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The isotropy representation of a symmetric space is the linear action of the
isotropy group of a point on the tangent space. This paper deals with the
case that the orbits have codimension 2, i.e. they are homogeneous hypersur-
faces in the pseudo-riemannian sphere. In the Riemannian case all homogeneous
hypersurfaces of the sphere are orbits under isotropy representations and Takagi/
Takahashi have studied their geometry in detail. These investigations
will be extended to the isotropy representations of semisimple symmetric spaces.

The first section gives the algebraic prerequisites about semisimple sym-
metric Lie algebras and their isotropy representations.

Section 2 contains the geometric results. Hypersurfaces in the pseudo-
riemannian sphere occur as orbits under the isotropy representation if the
symmetric Lie algebra is of rank 2. The hypersurfaces have 2, 3, 4 or 6
distinct principal curvatures. Depending on the rank of the maximal compact
symmetric subalgebra, either the orbits form one family of homogeneous hyper-
surfaces with complex principal curvatures and at most one focal variety, or
they form several families, one with real principal curvatures and at least 2
focal varieties and the other families with only one focal variety that coincides
with a focal variety of the first family.

The last section gives a list of the examples and their geometric data:
principal curvatures and the numbers of focal varieties and of families of homo-
geneous hypersurfaces. Finally an example of a homogeneous hypersurface is
displayed that is not orbit under an isotropy representation.

The material is taken from the author’s Bonn University doctoral disserta-
tion [5], which may be consulted for detailed proofs.

1. Semisimple symmetric Lie algebras.

A semisimple symmetric Lie algebra (g, ) consists of a real semisimple Lie
algebra g and an involution ¢. Let g=h-+g¢ be the decomposition into eigen-
spaces of ¢, i.e. A={Xeglo X=X} and g={Xeg|oX=—X}. Then [k, h]Ch,
i.e. h is a subalgebra of g, [k, ¢g]JCqgand [g, gJTh. The notation (g, a)=g/h



272 J. Haun

will be used frequently. A and ¢ are orthogonal with respect to the Killing

form B(-, -) of g and <X, Y):=—B(X, Y) is a nondegenerate metric on g¢.
H is the analytic subgroup of the adjoint group of g with Lie algebra ad(h)
(ad is the adjoint representation of g). H acts {-, ->-orthogonally on ¢ and the
representation H—S0(q) is called the isotropy representation of (g, o).
g€=g+ig is the complexification of g and = denotes the conjugation of g€
with resf)ect—to g- The semilinear extension of ¢ on gc is also denoted by 7.
Real forms of g will be indicated by their conjugation, e.g. g.=g, g.=h-+igq.
A Cartan subspace is a subspace g¢Cgq that is maximal abelian in ¢ and
consists only of semisimple elements.
A maximal abelian subspace of ¢ is a Cartan subspace if and only if its
induced metric <-, -> is nondegenerate. This is a consequence of the Jordan

decomposition.

1.1. MAIN LEMMA. If g isa Cartan subspace of (g, @), then there is a Cartan
subalgebra ¢ that contains a, and a conjugation £ of gc such that:

(1) The real form g., determined by the conjugation k, is compact.

(2) The conjugations k, ¢, T commute.

(3) a and ¢ are invariant under the conjugations k, o, T.

PROOF. Since ¢ is abelian and consists only of semisimple elements, it can
be extended to a Cartan subalgebra ¢. By the maximality of g, ¢ is o-stable,
cf. [7, p. 259].

Now a Cartan involution of g, that commutes with ¢ and leaves ¢ invariant,
can be constructed as in [7, p. 182f], cf. [9, p. 337]. Take £ to be the semi-
linear extension of this Cartan involution and (1)-(3) follow. ////

From now on let g, ¢, £ be as in the main lemma.
g=Fk+p, where k:={Xeg|eX=X} and p:={Xeg|eX=—X},

is a Cartan decomposition of g and g has the simultaneous decomposition g=
hk+hp+qk+qgp, where hk:=kh:=hNk etc. Similarly a=ak-+ap.
Now set #=«ko7 and define new symmetric Lie algebras:

(ge» 0) = (R+ip)/(hk+ihp), the compact version of (g, o),

(gsr 7) = (h+1ig)/h, the dual symmetric Lie algebra
and
(B, 0) = k/hk, the maximal compact symmetric subalgebra.

