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\S 1. Introduction.

In 1961, R. Osserman showed that the Gauss map of a complete non-flat
minimal (immersed) surface in $R^{3}$ cannot omit a set of positive logarithmic
capacity ([8]). Moreover, he proved the following:

THEOREM 1.1 ([9]). Let $M$ be a mimmal surface in $R^{m}(m\geqq 3)$ , and $p$ be a
pmn $f$ of M. If all normals at pmnts of $M$ make angles of at least $\alpha$ with some
fixed direction, then

$|K(p)| \leqq\frac{1}{d(p)^{2}}\cdot\frac{16(m-1)}{\sin^{4}\alpha}$

where $K(p)$ and $d(p)$ denote the Gauss $cun$)$ature$ of Mat $p$ and the distance from
$P$ to the boundary of $M$ respectively.

Afterwards, F. Xavier gave the following improvement of the former result
of R. Osserman.

THEOREM 1.2 ([11]). The Gauss map of a complete non-flat minzmal surface
in $R^{3}$ can omit at most $\alpha x$ points of the sphere.

Recently, the author gave a generalization of this to the case of complete
minimal surfaces in $R^{m}(m\geqq 4)$ ([4], [5]). He studied also the value distribution
of the Gauss map of a complete submanifold $M$ of $C^{m}$ in the case where the
universal covering of $M$ is biholomorphic to the unit ball in $C^{n}$ ([6]).

In this paper, relating to these results we shall give the following theorem.

THEOREM I. Let $M$ be a mimmal surface in $R^{3}$ . SuppOse that the Gauss
map $G:Marrow S^{2}$ omits at least five pmnts $\alpha_{1},$

$\cdots$ , $\alpha_{5}$ . Then, there exists a $po\alpha$ tive
constant $C$ dependjng only on $a_{1},$

$\cdots$ , as such that

$|K(p)| \leqq\frac{C}{d(p)^{2}}$

for an arbitrary $p(nntp$ of $M$.
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Since $d(p)=\infty$ for any $p\in M$ in the case where $M$ is complete, we have
the following improvement of Theorem 1.2 as an immediate consequence of
Theorem I.

COROLLARY 1.3. The Gauss map of a complete non-flat minimal surface in
$R^{3}$ can omit at most four Points of the sPhere.

We know some examples of complete non-flat minimal surfaces in $R^{3}$ whose
Gauss maps omit four points ([8], [10]). So, the number four of exceptional
values of the Gauss map of Corollary 1.3 is best-possible.

We now consider a complete minimal surface $M$ in $R^{4}$ . The Gauss map
may be identified with a pair of meromorphic functions $g=(g_{1}, g_{2})$ (cf. \S 5).
Relating to the results in [2] and [5], we shall prove the following:

THEOREM II. Let $M$ be a comPlete non-flat minimal surface in $R^{4}$ and let
$g=(g_{1}, g_{2})$ be the Gauss map of $M$.

(i) In the case $g_{1}\not\equiv const$ . and $g_{2}\not\equiv const.$ , if $g_{1}$ and $g_{2}$ omit $q_{1}$ points and $q_{2}$

$p\alpha nts$ respectjvely, then $q_{1}\leqq 2$ , or $q_{2}\leqq 2$ , or

$\frac{1}{q_{1}-2}+\frac{1}{q_{2}-2}\geqq 1$ ,

(ii) In the case where one of $g_{1}$ and $g_{2}$ is cmstant, say $g_{2}\equiv const.$ , then $g_{1}$

can omit at most three pofnts.

After some preparations, we shall furnish a function-theoretic lemma in \S 3
and give the proof of Theorem I in \S 4. Theorem II will be proved in \S 5.

It is a pleasure to thank the referee for his questions and comments, which
led to improvements in the exposition.

\S 2. Preliminaries on Poincar\’e metrics.

In this section, we shall give some elementary properties of the Poincar\’e
metric of a domain in the complex plane $C$ .

For a domain $D$ of hyperbolic type in $C$ we denote the Poincar\’e metric of
$D$ by $ds^{2}=\lambda_{D}(z)^{2}|dz|^{2}$ . By definition, $\lambda_{D}(z)$ is a positive $C^{2}$-function satisfying
the condition $\Delta$ log $\lambda_{D}=\lambda_{D}^{2}$ . In particular, for a disc $\Delta(R):=\{z;|z|<R\}$ we have

$\lambda_{\Delta(R)}(z)=\frac{2R}{R^{2}-|z|^{2}}$ .

We need later the following generalized Schwarz’s lemma.

THEOREM 2.1. Let $D$ be a domain in $C$ and $\lambda$ be a $po\alpha tiveC^{2}$-function on
$D$ satisfying the condition $\Delta$ log $\lambda\geqq\lambda^{2}$ . Then, for every holomorphjc map $f:\Delta(R)$

$arrow D$ ,
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$|f’(z)| \lambda(f(z))\leqq\frac{2R}{R^{2}-|z|^{2}}$ .

For the proof, see, $e.g.,$ $[1]$ , p. 13.

Take $q$ distinct points $\alpha_{1},$
$\cdots$ , $\alpha_{q}$ in $C$ , where $q\geqq 2$ . For brevity, we set

$\lambda_{\alpha_{1},\cdots.\alpha_{q}}(z):=\lambda_{C\backslash t\alpha_{1}\ldots..\alpha_{q^{1}}}(z)$ .

