1963), 232-249.
[16] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc., 72 (1966), 358-426.
[17] M. Rothenberg, Torsion invariants and finite transformation groups, Proc. Symp.

in Pure Math., Amer. Math. Soc., 32 (1978), 267-311.
[18] M. Steinberger and J. West, Equivariant h-cobordisms and finiteness obstruction,

Bull. Amer. Math. Soc., 12 (1985), 217-220.
[19] J. B. Wagoner, Diffeomorphisms, $K_{2}$ , and analytic torsion, Proc. Symp. in Pure

Math., Amer. Math. Soc., 32 (1978), 23-33.
[20] W. Browder and F. Quinn, A surgery theory for G-manifolds and stratified sets,

Manifolds, Univ. of Tokyo Press, Tokyo, 1973.

Sh\^or\^o ARAKI KatSuO KAWAKUBO
Department of Mathematics Department of Mathematics
Osaka City University Osaka University
Sugimoto, Sumiyoshi-ku Toyonaka
Osaka 558 Osaka 560
Japan Japan


	\S 1. Introduction.
	THEOREM 1. ...
	THEOREM 2 ...
	THEOREM 3. ...

	\S 2. Naturality of equivariant ...
	THEOREM 4. ...
	THEOREM 5 ...

	\S 3. Decomposition of ...
	THEOREM 6 ...

	\S 4. Excision theorem ...
	THEOREM 7 ...

	\S 5. Equivariant s-cobordism ...
	THEOREM 8. ...
	THEOREM 9 ...

	\S 6. Equivariant stable ...
	\S 7. Stable equivalence ...
	References