In general % is not semisimple but merely reductive, i.e. k=[k, k]1+z, [k, E1Nz
=0, where z is the center of £ and [k, k] is semisimple. The center decom-
poses with respect to ¢ as z=zh+zq and ([k, k], ¢) is a semisimple symmetric
Lie algebra. If b is a Cartan subspace of ([k, k], o) then b+2z¢ is a Cartan
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subspace of (&, a).
A Cartan subspace g of (g, o) is said to have maximal compact part, if ak

is a Cartan subspace of (%, o).

1.2. PROPOSITION. (1) Ewvery Cartan subspace of (g, o) is H-conjugate to a
k-invariant Cartan subspace.
(2) All Cartan subspaces of (g, o) have the same dimension, called the rank

of (g, ). It coincides with the rank of the compact version.
(3) All Cartan subspaces with maximal compact part are H-conjugate.

ProoOF. (1) See [10, p. 406].

(2) If @ is a k-invariant Cartan subspace, then gk+i ap is a Cartan sub-
space of the compact version. Its dimension is rank(g,, 0).

(3) Let a, b be Cartan subspaces with maximal compact part. By (1) it
can be assumed that they are k-invariant. Then ¢ gk+ap, 7 bk+bp are Cartan
subspaces of (go, k), the dual of the compact version, whose 7 kg-parts are
maximal abelian in 7 kg. By [9, p. 341] there is an element h of the analytic
subgroup of the adjoint group of g, with Lie algebra ad(hk) such that h-(i ak
++ap)=i bk+bp. Since h respects the ro-eigenspace decomposition of ¢ and he
H, the subspaces g, b are H-conjugate. /177

For a C-linear form A on a€ set

§:={Xeh® (adA)?X=A(A2X for all A=aq}
g5 :=1{Xe¢ (adAyX=A(A)*X for all A=g}

and h;, ¢1, kg, pgi are defined similarly.

m(4) :=dimeg§ is called the multiplicity of A.

4:={2]0+#2, ¢§#{0}} is the set of restrictions to g€ of the roots of g¢ with
respect to ¢ [7, p. 288]. 4 is a— possibly non-reduced —root system [7, p. 4567,
called the root system of (g, o) with respect to a.

4* denotes the set of positive roots according to an ordering of 4.

The following lemma corresponds to [13, p. 474].

1.3. LEMMA. (1) The following decompositions are orthogonal with respect
to the Killing form of g°:

R =hS+ 3 B, ¢=a+ T ¢§.

ied* - led+”

@) If Aeg, A(A)#0, then adA: ¢§—h{ and adA: h$—q§ are isomorphisms.
If 2(A)=0, then adA(¢5)=1{0} and ad A(h§)={0}.
3) If A, Beg and Xegf(or k), then

[4, [B, X11=2A)AB)X.
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(4) If a is positive definite, then the decompositions are real and orthogonal :

h=h+ 2 b, g=a+ X qa.
ledt

PrROOF. (1) is a direct consequence of [7, p. 335].

(2), (3) follow from the definitions of ¢f, Af.

(4) 1f AeaCg,, then adA has purely imaginary eigenvalues and (adA)’
has a real eigenspace decomposition. S /177

Now let ¢ be a Cartan subspace with maximal compact part. Similar as
above put ngﬁ::{Xegl_ecl(adA)ZX::;z(A)zX, for all A=ak} etc. for a C-linear
form g on gk®. The multiplicity of g is n(x):=dimegk§. I' denotes the root
system of (&, ¢) with respect to ak (if % is merely reductive, I is set to consist
of the roots of ([&, k], ) with respect to gkN\[k, k], extended by 0 on the

center).
If g is a positive definite Cartan subspace, then I” is a subsystem of 4 and

for 24 is n(A)<m(A).

1.4, LEMMA. (1) If two points X, Y eqk are H-conjugate, then they are
even conjugate with respect to K, the analytic subgroup of H with Lie algebra
ad(hk).

(2) Two points X, Y =ak are H-conjugate if and only if they are in the same
orbit under the action of the Weyl group WI'). (W) is generated by the
reflections at the hyperplanes p(X)=0, pr’.)