PROPOSITION 2.2. Take an arbitrary constant $K_{0}$ with $K_{0}> \max(1, |\alpha_{1}|, \cdots, |\alpha_{q}|)$ .
Then, there exist $po\alpha tive$ constants $A_{i}(0\leqq i\leqq q)$ dependjng only on $K_{0},$ $\alpha_{1},$

$\cdots$ , $\alpha_{q}$

such that

(i) $\lambda_{a_{1},\cdots.\alpha_{q}}(z)\geqq\frac{A_{0}}{|z|\log|z|}$ for $|z|\geqq K_{0}$ ,

(ii)
$\lambda_{\alpha_{1}\ldots..\alpha_{q}}(z)\geqq\frac{A_{i}}{|z-\alpha_{i}|(1+\log^{+}\frac{1}{|z-\alpha_{i}|})}$

$(1\leqq i\leqq q)$

for $|z|\leqq K_{0}$ and $z\neq\alpha_{1},$ $\cdots$ , $\alpha_{q}$ , where $\log^{+}x=\max(\log x, 0)$ .
For the proof, we use the following fact shown by L. V. Ahlfors ([1], p. 17).

(2.3) Set $D:=\{z;|z|\leqq 1, |z|\leqq|z-1|\}$ and

$\zeta(z):=\frac{\sqrt{1-z}-1}{\sqrt{1-z}+1}$ $(z\in D)$ ,

where $\sqrt{1-z}$ means the branch with ${\rm Re}\sqrt{1-z}>0$ for $z\in D$ . Then,

$\lambda_{0,1}(z)\geqq|\frac{\zeta’(z)}{\zeta(z)}|\frac{1}{4-\log|\zeta(z)|}$ $(z\in D)$ .

PROOF OF PROPOSITION 2.2. We shall ShOW first

$\lim_{zarrow}\inf_{0}\lambda_{0.1}(z)|z|\log\frac{1}{|z|}\geqq 1$ . (1)

Since $|\zeta’(z)/\zeta(z)|=|z|^{-1}|z-1|^{-1/2}$ , we have by (2.3)

$\lambda_{0.1}(z)|z$ llog $|1/z| \geqq\frac{\log|1/z|}{|z-1|^{1/2}(4+\log(|\sqrt{1-z}+1|^{2}/|z|))}$

$= \frac{\log|1/z|}{|z-1|^{1/2}(\log|1/z|+4+2\log|\sqrt{1-z}+1|)}$ ,

which tends to 1 as $z$ tends to $0$ . So, we get (1).

Since Poincar\’e metrics are invariant under biholomorphic transformations
and $u=1/z$ maps $C\backslash \{0,1\}$ biholomorphically onto itself,
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$\lambda_{0,1}(z)|dz|=\frac{1}{|z|^{2}}\lambda_{0,1}(\frac{1}{z})|dz|$ .

Therefore, we obtain from (1)

$\lim_{arrow}\inf_{\infty}\lambda_{0,1}(z)|z$ llogl $z|= \lim_{uarrow}\inf_{0}\lambda_{0.1}(u)|u|\log\frac{1}{|u|}\geqq 1$ . (2)

For each index $i(1\leqq i\leqq q)$ we take another index $j$ . Applying the distance
decreasing property of Poincar\’e metrics to the inclusion map of $C\backslash \{\alpha_{1}, \cdots , \alpha_{q}\}$

into $C\backslash \{\alpha_{i}, \alpha_{j}\}$ , we see

$\lambda_{\alpha_{1},\cdots.\alpha_{q}}(z)\geqq\lambda_{\alpha_{i}\alpha_{j}}(z)$ $(z\in C\backslash \{\alpha_{1}, \cdots \alpha_{q}\})$ . (3)

Moreover, we have

$\lambda_{\alpha_{i}\alpha_{j}}(z)=\frac{1}{|\alpha_{j}-\alpha_{i}|}\lambda_{0.1}(\frac{z-\alpha_{i}}{\alpha_{j}-\alpha_{i}})$ , (4)

because $w=(z-\alpha_{i})/(\alpha_{j}-a_{i})$ maps $C\backslash \{\alpha_{i}, \alpha_{j}\}$ biholomorphically onto $C\backslash \{0,1\}$ .
Therefore, we conclude from (3), (4) and (1)

$\lim_{zarrow}\inf_{a_{i}}\lambda_{\alpha_{1},\cdots,\alpha_{q}}(z)|z-\alpha_{i}|(1+\log^{+}\frac{1}{|z-\alpha_{i}|})$

$\geqq\lim_{u-}\inf_{0}\lambda_{0.1}(u)|u$ llog $\frac{1}{|u|}(1-\frac{\log^{+}|\alpha_{i}-\alpha_{j}|}{\log|1/u|})\geqq 1$ .

We now consider the function

$h_{i}(z):= \lambda_{\alpha_{1},\cdots,\alpha_{q}}(z)|z-\alpha_{i}|(1+\log^{+}\frac{1}{|z-a_{i}|})$

on the set $\Delta’$ $:=\{z;|z|\leqq K_{0}\}\backslash \{\alpha_{1}, \cdots , \alpha_{q}\}$ for each $i(1\leqq i\leqq q)$ . We can easily
conclude $A_{i}$ $:= \inf_{z\in\Delta’}h_{i}(z)>0$ because $h_{i}$ is continuous and lim $\inf_{zarrow a_{j}}h_{i}(z)>0$ for
each $j=1,2,$ $\cdots$ , $q$ . The constants $A_{i}$ satisfy the inequality (ii) of Proposition2.2.