Proor. Cf. [11, p. 160], [12, p. 404].

(1) LetY=h-X, heH. If;h=Fk-e*'", ke K, Pehp, is the Cartan decomposi-
tion of A, then Z::k"-Y:eadP-XEg_lg. Claim: Z=X. ltis Z=kZ=e*%P.kX
=e¢-29P. X therefore (e29P)?. X=X. Since ¢*9” is semisimple with only positive
eigenvalues, even ¢*47. X=X, i.e. Z=X. ’

(2) Because of (1) the situation is reduced to the well known compact case,
see [7, p. 285 ff]. /17

2. Geometry of the orbits under isotropy representations.

The orbits of the isotropy representation of (g, ¢) are homogeneous sub-
manifolds. Here attention is restricted to orbits that are hypersurfaces in the
pseudo-riemannian sphere S(g):={Xeg|<X, X>=+1}. It is assumed that S(g)
# @ (this excludes the duals of the compact symmetric Lie algebras). For a
Cartan subspace ¢ put S(a) :=S(g)Na. ‘

If the orbit is a hypersurface (with nondegenerate metric) in S(g) its shape
operator S is an important geometrical object. It can be computed by Sadh(X)
=—adh(N), where heh, X&8(g) and N is the unit normal vector at X, cf.
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[13, p. 473]. Its eigenvalues are the principal curvatures.

The orbits along a normal geodesic form a family of homogeneous hypersur-
faces, see [6, Section 1]. The family is called elliptic, if the normal geodesic
is a circle ((N, N>=+1), and hyperbolic, if the normal geodesic is a hyperbola
(KN, N>=-—1) (this corresponds to type +1, —1 resp. in the notation of ).

If k=cott (in the elliptic case) or cotht (in the hyperbolic case) is a principal
curvature, then the orbit through Xcost+Nsint or Xcoshi+Nsinh¢, resp., has
higher codimension and is called the focal variety associated to k.

2.1. PROPOSITION. (1) If the orbit of a point X&S(q) under the isotropy
representation H—SO(q) is a hypersurface with nondegenerate metric, then the
normal space in g is a Cartan subspace of (g, o).

() If a is a Cartan subspace of (g, 0) and X&S(a), then the complexified
tangent space of the orbit H-X is

SH-X)= 3 ¢

2edt, 1¢x)r#0

and the complexified normal space in S(q) is

LSH-X)={Yea KX, Y)=0+ = 45,

ledt, 1(x)y)=0

where <+, +> denotes the complex metric.

If rank(g, 0)=2 and if A X)#0 for all A 4*, then the orbit is a homogeneous
hypersurface in the pseudo-riemannian sphere S(q). The hypersurface is elliptic,
if a is positive definite, and is hyperbolic, if a is indefinite.

(38) If a is positive definite, then the (real) tangent space of the orbit is

Tx(H-X)=
x( ) leA*‘,Z(X);eogl
and the normal space in S(q) is
1 x(H-X)={YealX, Y>=0}+ 2 qa-
iedt, A(x)y=0"

PROOF. (1) The tangent space at X is Tx(H-X)=[h, X]. Ze&gq isin the
normal space if and only if 0=<Z, [h, X1)=B([Z, X], h). Since [Z, X]=h,
it follows [Z, X]=0 and the normal space is maximal abelian. Since it carries

a nondegenerate metric, it is also a Cartan subspace.
(2), (3) are similar to [13, p. 475] and follow directly from (1.3). ////

In order to study orbit hypersurfaces only symmetric Lie algebras of rank 2
have to be investigated. From now on it is assumed that rank(g, ¢)=2.

2.2. PROPOSITION. .If the orbit of XeS(g) is a hypersurface with normal
vector N at X, then the (complexified) shape operator is given by
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: AN)

V= 2720
where Y= 3);c4+Y 1 s the decomposition according to (2.1.2). S is diagonalizable
and the hypersurface has the $4** distinct principal curvatures k;=—AN)/A(X),
Aed**, with multiplicity my=mQ)+m@22). Here A*:={Asd|2/2& 4} is the
reduced root system of (g, @), with the ordering induced by 4.