Next, we consider the function

$h_{0}(z);=\lambda_{a_{1}\ldots..\alpha_{q}}(z)|z$ llog $|z|$

on the set $\Delta’’$ $:=\{z;|z|\geqq K_{0}\}$ . By (2), (3) and (4),

$\lim_{r}\inf\lambda_{a_{1}\ldots.,\alpha_{q}}(z)|z|\log|z|$

$\geqq_{\wedge}^{r}\lim_{zarrow\infty}\inf\lambda_{\alpha_{1}\alpha_{2}}(z)|z$ llog $|z|$

$= \lim_{zr}\inf\frac{1}{|\alpha_{2}-\alpha_{1}|}\lambda_{0.1}(\frac{z-\alpha_{1}}{\alpha_{2}-\alpha_{1}})|z|\log|z|$

$= \lim_{uarrow}\inf_{\infty}\lambda_{0.1}(u)|u$ llogl $u|\geqq 1$ .
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Therefore, $A_{0}$ $:= \inf_{z\in\Delta’’}h_{0}(z)>0$ and $A_{0}$ satisPes the desired inequality (i) of
Proposition 2.2. This completes the proof of Proposition 2.2.

\S 3. A function-theoretic lemma.

The purpose of this section is to prove the following function-theoretic
lemma.

LEMMA 3.1. Let $g$ be a meromorPhic function on $\Delta(R)$ which omits $q$ distinct
values $\alpha_{1},$

$\cdots$ , $\alpha_{q-1}$ and $\alpha_{q}=\infty$ , where $q\geqq 3$ . For $0<(q-1)\epsilon’<\epsilon$ , there exists a
constant $B$ dependjng only on $\epsilon,$

$\epsilon’,$
$\alpha_{1},$

$\cdots$ , $\alpha_{q}$ such that

$\frac{(1+|g(z)|^{2})^{(q-2-\epsilon)/2}|g’(z)|}{(\Pi_{i=1}^{q-1}|g(z)-\alpha_{i}|)^{1-\epsilon’}}\leqq B(\frac{2R}{R^{2}-|z|^{2}})$ .

For the proof, we set

$B(w)= \frac{(1+|w|^{2})^{(q- 2)/2}}{\Sigma\S^{-1}=1|(w-\alpha_{1})\cdots(w-\alpha_{i-1})(w-a_{i+1})\cdots(w-a_{q-1})|}$ .

Then, $B(w)$ is bounded by a constant $B_{1}$ because it is continuous on
$C\backslash \{\alpha_{1}, \cdots , \alpha_{q-1}\}$ and the limits $\lim_{|w|arrow\infty}B(w)$ and $\lim_{warrow a_{i}}B(w)(1\leqq i\leqq q-1)$ exist.
Therefore, we have the following

(3.2) In the si tuation of Lemma 3.1, there exists a constant $B_{1}$ dePending
only on $\alpha_{1},$

$\cdots$ , $\alpha_{q}$ such that

$\frac{(1+|g|^{2})^{(q-2)/2}|g’|}{\Pi\S^{-1}=1|g-\alpha_{\iota}|}\leqq B_{1}(\sum_{i=1}^{q- 1}\frac{|g’|}{|g-\alpha_{i}|})$ .

We shall prove next the following

(3.3) Let $g,$ $a_{1},$
$\cdots$ , $\alpha_{q}$ be as in Lemma 3.1 and $\eta>0$ . Then, there exist some

constants $C_{i}>0(1\leqq i\leqq q-1)$ dependjng only on $a_{1},$
$\cdots$ , $a_{q},$ $\eta$ such that

$\frac{|g’|}{(1+|g|^{2})^{\eta/2}|g-\alpha_{i}|(1+\log^{+}\frac{1}{|g-\alpha_{i}|})}\leqq c_{i}(\frac{2R}{R^{2}-|z|^{2}})$
. (5)

To this end, we take a constant $K_{0}> \max(1, |\alpha_{1}|, \cdots , |a_{q-1}|)$ and set

$\Delta_{1}$ $:=\{z\in\Delta(R);|g(z)|<K_{0}\}$

$\Delta_{2}$ $:=\{z\in\Delta(R);|g(z)|\geqq K_{0}\}$ .
Then, by Proposition 2.2,

$\lambda_{a_{1},\cdots.a_{q-1}}(g(z))\geqq\frac{A_{i}}{|g(z)-a_{i}|(1+\log^{+}|\frac{1}{g(z)-a_{i}}|)}$
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for $z\in\Delta_{1}$ and

$\lambda_{a_{1},\cdots.\alpha_{q-1}}(g(z))\geqq\frac{A_{0}}{|g(z)|\log|g(z)|}$

for $z\in\Delta_{2}$ . On the other hand, since $\Delta\log\lambda_{\alpha_{1}\ldots..\alpha_{q-1}}=\lambda_{\alpha_{1},\cdots,\alpha_{q-1}}^{2}$ , Theorem 2.1
implies that

$|g’(z)| \lambda_{\alpha_{1},\cdots,\alpha_{Q}-1}(g(z))\leqq\frac{2R}{R^{2}-|z|^{2}}$ .

Therefore, we have

$\underline{|g’|}$
$(1+|g|^{2})^{\eta/2}|g- \alpha_{\ell}|(1+\log^{+}\frac{1}{|g-\alpha_{i}|})$

$\leqq\frac{|g’|}{|g-\alpha_{i}|(1+\log^{+}\frac{1}{|g-\alpha_{i}|})}$

$\leqq\frac{1}{A_{i}}\frac{2R}{R^{2}-|z|^{2}}$

for $z\in\Delta_{1}$ and

$\underline{|g’|}$
$(1+|g|^{2})^{\eta/2}|g-a_{i}|(1+ \log^{+}\frac{1}{|g-a_{i}|})$

$\leqq\frac{\log|g|}{(1+|g|^{2})^{\eta/2}(1-|\alpha_{i}|/K_{0})}\frac{|g’|}{|g|\log|g|}$

$\leqq\frac{B_{3}}{A_{0}}(\frac{2R}{R^{2}-|z|^{2}})$

for $z\in\Delta_{2}$ , where $B_{3}:= \sup_{1w1\geq K_{0}}(1-|\alpha_{t}|/K_{0})^{-1}(1+|w|^{2})^{-\eta/2}\log|w|<+\infty$ . The
constant $C_{i}$ $:= \max(1/A_{i}, B_{3}/A_{0})$ satisfies the inequality (5).

PROOF OF LEMMA 3.1. SinCe

$\frac{(1+|g|^{2})^{(q-2-\epsilon)/2}|g’|}{(\Pi\S_{\Rightarrow 1}^{-1}|g-\alpha_{i}|)^{1-\epsilon^{l}}}=\frac{(1+|g|^{2})^{(q-2)/2}|g’|}{\square l^{-1}=1|g-a_{i}|}\frac{(\square 3_{=1}^{-1}|g-a_{i}|)^{\text{\’{e}}^{r}}}{(1+|g|^{2})^{\epsilon/2}}$

we have only to show by virtue of (3.2) that there exists a constant $D_{i}$ such
that

$k_{i}(z):= \frac{(\Pi_{i=1}^{q-1}|g(z)-a_{i}|)^{\epsilon^{r}}}{(1+|g(z)|^{2})^{\text{\’{e}}/2}}\frac{|g’(z)|}{|g(z)-a_{i}|}\leqq D_{i}(\frac{2R}{R^{2}-|z|^{2}})$ (6)

for each $i(1\leqq i\leqq q-1)$ .
Take $\epsilon’’$ with $0<\epsilon’<\epsilon’’$ and $\epsilon-(q-1)\epsilon’’>0$ , and set
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$H(w):= \frac{|(w-\alpha_{1})\cdots(w-\alpha_{q-1})|^{\epsilon^{r}}(1+\log^{+}\frac{1}{|w-a_{i}|})}{(1+|w|^{2})^{(q-1)\epsilon^{\kappa}/2}}$ .

The function $H(w)$ on $C\backslash \{a_{1}, \cdots , \alpha_{q- 1}\}$ is obviously continuous and $\lim_{warrow\alpha_{l}}H(w)$

$=0(1\leqq i\leqq q)$ . Therefore, $H(w)$ is bounded by a constant depending only on
$\alpha_{1},$

$\cdots$ , $\alpha_{q},$
$\epsilon’,$

$\epsilon’$ . On the other hand, for $\eta:=\epsilon-(q-1)\epsilon’>0$ ,

$k_{i}(z)= \frac{|g’(z)|H(g(z))}{(1+|g(z)|^{2})^{\eta/2}|g(z)-\alpha_{i}|(1+\log^{+}\frac{1}{|g(z)-\alpha_{i}|})}$
.

By the use of (3.3) we have the desired inequality (6).

\S 4. Minimal surfaces in $R^{3}$ .
Let $x=(x_{1}, x_{2}, x_{3}):Marrow R^{3}$ be a (connected oriented) minimal surface in $R^{3}$ .

With each positive isothermal local coordinates $(u, v)$ associating a holomorphic
local coordinate $z=u+\sqrt{-1}v$ , we may regard $M$ as a Riemann surface. Let
$G:Marrow S^{2}$ be the Gauss map of $M$. By definition, $G$ maps each point $p$ of $M$

to the unit vector $G(p)\in S^{2}$ which is normal to $M$ at $p$ . Instead of $G$ , we study
the map $g:Marrow\overline{C}:=C\cup\{\infty\}$ which is the conjugate of the composite of $G$ and
the stereographic projection from $S^{2}$ onto $\overline{C}$ . By the assumption of minimality
of $M,$ $g$ is a meromorphic function on $M$.

For the proof of Theorem I, we may replace $M$ by the universal covering
of $M$. On the other hand, there is no compact minimal surface in $R^{3}$ , and any
meromorphic function on $C$ which omits three distinct values is a constant be-
cause of Picard’s theorem. Therefore, by Koebe’s uniformization theorem we
assume that $M$ is the unit disc $\Delta$ .