PrOOF. Cf.[13, p.476f]. Put h:= 3e4+1/AX))[Y ;, X1, then heh® and
[h, X]=Y. Therefore SY=—[h, N]=—3;(AN)/A(X))Y ; (1.3.3). The principal
curvatures are k;=—A(N)/A(X) (Ac4d*). These are all distinct, if A varies
only in 4**. The eigenspace belonging to the principal curvature %; is z_]'i-l—
gz (Ae 4+), /117

Ya,

The root system 4 is one of the following:
AIXAD AZ; BZ’ BCZ; GZ-

If 4=BC, then 4*=B, and in all other cases 4*=4. The orbit hypersurface
has 2 (if 4=A,XA)), 3(4d=A,), 4(4d=B,, BC,) or 6 (4=G,) distinct principal
curvatures.

For 24 choose A;<ay:=ak-+i ap, such that {(A,, X>=i A X) (Xeq) and
set |A]|?:=<A4,, A;>. Then (A;);e4 is a root system in @.

If ¢ has maximal compact part and g<I’, then define A,cak by <{A4,, X
=i p(X) (X€ak). (Auer is a root system in gk. The mapping I'—ax, u—A,
is called the embedding of I'. The roots of 4* are enumerated in cyclic order,
starting with a short root:

A ={17=1, -, 2d}, d:=g4*, |AI=L040.

Set mj:=m(2j)+m(22j), AjZ:Ajj. Note that M;=Mjro (indices mOdd) [7,
p. 523 ff].

Now the cases rank(k, ¢)=2 or 1 will be studied separately.

In case rank(k, 6)=2, the Cartan subspace ¢ with maximal compact part
is also a Cartan subspace of (g, ¢). a is positive definite and A, qa for i€ 4.
I’ is a subsystem of 4 and the embedding of I is the inclusion (via the identi-
fication A~ A;). Choose an orthonormal basis (4, B) of a by

A = Al/“AIH; <Ady B>>Oy

and define B,;=8(a) (A€4*) by: <A;, B;>=0 and (A,;, B;) has the same
orientation as (A, B).

Set B;:=B,, and n;:=n(1;)+n(24;). It can be assumed that the roots of
4* are enumerated such that either n,>0 (if there is a short root A; with n;>0)



Semisimple symmetric spaces 217

or n,>0=n, (if there are only long roots 4; with n;>0), or n,=n,=0.

2.3. THEOREM. C(ase rank(k, ¢)=2.

(1) There is exactly one elliptic family of homogeneous hypersurfaces among
the orbits. The orbit hypersurface through X=—Asinx+Bcosx (x#jr/d, j&
Z) has the (real) principal curvatures k;j=cot((j—l)z/d—x), j=1, -+, d. The
eigenspace belonging to the principal curvature k; has signature (mj;, m;—n;).
The orbits through B;, —Bj are focal varieties associated to the pricipal curvature
k;(j=1, -+, d). The number of focal varieties equals the number of points B,,
Aed* in a closed Weyl chamber of I', cf. Table 2.1.

(2) Every hyperbolic family has exactly one focal variety, which is also a
focal variety of the elliptic family. The focal variety through Bj; is focal variety
of a hyperbolic family if and only if n;<mj;. If RA,+RA)(A.Eqk, Apsgp
orthonormal) is a normal space (in q) of a hyperbolic family, then the orbit
hypersurface through X=A;coshx+ A,sinhx (x+#0) has the principal curvatures
coth((G—~1)Xx/d)i—x), j=1, --- d, and the orbit through Ay is the focal variety.

Table 2.1. Number of focal varieties of the elliptic family.

r 4 A;x Ay A, B, BC, G,
A;x Ay 2 / 3 3 4
A, / 2 / / 3*
B, / / 2 2 /
BC, / / / 2 /
G, / / / / 2
A® 3 4* 5 5 7*
BC® 3 4* 5 5 7*
Ay 4 6* 8* 8* 12*

A;®, BC;®» denotes the root system A;C R?, BC,C R?,
resp.

Ay® is the empty root system in R?; this occurs if @
is in the center of k.

/: I' cannot be a subsystem of 4.

*: these cases do not occur in the tables 3.1-3. II.

Proor. (1) The normal spaces of elliptic families are positive definite
Cartan subspaces by (2.1.1) and are mutually H-conjugate by (1.2.3), i.e. there
is exactly one elliptic family. The orbit through X is a hypersurface if 2,(X)
#0, i.e. x#(j—1)x/d, with normal vector N=—Acosx—Bsinx. The principal
curvatures are (2.2) kj=—<A;, N>/<{A;, X>=cot((j—1)n/d—x)e R, since A;=
| All(Acos(j—Dr/d+Bsin(j—1)x/d). The eigenspace belonging to k; is ga;
+¢s22,- Its decomposition into eigenspaces with respect to xr shows that its
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signature is (m;, m;—n;). =+ B; are focal points associated to 2; since the normal
circle through X meets B; at distance ¢{;=(j—1)x/d—x and —B; at t;+x. By
(1.4), the number of focal varieties equals the number of points B; in a funda-
mental domain of the operation of W(I"), i.e. in a closed Weyl chamber.

(2) If RA,+RA, is a normal space of a hyperbolic family, then A, is
contained in a Cartan subspace of (£, ¢) that is also a positive definite Cartan
subspace of ( g, 0). Therefore A, is contained in two different normal spaces
and must be a focal point.

The normal space at Bj; is indefinite, if n;<m; (2.1.3). In this case Bj is
a focal point of a hyperbolic family. The principal curvatures can be computed
similarly as in (1). : /1117

In case rank(k, o)=1, the Cartan subspace g with maximal compact part is
indefinite and ak is a Cartan subspace of (&, ¢). Choose an orthonormal basis
(4, B) of a such that Acgk, Beap.

2.4. THEOREM, Case rank(k, o)=1.

(1) The orbits under the isotropy representation form exactly one hyperbolic
family of homogeneous hypersurfaces.

(2) a) If <A, A>=0 for some Acd, then the orbit through A is the only
focal variety. If the roots are enumerated such that {A,, A>=0, then the orbit
hypersurface through X=Acoshx+ Bsinhx (x#0) has the principal curvatures k;
=coth((j—1)(x/d)i—x) with multiplicities m;, j=1, -, d.

b) If <A;, A>+#0 for all A& 4, then there is no focal variety. This is only
possible for A=A;X A, A,. The orbit hypersurface through X=Acoshx+
Bsinhx has the principal curvatures k;=coth((2j—1)/2d)mi—x), =1, -, d with
the same multiplicity my.

Proor. (1) By (1.2.3) all indefinite normal spaces are H-conjugate. If
I'=A, or BC,, then the 2 components of S(a) are conjugate under W(I") and
there is only one family of hypersurfaces. If I'=A{®, then the orbits along
the components of S(a) form 2 families. But this is only possible if ak=gk.
Then also S(g) is not connected and there is only one family in each component
of S(g).

(2) The set (A)ies IS kr-invariant and k7]e, is the reflection at gk. Axes
of symmetry, that are not orthogonal to a root, exist only for the root systems
A; X A,, A,. Then the multiplicities of the roots coincide. It can be assumed,
that the roots are enumerated such that A;=|A,||(Asin((j—Dzx/d+u)+
1Bcos((j—1)z/d+u)) and either u=0 (a) or u=n/2d (b).

The orbit through X (x+0 in (a)) is a hypersurface with normal vector N=
Asinhx+Bcoshx and the principal curvatures are k;,=—<A; N>/{A; X>=
coth((F—1)z/d+u)i—x).
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If ©=0, then only the principal curvature k; has an associated focal variety,
that is just the orbit through A. If u==/2d, then there is no focal variety.

/117

3. Classification and examples.

In this section a list of all homogeneous hypersurfaces that are orbits under
isotropy representations of semisimple symmetric Lie algebras will be given.

In order to compute their geometric data: principal curvatures, multiplicities,
signature of the eigenspaces, number of elliptic and hyperbolic families and the
number of focal varieties, the root systems 4, I', the multiplicities and the
embedding of I must be determined.

Refering to the tables of Araki concerning the root systems of the compact
symmetric Lie algebras [7, p. 532 ff], only the embedding of I' remains to be
computed. Therefore criteria for this embedding are given at first.