Set $\phi_{i}$ $:=\partial x_{i}/\partial z=(\partial x_{i}/\partial u-\sqrt{-1}\partial x_{i}/\partial v)/2$ for each $i=1,2,3$ . By elementary
calculation, we see

$g= \frac{\phi_{3}}{\phi_{1}-\sqrt{-1}\phi_{2}}$

(see [10]). On the other hand, the metric on $M$ induced from $R^{3}$ is given by
$ds^{2}=\lambda^{2}|dz|^{2}=2(|\phi_{1}|^{2}+|\phi_{2}|^{2}+|\phi_{3}|^{2})|dz|^{2}$ . If we set $f:=\phi_{1}-\sqrt{-1}\phi_{2}$ , it is easily
shown that

$\lambda^{2}=|f|^{2}(1+|g|^{2})^{2}$ ,

where $f$ has no zero in case that $g$ has no pole. The curvature $K$ of $M$ is
given by

$K=- \frac{\Delta\log\lambda}{\lambda^{2}}=-\frac{4|g’|^{2}}{|f|^{2}(1+|g|^{2})^{4}}$ . (7)
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Now, suppose that $\overline{C}\backslash g(M)$ contains five distinct points $\alpha_{1},$
$\cdots$ , $\alpha_{5}$ as in

Theorem I. By a suitable coordinate change we may assume that $\alpha_{5}=\infty$ . Let
$z_{0}$ be an arbitrary point of $M$. Our purpose is to prove that

$|K(z_{0})| \leqq\frac{C}{d(z_{0})^{2}}$

for a suitable positive constant $C$ depending only on $\alpha_{1},$
$\cdots$ , $\alpha_{5}$ , where $d(z_{0})$ is

the largest lower bound of the lengths of all piecewise smooth curves going
from $z_{0}$ to the boundary of $M$. Without loss of generality, we assume that
$z_{0}=0$ and $K(0)\neq 0$ . Take real numbers $\epsilon,$

$\epsilon’$ with $0<4\epsilon’<\epsilon<1$ . Set $p:=2/(3-\epsilon)$ .
We consider a many-valued analytic function

$\psi:=\frac{f^{1/(1-p)}(\Pi 3_{=1}(g-\alpha_{i}))^{p(1-\epsilon’)/(1-p)}}{(g’)^{p/(1-p)}}$ (8)

on an open set $M’$ $:=\{z\in M;g’(z)\neq 0\}$ . Take an arbitrary single-valued branch
$\psi_{0}$ of $\psi$ in a neighborhood of the origin. Then $\psi_{0}$ has an analytic continuation
$\psi_{\gamma}$ along any continuous curve 7: $[0,1]arrow M’$ with $\gamma(0)=0$ . Let $\pi:\tilde{M}’arrow M’$ be
the universal covering of $M’$ . Each point $\tilde{z}$ of $\tilde{M}’$ corresponds to the homotopy
class of a continuous curve 7: $[0,1]arrow M’$ with $\gamma(0)=0$ and $\gamma(1)=\pi(\tilde{z})$ . Define

$w=F( \tilde{z}):=\int_{\gamma}\psi_{\gamma}(z)dz$ . (9)

Obviously, $F$ is a single-valued holomorphic function on $\tilde{M}’$ and satisfies the
condition that $F(\tilde{o})=0$ and $dF(\tilde{z})\neq 0$ for any $\tilde{z}\in\tilde{M}’$ , where 6 denotes the point
of $\tilde{M}’$ corresponding to the constant curve $0$ . Then, we can find a positive
constant $R$ such that $F$ maps a connected open neighborhood $U$ of $\tilde{o}$ bijectively
onto $\Delta(R):=\{w\in C;|w|<R\}$ . Choose the largest $R$ with this property and
consider a map $\Phi:=\pi\cdot(F|U)^{-1}$ : $\Delta(R)arrow M$. Here, we shall give the following
estimate of $R$ .

(4.1) There exists a $po\alpha tive$ constant $E_{1}$ dependjng only on $\alpha_{1},$
$\cdots$ , $a_{5}$ and

$\epsilon,$

$\epsilon’$ such that
$R^{1-p}\leqq E_{1}|K(0)|^{-1/2}$

To see this, we set $h(w)=g(\Phi(w))$ . Since

$| \frac{dw}{dz}|=\frac{|f|(\Pi_{i=1}^{4}|g-a_{i}|)^{p(1-\epsilon’)}}{|g’|^{p}}|\frac{dw}{dz}|^{p}$

by (8) and (9), we have

$\Phi^{*}ds^{2}=\lambda(\Phi(w))^{2}|\frac{dz}{dw}|^{2}|dw|^{2}$

$=|f \cdot\Phi|^{2}(1+|g\cdot\Phi|^{2})^{2}\cdot\frac{|g’(\Phi(w))|^{2p}|dz/dw|^{2p}}{|f\cdot\Phi|^{2}(\Pi_{i=1}^{4}|g\cdot\Phi-\alpha_{i}|)^{2p(1-\epsilon’)}}|dw|^{2}$
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$= \frac{(1+|h|^{2})^{2}|h’|^{2p}}{(\Pi_{i=1}^{4}|h-\alpha_{i}|)^{2p(1-\text{\’{e}}’)}}|dw|^{2}$

On the other hand, since $d\Phi(0)\neq 0$ for the map $z=\Phi(w)$ , we can take $w$ as a
holomorphic local coordinate around the origin. The curvature $K(0)$ of $M$ at
the origin is given by

$K(0)=- \frac{4|h’(0)|^{2}}{(1+|h(0)|^{2})^{2}}\frac{(\Pi_{i=1}^{4}|h(0)-a_{i}|)^{2p(1-g’)}}{(1+|h(0)|^{2})^{2}|h’(0)|^{2p}}$

$=- \frac{4|h’(0)|^{2(1-p)}(\Pi t_{=1}|h(0)-\alpha_{i}|)^{2p(1-\epsilon’)}}{(1+|h(0)|^{2})^{4}}$ .