3.1. LEMMA. If rank(k, 0)=2, then I' is a subsystem of 4 and

1) nA=<mQ), for 24,

(2) if kt is an inner automorphism of g., g. simple and n(d) odd ael),
then also m(R) is odd. If rank(k, ¢)=1, then (A3)ica is symmetric with respect
to the reflection at ak and

(3) if A—A denotes the orthogonal projection onto ak and pel’, then there
is A€d such that A,=A; and n()<37,-4,mQ),

(4) if the maximal compact subalgebra of the dual symmetric Lie algebra
has rank 2, then there is A4 with A,sak.

PROOF. (1) is clear.

(2) aCgk can be extended to a x-invariant Cartan subalgebra ¢ of k. Since
kT is inner, ¢ is also a Cartan subalgebra of g, [4, p. 416], invariant under the
conjugations «, g, v, 6 and the roots of k¢ with respect to ¢¢ are contained in
the root system of gC. If n(2) is odd, then there is a root a of k¢, whose
restriction to a® is 4 and (k@)*a=—a [7, p. 429]. Since a is also a root of
gc, m(4) is odd by the same argument.

(3) gfﬁCg#:ng, where the sum is taken over those A4, whose restric-
tion to gk® is p. The latter is equivalent to A;=A4,.

(4) By assumption, 7ap is contained in a 2-dimensional Cartan subspace in

¢ gp. Therefore there is 2€d with (G ap)={0}=(A;, ap), i.e. A,sak. ////

Towards a classification of the orbit hypersurfaces it suffices to assume that
[g, g]=h, since the orthogonal complement of [g, ¢l in h acts trivially on gq.
According to Berger [1, pp. 97, 110] the following cases have to be considered:
1. g is absolutely simple.
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0. g is isomorphic to AXh, h absolutely simple, and the involution is the
reflection at the diagonal.

. g is a complex simple Lie algebra, A a real form of g and the involu-
tion is the conjugation with respect to A.

IV. g is a complex simple Lie algebra and A is complex.

V. (g, o) is the direct sum of two semisimple symmetric Lie algebras.

Case 1 (g absolutely simple). The absolutely simple symmetric Lie algebras
of rank 2 are taken from Berger’s list [1, p. 157 ff]. Table 3.1 gives the list
of examples and their geometric data. The root systems 4, I" and the multi-
plicities are obtained from Araki’s table [7, p. 532ff]. Lemma 3.1 allows to
determine the embedding of I as far as is needed to compute the geometric
data using theorems 2.3, 2.4 —with only 2 exceptions: No. I.10, I.20. No. 1. 10
is treated separately in Example 3.3. and No. I.20 is similar.

Case 1I (product with diagonal reflection). Here the isotropy representation
is equivalent to the adjoint representation [1, p. 98]. The list of examples is
given in Table 3.1I.

Case 1II (complex simple Lie algebra with conjugation). The symmetric
Lie algebras of this case are dual to those of case II. See Table 3.1I.

The tables indicate:

(&, o)

(8¢, 6) the type of the compact version of (&, o).

(&, o) the type of the maximal compact symmetric subalgebra.

sign g the signature of the space on which the isotropy representation acts; the
first number is the dimension of ¢ and the second is the number of « —”
signs in the metric.

a,r the root systems of (g, ¢), (k o), resp.

d the number of distinct principal curvatures.

my, My the multiplicities of the principal curvatures kj, k; (m;.2=m;, indices modd).

Sqy werees ,Sq the signatures (m;, s;) of the eigenspaces belonging to the real principal
curvatures kj, j=1, .- ,d (only if an elliptic family occurs) ; “=" means
that S$;=Sj_a.

f the number of focal varieties.

e h the numbers of elliptic, hyperbolic families.

The Lie algebras and the types of the compact simple symmetric Lie algebras are denoted
as in Helgason [7, p. 446, 518]. A(1), A(2), B(2), G(2), resp. stand for the type of
the symmetric Lie algebras belonging to the compact simple Lie groups (of rank 1 or 2).
The 1-dimensional Lie algebra is written as T, so(2), u(1) if it is contained in %, and is
written as R, so(l, 1) if it is contained in p.
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Case 1V (g and h complex, g simple). Here the isotropy representation is
the same as the complexification of the isotropy representation of the maximal
compact symmetric subalgebra. The orbits under the isotropy representation
of (k, ¢) are spheres and the orbits under the isotropy representation of (g, o)
are complex spheres. The homogeneous family is hyperbolic, without focal
varieties, and the principal curvatures are -=+i.