Now, apply Lemma 3.1 to the function $h$ . Then, we see

$\frac{(1+|h(0)|^{2})^{(3-\epsilon)/2}|h’(0)|}{(\Pi_{i=1}^{4}|h(0)-\alpha_{i}|)^{1-\text{\’{e}}}}\leqq\frac{2B}{R}$ .

Consequently,

$R^{1-p} \leqq\frac{(2B)^{1-p}(\Pi_{i=1}^{4}|h(0)-\alpha_{i}|)^{(1-\epsilon’)(1-p)}}{(1+|h(0)|^{2})^{(1-p)/p}|h(0)|^{1-p}}$

$\leqq 2|K(0)|^{-1/2}\frac{(2B)^{1-p}(\Pi_{i=1}^{4}|h(0)-\alpha_{i}|)^{1-\epsilon’}}{(1+|h(0)|^{2})^{(p+1)/p}}$ .

For sufficiently small $\epsilon,$

$\epsilon’$ ,

$E_{1}$ $:=2 \sup_{w\in C}\frac{(2B)^{1-p}(\Pi_{i=1}^{4}|w-\alpha_{i}|)^{1-g’}}{(1+|w|^{2})^{(p+1)/p}}<\infty$ .

The constant $E_{1}$ satisfies the inequality (9). Thus, we conclude (4.1).

Now, for each point $a$ with $|a|=R$ we consider a line segment

$L_{a}$ : $w=ta$ , $0\leqq i<1$

in $\Delta(R)$ and a curve
$\Gamma_{a}$ : $z=\Phi(ta)$ , $0\leqq t<1$

in $M’$ . We shall prove that there exists a point $a_{0}$ with $|a_{0}|=R$ such that $\Gamma_{a_{0}}$

tends to the boundary of $M$, namely, for each compact set $C$ in $M$ we can find
some $t_{0}$ with $0<t_{0}<1$ satisfying the condition that $\Phi(ta_{0})\not\in C$ for $t_{0}<t<1$ . As-
sume that there is no point with such Property. Then, for each point $a$ with
$|a|=R$ there exists a sequence $\{t_{\nu} ; \nu=1, 2, \}$ which tends to 1 as $\nu$ tends to
$+\infty$ such that $\{\Phi(t_{\nu}a);\nu=1, 2, \}$ converges to a point $z_{0}\in M$. Then, $g’(z_{0})$

$\neq 0$ . In fact, if $g’(z_{0})=0$ , then we can find a positive constant $E_{2}$ such that

$| \psi(z)|\geqq\frac{E_{2}}{|z-z_{0}|^{mp/(1-p)}}$
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in a neighborhood $V$ of $z_{0}$ , where $m$ denotes the zero multiplicity of $g’$ at $z_{0}$ .
Therefore, we have

$R= \int_{L_{a}}|dw|=\int_{\Gamma_{a}}|\frac{dw}{dz}||dz|$

$= \int_{\Gamma_{a}}|\psi(z)||dz|$

$\geqq E_{2}\int_{L_{a}\cap V}\frac{|dz|}{|z-z_{0}|^{mp/(1-p)}}=\infty$ ,

because $mp/(1-p)=2m/(1-\epsilon)>1$ . This contradicts (4.1). Thus, we have $z_{0}\in M’$ .
Take a relatively compact, simply connected open neighborhood $V’$ of $z_{0}$ with
$\overline{V}’\subset M’$ . Since $|\psi|$ is a nowhere zero continuous function on $M’$ , there exists
a positive constant $E_{3}$ such that $|\psi(z)|\geqq E_{3}$ on $\overline{V}’$ . If there exists a sequence
$\{t_{v}’ ; \nu=1, 2, \}$ which tends to 1 as $\nu$ tends to $+\infty$ such that $\Phi(t_{\nu}’a)\not\in V’$ , then
we have easily an absurd conclusion

$R= \int_{\Gamma}|dw|\geqq E_{8}\int_{\Gamma}|dz|=\infty$ .

Therefore, $\Phi(ta)\in V’(t_{0}<t<1)$ for some $t_{0}$ . Moreover, by the same argument
as above, we can easily conclude

$\lim_{tarrow 1}\Phi(ta)=z_{0}$ .

Take a connected component $\tilde{V}$ of $\pi^{-1}(V’)$ which includes $\{(F|U)^{-1}(ta):t_{0}<t<1\}$ .
Since $\pi|V;\tilde{V}arrow V’$ is a homeomorphism, $(F|U)^{-1}(ta)$ tends to a point $\tilde{z}_{0}\in\tilde{M}$ as $t$

tends to 1. On the other hand, $F$ maps an open neighborhood of $\tilde{z}_{0}$ biholo-
morphically onto an open neighborhood of $a$ . This shows that $(F|U)^{-1}$ can be
extended holomorphically to a neighborhood of each point $a$ with $|a|=R$ as a
map into $\tilde{M}’$ . Since $\{w;|w|=R\}$ is compact, we can easily find a constant $R’$

with $R<R’$ such that there exists a holomorphic map $H(w):\Delta(R’)arrow M’$ with the
property that $H(w)=(F|U)^{-1}(w)$ for $w\in\Delta(R)$ and $(F\cdot H)(w)=w$ for $w\in\Delta(R’)$ .
Then, $F$ maps an open set $H(\Delta(R’))$ biholomorphically onto $\Delta(R’)$ . This con-
tradicts the property of $R$ . Accordingly, we can choose a point $a_{0}$ with $|a_{0}|=R$

such that $\Gamma_{a_{0}}$ tends to the boundary of $M$. Therefore, $d(0)$ is not larger than
the length of $\Gamma_{a_{0}}$ .