Case V (direct sum). The isotropy representation is reducible and the in-
variant subspaces carry nondegenerate metrics. The hypersurface orbits are
(components of) products of 2 pseudo-riemannian spheres and have 2 distinct
principal curvatures.

3.2. EXAMPLE L.60. g/h = go»/sl(2, R)Xsl(2, R). 'The compact version is
Zac-10/50(4) and the maximal symmetric subalgebra is so(4)/so(2)Xso(2), which
is of rank2. The signature of ¢ is (8,4). The root systems are 4=G,, I'=
A; X Ay; all roots have multiplicity 1 [7, p. 532f]. All embeddings of I are
equivalent ; it can be assumed that I'={=21,, +=4,}. The orbit hypersurfaces in
S(g) have 6 distinct principal curvatures. The signature of the eigenspace
belonging to %; is (1, s;), where s;,=0 if j=1, 4 and s;=1 if j=2, 3,5, 6. The
closed Weyl chamber <{A4,, X>=0, <A;, X>=0 contains the focal points B,, B,,
B;, B,, i.e. there are 4 focal varieties. The focal varieties through B,, B; are
also focal varieties of hyperbolic families. Figure 3.1 shows a normal circle of
the elliptic family.

Figure 3.1.

3.3. ExampLE 1.10. g/h=sl2+n, R)/si2, R)Xsl(n, R)YXR, n=3. The
compact version is su(24+n)/su)Xsu(n)XT and the maximal compact symmetric
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subalgebra is so(2-+n)/s0(2)Xso(n). The root systems are 4=BC, with multipli-
cities m(4,)=2n—4, m(22,)=1, m(4,)=2, and I'=B, with multiplicities n(y,)=n
—2, n(y,)=1 [7, p. 532f]. There are 2 possible embeddings of I': either I'=
A¥={2e\12/2¢ 4} or '={icd|24¢4}. For n>4 the embedding is determined
by (3.1.1) and for n=3 both possible embeddings yield the same geometric data.
Therefore only the case n=4 remains open. The involutions of g,=su(2+n)
(cf. [8, p. 110]), k8=Addiag(—1, —1, +1, ---, +1) and kr=complex conjugation
in su(2+n) commute and fix the symmetric Lie algebra (g, 0). Let E;; be the
matrix with 1 in position (7, 7) and 0 otherwise, Hy:=F; z+1—En+:,; and H,:=
E, n+2—Ents,.. Then a:=RH,+RH,Cqk is a positive definite Cartan subspace.
Let aj, j=1, 2, be the linear forms on a€ defined by a;(a,H,+a,H,)=ia;; Then
d={*a, *+a, *+2a;, +2a,, +a,+a,} and gfaj:C(Ej,n+j+En+j,,~) [8, p. 111].
Since Ej nij+Ensj ;€06 it is 2a;&1 and I'=4*.

3.4. NoTE. In the riemannian sphere nearly all homogeneous hypersurfaces
with 4 distinct principal curvatures can also be described as Clifford examples
[3] Comparing the geometric data with [6, Theorem 3.1] shows that the
examples No. 1.30, 1.32, 1.43, 1.44, 1.55, 1.57, 1I. 6 and III. 4 can not be described
as Clifford examples. It should be remarked, that the compact versions of I.43,
1.44, 1.55 and I.57 are Clifford.

In contrast to the positive definite case, not all homogeneous hypersurfaces
in the pseudo-riemannian sphere are orbits under isotropy representations:

3.5. ExaMpLE. Homogeneous hypersurface, that is not orbit under an
isotropy representation. Let R? denote the 4-dimensional Lorentz space (with
metric {x, x>=—xi+xi4+x24+x2) and Si!:={xeR?<{x, x)=+1}. The surface
defined by <{x, x>=+1, x,=0 and x,—x,;>0 is a homogeneous hypersurface in
S} and not orbit under any isotropy representation. Indeed the surface is an
orbit under the analytic subgroups of SO(1, 3) with Lie algebra

It is also not an orbit under an isotropy representation of a general pseudo-
riemannian symmetric space. This follows from the classification of Lorentzian
symmetric spaces, see [2].
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