Now, we apply Lemma 3.1 to the function $h$ to see

$\frac{(1+|h|^{2})|h’|^{p}}{(\Pi_{i=1}^{4}|h-\alpha_{i}|)^{p(1-6’)}}\leqq B^{p}(\frac{2R}{R^{2}-|w|^{2}})^{p}$ ,

where $0<P=2/(3-\epsilon)<1$ . This implies that
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$d(0) \leqq\int_{\Gamma_{a_{0}}}ds=\int_{L_{a_{0}}}\Phi^{*}ds$

$= \int_{L_{a_{0}}}\frac{(1+|h|^{2})|h’|^{p}}{(\Pi_{i=1}^{4}|h-\alpha_{i}|)^{p(1-\text{\’{e}}’)}}|dw|$

$\leqq B^{p}\int_{L_{a_{0}}}(\frac{2R}{R^{2}--|w|^{2}})^{p}|dw|$

$=B^{p} \int_{0}^{R}(\frac{2R}{R^{2}-t^{2}})^{p}dt$

$=2^{p}B^{p}R^{1- p} \int_{0}^{1}\frac{dt}{(1-t^{2})^{p}}$ .

By the help of (4.1) we complete the proof of Theorem I.

\S 5. Minimal surfaces in $R^{4}$ .
Let $x=(x_{1}, x_{2}, x_{3}, x_{4}):Marrow R^{4}$ be a complete minimal surface in $R^{4}$ . As in

the case of minimal surfaces in $R^{3}$ , for the proof of Theorem II we may assume
that $M$ is biholomorphic to the unit disc $\Delta$ . As is well-known, the set of all
oriented 2-planes in $R^{4}$ is canonically identified with the quadric

$Q_{2}(C):=\{(w_{1} ; \cdots : w_{4});w_{1}^{2}+ +w_{4}^{2}=0\}$

in $P^{3}(C)$ . By definition, the Gauss map $G:Marrow Q_{2}(C)$ is the map which maps
each point $z$ of $M$ to the point of $Q_{2}(C)$ corresponding to the oriented tangent
plane of $M$ at $z$ . The quadric $Q_{2}(C)$ is biholomorphic to $\overline{C}\cross\overline{C}$ . By suitable
identifications we may regard $G$ as a pair of meromorphic functions $g=(g_{1}, g_{2})$

on $M$. Set $\phi_{i}$ $:=\partial x_{i}/\partial z$ for $i=1,$ $\cdots$ , 4. Then, $g_{1}$ and $g_{2}$ are given by

$g_{1}= \frac{\phi_{3}+\sqrt{-1}\phi_{4}}{\phi_{1}-\sqrt{-1}\phi_{2}}$ , $g_{2}= \frac{-\phi_{3}+\sqrt{-1}\phi_{4}}{\phi_{1}-\sqrt{-}1^{-}\phi_{2}}$

and the metric on $M$ induced from $R^{4}$ is given by

$ds^{2}=|f|^{2}(1+|g_{1}|^{2})(1+|g_{2}|^{2})|dz|^{2}$ ,

where $f:=\phi_{1}-\sqrt{-1}\phi_{2}$ .
We first study the case where $g_{i}\not\equiv const$ . for $i=1,2$ . Suppose that $g_{1}$ and

$g_{2}$ omit $q_{1}$ distinct values $\alpha_{1},$
$\cdots$ , $\alpha_{q_{1}}=\infty$ and $q_{2}$ distinct values $\beta_{1},$ $\cdots$ , $\beta_{q_{2}}=\infty$

respectively. Moreover, we assume that $g_{1}’(0)\neq 0,$ $g_{2}’(0)\neq 0$ and

$q_{1}>2$ , $q_{2}>2$ , $\frac{1}{q_{1}-2}+\frac{1}{q_{2}-2}<1$ . (10)

Take real numbers $\epsilon,$

$\epsilon’$ such that $0<(q_{i}-1)\epsilon’<\epsilon<q_{i}-2$ for $i=1,2$ and
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$\frac{1}{q_{1}-2-\epsilon}+\frac{1}{q_{2}-2-\epsilon}<1$ .

Set $p_{i}$ $;=1/(q_{t}-2-\epsilon)$ for $i=1,2$ . By the assumption (10), we see $q_{i}\geqq 4(i=1,2)$ .
Moreover, we have $q_{2}\geqq 5$ in the case $q_{1}=4$ , and $q_{2}\geqq 4$ in the case $q_{1}\geqq 5$ . It
suffices to consider the cases $(q_{1}, q_{2})=(4,5)$ and $(q_{1}, q_{2})=(5,4)$ . In each case,
$p_{i}/(1-p_{1}-p_{2})>1(i=1,2)$ for a sufficiently small $\epsilon$ . We now consider a many-
valued function

$\psi:=\frac{f^{1/(1-p_{1}-p_{2})}(\Pi 3_{=1}^{1^{-1}}(g_{1}-\alpha_{i}))^{p_{1}(1-\epsilon’)/(1- p_{1}- p_{2})}(\Pi_{j=1}^{q_{2}-1}(g_{2}-\beta_{j}))^{p_{2}(1-\epsilon’)/(1-p_{1}-p_{2})}}{(g_{1}’)^{p_{1}/(1- p_{1}- p_{2)}}(g_{2}’)^{p_{2}’(1- p_{1}-p_{2})}}(11)$

on a set $M’$ $:=$ { $z\in M;g_{1}’(z)\neq 0$ and $g_{2}’(z)\neq 0$ }. Let $\psi_{0}$ be a single-valued branch
of $\psi$ in a neighborhood of the origin and $\pi:\tilde{M}’arrow M’$ be the universal covering
of $M’$ . As in the previous section, for each $\tilde{z}\in\tilde{M}’$ taking a continuous curve 7
whose homotopy class corresponds to $\tilde{z}$ and an analytic continuation $\psi_{\gamma}$ of $\psi_{0}$

along 7, we define

$F( \tilde{z}):=\int_{\gamma}\psi_{\gamma}(\zeta)d\zeta$ .

Then, $F(\tilde{o})=0$ and $dF(\tilde{z})\neq 0$ for all $\tilde{z}\in\tilde{M}’$ . We choose the largest $R$ such that
$F$ maps a connected neighborhood of 6 bijectively onto $\Delta(R)$ , where $R<+\infty$ by
virtue of Liouville’s theorem. Set $h_{i}(w):=g_{i}(\Phi(w))$ on $\Delta(R)$ for $i=1,2$ , where
$\Phi=\pi\cdot(F|U)^{-1}$ . The metric on $\Delta(R)$ induced from $M$ by $\Phi$ is given by

$\Phi^{*}ds^{2}=|f\cdot\Phi|^{2}(1+|h_{1}|^{2})(1+|h_{2}|^{2})|\frac{dz}{dw}|^{2}|dw|^{2}$

On the other hand, by (11) and the definition of $F$, we have

$| \frac{dw}{dz}|=\frac{|f|(\Pi 3_{=1}^{1^{-1}}|g_{1}-\alpha_{i}|)^{p_{1}(1-\text{\’{e}}’)}(\square 3^{2^{-1}}=1|g_{2}-\beta_{J}|)^{p_{2(1-g^{r})}}}{|g_{1}’|^{p_{1}}|g_{2}’|^{p_{2}}}|\frac{dw}{dz}|^{p_{1}+p_{2}}$

It follows that

$| \frac{dz}{dw}|=\ovalbox{\tt\small REJECT}|f|(\square t^{1^{-1}}=1|h_{1}-a_{i}|)^{p_{1}(1-\epsilon’}(\Pi^{|h_{1}’}j^{2^{-1}}=1|h_{2}-\beta_{J}|)^{p_{2}(-\epsilon^{l})}|^{p_{1}}|h_{2}’|^{p_{2}}A$

because $h_{i}’(w)=g_{i}’(\Phi(w))\Phi’(w)(i=1,2)$ . Therefore, we obtain

$\Phi^{*}d^{(1+|h_{1}|^{2})(1+|h_{2}|^{2})|h_{1}’|^{2p_{1}}|h_{2}’|^{2p_{2}}}s^{2}=\ovalbox{\tt\small REJECT}|dw|^{2}(\Pi 3^{1^{-1}}=1|h_{1}-a_{i}|)^{2p_{1}(1-g’)}(\Pi?^{2^{-1}}=1|h_{2}-\beta_{J}|)^{2p_{2}(1-\epsilon^{l})}$

By the same reason as in the previous section, we can find a point $a_{0}$ with
$|a_{0}|=R$ such that for the line segment $L$ from $0$ to $a_{0}$ in $\Delta(R)$ the curve $\Gamma=$

$\Phi(L)$ tends to the boundary of $M$. By the assumption of the completeness of
$M$ the length $d$ of $\Gamma$ is infinite. On the other hand, we obtain by the help of
Lemma 3.1
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$d \leqq\int_{L}\frac{(1+|h_{1}|^{2})^{1/2}(1+|h_{2}|^{2})^{1/2}|h_{1}’|^{p_{1}}|h_{2}’|^{p_{2}}}{(\Pi_{i}|h_{1}-a_{i}|)^{p_{1}(1-\epsilon}(\Pi_{j}|h_{2}-\beta_{j}|)^{p_{2}(1-\epsilon’)}}|dw|$

$\leqq B’\int_{L}(\frac{2R}{R^{2}-|w|^{2}})^{p_{1}+p_{2}}|dw|=B^{\nu}R^{1-(p_{1}+p_{2})}<\infty$ ,

which is absurd. This completes the proof of Theorem II, (i).

We next consider the case $g_{1}\not\equiv const$ . and $g_{2}\equiv const$ . Suppose that $g_{1}$ omits
four distinct values $a_{1},$

$\cdots$ , $a_{4}$ , where we assume $a_{4}=\infty$ . In this case, we use
a many-valued function

$\psi:=\frac{f^{1/(1-p)}(\Pi t_{=1}(g_{1}-\alpha_{i}))^{p(1-\epsilon’)/(1- p)}}{(g’)^{1/(1-p)}}$

instead of (11), where $0<3\epsilon’<\epsilon<1$ and $p;=1/(2-\epsilon)$ . By the same method as
above, we can construct a continuous curve of finite length which goes from
the origin to the boundary of $M$. This contradicts the assumption that $M$ is
complete. Therefore, we conclude Theorem II, (ii).
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